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Abstract

We analyze an oligopoly model in which differentiated criminal or-

ganizations globally compete on criminal activities and engage in local

corruption to avoid punishment. When law enforcers are sufficiently

well-paid, difficult to bribe and corruption detection highly probable,

we show that increasing policing or sanctions effectively deters crime.

However, when bribing costs are low, that is badly-paid and dishonest

law enforcers work in a weak governance environment, and the rents

from criminal activity relative to legal activity are sufficiently high, we

find that increasing policing and sanctions can generate higher crime

rates. In particular, the relationship between the traditional instru-

ments of deterrence, namely intensification of policing and increment of

sanctions, and crime is nonmonotonic. Beyond a threshold, increases in

expected punishment induce organized crime to corruption, and ensuing

impunity leads to higher rather than lower crime.
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1 Introduction

There are occasional examples of successful battles against the corruption per-

petrated by criminal organizations to influence law enforcement and politics.

For example, in 1931, right after prohibition of alcohol consumption ended in

the United States, the conviction of the notorious gang leader Al Capone for

tax evasion led to the break up of mobs and rackets built around the distrib-

ution of alcohol, and other complementary activities. Yet, failed attempts to

curb the influence of organized crime are common place. Recently, in Italy,

the investigation mani pulite (clean hands) initiated by a courageous group

of judges disintegrated after disclosing pervasive corruption by the Mafia, due

to a string of assassinations inflicted upon law enforcers and their families.

In general, organized crime syndicates are very difficult to eliminate. They

are able to protect themselves by a combination of means: (i) Physical vio-

lence against informants and witnesses, (ii) violent threats against prosecutors,

judges and members of juries, (iii) corruption of law-enforcement officials, (iv)

Use of lawyers to manipulate the legal system, and (v) financial contributions

to political campaigns.

The objective of this paper is to better understand the complex relationship

between organized crime, corruption and the efficiency of the justice system.

We will in fact focus on the evasion from conviction by criminal organizations

through bribing law enforcers. However, the relevance of our findings is not

confined to the influence on the operation of the legal system exerted through

this channel. As long as organized crime can invest to manipulate the incen-

tives faced by the actors involved in making prosecution possible, our results

obtain regarding the limited effectiveness of typical crime deterrents in weak

governance environments.

Criminal gangs are active and clever in their efforts to bribe policemen.

Cooperative police officers are helpful to criminal gangs by passing informa-

tion to them about police investigations and planned raids, and by making

deliberate ‘mistakes’ in prosecutions. Such technical errors then ensure that

the charges against the criminals will not result in guilty verdicts. Corruption

of police officers is made easier by the fact that they are modestly paid and,

therefore, are subject to temptation. Moreover, like prosecutors and members

of juries, law enforcers can be coerced through violence. Also, once a few po-
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licemen have been corrupted, they will make strong efforts to ensure that their

colleagues are also corrupted. An honest policeman who tries to inform on his

corrupt colleagues will come under the most severe pressures from them.

The literature on crime has emphasized the deterrence capacity of the jus-

tice system on criminal activities (e.g. Becker 1968, Ehrlich, 1973, Levitt,

1998). Recent evidence for the United States tends to support the hypothesis

that the expectations of potential criminals with respect to punishment deter-

mine crime rates (see e.g. Levitt, 1997). Yet, expected punishment depends

not only on the severity of sentences but also on the probability of convic-

tion once crime is perpetrated. The latter depends on detection by the police,

prosecution by attorneys and the deliberation of judges and juries. As long as

these three activities are conducted transparently and efficiently, tough sanc-

tions will deliver deterrence of criminal activity.1 However if, as described

above, corruption is pervasive, then the efficiency in law enforcement can be

very much reduced.

Since Becker and Stigler (1974) acknowledge that malfeasance by enforcers

can diminish the effectiveness of laws and sanctions in controlling crime, the lit-

erature on crime has considered the problem of bribed officials.2 They propose

the payment of efficiency wages to prevent bribe taking. Besley and McLaren

(1993) and Mookherjee and Png (1995) also propose wage regimes to mitigate

the moral hazard problem when rent seekers attempt to co-opt law enforcers.

Like Becker and Stigler (1974), Bowles and Garoupa (1997) consider a model

in which bribery reduces punishment and thus deterrence. However, the focus

is different since it is on the effects of bribery on the optimal allocation of

resources (which incorporates the social costs of both crime and corruption)

within the public enforcement agency. They show that the maximal fine may

not be optimal. Chang et al. (2000) extend Bowles and Garoupa (1997) by

introducing psychological costs (or social norms) of caught corrupt officers.

They show that, when corruption is widespread, social norms can no longer

take a sufficient sanction against a corrupt officer, and raising fines can in fact
1It is also well-known that, when expected punishment is itself endogenous and negatively

depends on the number of criminals, multiple equilibria in crime and deterrence may emerge

(see for instance Fender, 1999, or Sah, 1991).
2For a comprehensive survey on law enforcement, see Polinski and Shavell (2000). Also,

for a general survey on corruption and governance, see Bardhan (1997).
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result in more crime. Another extension of Bowles and Garoupa (1997) is done

by Garoupa and Jellal (2002). They consider the role of asymmetric informa-

tion on the emergence of collusion between criminals and enforcers. They show

that asymmetric information about the private costs of enforcers engaging in

collusion might eventually deter corruption and bargaining between the two

parties. Finally, Basu et al. (1992) argue that when the possibility of collusion

between law enforcing agents and criminals is introduced, control of corruption

becomes more difficult than is suggested by the standard Beckerian approach.

Marjit and Shi (1998) extend this paper and show that controlling crime be-

comes difficult, if not impossible, because the probability of detection can be

affected by the effort of a corrupt official. Finally, in a recent paper Polinski

and Shavell (2001) consider the dilution of deterrence caused by corruption not

only due to bribing by criminals but also extortion of the innocent by crooked

enforcers. They propose rewards for corruption reports to mitigate the break-

down of deterrence. Our approach differs from the literature in that we focus

is on the relationship between organized crime,3 corruption and punishment in

the context of imperfect competition. Hence, we find not only a reduction in

deterrence effectiveness due to corruption as in previous models but actually

a potential reversal whereby policies usually associated with crime deterrence

can become inducements as long as bribery remains unchecked.

In the present paper, we analyze the role of corruption not only in diluting

deterrence but also as a strategic complement to crime and therefore a catalyst

to organized crime. For that, we develop a simple oligopoly model in which n

criminal organizations compete with each other on the levels of both criminal

activities and corruption. We first show that when the cost of bribing judges or

the number of criminal organizations increases, then both crime and corruption

decrease whereas when the profitability of crime increases, then both crime and

corruption increase. We then show our main results. If corruption is costly,

due to law enforcers being well-paid, hard to bribe and easily detected when

accepting side payments, relative to the profits from crime, then, as predicted

by the standard literature on crime, it is always effective to reduce crime by

intensifying policing or toughening sanctions. However, in the reverse case

of low-paid dishonest law enforcers under weak governance and sizable rents
3There is a small theoretical literature on organized crime (without corruption). See in

particular Fiorentini and Peltzman (1996), Garoupta (2000) and Mansour et al. (2000).
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from illegal activity relative to the outside lawful options, increasing policing

or sanctions may in some cases generate higher crime rates.

This last result is fairly intuitive. As long as the return to legal economic

activity is sufficiently low relative to rents from crime, gangs continue pursing

crime. When sanctions and policing are toughened, the cost of hiring criminals

rises as there is a wage premium to compensate for the risk of conviction if

apprehended. This will discourage crime but only up to a point. In particular,

if bribing costs are small relative to the rents from crime, there is level of ex-

pected punishment beyond which further toughening of sanctions will induce

increasingly higher levels of corruption, and of ensuing crime. Indeed, when

governance is weak, harsher punishment can be a catalyst for organized crime

and may lead to concentration of criminal rents and higher rates of return

ex post. For example, in the 1920’s during alcohol prohibition in the United

States, mob activities were so profitable that organized crime could afford to

keep in its payroll government officials at various levels, including elected politi-

cians and law enforcers, to influence the legal system in its favor. Therefore,

the potential effectiveness of tough sentencing as an effective policy to stop

organized crime and other subsidiary illegal activities is limited. This does

not imply that tough sanctioning of crime and policing should be abandoned

altogether when institutional checks and balances are underdeveloped. But,

rather that unless corruption is curbed, traditional deterrence policies can have

the perverse effect of making crime and corruption strategic complements.

We then show that our results are robust when criminal organizations can

freely enter the crime market. Indeed, when the fixed cost of entry is bounded

both below and above, we show that increasing sanctions can in fact increase

the local and global levels of corruption and crime.

After this introduction, Section 2 sets up the model by describing the prob-

lem of the criminal organization. Section 3 characterizes the corruption mar-

ket. In Section 4, the interaction between crime and corruption is analyzed and

the main propositions are presented. Section 5 analyzes the free-entry equilib-

rium. Finally, Section 6 concludes the paper by discussing some implications

of the results obtained.
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2 The model

There are n criminal organizations in the economy. These organizations com-

pete with each other on crime but are local monopsonies in the corruption

market. On the crime market (think for example of drug cartels), there is

a pie to be shared and Cournot competition takes place. On the corruption

market, there is a continuum of judges to bribe for each of the n criminal orga-

nizations. As this will become clear below, crime is global whereas corruption

is local.

