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CONSTRAINED INEFFICIENCY IN GEI: A GEOMETRIC
ARGUMENT

MARIO TIRELLI

Abstract. In this paper we use global analysis to study the welfare properties

of general equilibrium economies with incomplete markets (GEI). Our main

result is to show that constrained Pareto optimal equilibria are contained in a
linear submanifold of the equilibrium set. This result is explicitly derived for

economies with real assets, of which real numéraire assets are a special case.

1. Introduction

Since Radner (1972) there has been a large body of literature studying gen-
eral equilibrium economies with incomplete markets (GEI). The analysis pioneered
by Arrow (1951) and Debreu (1960) on economies with uncertainty and complete
markets has been extended in this new direction with contributions addressing tra-
ditional issues, such as existence and efficiency of equilibria (see Geanakoplos (1990)
and Magill and Shafer (1991) for up to date surveys).

In GEI equilibria are typically not Pareto optimal. Moreover, this result per-
sists also under weaker notions of efficiency. Although, the literature has proposed
different notions of constrained Pareto optimality (CPO), economists often refer
to Diamond’s (1967), Stiglitz’s (1982), and Geanakoplos - Polemarchakis’s (1986),
as the benchmark. This notion is based on the idea that, when implementing an
allocation, a central planner faces the same financial constraints of the private sec-
tor. In a pure exchange economy with multiple goods, this notion requires that
the planner’s attainable set contains allocations which are a) resource-feasible, b)
achievable through portfolio transfers of the existing assets.

Stiglitz (1982) was the first to provide an argument for constrained inefficiency
in GEI, with multiple commodities. The intuition behind Stiglitz’s result runs as
follows. A portfolio change does typically determine a change in spot prices and
consumption allocations. Since markets are incomplete, and consumers’ marginal
rates of substitution are -in general- different, a change in spot prices may induce
pecuniary externalities, which are not anticipated by price taking agents. A central
planner that takes into account these externalities has an advantage that can be
exploited in improving the market allocation of risk.
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2 MARIO TIRELLI

Geanakoplos and Polemarchakis (1986), and later Geanakoplos et al (1990), gen-
eralized Stiglitz’s result, respectively, in the context of pure exchange and produc-
tion GEI. Precisely, they derived conditions to prove generic constrained subop-
timality of equilibria. The argument used in these classical contributions, and in
other papers that followed is to show that -under certain conditions- an equilibrium
can be locally Pareto improved. Indeed, they proved that an equilibrium fails to
be constrained efficient when it does not satisfy the first order conditions for CPO.
Then, they show that this result is “robust”, by establishing that it holds for a
generic set of economies.1

In this paper we propose a different approach to the analysis of the welfare
properties of equilibria, based on the global analysis of the equilibrium set. Our
main result is to show that CPO equilibria are contained in a linear submanifold
of the equilibrium set.

Surprisingly, very little attention has been given to the global properties of equi-
libria in GEI. Balasko and Cass (1989), and later Siconolfi and Villanacci (1991),
were the first to provide a global characterization of equilibria in GEI, respectively,
with variable and fixed resources. Their goal however was to use these character-
izations to analyze the indeterminacy of equilibria. It was only with Zhou (1997)
that welfare analysis entered into the picture, with the characterization of the set
of Pareto optimal (first best) equilibria.

To pursue our goal, in section 2 of the paper, we go back to the description
and definition of the notion of CPO, and present the underlined planner’s prob-
lem. We analyze this problem and characterize its first order conditions. Then,
we also discuss some relevant, generic, properties of equilibria. For expositional
purposes, section 2 refers to the case of economies with real numéraire assets that
was extensively considered in the literature.

In section 3, we use our knowledge of the planner’s problem to derive the
structure of the set of CPO equilibria. This result is derived in steps. We first
show that the equilibrium set has a fiber bundle structure. The choice of the
parametrization is original, and it is driven by our ultimate goal. Yet, it turns out
that the structure of the bundle shares most of the properties presented for the
equilibrium set of a standard Walrasian economy in Balasko (1988); namely, every
fiber is a linear submanifold of the equilibrium set, and it is uniquely identified
by a no-trade equilibrium. Our final step is to show that CPO equilibria are
contained in the fibers; and precisely that each fiber contains, at most, one CPO
equilibrium. The bundle structure, and in particular the lower dimensionality of the
set of CPO equilibria, can be exploited to establish (generic) constrained inefficiency
of equilibria. We complete our analysis for economies with real assets, of which real
numéraire assets are a special case. Extensions to nominal assets, and to mixed
asset structures are straightforward.

Our geometric approach to constrained suboptimality is substantially different
from the one that is used in the literature, and resumed in section 2 of the paper. It
does not rely on the characteristics of the parameter space, but directly on equilib-
ria. Moreover, it establishes constrained suboptimality without having to impose
any specific measure theoretical structure; just using dimensionality arguments.
Obviously, the two concepts, dimensionality and measure, can be linked.

1See, for example, Magill and Shafer (1991), for a discussion on this approach.
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2. Constrained Pareto optimality and equilibria

In this section we provide a notion of constrained Pareto optimality (CPO) and
equilibrium. For expositional reasons, we do so in the context of a standard GEI
with real numéraire assets.

2.1. Economy and equilibria.
Economy. The economy is of pure exchange over two periods, with uncertainty,
and finitely many individuals and commodities. There are two dates indexed by
0 and 1. Uncertainty is described by a finite number S ≥ 2 of possible states
of nature in date 1. Including date 0 as one of the states, we use the indexing
s = 0, 1, .., S, and define N = (S + 1). There are a finite number H ≥ 2 of consumer
types, indexed by h = 1, ..,H. In each state, L ≥ 2 commodities are available
for consumption. A bundle of contingent commodities for h is a vector xh =(
.., xh

sl, ..
)′ ∈ Rm

+ , where m = NL. We allow for economies with fixed aggregate
resources, ω ∈ Rm

++, by letting the initial distribution of commodities across agents,
e =

(
.., eh

sl, ..
)′ ∈ RmH

++ , be an element of the set,

Ω(ω) =

{
e ∈ RmH

++ :
∑

h

eh − ω = 0

}
When ωs = ω for all s, the economy has no-aggregate uncertainty. Finally, in date
0, there are also J ≥ 1 financial assets available for trade. Assets are in zero net
supply.

Each consumer, h, is initially endowed of a (column) vector eh = (.., eh
sl, ..)

′ ∈
Rm

+ of commodities. His preferences are represented by an ordinal utility function
uh : Rm

++ → R. Finally, some assumptions on endowments and preferences are
summarized in the following, and will be maintained throughout the paper.