Let us first describe the profit function. For each criminal organization,

the revenue from criminal activities depends on the number of crimes and the

size of the booty per crime. The cost is given by the wage bill accruing the

criminals and the bribes paid to avoid conviction when crimes are detected.

For the criminal organization i = 1, ..., n, profits are given by:

π(C,Ci,α) = B (C)Ci − wiLi − Ti (1)

where

C =

j=nX
j=1

Cj

is the total number of crimes perpetrated in the economy, Ci denotes the

number of crimes committed by organization i, B (C) is the booty per crime

for all criminal organizations, with B0(C) < 0 (the booty per crime B(C) is

assumed to decrease as the number of crimes increases), wi is the wage paid by

each criminal organization i, determined below, to their Li employed criminals,

and Ti are the total costs to bribe judges borne by the criminal organization

i. To be explicitly determined below. For simplicity, we assume about crime

profitability and technology that B(C) = B − C and Ci = Li.
Let us determine the wage wi. Each worker/criminal is risk neutral. The

participation constraint for a given criminal working in organization i is given

by:

φ [wi − (αi.0 + (1− αi)S)] + (1− φ)wi ≥ w0 (2)

where 0 < φ < 1 is the probability of detection of a crime, αi denotes the

probability that a judge is corrupted by organization i, S > 0 is the sanction

when punishment of detected crime is enforced and w0 > 0 is the outside wage

if the individual has a regular job and is not a criminal. Take equation (2).
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The left hand side gives the expected gain of a criminal. Indeed, if he/she is

not caught (with probability 1− φ), he/she gets wi. If he/she is caught (with

probability φ), he/she still obtains wi (we assume that criminals get their

wage even when they are caught); if the judge is corrupted by organization

i (with probability αi), the criminal has no sanction whereas if the judge is

not corrupted by organization i (with probability 1 − αi), the criminal has a

sanction S (for example number of years in prison). This is key incentive for

a criminal to work for an organization since, apart from wi, he/she benefits

from protection (especially corrupted judges).

In equilibrium, this constraint is bidding since there is no incentive for the

criminal group to pay more than the outside wage. Therefore, the reservation

wage for which workers accept to commit crime for organization i is equal to:

wi = φS(1− αi) + w0 (3)

Interestingly, in equilibrium, this wage will be determined by the level of

corruption αi in each organization since the higher the level of corruption, the

lower this wage. Indeed, if the risk to be prosecuted for a criminal is low, then,

as long as wi is greater w0 (which is always the case; see (3)), there is no need

to pay a high wage.

3 Corruption

The interaction between criminal organizations and judges is modeled here

by means of a monopsonistic competitive market inspired by Salop (1979).

For that, we consider n local markets (for example regions or local areas);

each of them is described by the circumference of a circle which has length 1.

In each local market, there is one criminal organization and a continuum of

judges uniformly distributed on the circumference of the circle; the density is

constant and equal to 1. Without loss of generality, organization i’s (= 1, ...n)

location is normalized to 0. The space in which each criminal organization

and judges are located is interpreted as the “transaction cost” space. As a

result, criminal organizations compete with each other on crime, i.e. crime is

global, whereas they only corrupt judges locally, i.e. corruption is local. This

means that, if a criminal belonging to organization i is caught, he/she will be

prosecuted by a judge located in market i. In other words, criminals commit
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crime everywhere but are only prosecuted in the region where they are coming

from. For example, for the drug business, it implies that criminal organizations

via their “employees” sell drug everywhere but their criminals are prosecuted

where they live.

Contrary to the standard spatial model (Salop, 1979), the horizontal dif-

ferentiation of judges is from the point of view of criminal organizations. In

other words, the latter are paying all the transaction costs needed to bribe a

judge. From the judge’s point of view, there is no differentiation since they will

accept a bribe if and only if their expected gain is greater than their current

wage. As a result, the “distance” of a judge to a criminal organization reflects

the transaction cost necessary to agree on a bribe. If we take for example the

case of Italy, it is clear that it is easier for a criminal organization located in

Sicily to bribe a judge located in Palermo than in Milan because it has more

contacts with local people and also speak the same dialect.

Judges’ location types are denoted by x. The higher the distance, the

higher is the (transaction) cost to bribe a judge. The transaction cost function

between a criminal organization located in 0 and a judge x is t |x|, where t
expresses the transaction cost per unit of distance in the location space. We

assume that the outside option of a judge is wb, i.e. the latter is the current

wage of the judge.

In this paper, we focus on non-covered (corruption) markets, i.e. markets

in which some of the judges do not accept bribes and are thus not corrupted.

We believe it is much more realistic than a covered market in which all judges

will be corrupted in equilibrium. This means that each criminal organization

acts as a (local) monopsony on the corruption market whereas they will com-

pete a la Cournot on the crime market. Denote by xi the boundary of the

area of each monopsonist i, which implies that each criminal organization will

bribe 2xi judges in equilibrium. Since each criminal organization is alone in

the corruption market, we have to check that xi < 1/2, ∀i = 1, ..., n, so that,
in equilibrium, the corruption market is not covered. Observe that, even if the

prosecution and thus the corruption are local, the probability to be prosecuted

by a corrupted judge is never 1. Indeed, when a criminal belonging to orga-

nization i is caught, one knows that he/she will be judged in region i but one

does not know the judge to which the case has been assigned. This is why the

probability to be prosecuted by a corrupted judge in region i is 2xi, which is
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obviously strictly less than 1.

All judges are risk neutral. The participation constraint for a judge who is

bribed by a criminal organization i located at a distance xi is thus given by

(1− q)(f + wb) ≥ wb
where q is the probability that corruption is caught (quite naturally, we assume

that if a judge is caught, he/she loses his/her wage wb) and f is the bribe given

to the judge. Observe that f is not indexed by i since on the corruption market

each criminal organization has total monopsony power and thus fixed a bribe

that just binds the judge’s participation constraint; the latter only depends

on q and wb. Once again, the left hand side gives the expected benefit from

corruption whereas the right hand side describes the gain from no-corruption.

The sanction for corruption is the loss of the job and the bribe is lost as

criminals receive no protection. As a result, for each organization i = 1, ..., n

the bribe necessary to corrupt a judge is given by

f =
q

1− qwb (4)

As stated above, all judges are identical so that at f they will always

accept a bribe (we could have assumed that the bribe is f + ε, where ε is very

small but positive; this would obviously not change our results so whenever

judges are indifferent they accept to be bribed). However, from the criminal

organization’s point of view each judge is not located at the same “distance”

so that the transaction cost to bribe a judge is different from one judge to

another. Since xi is the maximum “distance” acceptable for each criminal

organization i (i.e. beyond xi the transaction cost of bribing a judge is too

high), then the total transaction costs for each criminal organization i is given

by:4

Ti = 2

Z xi

0

(f + t)xdx = (f + t)x2i

4If we take a geographical interpretation, then the total cost (f + t)x of bribing a judge

located at a distance x from a criminal organization is as follows. The criminal organization

has to “travel” a distance x, at a cost t per unit of distance, to see the judge and then has to

bribe him/her, at a cost f per unit of distance, i.e. the cost of bribing a judge depends on the

physical distance between this judge and the criminal organization . In fact, we assume that

there is a perfect correlation between the physical distance and the bribe distance between

a criminal organization and a judge, even though the cost per unit of distance is different,

i.e. t 6= f .
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In this context, since the length of the circumference of the circle is normalized

to 1, the probability αi (the fraction of law enforcers that will be bribed in

equilibrium by paying to each of them a bribe f) is given by αi = 2xi/1 = 2xi.

Taking into account all the elements (in particular the participation con-

straint of the criminal (3) and the participation constraint of each judge), and

using (1), the profit function of a criminal group can be written as:

π(C,Ci, f) =

Ã
B −

j=nX
j=1

Cj

!
Ci − [φS (1− 2xi) + w0]Ci − (f + t)x2i (5)

This profit function of each criminal organization is divided in three parts.

The first one is the proceeds from crime, which depends on the competition

in the crime market between the different crime organizations. The second

corresponds to the salary costs of hiring criminals while the third part denotes

the costs of bribing judges.

4 Crime and corruption

As stated above, criminal organizations compete on both crime and corrup-

tion. On the crime market, each criminal organization i competes a la Cournot

by determining the optimal Ci. On the corruption market, each acts as local

monopsonist by determining the optimal xi (indeed, they have to determine

the maximum distance xi beyond which it is not profitable corrupting a judge).

Because, in this model, judges are basically permanent employees of criminal

organizations, the choices of Ci and xi are simultaneous. Thus, choosing simul-

taneously Ciand xi (observe that there is a one-to-one relationship between xi
and αi) that maximize the profit (5) yields the following first order conditions:

B −
j=nX
j=1

Cj − Ci − [φS (1− 2xi) + w0] = 0 (6)

2φSCi − 2(f + t)xi = 0 (7)

Using the Hessian matrix, it is easy to verify that the profit function (5) is

strictly concave (implying a unique maximum) if and only if:

f + t > 2(φS)2 (8)
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Let us now focus on a symmetric equilibrium in which Ci = Cj = C∗ and

xi = xj = x
∗. These two first order conditions are now given by:

B − (n+ 1)C∗ = φS (1− 2x∗) + w0 (9)

φSC∗ = (f + t)x∗ (10)

Now, from (9) we obtain

C∗ =
B − w0 − φS (1− 2x∗)

n+ 1
(11)

Plugging (11) into (10) yields

x∗ =
φS (B − w0 − φS)

(f + t)(n+ 1)− 2(φS)2 (12)

Then, by plugging (12) into (11), we have

C∗ =
(f + t) (B − w0 − φS)

(f + t)(n+ 1)− 2(φS)2 (13)

We have finally the following result.

Proposition 1 Assume

φS < min

·p
(f + t)/2, B − w0, (f + t) (n+ 1)

2 (B − w0)
¸

(14)

Then, there is a unique equilibrium C∗ and α∗ = 2x∗, where the number

of crime per criminal organization C∗ is given by (13) and the number of

corrupted judges per criminal organization α∗ = 2x∗ by (12). Both of them

are strictly positive and (1− α∗)n judges are not corrupted in equilibrium.

Moreover, the equilibrium profit of each criminal organization is given by

π∗(n) =
(f + t) (B − w0 − φS)2 (f + t− (φS)2)

[(f + t)(n+ 1)− 2(φS)2]2 > 0 (15)

and the wage paid to each criminal is equal to

w∗(n) = φS
(f + t)(n+ 1)− 2φS (B − w0)
(f + t)(n+ 1)− 2(φS)2 + w0 > w0 (16)

Proof. See Appendix 1.

The following comments are in order. First, condition (14) guarantees that

both C∗ and x∗ are strictly positive and that the solution of the maximization
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problem is unique. Condition (14) also ensures that, in equilibrium, some

judges are not corrupted (i.e. x∗ < 1/2). Indeed, the difference between the

booty B and the wage of an individual having a regular job (i.e. working in the

“legal” sector) has to be large enough to induce criminal organizations to hire

criminals and to bribe judges but at the same time its has to be bounded above

otherwise all judges will be corrupted because the profit of each organization

would be too large. Second, when choosing C∗ the optimal number of criminals

to hire, each criminal organization faces two opposite effects. When it increases

C, the proceeds from crime is higher (positive loot effect) but the competition

will be fiercer (negative competition effect) and the salary costs higher (negative

salary effect). As a result, choosing the optimal C∗ results of a trade-off

between the first positive effect and the second and third negative effects. This

trade-off is reflected in the first order condition (9). Finally, when choosing x∗

the level of corruption, each criminal organization only faces two effects (there

is no competition since each criminal organization acts as a monopsonist in

the corruption market). Indeed, when it increases x, each criminal’s salary

becomes less costly (positive salary effect) since criminals have less chance to

be sentenced but the costs of bribing judges increase (negative bribe effect).

This trade-off is reflected in the first order condition (10).

At this stage, it is important to question the timing of the model in which

the choices of Ci and xi are simultaneous, implying that some judges are

basically permanent employees of criminal organizations. Another possibility

would have been that criminal organizations commit crimes first, and then,

when detected, invest resources to bribe the judge to which the case has been

assigned. In that case, the timing would have been that Ci is chosen first

and then xi is decided. It is easy to verify that using this timing, we would

have obtained exactly the same results than using the simultaneous choice

timing, i.e. C∗ and x∗ will still be given by (13) and (12). This is because

in both cases crime has not strategical effects on corruption, i.e. C−i (crimes

committed by all other criminals but i) has no effect on xi (see equation (7)).

However, if the timing was to choose first xi and then Ci, it is easy to verify

that Ci would depend both on xi and x−i, and, in this case, the results would

drastically change. But, with this timing, the economic interpretation does

not make very much sense since it implies that criminal organizations decide

on corruption before even committing crime.
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It is now interesting to analyze the properties of the equilibrium. We have

a first simple result.

Proposition 2 Assume (14). Then,

(i) When f the cost of bribing judges, t the unit transaction cost of bribing

judges or n the number of criminal organizations increases, then both crime

and corruption decrease.

(ii) When the net proceeds of crime B−w0 increases, then both crime and
corruption increase.

Proof. See Appendix 1.

Not surprisingly, increasing the costs of bribing judges (f and t) or giving

higher wages to judges leads to less crime and to less corruption. Moreover,

raising the number of criminal organizations n also decreases crime and cor-

ruption because competition in the crime market becomes fiercer and it feeds

back to the corruption market. Lastly, when the proceeds from crime increase

then obviously crime and corruption increase.

Let us go further in the analysis. The following proposition gives our main

results.5

Proposition 3 Assume (14). Then,

(i) If (B−w0)2 ≤ 2(f + t)(n+1)2/(n+2)2, for small values of φS, increas-
ing sanctions increases corruption. But for values of φS larger than a

threshold, increasing sanctions decreases corruption. However, increas-

ing sanctions always reduces crime.

(ii) If 2(f + t)(n+ 1)2/(n+ 2)2 < (B −w0)2 ≤ (f + t)(n+ 2)2/8, increasing
sanctions reduces crime and increases corruption.

(iii) If (B − w0)2 > (f + t)(n + 2)2/8, increasing sanctions always increases
corruption. However, for small values of φS, increasing sanctions re-

duces crime. But values of φS larger than a threshold, increasing sanc-

tions increases crime. This implies that above this threshold value of φS,

increasing sanctions increase both crime and corruption.

5The technical counterpart of Proposition 3 is Proposition 7, which is given in Appendix

1.
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Proof. See Appendix 1.

Using Figures 1a, 1b and 1c that illustrate Proposition 3 we can give the

intuition of the main results. When (B − w0)2 ≤ 2(f + t)(n + 1)2/(n + 2)2,
the labor productivity w0 is high, the proceeds from crime B is quite low,

the probability to be caught for a corrupted judge q and his/her wage wb
are quite high (see (4)) and the transaction costs t to corrupt a judge are

quite large. If we think of two contrasting regions of the same country, say

Italy, then this case could represent the “North”. If we think instead of two

contrasting countries, say the United States and Colombia, then this would

obviously correspond to the United States. Using Figure 1a, it is easy to see

that, in this case, increasing φ the probability to be caught as a criminal (e.g.

frequency of crime detection by policemen in the region) and S the sanctions

(e.g. loss due to imprisonment prison) always reduce crime.

However, corruption can in fact increase for low values of φS and decrease

for high values of φS. The intuition runs as follows. When B − w0 is quite
low compared to f and t, the productivity of workers is high (implying high

wages to induce them to become criminal) and the proceeds from crime is low

compared to the high costs of bribing judges. Moreover, it is easy to see that

the negative competition effect and the positive loot effect are not affected by a

variation of φS whereas the negative salary effect is affected since it becomes

even more costly to hire criminal (they have a higher chance to be caught). So,

when φS increase, each criminal organization finds it optimal to reduce crime

(or more exactly the number of criminals hired) because the costs of hiring

criminals become too large compared to the benefits of crime. However, this is

not true on the corruption market. Indeed, when φS varies, the positive salary

effect is affected since it becomes more costly to hire a criminal whereas the

negative bribe effect is not affected since the cost of bribing judges or policemen

does not depend on φS. This can easily be seen in (10) since the right hand side

corresponds to the salary effect (which depends on φS) and the left hand side

to the bribe effect (which does not depends on φS). In fact, differentiating the

left hand side of (10) with respect to φS yields: C∗ + (φS)∂C∗/∂(φS). The

first effect C∗ is positive (i.e. for a given level of crime, when φS increase,

each criminal organization increases the level of corruption to induce people

to become criminal) whereas the second one (φS)∂C∗/∂(φS) is negative (i.e.

when φS increase, there is less crime and thus there is less need to corrupt
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judges or policemen so that corruption decreases). As a result, for low values

of φS, crime C∗ is quite high so when φS increases, the first effect dominates

the second effect so that corruption increases. For high values of φS, when

φS increases, the second effect dominates the first one because the crime level

C is quite low and it is not optimal for criminal organizations to increase

corruption.

When 2(f + t)(n+1)2/(n+2)2 < (B−w0)2 ≤ (f + t)(n+2)2/8, sanctions
affect monotonically both crime and corruption. In this intermediate case,

where the proceeds from crime are higher but not too high and judges are

better paid, higher sanctions lead to more corruption but less crime. See

Figure 1b for an illustration of this case.

Let us now interpret the case when (B − w0)2 > (f + t)(n + 2)2/8, were
labor productivity is low, the probability to be corrupted high and the pro-

ceeds of crime large. Using the above interpretation, this case would be either

“Southern” Italy or Colombia. Let us use Figure 1c to understand the results.