Assumption 1. (strictly positive endowments): eh ∈ Rm
++

Assumption 2. (smooth preferences):2 ∀h, uh is Cr≥2, strictly increasing, (Duh(x) ∈
Rm

++, ∀x ∈ Rm
+ ), strictly concave, (bD2uh(x)b′ < 0, ∀x ∈ RN

++,∀b ∈ Rm, b 6= 0,
such that Duh(x) b′ = 0); indifference surfaces are bounded below (∀x∗ ∈ Rm

++,{
x ∈ Rm

++ : uh(x) ≥ uh(x∗)
}
⊂ Rm

++).

For simplicity, in most of the analysis we will also use the following assumption.

Assumption 3. (state-separable utilities): ∀h, uh =
∑

s U
h
s (xh

s ).

With an abuse of notation, we denote the set of utilities which satisfy assump-
tions 2 and 3, U ; finally, we let U = ×hU .
Markets. Commodities and assets are, respectively, traded in spot and asset mar-
kets. Spot prices are a vector P = (.., Psl, ..) ∈ Rm

+ , and P1 ∈ RSL
+ denotes its date

1 component. Commodity l = 1 is the numéraire, and its price is normalized to
one: Ps1 = 1, for all s.

Assets are real numéraire. Each asset j is exchanged in date 0 (before uncertainty
is resolved) at a price qj , q = (.., qj , ..) ∈ RJ . Asset j is a claim for a contingent
payoff Rj = (.., Rj

s, ..)
′ ∈ RS

+ expressed in units of the numéraire. R is the S × J

2We use the standard notation, Duh =
(
.., Dxs,lu

h(xh), ..
)
∈ Rm, where Dxs,lu

h(xh) =

∂uh(xh)/∂xh
s,l. Moreover, we use X to indicate the closure of a set X.
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payoff matrix. W (q,R) is the N × J asset matrix, composed by −q in the first
row and Rs = (.., Rj

s, ..) ∈ RJ
+ in each of the s = 1, .., S subsequent rows. Asset

markets are incomplete, J < S.
Competitive trade and equilibria. Let us fix (u,R, ω) and denote an economy
simply by an endowment distribution e in Ω(ω). At prices (P, q), the budget set of
a typical consumer h is,3

B(P, q, eh) =
{
x : P�

(
x− eh

)
= W (q,R) θ, θ ∈ RJ

}
where θ = (.., θj , ..)′ ∈ RJ denotes a portfolio of assets. The action of h is, respec-
tively, represented by the demand functions for commodities and assets,

xh(P, q, eh) =
{
x : x = arg max uh(x) s.t. x ∈ B(P, q, eh)

}
(2.1)

θh
(
P, q, eh

)
=

{
θ : P�

(
xh(P, q, eh)− eh

)
= W (q,R) θ

}
,

and spot trades are defined by zh(P, q, eh) = xh(P, q, eh)−eh. First order, necessary
and sufficient, conditions imply that q = λhR, λh�P = ∇uh(xh).4

Finally, we define the aggregate excess demand functions for non-numéraire com-
modities as,

Z(P, q, e) =
∑

h

zh(P, q, eh) ∈ R(S+1)(L−1)

Definition 1. (Equilibria with real numéraire assets) For fixed (u,R, ω), an equi-
librium for an economy e in Ω(ω) is a triplet

(
P , q, e

)
such that Z

(
P , q, e

)
= 0,∑

h θ
h
(
P , q, eh

)
= 0.

Denote by ER the set of equilibria with real numéraire assets with fixed (u,R, ω).
It is well known that ER has a smooth manifold structure.5 Therefore, there exists
a generic set of endowments such that equilibria are locally isolated and equilibrium
variables do locally behave as smooth functions of the parameters.

2.2. Constrained Pareto Optimality. Although the literature has proposed dif-
ferent notions of Constrained Pareto Optimality (CPO) in GEI, economists often
refer to Diamond’s (1967), Stiglitz’s (1982), and Geanakoplos - Polemarchakis’s
(1986), as the benchmark.6 This criterion is based on the idea that, when im-
plementing a centralized allocation, a fictitious planner faces the same financial
constraints of the private sector. In a pure exchange economy with multiple goods,
this notion implies that the planner’s attainable set contains allocations which are
a) resource-feasible, b) achievable through portfolio transfers in the existing assets.
Note that, since transfers occur in the first period, the attainable set of consumption
allocation depends on prices. More precisely, assume that L ≥ 2, and that central-
ized portfolio transfers are decided in date 0, after markets have closed. Then, the
final centralized, feasible, allocation will still depend on the possible trading activ-
ity taking place on date 1 spot-markets, and thus on P1.7 Equivalently, a resource

3For any two vectors x ∈ RS , y ∈ RSL, we define x�y = (...., xs (ys1, ..ysl, .., ysL) , ...) ∈ RSL.
4∇uh(x) = (..,∇slu

h(x), ..) is consumer h normalized gradient at x, and ∇slu
h(x) =

Dxslu
h (x) /Dxs1uh (x).

5See Geanakoplos and Polemarchakis (1986), section 6.
6See Magill and Shafer (1991), chapter 5, for a discussion of this subject.
7A second notion, known as weak constrained efficiency, requires that prices must support the

centralized allocation as a GEI equilibrium. This is equivalent to assume that the central planner

intervenes when all markets are open. See Grossman (1977), and Grossman and Hart (1979).
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feasible allocation, x = (x0, x1), is attainable if there exist portfolio transfers θ
such that xs can be supported as a spot market equilibrium (Ps, xs) of an economy
ẽs = es +Rsθ, for s = 1, .., S; where the following definition applies.

Definition 2. (Spot-market equilibrium) (Ps, xs) is a spot-market equilibrium in
s, at initial endowments ẽs, if and only
i) xh

s ∈ RL
++ maximizes Uh

s s.t. Ps(xh
s − ẽh

s ) = 0, for all h
ii)
∑

h(xh
s − ẽh

s ) = 0.
A spot-market equilibrium in date 1 is a spot-market equilibrium in s, for s = 1, .., S.

Let ẽ1 = e1+R̃θ, where R̃ = (R̃1, .., R̃S) is a SL×J matrix whose typical column
vector R̃s is such that R̃j

sl = Rj
s for l = 1, and 0 otherwise. A formal definition of

the planner’s constrained feasible set is,

Definition 3. (Constrained feasible consumption allocation - CF) A consumption
allocation x = (x0, x1) is constrained feasible (CF) at (x0, e, R) if there exists a θ
and a P1 such that (P1, x1) is a spot-market equilibrium in date 1, at ẽ1 = e1 + R̃θ.
A set of consumption allocations is said to be CF with transfers if it contains all
those CF allocations which are attainable through date 0 transfers in the numéraire
commodity.