In this case, when φS increase, it is always optimal for criminal organizations

to increase corruption because the resulting gain in the reduction of criminals’

wages with the fact that the net proceeds from crime B − w0 are high are
always greater than the increasing cost of bribing judges (which is not affected

by φS). In the crime market, this is not always true. Indeed, as stated above,

only the salary effect is affected by φS. Take equation (11). It is easy to

see the sign of ∂C∗/∂(φS) depends on −(1 − 2x∗) + 2φS∂x∗/∂(φS). When
(B−w0)2 > (f + t)(n+2)2/8, the first effect −(1− 2x∗) (i.e. for a given level
of corruption, when φS increase, it becomes more costly to hire criminals)

is negative whereas the second one 2(φS)∂x∗/∂(φS) (i.e. when φS increases,

there is more corruption and it becomes less costly to hire criminals since their

probability to be sentenced if caught is lower) is positive. As a result, for

low values of φS, when φS increases, the first effect dominates the second one

because the corruption is still quite low so that it becomes more costly to pay

criminals and thus crime is reduced. However, for high values of φS, the sec-

ond effect dominates the first one since the level corruption is quite high and

thus quite effective so that crime increases.

This is our main result. In a country where crime is profitable relative to

legal economic opportunities, judges are badly-paid and easy to corrupt, then

for crimes that involve large sanctions (drug dealing, murders, ...), increasing
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the crime detection probability or the severity of the sanctions results in more

rather than less crime. This is due to the fact that, when sanctions increase,

the optimal response of criminal organizations is to increase corruption to

counteract the rise in sanctions. This implies that, in countries with weak

governance, the policy implications of the standard crime model may not hold

and instead, as our model suggests, deterrence can only be effective ensuing a

substantial cut down in corruption. Basically, the issue is that a rise in φS can

take the model into a set of the parameter space where crime and corruption

are strategic complements, as long a the equilibrium bribe is bounded.

It is interesting to compare our result with that of Malik’s (1990). In

his model, individuals engage in socially costly activities that reduce their

probability of being caught and fined. This is comparable to corruption in our

model. His main finding is to show that it is not necessarily optimal to set fines

for offenses as high as possible. This has the same flavor as our result (iii)

in Proposition 3. There are however important differences between the two

models. First, contrary to us, Malik (1990) adopts a normative perspective.

He focuses on an enforcement agency that aims at reducing the social costs of

avoidance activities by increasing fines. In our analysis, there is no such an

agency. There is instead competition between criminal organizations. In our

model, we cannot really speak about efficiency. Our results are comparative

statics results. If one compares two equilibria with different levels of sanctions,

then the one with the highest level of sanctions is not necessarily the one with

the lowest levels of crime and corruption. Second, his main result is driven by

the fact that individuals are heterogeneous ex ante in their earning abilities.

In our model, all agents are identical ex ante and our main result is driven by

the imperfect competition in the crime and corruption markets and the fact

that crime and corruption are strategic complements. The mechanism that

leads to the results is thus quite different in the two models.

[Insert F igures 1a, 1b and 1c here]

We can analyze further the latter effect by investigating case (iii) in Propo-

sition 3. We have the following result:

Proposition 4 Assume (B − w0)2 > (f + t)(n + 2)2/8 and (14). Then (i)

the lower the labor productivity w0 in the legal sector, (ii) the higher the booty
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B per crime, (iii) the easier it is to bribe law enforcers (i.e. the lower the

reservation bribe f and associated transaction cost t), and/or (iv) the weaker

is the competition between criminal organizations (i.e. the lower is n), the

lower is the threshold of φS above which crime and corruption become strategic

complements, i.e. the more likely that an increase in policing or sanctions leads

to an increase in crime.

Proof. See Appendix 1.

This proposition complements our previous results. It explains why in some

countries deterrence works, even if diluted by corruption, while in others it can

have perverse effects. The proposition establishes that where productivity is

quite low so that legal jobs are not very attractive, bribing is pervasive, and

criminal organizations have high market power, then increasing policing and

sanctions is more likely to trigger strategic complementarity among corruption

and crime resulting in a perverse effect of deterrence.

This result contrasts with the literature that has posited optimal maximal

sanctions. First, Polinski and Shavell (1979) show that if fine collection is

costless and monitoring of criminal activity is costly, the optimal magnitude of

fines corresponds to the maximum payable by criminals. When this maximum

falls well short of the booty from crime, nonmonetary sanctions are required

for deterrence. Since it is not only costly to apprehend criminals but also

to punish them, Shavell (1987) proves that it is optimal for sanctions to be

imposed with low frequency. Hence, in the case that the courts’ information

is imperfect, deterrence requires sufficiently large sanctions. The standard

result is that under risk neutrality fines should be maximal. If the optimal fine

is not maximal, due to risk aversion,6 the presence of corruption in Polinski

and Shavell (2001) dictates higher sanctions to counter the deterrence-diluting

effects of corruption. In contrast, in our model, until bribery can be eradicated,

the rising of sanctions worsens the corruption and crime problems.
6Polinski and Shavell (2000) present the standard case with risk neutrality (p.50) and

then discuss other reasons why maximal fines may not be optimal (p. 62-64). First, mar-

ginal deterrance may dictate heterogenous fines across criminal acts harmful in different de-

grees. Second, the potential for general enforcement investments yields economies of scope

in monitoring inducing apprehension probabilities consistent with deterrance for sanction

magnitudes below the maximal level.
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5 Free entry

One may wonder what happens to the model if we allow for free entry. In our

model, it means that we investigate the formation of criminal organizations,

given that each of them creates their own “local” corruption market. We would

thus like to know the number of criminal organizations that will be created in

a given country.

Each criminal organization that enters the crime/corruption market must

pay a positive fixed cost G. To determine the number of criminal organizations

ne we have to solve: π∗(n) − G = 0, where π∗(n) is given by (15). We easily
obtain:7

Proposition 5 Assume

φS < min
hp
(f + t)/2, B − w0

i
(17)

and s
G

(f + t)
£
f + t− (φS)2¤ < min

·
B − w0 − φS

f + t− 2(φS)2 ,
1

2φS

¸
(18)

Then, under free entry, the equilibrium number of criminal organizations is

given by:

ne =
1

f + t

(B − w0 − φS)

s
(f + t)

£
f + t− (φS)2¤
G

− £(f + t)− 2(φS)2¤


(19)

The equilibrium number of criminals and corruption are respectively equal to:

Ce =

s
G(f + t)

f + t− (φS)2 (20)

xe = φS

s
G

(f + t)
£
f + t− (φS)2¤ (21)

In this case, increasing sanctions always increases the crime and corruption

level per organization, i.e.

∂Ce

∂ (φS)
> 0 and

∂xe

∂ (φS)
> 0

7The superscript e indicates equilibrium variables under free entry.
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Proof. See Appendix 2.

The following comments are in order. First, as in the case with a fixed

number of criminal organizations, condition (17) guarantees that Ce and xe

are strictly positive and unique. Condition (18) guarantees that ne is strictly

positive and that, at the free entry equilibrium, the market is not covered, i.e.

some judges are not corrupted. As it can be seen, in order for a free-entry

market to stay non-covered, it has to be that the free-entry fixed cost G is

bounded above. The intuition is as follows. When the fixed cost G increases,

there are less criminal organizations in the economy so less competition for

crime. This implies that the crime, the corruption level and the profit per

criminal organization increases. As a result, for the market not to be covered,

i.e. xe < 1/2, it has to be that G is not too high. Similarly, for ne to be

positive, i.e. some criminal organizations want to enter the market, it has to

be that G is not too high. These two conditions are expressed in (18). Second,

when there is free entry, the number of criminal organizations ne, the crime

and corruption level per criminal organization, Ce and xe, are respectively

given by (19), (20) and (21). It is easy to verify that both Ce and xe increase

with sanctions φS. Indeed, when sanctions increase, the competition in the

crime market is reduced and thus Ce and xe increase. This is does not however

increase the total level of crime neCe and corruption 2nexe in the economy.

We would like now to see if our previous result established in Proposition 3

(iii), i.e. increasing sanctions can increase both crime and corruption, is still

valid with entry. The following proposition shows that it is still true.

Proposition 6 If

max

·
1

2

p
f + t,

f + t

B − w0

¸
< φS <

p
(f + t) /2 (22)

and

f + t− (φS)2
φS
£
3 (f + t)− 2 (φS)2¤ <

s
G

(f + t)
£
f + t− (φS)2¤ < min

·
B − w0 − φS

f + t− 2(φS)2 ,
1

2 (φS)

¸
(23)

then, under free entry, increasing sanctions increase the total levels of both

crime and corruption in the economy, i.e.

∂ (neCe)

∂ (φS)
> 0 and

∂ (2nexe)

∂ (φS)
> 0
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Proof. See Appendix 2.

This proposition shows that increasing sanctions can increase both the total

levels of crime and corruption in the economy if (23) holds, i.e. the fixed cost

G has to be bounded above and below. Indeed, as in Proposition 5, the fixed

cost cannot be too large for the market not to be covered and for criminal

organizations to enter the market. But, because G positively affects both Ce

and xe, the fixed cost cannot be too low for this result to hold, otherwise

increasing sanctions would reduce crime. Indeed, if the fixed cost G is very

low and sanctions increase, there are two effects: a low G implies a high ne,

thus more competition in the crime market, but an increase in φS reduces ne.

In this case, each criminal organization raises its level of corruption xe and

hires more criminals but the global effect reduces total crime neCe because

there are less criminal organizations in the economy. If, on the contrary, G is

not too low, the reduction in competition in the crime market is strong enough

to reverse the result.

6 Conclusion

This paper has spelled out the role of corruption and imperfect competition

in preventing the justice system to work efficiently. Indeed, in a model where

criminal organizations compete a la Cournot on the crime market and act

as local monopsonists on the corruption market, we have showed that when

bribing costs are small relative to crime profitability, beyond a threshold further

sanctions lead to higher rather than lower crime.

We agree with Becker (1968), Ehrlich (1973), Polinski and Shavell (1979)

and Levitt (1997, 1998) that enhancing enforcement efficiency and sanction

severity in order to increase expected punishment, thereby reducing crimi-

nal activity, is important. However, when dealing with organized crime that

engages in corruption to manipulate conviction probabilities, complementary

measures, such as crack down on corruption or the institutionalization of checks

and balances, are warranted to control the problem. Our model delivers stark

conclusions with respect to the relationship between crime and corruption and

as to why the standard “crime and punishment” framework may fail for some

countries. Further efforts to inflict tougher sentences on criminals will just

raise the rents to organized crime, when corruption is pervasive. More gener-
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ally the enforcement of property rights at large can break down once the police

force and courts stop functioning properly. Beyond a threshold of corruption

in the justice system, increasing returns in various types of crime may take off.

This observation may explain crime dynamics in some countries (e.g. Colom-

bia and Russia) or regions within countries (e.g. Sicily in Italy). Once this

process starts, the best policy may be to contain diffusion of corruption by

organized crime to neighboring jurisdictions. Before it starts, the best policy

may be to try to suppress organized crime rents.

Given the complementarity between crime and corruption, and since build-

ing the required institutions for a transparent legal system can take a long time

to achieve, tolerating some degree of illegality (or of a harmful activity which

is legalized) can be desirable if it helps to destroy the rents of organized crime.

It is interesting to observe that, in the 1920’s, during prohibition in the United

States, organized crime did have police, judges and politicians in its payroll.

In this period of time, more monitoring and investigation of alcohol distribu-

tion only increased the rents of the business for both traffickers and corrupt

“enforcers”. On the one hand, in some sense, severe sanctions on alcohol con-

sumption sowed the seeds for a powerful cartel that came to be known as the

mob. On the other hand, the destruction of rents through legalization had a

lasting effect in weakening the influence of organized crime on the legal system,

which had facilitated all kinds of illegal subsidiary operations by the Mafia,

including gambling, prostitution and racketeering.
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APPENDIX 1: Proofs for the case of a fixed number of firms

Proof of Proposition 1

First, by assuming that f + t > 2(φS)2 (see (14)), we guarantee that: (i)

the second order condition (8) is always true, (ii) (f+t)(n+1) > 2(φS)2. As a

result, (ii) implies that the denominator of C∗ and x∗ are both strictly positive

and that the equilibrium profit π∗(n) given by (15) and the equilibrium wage

w∗(n) given by (16) are both strictly positive.

Second, using (12) and (13), it is easy to see that C∗ > 0 and x∗ > 0 is

equivalent to B − w0 > φS. This is guaranteed by (14).

Third, because we consider the case of local monopsonists, we have to check

that in equilibrium some judges will not be corrupted (i.e. the market is not

covered). The market is not covered iff x∗ < 1/2. Using (12), this writes:

φS (B − w0 − φS)

(f + t)(n+ 1)− 2(φS)2 <
1

2

which is equivalent to

φS <
(f + t) (n+ 1)

2 (B − w0)
This is the third part in the bracket in (14).

Finally, to calculate the equilibrium profit and the equilibrium criminal’s

wage, it suffices to plug (12) and (13) in (5) and in (3).

Proof of Proposition 2

(i) By differentiating (12) and (13), it is easy to see that

∂C∗

∂f
< 0 and

∂x∗

∂f
< 0

∂C∗

∂t
< 0 and

∂x∗

∂t
< 0

∂C∗

∂n
< 0 and

∂x∗

∂n
< 0

(ii) By differentiating (12) and (13), it is easy to see that

∂C∗

∂(B − w0) > 0 and
∂x∗

∂(B − w0) > 0
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Proof of Proposition 3

Before proving the result of this proposition, we need the following lem-

mata.

Lemma 1

(i) When (B − w0)2 < (f + t) /2,

B − w0 <
p
(f + t) /2 <

(f + t) (n+ 1)

2 (B − w0)

(ii) When (f + t) /2 < (B − w0)2 < (f + t) (n+ 1) /2,p
(f + t) /2 < B − w0 < (f + t) (n+ 1)

2 (B − w0)

(iii) When (f + t) (n+ 1) /2 < (B − w0)2 < (f + t) (n+ 1)2 /2,p
(f + t) /2 <

(f + t) (n+ 1)

2 (B − w0) < B − w0

(iv) When (B − w0)2 > (f + t) (n+ 1)2 /2,
(f + t) (n+ 1)

2 (B − w0) <
p
(f + t) /2 < B − w0

Proof. If one compares
p
(f + t) /2, B−w0 and (f + t) (n+ 1) / [2 (B − w0)],

one easily obtains:

B − w0 ≷
p
(f + t) /2⇔ (B − w0)2 ≷ (f + t) /2

B − w0 ≷ (f + t) (n+ 1)
2 (B − w0) ⇔ (B − w0)2 ≷ (f + t) (n+ 1) /2

p
(f + t) /2 ≷ (f + t) (n+ 1)

2 (B − w0) ⇔ (B − w0)2 ≷ (f + t) (n+ 1)2 /2

Since, (f + t) (n+ 1)2 /2 > (f + t) (n+ 1) /2 > (f + t) /2, the result follows.
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Lemma 2

(i) When (B − w0)2 ≤ (f + t) /2, then condition (14) is equivalent to φS <

B − w0.

(ii) When (f + t) /2 < (B − w0)2 ≤ (f + t) (n+ 1)2 /2, then condition (14)
is equivalent to φS <

p
(f + t) /2.

(iii) (B − w0)2 > (f + t) (n+ 1)2 /2, then condition (14) is equivalent to

φS < (f + t) (n+ 1) / [2 (B − w0)].

Proof. By using Lemma 1 and condition (14), this is straightforward.

Lemma 3 (Comparative Statics of C∗) Define8

(φS)CSC1 ≡ B − w0 −
p
(B − w0)2 − (f + t)(n+ 1)/2

(φS)CSC2 ≡ B − w0 +
p
(B − w0)2 − (f + t)(n+ 1)/2

(i) When (B − w0)2 < (f + t) (n+ 1) /2 ,
∂C∗

∂ (φS)
< 0 , ∀φS

(ii) When (B − w0)2 > (f + t) (n+ 1) /2 ,
∂C∗

∂ (φS)
< 0 , if φS < (φS)CSC1

∂C∗

∂ (φS)
> 0 , if (φS)CSC1 < φS < (φS)CSC2

and
∂C∗

∂ (φS)
< 0, if φS > (φS)CSC2

Proof. By differentiating (13), we obtain:

∂C∗

∂(φS)
= (f + t)

−2(φS)2 + 4(φS)(B − w0)− (f + t)(n+ 1)
[(f + t)(n+ 1)− 2(φS)2]2

In order to study the sign of ∂C∗/∂(φS), we have to study

ΩCSC(φS) ≡ −2(φS)2 + 4(φS)(B − w0)− (f + t)(n+ 1)
8The superscript CSC refers to the comparative statics of C∗.
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The discriminant is given by: ∆CSC = 8 [2(B − w0)2 − (f + t)(n+ 1)].
Two cases arise.

• If (B − w0)2 < (f + t)(n+ 1)/2 (i.e. ∆CSC < 0), then ΩCSC(φS) < 0 is

always true since the graph of ΩCSC(φS) is situated in the negative orthant.

This implies that ∂C∗/∂(φS) < 0, ∀φS. This proves (i).
• If (B − w0)2 > (f + t)(n+ 1)/2 (i.e. ∆CSC > 0), then we have to study

ΩCSC(φS). The two roots are given by

(φS)CSC1 = B − w0 −
p
(B − w0)2 − (f + t)(n+ 1)/2

(φS)CSC2 = B − w0 +
p
(B − w0)2 − (f + t)(n+ 1)/2

Since ΩCSC(φS) is a quadratic function and the coefficient of (φS)2, −2, is
negative, ΩCSC(φS) is a concave function that intersects the vertical axis twice,

exactly at the two roots. Thus, ΩCSC(φS) is negative if and only if φS <

(φS)CSC1 or φS > (φS)CSC2 and ΩCSC(φS) is positive if and only if (φS)CSC1 <

φS < (φS)CSC2 . This proves (ii).