First, note that a competitive equilibrium is a spot market equilibrium. Let
(P, q, e), with P = (P0, P1), be a real numéraire equilibrium with allocation, (x, θ),
for the economy (e,R). Then, (P1, x1) is a date 1 spot-market equilibrium at
ẽ1 = e1 + R̃θ. Therefore, real numéraire equilibria are CF.

Moreover, since the planner’s set of instruments is represented by portfolio trans-
fers, at current market prices, these transfers and their corresponding consumption
allocations are also attainable for the individual consumers.

Definition 4. (Constrained efficient allocation - CPO) A consumption allocation
is a CPO (with transfers) if it is not Pareto dominated by any other allocation that
is CF (with transfers).8

Before trying to explicitly write down the planner’s problem capturing the defi-
nition of CPO, observe that the set of CPO is nonempty. Indeed, if R is a fixed real
numéraire payoff matrix of full rank, the CF set is clearly nonempty and compact;
hence a CPO is a PO restricted on the CF set.9

The planner problem is defined as follows. x = (x0, x1) is CPO at (x0, e, R), if
and only if θ solves the following programming problem at (e1, R):

(2.2)
Max(θ2,..,θH)

∑
h δ

hvh
1

(
P1,m

h
)

where
mh = P1�eh

1 +Rθh ∀h ≥ 2
m1 = P1�e11 −R

∑
h≥2 θ

h

8A modification to our notions of constrained feasibility and optimality would be to consider

the case in which, after each policy intervention, only the asset markets close. In this case, true
consumers would not be able to re-trade assets, but they would typically trade commodities on

date 0 spots. Obviously, this becomes relevant in economies in which agents consume also in
period 0, as for example in Magill and Shafer (1991). Then, we would say that x = (x0, x1) is
constrained feasible at (q, e, R) if and only if there exists a θ and a P = (P0, P1) such that (P, x)

is a spot-market equilibrium in both dates, at (ẽ0, ẽ1) =
(
e0 − qθ, e1 + R̃θ

)
. Since modifying

our notion of constrained efficiency in the latter sense does not qualitatively affect the rest of the

analysis, we shall hereafter refer to our definition 3.
9This set coincides with the set A described for the same purposes in Werner (1991).
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where vh (·) and δh, respectively, denote the indirect utility function and the welfare
weight of h; while P1 is the price functional of a date 1 spot-equilibrium.10

It follows from the previous discussion that the central planner problem (2.2)
has a solution.

Next, suppose that the spot price functional, P1, is differentiable. A CPO allo-
cation satisfies the following,

(2.3)
(
δh ∂v

h
1

∂mh
1

− δ1
∂v1

1

∂m1
1

)
Rj +

∑
h′

δh′ dv
h′

1

dP1

∂P1

∂θh
j

= 0,∀h ≥ 2, ∀j.

where the first term on the left hand side is the aggregate income effect, and the
second is the aggregate, relative price, effect.

Let λ̂h = ∂vh

∂mh denote the vector of marginal utility of income for h in (2.2).
Using Roy’s identity,

dvh
1

dPsl
=

∂vh
1

∂Psl
+
∂vh

1

∂mh

∂mh

∂Psl

= −λ̂h
sx

h
sl + λ̂h

s e
h
sl = −λ̂h

s z
h
sl

Letting λh
s ≡ δhλ̂h

s , we can rewrite (2.3) as,(
λh − λ1

)
Rj −

∑
h′,s

∑
l 6=1

λh′

s z
h′

sl

∂Psl

∂θh
j

= 0, for all h ≥ 2, all j

where
∑

h z
h
sl = 0 for all s and all l 6= 1.

Following Stiglitz (1982) one can test for the CPO of an equilibrium allocation
by checking if the conditions in (2.3) hold. To ensure that the spot price functional,
P1, is differentiable, we restrict the attention to the subset of economies, denoted
by Ω′, such that, for every (e0, e1) in Ω′, and every vector of transfers, θ, the
spot-market economies ẽ1 = e1 + R̃θ are regular: P1(ẽ1) is (at least) one time
differentiable.

Then, consider an equilibrium (P, q, e), of an economy e in Ω′, and allocations
(x, θ). Let δh = 1/λh

0 , so that λh is the S−vector of normalized state prices of h.11

Then, no-arbitrage implies
(
λh − λ1

)
Rj = 0 for all h, j. The necessary conditions

for the CPO of an equilibrium reduces to the following J(H − 1) equations,

(2.4)
∑

h

(
λh�zh

1

)
DθP1 = 0

whereDθP1 = (..., Dθh
j
P1, ...) ∈ RS(L−1)×(H−1)J , has typical column vectorDθh

j
P1 =

(∂P12/∂θ
h
j , ..., ∂PSL/∂θ

h
j )′.

10Note that each spot-equilibrium pairs (Ps, xs) is a price-income equilibrium at (Ps, ms), with

ms =
(
.., mh

s , ..
)
, mh

s ≡ Ps�eh
s + Rsθh. Where by a price-income equilibrium, for spot s (with

aggregate resources ωs) we mean a pair (Ps, xs) such that xh
s solves the consumer problem at(

Ps, mh
s

)
for all h, and

∑
h xh

s − ωs = 0.
11Consider the representation of a Planner problem in which δh is the Lagrange multipliers

associated to the constraint, vh
1 (P, m) ≥ vh

1, and take vh
1 to be the utility level achieved at date 1,

in a competitive equilibrium. Then, letting δh = 1/λh
0 is equivalent to say that there exist welfare

weights such that the original equilibrium satisfies CPO necessary conditions; this is the usual

I welfare theorem. If, instead, we fix welfare weights, and we ask if an allocation that satisfies
necessary conditions for CPO can be achieved at equilibrium, then we need to introduce date 0,

transfers. The latter is the perspective of the II welfare theorem.
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Observe that (2.4) can be interpreted by saying that a CPO equilibrium is such
that there do not exist, feasible, portfolios redistributions that can induce indirect
welfare effects; with “indirect effects” meaning effects propagating through changes
in relative spot prices (i.e. “pecuniary externalities”).

Remark 1. (Assets redistribution, trade, and markets) It is now easy to see why
in the notion of CPO it is important that centralized assets redistributions occur
when, date 0, markets are closed. Precisely, consider an equilibrium

(
P , q, e

)
with

allocations (x, θ). If we let agents trade in assets after a planner’s (marginal)
portfolios redistribution, dθ, they would want to return to their original portfolios
holdings, θ. In fact, ‘expecting’ prices to retain their initial value, their choice (x, θ)
would still be individually optimal, and satisfy market clearing at

(
P , q, e

)
. This is

equivalent to say that, with ex-post re-trade of assets, for the economy e, the only CF
allocation x at (x0, e, R) is such that (P 1, x1) is a no-trade spot-market equilibrium
in date 1 at ẽ1 = x1 = e1+R̃θ. Clearly, in this case portfolio redistributions cannot
have any welfare effects.