Now, we have to check that the comparative statics of C∗ with respect to

φS holds when condition (14) holds. We have a first result.

Lemma 4

(i) When (f + t)(n+ 1)/2 < (B − w0)2 < (f + t) (n+ 2)2 /8 ,

(φS)CSC1 >
p
(f + t) /2 and (φS)CSC2 >

p
(f + t) /2

(ii) When (f + t) (n+ 2)2 /8 < (B − w0)2 < (f + t)(n+ 1)2/2 ,

(φS)CSC1 <
p
(f + t) /2 < (φS)CSC2

(iii) When (B − w0)2 > (f + t)(n+ 1)2/2 ,

(φS)CSC1 <
(f + t) (n+ 1)

2 (B − w0) < (φS)CSC2

Proof.

First, let us show that, when (B − w0)2 > (f + t)(n + 1)/2, (φS)CSC2 >p
(f + t) /2 and (φS)CSC2 > (f+t)(n+1)

2(B−w0) .
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Observe that

(φS)CSC2 = B − w0 +
p
(B − w0)2 − (f + t)(n+ 1)/2 > B − w0

We have shown that in lemma 1 that when (B − w0)2 > (f + t) (n+ 1) /2,

B−w0 >
p
(f + t) /2 and B−w0 > (f+t)(n+1)

2(B−w0) . Since (φS)
CSC
2 > B−w0, this

implies that, when (B − w0)2 > (f + t) (n+ 1) /2, (φS)CSC2 >
p
(f + t) /2

and (φS)CSC2 > (f+t)(n+1)
2(B−w0) . This proves the second inequality of (i), (ii) and

(iii).

Let us prove (i) and (ii). (φS)CSC1 ≷
p
(f + t) /2 is equivalent to

B − w0 ≷
p
(f + t) /2 +

p
(B − w0)2 − (f + t)(n+ 1)/2

which, by taking the square of both sides, leads to:

(f + t)n ≷ 4
q
(f + t) (B − w0)2/2− (f + t)2 (n+ 1)/4

By taking again the square of both sides, we obtain:

(f + t) (n+ 2)2 ≷ 8(B − w0)2

which implies that

When (B − w0)2 ≶ (f + t) (n+ 2)2 /8 , (φS)CSC1 ≷
p
(f + t) /2

This proves (i) and the left hand side of (ii).

Let us now prove the left hand side of (iii). (φS)CSC1 < (f+t)(n+1)
2(B−w0) is equiv-

alent to

2 (B − w0)2 − (f + t) (n+ 1) < 2 (B − w0)
p
(B − w0)2 − (f + t)(n+ 1)/2

The left hand side of this inequality is positive since we are in the case of

(B−w0)2 > (f+t)(n+1)2/2 > (f+t) (n+ 1) /2. We can thus take the square
of both sides and obtain:

(B − w0)2 > (f + t) (n+ 1) /2

This is always true when (B − w0)2 > (f + t)(n + 1)2/2, since (f + t)(n +

1)2/2 > (f + t) (n+ 1) /2. As a result, when (B − w0)2 > (f + t)(n + 1)2/2,
(φS)CSC1 < (f+t)(n+1)

2(B−w0) . This proves the left hand side of (iii).

We are now able to totally characterize the comparative statics of φS on

C∗.
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Lemma 5 (Comparative Statics of C∗ and Condition (14))

(i) When (B − w0)2 ≤ (f + t)/2,
∂C∗

∂(φS)
< 0 , ∀φS < B − w0

(ii) When (f + t)/2 < (B − w0)2 ≤ (f + t)(n+ 2)2/8,
∂C∗

∂(φS)
< 0 , ∀φS <

p
(f + t)/2

(iii) When (f + t)(n+ 2)2/8 ≤ (B − w0)2 ≤ (f + t)(n+ 1)2/2,
∂C∗

∂ (φS)
< 0 , if φS < (φS)CSC1 <

p
(f + t)/2

∂C∗

∂ (φS)
> 0 , if (φS)CSC1 < φS <

p
(f + t)/2

(iv) When (B − w0)2 > (f + t)(n+ 1)2/2,
∂C∗

∂ (φS)
< 0 , if φS < (φS)CSC1 <

(f + t) (n+ 1)

2 (B − w0)
∂C∗

∂ (φS)
> 0 , if (φS)CSC1 < φS <

(f + t) (n+ 1)

2 (B − w0)
Proof.

(i) When (B − w0)2 ≤ (f + t)/2, we know from Lemma 2 (i) that con-

dition (14) is: φS < B − w0 and from Lemma 3 (i) that, since (f + t) /2 <

(f + t) (n+ 1) /2, we have:

∂C∗

∂(φS)
< 0 , ∀φS

The result follows.

(ii) To show this result, we have to consider two cases:

When (f+t)/2 < (B−w0)2 < (f+t)(n+1)/2 and when (f+t)(n+1)/2 <
(B − w0)2 < (f + t)(n+ 2)2/8.
Let us start with (f + t)/2 < (B−w0)2 < (f + t)(n+1)/2. We know from

Lemma 2 (ii) that, since (f + t)(n+1)/2 < (f + t) (n+ 1)2 /2, condition (14)

is: φS <
√
f + t and from Lemma 3 (i) that

∂C∗

∂(φS)
< 0 , ∀φS
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The result follows.

Consider now the case when (f+t)(n+1)/2 < (B−w0)2 < (f+t)(n+2)2/8.
We know from Lemma 2 (ii) that, since (f + t)(n+2)2/8 < (f + t) (n+ 1)2 /2

and (f + t)(n + 1)/2 > (f + t) /2, condition (14) is: φS <
p
(f + t) /2. Fur-

thermore, from Lemma 4 (i), we know that when (f+t)(n+1)/2 < (B−w0)2 <
(f + t)(n + 2)2/8, (φS)CSC1 >

p
(f + t) /2. As a result, using Lemma 3 (ii),

we have that
∂C∗

∂ (φS)
< 0, if φS <

p
(f + t) /2

since φS cannot be greater than
p
(f + t) /2.

Now putting together these two cases, we obtain (ii).

(iii) We know from Lemma 2 (ii) that, since (f + t)(n + 2)2/8 > f +

t, condition (14) is: φS <
p
(f + t) /2. We know also from Lemma 4 (ii)

that when (f + t)(n + 2)2/8 < (B − w0)2 < (f + t)(n + 1)2/2 , (φS)CSC1 <p
(f + t) /2 < (φS)CSC2 . As a result, using Lemma 3 (ii), the result follows.

(iv)We know from Lemma 2 (iii) that, when (B−w0)2 > (f+t)(n+1)2/2,
condition (14) is: φS < (f + t)(n+1) [2 (B − w0)]. We know also from Lemma
4 (iii) that when when (B−w0)2 > (f + t)(n+1)2/2 , (φS)CSC1 < (f+t)(n+1)

2(B−w0) <

(φS)CSC2 . Now, using Lemma 3 (ii), the result follows.

Let us now study the comparative statics of x∗ with respect to φS.

Lemma 6 (Comparative Statics of x∗) Define9

(φS)CSX1 ≡ (f + t)(n+ 1)−
p
(f + t)(n+ 1)

p
(f + t)(n+ 1)− 2(B − w0)2

2(B − w0)
and

(φS)CSX2 ≡ (f + t)(n+ 1) +
p
(f + t)(n+ 1)

p
(f + t)(n+ 1)− 2(B − w0)2

2(B − w0)

(i) When (B − w0)2 < (f + t) (n+ 1) /2 ,
∂x∗

∂ (φS)
> 0 , if φS < (φS)CSX1

∂x∗

∂ (φS)
< 0 , if (φS)CSX1 < φS < (φS)CSX2

9The superscript CSX refers to the comparative statics of x∗.
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and
∂x∗

∂ (φS)
> 0, if φS > (φS)CSC2

(ii) When (B − w0)2 > (f + t) (n+ 1) /2 ,
∂x∗

∂ (φS)
> 0 , ∀φS

Proof. By differentiating (12), we easily obtain:

∂x∗

∂(φS)
=
2(φS)2 (B − w0)− 2φS(f + t)(n+ 1) + (f + t)(n+ 1) (B − w0)

[(f + t)(n+ 1)− 2(φS)2]2

In order to study the sign of ∂x∗/∂(φS), we have to study

ΩCSX(φS) ≡ 2(φS)2 (B − w0)− 2φS(f + t)(n+ 1) + (f + t)(n+ 1) (B − w0)

The discriminant is given by: ∆CSX = 4(f+t)(n+1) [(f + t)(n+ 1)− 2(B − w0)2].
Two cases arise.

• If (B − w0)2 > (f + t)(n+ 1)/2 (i.e. ∆CSX < 0), then ΩCSX(φS) > 0 is

always true since the graph of ΩCSX(φS) is situated in the positive orthant.