2.2.1. Some sufficient conditions for (2.4) to hold. A few, well known, suf-
ficient conditions for (2.4) can be invoked.12

(1) Identical, individual, state-prices: λh − λ1 = 0 for all h.
(2) No trade: zh = 0 for all but one h.
(3) Policy interventions have no price effects: DθP1 = 0.

1. and 2. have obvious consequences, determining
∑

h λ
h
s z

h
sl = 0 for all s, all

l 6= 1. Let us consider (3). Restricting to economies in Ω′,

DθP1 = −(DPZ1(P,m))−1DθZ1(P,m)

Therefore (3) occurs if and only if DθZ1(P,m) = 0. Indeed, the latter holds
if, at least locally (in a small neighborhood of the spot-equilibrium), preferences
have identical Gorman forms; i.e. agents have identical marginal propensities to
consume. Consider a special case of such preferences: identically homothetic util-
ities, vh

(
P,mh

)
= Ah

∑
s νs (P )mh

s , with xh
sl

(
P,mh

)
= asl (P )mh

s , asl (P ) ≡
−∂vs(P )/∂Psl

νs(P ) independent of h. For all (s, l)

Dθh
j
Zsl =

(
∂xh

sl

∂mh
1

− ∂x1
sl

∂m1
1

, ....,
∂xh

sl

∂mh
S

− ∂x1
sl

∂m1
S

)
Rj(2.5)

= (a1l (P )− a1l(P ), ..., aSl(P )− aSl(P ))Rj = 0

In the next subsection we will argue that none of the above conditions, (1)
through (3), is generic.

2.3. Generic properties of equilibria. Property (1) does not typically hold in
an equilibrium of a GEI economy. Instead, properties (2) and (3) are non-generic for
competitive economies regardless their markets are complete or incomplete. More
precisely, for (1) and (2), the following result is well known, and will not be proved
here.13

12By assumption, we are ruling out economies with L = 1. This implying no relative price

effects.
13At the individual optimum, the consumer gradient belongs to the subspace orthogonal to

the one spanned by the columns of W , i.e. to a (N − J) > 1 dimensional space. Thus, generically,
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Lemma 1. There exists a generic set of economies, Ω∗, such that for every e in
Ω∗ and every (P, q, e) in ER, properties (1) and (2) do not hold.

We devote a little more discussion to show why (3) is also non-generic.

Let us consider an economy e in Ω′ (with preferences and payoff structure (u,R)).
Define the individual h income in spot s as a function of her portfolio decisions, and
thus of

(
P, q, eh

)
: mh

s

(
P, q, eh

)
= Pse

h
s + Rsθ

h
(
P, q, eh

)
. Then, clearly, for every

real numéraire equilibrium,
(
P, q, eh

)
, with ms = ms (P, q, e), (Ps,ms) is a (price-

income) spot-market equilibrium. This does also imply the identity, xh
s

(
P, q, eh

)
≡

x̃h
s

(
Ps,m

h
s

(
P, q, eh

))
, where the latest is the demand function of h at

(
Ps,m

h
s

)
,

with mh
s = mh

s

(
P, q, eh

)
.

Next, it is well known that the Slutzky matrix is the inverse of the Jacobian of
the individual demand system. Since here we are concerned with a spot-market
individual demand, x̃h

s

(
Ps,m

h
s

)
, the latter reads:

(2.6)
(
D2Uh

s −P ′s
−Ps 0

)−1

=
(

S −κ′
−κ −a

)
where for spot s, S is the matrix of substitution effects, and κ′ is the matrix of the
individual propensity to consume, Dmh

s
x̃. Simple computations yield,

(2.7) Dmh
s
x̃h

s =
(
D2Uh

s

)−1
P ′s
(
Ps(D2Uh

s )−1P ′s
)−1

where Uh
s is evaluated at xh

s = x̃h
s

(
Ps,m

h
s

)
, Dmh

s
x̃h

s =
(
..., ∂x̃h

sl/∂m
h
s , ...

)′ ∈ RL
+,

with typical element,
∂x̃h

sl

∂mh
s

=
(
Ps(D2Uh

s )−1P ′s
)−1∑L

i=1 Psi(
∂2Uh

s

∂xh
sl∂xh

si

)−1.
In the next lemma we will parametrize a price-income, spot-market, economy

also with respect to preferences, and define individual demands correspondingly.

Lemma 2. Let (P1,m1) be such that Dmh
s
x̃h

s are well defined. There exists an open
and dense set of utility functions, U∗ ⊂ U , such that at their individual optimum,
x̃s, agents have different marginal propensities to consume:

Dmh
s
x̃h

s 6= Dm1
s
x̃1

s

for all (h, s) ≥ (2, 1).

Proof: see the Appendix.

To prove the latter lemma, we restrict the attention to a class of utilities ad-
mitting (local) quadratic perturbations. As it can be inferred by looking at (2.6),
this type of perturbations have the nice property that they can be rationalized as
perturbations of the Slutzky matrix,14 which do not affect individual first order
conditions, and allocations.15

N −J , state prices are distinct. This is shown, for example in Magill and Shafer (1991), Theorem

10, and it is used to argue that equilibria are typically not Pareto optimal.

Finally, no-trade can be ruled out perturbing the individual endowments on the asset span.
This type of perturbations will also be illustrated later in this section of the paper.

14See Geanakoplos and Polemarchakis (1980).
15This is important also because, in our context, the initial equilibrium values are real

numéraire spot prices P1, consumption allocations x1, and hence state prices.
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Having in mind equation (2.5), we are now ready to define the (generic) space
of economies in which, at equilibrium, property (3) does not hold, (i.e. DθPs 6= 0).
This clearly extends to the case of S (L− 1) spots. Exploiting state-separability
of utilities, [Dmh x̃h] denotes the S (L− 1) × S, block-diagonal matrix of typi-
cal element Dmh

s
x̃h

s =
(
..., Dmh x̃h

sl, ...
)′ ∈ RS(L−1)×1. Therefore, DθZ1(P,m) =

(..., Dθh
j
Z1, ...) ∈ RS(L−1)×J(H−1), with typical element,

(2.8) Dθh
j
Z1 =

(
[Dmh x̃h]− [Dm1 x̃1]

)
Rj

By the last lemma, generically, Dθh
j
Z1 6= 0. Therefore, since a real numéraire

equilibrium in Ω′ is a spot market equilibrium, we can state the following.

Corollary 1. For every economy (e, u) ∈ Ω′×U∗, real numéraire equilibria satisfy,

DθP1 6= 0

Next, going back to the planner problem, we observe that condition (2.4) is
satisfied, at an equilibrium, if and only if

∑
h

(
λh�zh

1

)
Dθh

j
P1 = 0 for all (h, j) ≥

(2, 1), where Dθh
j
P1 = −(DPZ1)−1Dθh

j
Z1 is also evaluated at equilibrium. The

following result is central to establish constrained inefficiency.

Lemma 3. There exists a generic set of economies Ω∗ ⊂ Ω′ such that for every
(e, u) ∈ Ω∗×U∗, real numéraire equilibria,

(
P , q, e

)
, satisfy

∑
h(λ

h
�zh

1)Dθh
j
P1 6= 0,

for some h, j.

Proof: see the Appendix.

The proof of the latter lemma relays on standard perturbations of the endow-
ments. In fact, suppose that an equilibrium,

(
P , q, e

)
, is such that

∑
h(λ

h
�zh

1)Dθh
j
P1 =

0, for all h, j. Then, perturb the endowments of some h and of 1 as to keep the
value of transfers of h, P1�zh

1 , on the asset span, and satisfy market clearing. This
will not modify any of the equilibrium variables; yet, by changing (zh

1 , z
1
1) these

perturbations will change the value of
∑

h(λ
h
�zh

1)Dθh
j
P1, whenever h is chosen

such that λ
h 6= λ

1
.

2.4. Constrained inefficiency of equilibria. Just to summarize, consider a reg-
ular equilibrium, and a planner’s redistribution of portfolios. Since this occurs at
date zero, when asset markets have closed, agents are prevented from re-trading
assets; still portfolio changes have modified their date 1- income distribution. Thus,
at the new income distribution, agents may want to modify their consumption allo-
cations. Precisely, if their marginal propensities to consume are different, this will
occur in such a way as to modify relative spot prices. Because markets are incom-
plete, and marginal rates of substitutions are typically different across agents, the
former may produce an aggregate welfare gain. Date 0 transfers, if feasible, can be
used by the planner to redistribute such gain so as to achieve a Pareto improvement.
More precisely, applying lemma 3, we have:

Theorem 1. (Constrained inefficiency of real numéraire equilibria) For every (e, u)
in Ω∗ × U∗, real numéraire equilibria,

(
P , q, e

)
, are not CPO with transfers.
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The reason why date 0 transfers are needed is linked with the usual instrument-
objective requirement. In absence of transfers, the planner can at most control
S (L− 1) instruments, the relative price changes, attained by portfolios redistri-
butions, to achieve a Pareto improvement over H consumers. This is possible if
H ≤ S (L− 1).16

2.4.1. Constrained inefficiency with a “large” number of types. When the
economy is characterized by a sufficiently large number of consumer types, H >
S (L− 1), the arguments used above, in lemma 2 leads to establish that, generically
in utility space, DθP1 has full row rank, S (L− 1), at an individual optimum.17 This
implies that P1 is a surjective function of θ (by ẽ), and thus that the planner can
effectively control relative spot-prices through portfolios. This is a clear advantage
the planner has on price-taking consumers.

Equivalently, x = (x0, x1) is a CPO at (x0, e, R), if and only if
(
..., xh

1, .., θ
h, .., P1

)
maximize

∑
h δ

huh
1

(
xh
1

)
such that the following constraints hold,

(2.9)
(.., µh

s , ..) P1�(xh
1 − eh

1)−Rθh = 0, all h
(.., ζj , ..)

∑
h θ

h
j = 0, all j

(.., ηsl, ..)
∑

h(xh
1l − eh

1l) = 0, all l ≥ 2

the terms in parenthesis, on the left hand side, refer to the multipliers attached to
the corresponding constraints.

The first order conditions of this problem, evaluated at equilibrium, hold if and
only if

(2.10)
∑

h

(
λh�zh

1

)
= 0

Clearly, with “large” economies, (2.10) should replace (2.4) in our whole analysis.

3. The structure of equilibria and their welfare properties

As we have mentioned in the introduction, the GEI literature poses no attention
to the analysis of the structure of CPO equilibria. This is an interesting prob-
lem since it allows to look at constrained inefficiency from a different angle. In
particular, in this section we show that CPO equilibria are “exceptional”; namely,

Theorem 2. There exist a generic set of economies in Ω(ω)×U , such that CPO -
equilibria are contained in a linear, lower dimensional, submanifold of the equilib-
rium set.

To prove our theorem, we first derive a global parametrization of the equilibrium
set. This parametrization is used to characterize equilibria as a fiber bundle. Such
a characterization is simple and shares most of the properties of the one proposed
for Walrasian equilibria in Balasko (1988):

• every fiber is contained in the equilibrium set;
• every fiber is a linear submanifold of the equilibrium set ;
• every fiber contains only one (and is therefore identified by a) no-trade

equilibrium;
• each equilibrium belongs to one fiber only.

16See the remark on p. 1594 of Magill and Shafer (1991).
17The idea is again that one can show that it is possible to locally, and independently, control

DθhZ for as many as S (L− 1) consumers h, using quadratic perturbations of utilities.
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Moreover, if one looks at the case in which there are as many assets as the
number of states, this characterization reproduces Balasko’s. Finally, we show that

• each fiber contains, at most, one CPO equilibrium.
In Walrasian economies, no-trade equilibria are Pareto optima (PO), i.e. the I

Welfare Theorem applies. Therefore, no-trade Walrasian equilibria can be simply
recovered using the solutions of a PO problem; the parametrization of the set of PO
is indeed a global parametrization of the set of no-trade Walrasian equilibria. In ex-
tending this logic to economies with incomplete markets, we run into two obstacles.
First, no-trade GEI are, typically, not PO. Second, CPO equilibria, generically,
entail some trade across agents (i.e. they do not belong to the no-trade equilibrium
set). We outrode the first obstacle by showing that no-trade equilibria can actually
be represented as solutions of the following “modified” planner’s problem: let x
solve,

Maxx∈Ω

∑
h

∑
s

χh
sU

h
s (xh

s )

at “welfare weights” χ = (1, ., χh
s , ..) ∈ RH(S+1), with Ω denoting the closure of

Ω(ω). Differently from Pareto optima, in this problem welfare weights are state-
contingent. Moreover, we will show that if one is concerned with a GEI with
(S − J) degrees of market incompleteness, χ has to be constrained to live in a
(H − 1) + (H − 1)(S − J)- dimensional set. If markets are complete, and J = S,
this parametrization is the one used for Walrasian no-trade equilibria. However as
J decreases, falling below S, the dimensionality of the parameter space increases.
In the limit -when J = 0- the dimension of the parametrization is the one corre-
sponding to the equilibrium set of a (S + 1)− spot-market economy, in which each
spot is indeed an isolated Walrasian economy.