This implies that ∂x∗/∂(φS) > 0, ∀φS. This proves (ii).
• If (B − w0)2 < (f + t)(n+ 1)/2 (i.e. ∆CSX > 0), then we have to study

ΩCSX(φS). The two roots are given by

(φS)CSX1 =
(f + t)(n+ 1)−p(f + t)(n+ 1)p(f + t)(n+ 1)− 2(B − w0)2

2(B − w0)

(φS)CSX2 =
(f + t)(n+ 1) +

p
(f + t)(n+ 1)

p
(f + t)(n+ 1)− 2(B − w0)2

2(B − w0)
Since ΩCSX(φS) is a quadratic function and the coefficient of (φS)2, 2(B−w0),
is positive, ΩCSX(φS) is a convex function that intersects the vertical axe

twice, at exactly the two roots. Thus, ΩCSX(φS) is positive if and only if

φS < (φS)CSX1 or φS > (φS)CSX2 and ΩCSX(φS) is negative if and only if

(φS)CSX1 < φS < (φS)CSX2 . This proves (i).

Lemma 7

(i) When (B − w0)2 ≤ (f + t) /2,

(φS)CSX1 < B − w0 < (φS)CSX2
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(ii) When (f + t) /2 < (B − w0)2 ≤ 2(f + t)(n+ 1)2/ (n+ 2)2,

(φS)CSX1 <
p
(f + t) /2 < (φS)CSX2

(iii) When 2(f + t)(n+ 1)2/ (n+ 2)2 < (B − w0)2 < (f + t)(n+ 1)/2,

(φS)CSX1 >
p
(f + t) /2 and (φS)CSX2 >

p
(f + t) /2

Proof.

Let us first study the conditions on (φS)CSX2 in (i), (ii) and (iii). (φS)CSX2 >

B − w0 is equivalent top
(f + t)(n+ 1)

p
(f + t)(n+ 1)− 2(B − w0)2 > 2(B − w0)2 − (f + t)(n+ 1)

When (B − w0)2 < (f + t)(n + 1)/2, this inequality is always true since

the left hand side is positive and the right hand side is negative. Thus, when

(B − w0)2 < (f + t)(n + 1)/2, (φS)CSX2 > B − w0. Since when (f + t) /2 <
(B−w0)2 < (f+t)(n+1)/2, B−w0 >

p
(f + t) /2, this implies that (φS)CSX2 >p

(f + t) /2. We have thus shown that

When (f + t) /2 < (B − w0)2 < (f + t)(n+ 1)/2 , (φS)CSX2 >
p
(f + t) /2

and

When (B − w0)2 < (f + t) /2 , (φS)CSX2 > B − w0
This demonstrates (i), (ii) and (iii) for (φS)CSX2 .

Let us now prove the results for (φS)CSX1 . We start with (i) when (B −
w0)

2 < (f + t) /2. (φS)CSX1 < B − w0 is equivalent to

(f + t)(n+ 1)−p(f + t)(n+ 1)p(f + t)(n+ 1)− 2(B − w0)2
2(B − w0) < B − w0

which can be written as

(f + t)(n+1)− 2(B−w0)2 < 2
p
(f + t)(n+ 1)

p
(f + t)(n+ 1)− 2(B − w0)2

Since the left hand side of this inequality is positive when (B − w0)2 <
(f + t) /2, we can take the square of both sides and obtain:

4(B − w0)2
£
(B − w0)2 − (f + t)(n+ 1)

¤
< 3(f + t)2(n+ 1)2
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Since when (B − w0)2 < (f + t)/2, (B − w0)2 − (f + t)(n + 1) < 0, this
inequality is always true. We have shown that, when (B − w0)2 < (f + t)/2,
(φS)CSX1 < B − w0. This proves (i) for (φS)CSX1 .

Let us now prove (ii) and (iii) for (φS)CSX1 . (φS)CSX1 ≷
p
(f + t) /2 is

equivalent to

(f+t)(n+1) ≷
p
(f + t)(n+ 1)

p
(f + t)(n+ 1)− 2(B − w0)2+2(B−w0)

p
(f + t) /2

By taking the square of both sides we obtain:

(B − w0)(f + t)n ≷ 2
p
(f + t)3(n+ 1)2/2− (B − w0)2(f + t)2(n+ 1)

By taking again the square of both sides we obtain:

(B − w0)2 (n+ 2)2 ≷ 2(f + t)(n+ 1)2

or equivalently

(B − w0)2 ≷ 2(f + t)(n+ 1)
2

(n+ 2)2

Thus:

When (f + t) /2 ≤ (B − w0)2 < 2(f + t) (n+1)2(n+2)2
, (φS)CSX1 <

p
(f + t) /2

When 2(f+t) (n+1)
2

(n+2)2
≤ (B−w0)2 < (f+t)(n+1)/2, (φS)CSX1 >

p
(f + t) /2.

This proves (ii) and (iii) for (φS)CSX1 .

We are now able to completely characterize the comparative statics of x∗

with respect to φS. We have:
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Lemma 8 (Comparative Statics of x∗ and Condition (14))

(i) When (B − w0)2 ≤ (f + t) /2,
∂x∗

∂ (φS)
> 0 , if φS < (φS)CSX1 < B − w0

∂x∗

∂ (φS)
< 0 , if (φS)CSX1 < φS < B − w0

(ii) When (f + t) /2 < (B − w0)2 ≤ 2(f + t)(n+ 1)2/(n+ 2)2,
∂x∗

∂ (φS)
> 0 , if φS < (φS)CSX1 <

p
(f + t) /2

∂x∗

∂ (φS)
< 0 , if (φS)CSX1 < φS <

p
(f + t) /2

(iii) When 2(f + t)(n+ 1)2/(n+ 2)2 < (B − w0)2 ≤ (f + t)(n+ 1)2/2,
∂x∗

∂ (φS)
> 0 , ∀φS <

p
(f + t) /2

(iv) When (B − w0)2 > (f + t)(n+ 1)2/2,
∂x∗

∂ (φS)
> 0 , ∀φS < (f + t) (n+ 1)

2 (B − w0)

Proof.

(i)We know from Lemma 2 (i) that, when (B−w0)2 < (f + t) /2, condition
(14) is: φS < (B − w0). We know also from Lemma 7 (i) that when when

(B−w0)2 < (f + t) /2, (φS)CSX1 < B−w0 < (φS)CSX2 . Now, since (f + t) /2 <

(f + t) (n+ 1) /2, using Lemma 6 (i), the result follows.

(ii) We know from Lemma 2 (ii) that, since (f + t) /2 < 2(f + t)(n +

1)2/(n + 2)2 < (f + t)(n + 1)2/2, condition (14) is: φS <
p
(f + t) /2. We

know also from Lemma 7 (ii) that when (f + t) /2 < (B−w0)2 < 2(f + t)(n+
1)2/ (n+ 2)2, (φS)CSX1 <

p
(f + t) /2 < (φS)CSX2 . Now, since 2(f + t)(n +

1)2/(n+ 2)2 < (f + t) (n+ 1) /2, using Lemma 6 (i), the result follows.

(iii) To show this result, we have to consider two cases:

When 2(f + t)(n+ 1)2/(n+ 2)2 < (B −w0)2 < (f + t)(n+ 1)/2 and when
(f + t)(n+ 1)/2 < (B − w0)2 < (f + t)(n+ 1)2/2.
Let us start with 2(f+t)(n+1)2/(n+2)2 < (B−w0)2 < (f+t)(n+1)/2. We

know from Lemma 2 (ii) that, in this case, condition (14) is: φS <
p
(f + t) /2.
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We also know from Lemma 7 (iii) that when 2(f + t)(n + 1)2/ (n+ 2)2 <

(B − w0)2 < (f + t)(n + 1)/2, (φS)CSX1 >
p
(f + t) /2. Using Lemma 6 (i),

the result follows.

Consider now the case when (f+t)(n+1)/2 < (B−w0)2 < (f+t)(n+1)2/2.
We know from Lemma 2 (ii) that, when (f + t)(n + 1)/2 < (B − w0)2 <
(f + t)(n + 1)2/2, condition (14) is: φS <

p
(f + t) /2. Furthermore, from

Lemma 6 (ii), we know that when (B − w0)2 > (f + t) (n+ 1) /2 , ∂x∗
∂(φS)

> 0 ,

∀φS. The result follows.
Now putting together these two cases, we obtain (iii).

(iv)We know from Lemma 2 (iii) that, when (B−w0)2 > (f+t)(n+1)2/2,
condition (14) is: φS < (f + t) (n+ 1) / [2 (B − w0)]. Now, using Lemma 6
and observing that (f + t) (n+ 1) /2 < (f + t)(n+1)2/2, the resul follows.