Once the set of no-trade GEI, Tω,R, has been parametrized, the global structure
of equilibria is easily derived. For every no-trade equilibrium, with prices and
allocations (P , q, x, θ), one can identify the set of equilibria (P , q, e) with active
trade. This boils down to considering the set of economies parametrized by initial
endowments, e, such that, at (P , q, e), (x, θ) are feasible and satisfy market clearing.
This set has dimension n = (H−1)(m−(S−J+1)). Therefore, for fixed aggregate
resources and asset structure, (ω,R), one finds that18

Eω,R
∼= Tω,R × Rn

++
∼= Ω(ω)

Next, we still have to overcome the second obstacle. Even though, as we claimed,
CPO equilibria do typically entail some trade, trading opportunities are limited:
on top of constraining endowments to satisfy budget balance and market clearing,
they have to satisfy (2.4), i.e.∑

h

(
λh�(xh

1 − eh
1)
)
DθP1 = 0

where, P1, x1 are no-trade equilibrium prices and allocations, and λ are the corre-
sponding individual, marginal rates of substitutions. Thus, if we put ourselves on
a fiber of the equilibrium set, identified by a no-trade equilibrium, and we move
along such fiber, we might hit the unique CPO allocation associated to it. The
possibility that some fibers do not contain CPO equilibria is implied by the fact

18∼= denotes equivalence up to an homeomorphism.
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that (2.4) are only necessary conditions. However, since the CPO problem admits
solutions, CPO equilibria exist on some fibers.

Notice that our informal discussion is provided for a given real numéraire payoff
matrix, R, of full rank J . Since each of such matrices identifies an asset span, L
in GJ,S , the same discussion would go through if we had directly parametrized the
economy on GJ,S (as in Duffie and Shafer (1985)). Indeed this is exactly what we
do in the rest of paper. Although at some cost, our choice turns out to be partic-
ularly useful when it comes to deal with the more general case of real-numéraire
assets, or with nominal assets, for which the asset span is defined endogenously,
at equilibrium. The additional cost of parametrizing with respect to L is that the
equilibrium set retains its vector space structure only locally (on GJ,S).

3.1. Definitions. For fixed preferences, u, and aggregate resources, ω, an economy
with an “abstract” financial market structure, L, is a pair (e,L) ∈ RmH

++ × GJ,S .
GJ,S is the Grassmanian of J−planes in RS .

Without loss of generality,19 assume that the first individual is financially un-
constrained. The Walrasian demand of consumer 1 is a function,

g1
(
p, e1

)
= arg max

x

{
u1(x) : p

(
x− e1

)
= 0
}
.

The demand of a consumer h is,

(3.1) fh
(
p,L, eh

)
= arg max

x

{
uh(x) :

p
(
x− eh

)
= 0

p1�
(
x1 − eh

1

)
∈ L

}
for all h ≥ 2.

We normalize prices by taking p01 = 1, and denote the set of normalized prices,
P ⊂ R(S+1)L−1

++ . The truncated aggregate excess demand function is

Z(p,L, e) = g1
(
p, eh

)
+

H∑
h=2

fh(p,L, eh)− ω.

Then, the following sets of equilibria are defined.

SJ =
{
(p,L, e) ∈ P× GJ,S × Ω : Z(p,L, e) = 0

}
,

TJ =
{
(p,L, e) ∈ SJ : g1(p, pe1) = e1, fh(p,L, eh) = eh,∀h ≥ 2

}
.

Observe that SJ is the set of equilibria defined for all possible asset span L in GJ,S .
TJ is the subset of SJ for which there is no trade.

3.2. The structure of equilibria. To derive the structure of the equilibrium
set we will appeal to Lemma 3.2.1 in Balasko (1988), limiting our proofs to the
definition of the required diffeomorphisms:

Lemma 4. (Lemma 3.2.1 in Balasko (1988)) Let τ : X → Y , and φ : Y → X, be
two smooth mappings between smooth manifolds such that the composition τ ◦ φ :
Y → Y is the identity mapping. Then, the set Z = φ(Y ) is a smooth submanifold
of X diffeomorphic to Y .

The definition of a parametrization, Y , is the preliminary, essential, step we will
take in the next subsection.

19See remark 3 below.
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3.2.1. Parametrization. The parametrization we are going to introduce hinges
upon individual state-prices. For every agent h ≥ 2, a personalized price functional,
at prices p,

(3.2) ρ(p, µh) =
(
p0, (1 + µh

1 )p1, ..., (1 + µh
S)pS

)
∈ Rm

+ ,

is a function of µh ∈ RS . Let µ denote the (H − 1) × S - matrix of typical row
µh. Further, define MJ the set of matrices µ of rank c = S − J (its closure, MJ ,
contains matrices of rank c ≤ S − J).

The parameter set MJ summarizes all the ‘relevant’ information concerning asset
markets and individual state-prices. Indeed, if markets are complete (S = J), then
the rank of µ is zero, therefore µ = 0, and dim MS = 0: consumers’ evaluations
(marginal rates of substitutions) are all equal to p. At the other extreme, if there are
no assets (J = 0), dim M0 = (H−1)S. Thus, if (H−1) > S, consumer evaluations
may span RS (i.e. there is “maximal disagreement” among consumers).

The next two lemmas summarize all the key properties of MJ .

Lemma 5. MJ as the set of (H − 1)×S matrices of rank (S − J) is a submanifold
of R(H−1)S of dimension, dim MJ = c∗ = (H − 1 + J)(S − J), and codimension,
c◦ = ((H − 1)− (S − J)) J .

Proof: see the Appendix.

Next, we argue that each element of MJ identifies an asset span, L in GJ,S . Take
µ ∈ MJ and introduce the following block decomposition(

µ/J µJ

µ/J µJ

)
such that µ/J is a (S−J)−nonsingular matrix.20 Then,

(
µ/J | µJ

)
defines a basis for

L⊥, and thus uniquely identifies L. Precisely, we can define a projective mapping,
αJ , from MJ to GJ,S , by taking αJ = ψ(µ−1

/J µJ); where ψ is an homeomorphism21 of
GJ,S onto RJ(S−J) that identifies the unique (S−J)J−coordinate system of L. This
implies that there exists a, nontrivial, ((H − 1)− (S − J)) × (S − J)−matrix Q
such that (µ/J | µJ) = Q(IS−J | ψ(L)). Clearly, Q = µ/Jµ

−1
/J , and µJ = µ/Jµ

−1
/J µJ ,

as it is shown in the proof of lemma 5.
Next, it is easily seen that different elements of MJ can identify the same asset

span. We say that µ, µ′ are in the same equivalence class (∼), µ ∼ µ′, if and only if
they generate the same basis for a (S − J) dimensional space. Hereafter, we refer
to MJ as the (quotient) topological space, MJ/ ∼.22,23

A final step is to establish the global structure of MJ as a fiber bundle over
GJ,S . This is done by regarding MJ as the total, topological, space, GJ,S as the
base space, and αJ as the projective map. Define the canonical vector bundle

20This is always possible because µ in MJ is of rank S − J ; therefore, we can permuting the

rows of µ such that (µ/J | µJ ) is a basis for a (S − J) dimensional space, and µ/J is nonsingular.
21An homeomorphism is a bijective, continuous, mapping whose inverse is also continuous.
22This procedure uses the quotient topology on the Grassmanian to define a topology for MJ .

The next lemma helps to clarify this point.
23Take the closure of M0, M0. If µ ∈ M0, consumer evaluations span a vector space of at most

dimension S. More generally, MS ⊂ .. ⊂ MJ ⊂ .. ⊂ M0, and ∪S
k=JMk is an open cover of MJ , for

all J = 0, .., S. The finite covering property of MJ is important since it implies compactness.



14 MARIO TIRELLI

over GJ,S , υ =
{
L, y ∈ GJ,S × RS : y ∈ L

}
, and its orthogonal complement, υ⊥ ={

L, y ∈ GJ,S × RS : y⊥L
}
; then the following holds,

Lemma 6. MJ is a vector bundle over GJ,S, MJ
∼= (H − 1)υ⊥.24 Its projective

map, αJ , identifies a unique L for each µ in MJ .

Proof: see the Appendix.

3.2.2. The structure of no-trade equilibria.

Proposition 1. TJ , is a manifold diffeomorphic to RH−1
++ × MJ . Moreover, as a

fiber bundle over GJ,S, TJ
∼= εH−1 ⊕ (H − 1)υ⊥.25

Again, the proof of this proposition uses lemma 4, and it is deferred to the
Appendix. To apply this lemma, we let Y = RH−1

++ × MJ , and X = SJ . For the
time being, we will assume that SJ is a smooth manifold; this is established in
proposition 2 below. Moreover, we define τT : P× GJ,S × Ω → RH−1

++ ×MJ ,

τT (p,L, e) =
((

1, .., D01u
1(x1)/D01u

h(xh), ..
)
,
(
∇s1u

h(xh)/∇s1u
1(x1)− 1

)
s≥1,h≥2

)
where, if τT is restricted to SJ ,

(
x1,
(
xh
)
h≥2

)
=
(
g1
(
p, e1

)
,
(
fh(p,L, eh)

)
h≥2

)
are

equilibrium allocation;
φT : ∆H−1 ×MJ → P× GJ,S × Ω, be such that26

φT (δ, µ) =
(
∇u1(x1), αJ(µ), x

)
= (p,L, e) ,

where we take x to be the solution of the planner’s problem,

(3.3) Maxx∈Ω

∑
h

∑
s

χh
sU

h
s (xh

s )

with “welfare weights” χ1
s = 1 for all s, χh

0 = δh, χh
s = δh(1+µh

s ) for all s ≥ 1, and
all h ≥ 2; Ω is the closure of Ω(ω).

Remark 2. (The structure of TJ) When J ∈ {0, S} the set of no-trade equilibria
has a (globally) trivial (vector space) structure. Using TS to denote the no-trade
complete markets version of TJ , it is easy to see that, TS

∼= ∆H−1.27 This is the case
in which µ = 0, and consumer gradients are collinear. On the other extreme, when
asset markets are totally incomplete, we have T0

∼= ×s∆H−1. In all intermediate
cases, 0 < J < S, TJ

∼= TS ⊕ (H−1)υ⊥; namely TJ retains a vector space structure
only locally on GJ,S.

24A fiber bundle with vector space structure on fibers is a vector bundle.
∼= denotes an homeomorphism relationship.

25εn
B denotes the trivial vector bundle (B × Rn, B, α); a fiber bundle that has a global (as

suppose to local) vector space structure. We drop the base space, B, from this notation, since
this clearly emerges from the context.
⊕ denotes the Whitney sum. This operates as a direct sum across the elements of the fibers

of a vector bundle.
26∆n denotes the, strictly positive, n-dimensional simplex: ∆n =

{
y ∈ Rn+1

++ :
∑

i yi = 1
}

.
27See Balasko (1988), section 3.3 for details on the structure of no-trade equilibria when mar-

kets are complete.
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3.2.3. The structure of equilibria with active trade. Next, consider equilibria
in which consumers trade an initial set of resources (or endowments). The new
parameter space will then be enlarged by the dimensionality of the space of relevant
spot trade opportunities.

For fixed aggregate resources ω, define Ω̂ ⊂ Rn
++ the section of Ωσ ⊂ Ω(ω) of

dimensionality n = (H − 1) (m− (S − J + 1)) for all σ ∈ Σ:

Ω̂ =

ê ∈ Rn :

ê = (ê0, ê1)
êh
0 = (eh

0,l)l≥2, h ≥ 2

êh
1 =

(
eh
σ(j,l), e

h
/σ(k,l)

)
j=1,..,J, k=1,..,S−J, l≥2

, h ≥ 2, σ ∈ Σ


Proposition 2. SJ is a smooth manifold diffeomorphic to Ω(ω)×R(S−J)J . More-
over, as a fiber bundle over GJ,S, SJ

∼= ε(H−1)+n ⊕ (H − 1)υ⊥.