Finally, by observing that

(f + t) /2 < 2(f + t)(n+ 1)2/(n+ 2)2 < (f + t)(n+ 2)2/8 < (f + t)(n+ 1)2/2

and putting together Lemma 5 and Lemma 8, we obtain the following result:

Proposition 7

(i) When (B − w0)2 ≤ (f + t)/2,
∂C∗

∂ (φS)
< 0 , ∀φS < B − w0

∂x∗

∂ (φS)
> 0 , if φS < (φS)CSX1 < B − w0

∂x∗

∂ (φS)
< 0 , if (φS)CSX1 < φS < B − w0

(ii) When (f + t)/2 < (B − w0)2 ≤ 2(f + t)(n+ 1)2/(n+ 2)2,
∂C∗

∂ (φS)
< 0 , ∀φS <

p
(f + t)/2

∂x∗

∂ (φS)
> 0 , if φS < (φS)CSX1 <

p
(f + t)/2

∂x∗

∂ (φS)
< 0 , if (φS)CSX1 < φS <

p
(f + t)/2
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(iii) When 2(f + t)(n+ 1)2/(n+ 2)2 < (B − w0)2 ≤ (f + t)(n+ 2)2/8,
∂C∗

∂ (φS)
< 0 and

∂x∗

∂ (φS)
> 0 , ∀φS <

p
(f + t)/2

(iv) When (f + t)(n+ 2)2/8 < (B − w0)2 ≤ (f + t)(n+ 1)2/2,
∂C∗

∂ (φS)
< 0 , if φS < (φS)CSC1 <

p
(f + t)/2

∂C∗

∂ (φS)
> 0 , if (φS)CSC1 < φS <

p
(f + t)/2

∂x∗

∂ (φS)
> 0 , ∀φS <

p
(f + t)/2

(v) When (B − w0)2 > (f + t)(n+ 1)2/2,
∂C∗

∂ (φS)
< 0 , if φS < (φS)CSC1 <

(f + t) (n+ 1)

2 (B − w0)
∂C∗

∂ (φS)
> 0 , if (φS)CSC1 < φS <

(f + t) (n+ 1)

2 (B − w0)
∂x∗

∂ (φS)
> 0 , ∀φS < (f + t) (n+ 1)

2 (B − w0)

It is easy to see that Proposition 7 is the technical counterpart of Proposi-

tion 3.

Proof of Proposition 4

(i) Let us start with w0. By differentiating the threshold

(φS)CSC1 ≡ B − w0 −
p
(B − w0)2 − (f + t)(n+ 1)/2

we obtain

∂(φS)CSC1

∂w0
= −1 + B − w0p

(B − w0)2 − (f + t)(n+ 1)/2
> 0

(ii) For the booty B we have:

∂(φS)CSC1

∂B
= 1− B − w0p

(B − w0)2 − (f + t)(n+ 1)/2
< 0
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(iii) For f and t, by differentiating the threshold, we obtain:

∂(φS)CSC1

∂f
=

∂(φS)CSC1

∂t
=
1

4

(n+ 1)p
(B − w0)2 − (f + t)(n+ 1)/2

> 0

(iv) Finally, for n, we have:

∂(φS)CSC1

∂n
=
1

4

(f + t)p
(B − w0)2 − (f + t)(n+ 1)/2

> 0
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APPENDIX 2: Proofs for the case of free entry

Proof of Proposition 5

To calculate n∗, it suffices to solve π∗(n)−G = 0, where π∗(n) is given by
(15). We easily obtain (19).

We have then to study the sign of n∗. Because of (14), 2(φS)2−(f+t) < 0.
Thus, n∗ > 0 if and only if

(B − w0 − φS)

s
(f + t)(f + t− (φS)2)

G
> (f + t)− 2(φS)2

which is equivalent tos
G

(f + t)
£
f + t− (φS)2¤ < B − w0 − φS

f + t− 2(φS)2

which is the first part of (18).

To calculate the equilibrium values of Ce and xe, it suffices to plug n∗,

which is given by (19) in (13) and (12) respectively.

We also have to check that, at the free-entry equilibrium, the market is not

covered, i.e. xe < 1/2. Using (21), we easily obtains
G

(f + t)
£
f + t− (φS)2¤ < 1

2 (φS)

which is the second part of (18).

Finally, by differentiating (20) and (21), we easily obtain:

∂Ce

∂ (φS)
= φS

s
(f + t)G£

f + t− (φS)2¤3 > 0
∂xe

∂ (φS)
=

s
(f + t)G

(f + t)
£
f + t− (φS)2¤3 > 0
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Proof of Proposition 6

First, by differentiating (19), (20) and (21), we obtain:

(f + t)
∂n∗

∂ (φS)
= 4(φS)−

s
(f + t)

£
f + t− (φS)2¤
G

·
1 +

φS (B − w0 − φS)

f + t− (φS)2
¸

∂Ce

∂ (φS)
=

(f + t)φS£
f + t− (φS)2¤

s
G

(f + t)
£
f + t− (φS)2¤

∂xe

∂ (φS)
=

(f + t)£
f + t− (φS)2¤

s
G

(f + t)
£
f + t− (φS)2¤

Second, we would like to see how the total level of crime n∗C∗ and corrup-

tion 2n∗x∗ are affected by φS. We have:

∂ (neCe)

∂ (φS)
= ne

∂Ce

∂(φS)
+ Ce

∂ne

∂(φS)

=

s
G£

f + t− (φS)2¤ (f + t)
4(φS)− φS [(f + t)− 2(φS)2]£

f + t− (φS)2¤ −
s
(f + t)

£
f + t− (φS)2¤
G


Thus the sign of ∂(neCe)

∂(φS)
is the same as

4(φS)− φS [(f + t)− 2(φS)2]£
f + t− (φS)2¤ −

s
(f + t)

£
f + t− (φS)2¤
G

Thus

∂ (neCe)

∂ (φS)
≷ 0⇔

s
G

(f + t)
£
f + t− (φS)2¤ ≷ f + t− (φS)2

4(φS)
£
f + t− (φS)2¤− φS [f + t− 2(φS)2]

or equivalently

∂ (neCe)

∂ (φS)
≷ 0⇔

s
G

(f + t)
£
f + t− (φS)2¤ ≷ f + t− (φS)2

φS
£
3 (f + t)− 2 (φS)2¤

As a result,

∂ (neCe)

∂ (φS)
> 0⇔

s
G

(f + t)
£
f + t− (φS)2¤ > f + t− (φS)2

φS
£
3 (f + t)− 2 (φS)2¤
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Similarly, we have:

∂ (2nexe)

∂ (φS)
= 2

·
ne

∂xe

∂(φS)
+ xe

∂ne

∂(φS)

¸

=
2

f + t

s
G

(f + t)
£
f + t− (φS)2¤(B − w0 − 2φS)

s
(f + t)

£
f + t− (φS)2¤
G

+

£
f + t− (φS)2¤ [4(φS)2 − (f + t)] + (φS)2(f + t)£

f + t− (φS)2¤
#

Thus the sign of ∂(nexe)
∂(φS)

is the same as the sign of

(B − w0 − 2φS)
s
(f + t)

£
f + t− (φS)2¤
G

+

£
f + t− (φS)2¤ [4(φS)2 − (f + t)] + (φS)2(f + t)£

f + t− (φS)2¤
which is always positive using (22). Thus,

∂ (nexe)

∂ (φS)
> 0

We need that this result holds under conditions (17) and (18), which are

given by:

φS < min
hp
(f + t)/2, B − w0

i
and s

G

(f + t)
£
f + t− (φS)2¤ < min

·
B − w0 − φS

f + t− 2(φS)2 ,
1

2φS

¸
Let us start with condition (18). Denote by

A ≡ B − w0 − φS

f + t− 2(φS)2 and E ≡
1

2φS

We have that

∂ (neCe)

∂ (φS)
> 0 and

∂ (nexe)

∂ (φS)
> 0
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if

s
G

(f + t)
£
f + t− (φS)2¤ > f + t− (φS)2

φS
£
3 (f + t)− 2 (φS)2¤ ≡ D

which, using (18), implies that

f + t− (φS)2
φS
£
3 (f + t)− 2 (φS)2¤ <

s
G

(f + t)
£
f + t− (φS)2¤ < min

·
B − w0 − φS

f + t− 2(φS)2 ,
1

2 (φS)

¸
This is (23). We thus need to check that D < min [A,E]. We have:

D < E ⇔ f + t− (φS)2
φS
£
3 (f + t)− 2 (φS)2¤ < 1

2 (φS)
⇔ 2 < 3. Thus D < E is always true

D < A⇔ f + t− (φS)2
φS
£
3 (f + t)− 2 (φS)2¤ < B − w0 − φS

f + t− 2(φS)2

⇔ f + t− (φS)2
φS

1

3 (f + t)− 2 (φS)2 <
1

f + t− 2(φS)2 (B − w0 − φS)

Since
1

3 (f + t)− 2 (φS)2 <
1

f + t− 2(φS)2
we need to show that

f + t− (φS)2
φS

< B − w0 − φS

which is equivalent to

B − w0 > f + t

φS

This is part of condition (22). Observe that B−w0 > (f + t) / (φS) implies
that B − w0 > φS since f + t > 2 (φS)2.

Let us now check if condition (17) holds. Because B −w0 > (f + t) / (φS)
implies that B − w0 > φS, it is easy to see that condition (17) is included in

(22).

41








	Försättssida wp600.pdf
	fÖRSÄTTSSIDA wp590.pdf
	Title
	Abstract
	Paper