In order to apply Lemma 4, let X = ∆H−1 ×MJ × Ω̂, and Y = SJ . Moreover,
define τS : P× GJ,S × Ω → ∆H−1 ×MJ × Ω̂, such that

τS(p,L, e) =
(
τT (p,L, e), projΩ̂Ω(σ)

)
where (for given L) σ is such that L ∈Wσ, and Ω(σ) is defined accordingly. Next,
let φS : ∆H−1 ×MJ × Ω̂ → P× GJ,S × Ω, be such that
φS(δ, µ, ê) =

(
∇u1(x(δ, µ)), αJ(µ), e

)
,

where e = (e1,
(
eh
)
h≥2

) is defined as follows: for given ê ∈ Ω̂σ, with σ such that
αJ(µ) = L ∈Wσ,28 e is restricted to satisfy (3.4):

(3.4)
eh
/σ(k,1) = 1

p/σ(k,1)

(
p/σ,kx/σ,k −

∑
(k,l) 6=(k,1) p/σ(k,l)ê

h
/σ(k,l) + (ψσ,k ◦ αJ)pσ

(
xh

σ − êh
σ

))
k = 1, .., S − J

eh
01 =

∑
s,l pslx

h
sl −

∑
(s,l) 6=(0,1) pslê

h
sl

eh =
(
eh
0,1,
(
êh
0,l

)
l≥2

,

(
eh
/σ(k,1),

(
êh
/σ(k,l)

)
l≥2

)
k

, êh
σ

)
, and for h = 1

e1sl = ωsl −
∑

h≥2 e
h
sl, ∀(s, l)

where in the first two lines expressions are evaluated at xh = xh(δ, µ), ∀h ≥ 2.
Observe that the first two restrictions in (3.4), respectively, originate from the
financial constraints, and from the (Walrasian) budget constraint, p

(
xh − eh

)
= 0,

for all h ≥ 2 (both evaluated at x = x(δ, µ)). The third is just the definition
of
(
eh
)
h≥2

. The last restriction in (3.4) is derived from the aggregate resource
constraint.

Remark 3. (The case of a symmetric equilibrium) In this section we have consid-
ered an economy in which the first consumer is financially unconstrained. It is well
known, at least since theorem 4.2 in Balasko and Cass (1989), that the equilibrium
manifold of such an economy, is diffeomorphic to the one that treats individuals
symmetrically. Just to sketch their argument, let us refer to these equilibrium set,
respectively, as SJ and SJ . First, consider a (P,L, e) in SJ , with an allocation x;
define p = ∇u1(x)�P , then (p,L, e) ∈ SJ . In fact, at this new price vector the

28See the proof of Lemma 6 for a better understanding of how permutations of the rows of µ

are used to define a local coordinate system of the asset span L.
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financial constraint of agent 1 is trivially satisfied, and f1
(
P,L, e1

)
= g1(p, e1).

Conversely, consider (p,L, e) ∈ SJ ; ∇u1(x) = p holds at the equilibrium allocation,
x. Since p1�zh

1 ∈ L for h ≥ 2, and markets clear; then, x1 ∈ f1
(
p,L, e1

)
, i.e.

there exist Lagrange multipliers γ1 ∈ RS−J
+ such that µ1 = γ1(I | ψσ(L))πσ, and

∇u1(x) = ρ1
(
p, µ1

)
.

3.2.4. The fiber bundle structure of SJ . We are now going to define the fiber
bundle structure of SJ that we shall then use to characterize CPO equilibria in the
next section.

Definition 5. A fiber associated to (δ, µ) ∈ ∆H−1 × MJ is a set, Fδ,µ, of typical
element (p,L, e) ∈ P× GJ,S ×Ω(ω): Fδ,µ is the inverse image of {δ, µ} × Ω̂ by τS .

Definition 5 is better understood by looking back at proposition 2. First, observe
that by propositions 1 and 2, SJ is homeomorphic to εn⊕TJ . This, loosely speaking,
implies that we can fix no-trade equilibrium prices and allocations, and generate
an n -dimensional set of equilibria with active trade, in SJ . Precisely, recall that
τS : SJ → ∆H−1 × MJ × Ω̂, associates to every equilibrium, (p,L, e) a unique
(δ, µ, ê), where Ω̂ ⊂ Rn, n ≡ (H − 1) (m− (S − J + 1)). Moreover, since each
(δ, µ) identifies a no-trade equilibrium, through φT ,

(
τS
)−1 (δ, µ, ê) = (φT (δ, µ), ê).

This implies that

(3.5) Fδ,µ = (τS)−1({δ, µ} × Ω̂)

Notice that a fiber associated to (δ, µ) contains those equilibria in SJ which i)
are compatible with a fixed pair (p,L) and a fixed equilibrium allocation (the cor-
responding no-trade equilibrium allocation), ii) have different level of endowments
ê in Ω̂, and thus of trades z.

Our fibers have a few interesting properties, which are analogous to those estab-
lished for Walrasian equilibria in Balasko (1988), apply.

• Every fiber is a subset of SJ .

In fact, by definition,
(
τS
)−1 (δ, µ, ê) = (p,L, e) is an element of SJ .

• Every fiber is a linear submanifold of SJ , of dimension n.
This also follows by definition (equation (3.5)).
• Every fiber contains only one no-trade equilibrium.

This follows from the structure of no-trade, which are diffeomorphic to ∆H−1 ×
MJ (see proposition 1).

• Each equilibrium, (p,L, e) ∈ SJ , belongs to one fiber only.
This follows from definition 5: each fiber is identified by a unique no trade

equilibrium. This does also explain the following,
• Fibers can be “glued” together by letting (δ, µ) vary on ∆H−1 ×MJ .

3.3. The structure of CPO equilibria. In this section we have worked with a
different notion of the economy and equilibrium with respect to the real numéraire
one used in section 2. Hence something should be said about the constrained
Pareto optimality in this new setting. Indeed, we only need to adapt definition
3 as follows. For every economy (L, e), a consumption allocation x = (x0, x1) is
constrained feasible at (x0, e,L) if and only if it is,
(i) attainable with transfers z1, such that zh

1 = (xh
1 − eh

1), and p1�zh
1 ∈ L, for all
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h ≥ 2,
(ii) supported by p1 as a, date 1, spot-market equilibrium at ẽ1 = e1 + z1.

Observe though, that because a change in the level of spot prices does not affect
the spot-market equilibrium allocations, there are only as many as S(L−1) relevant
spot prices which can be controlled by the planner to achieve his objective. Hence,
without loss of generality, we assume that in the planner’s problem p1 is restricted
to ∆S(L−1) as it was for real numéraire assets in (2.2) above.

Next, to characterize CPO equilibria it is useful to directly appeal to our Plan-
ner’s problem. A necessary condition for an equilibrium to be CPO is that -fiber
by fiber- endowments are restricted such as to satisfy the first order conditions for
a CPO.

For expositional simplicity, suppose that H − 1 > S(L− 1). Then, along a fiber
identified by (δ, µ), equilibria are CPO if endowments are restricted such as to keep∑

h µ
h�eh

1 constant, say at cδ,µ ∈ RS(L−1). The appropriate constant, cδ,µ, may
vary depending of the asset structure considered. So, for example, in a GEI with real
numéraire assets, condition (2.10) implies that cδ,µ =

∑
h µ

h�xh
1 (δ, µ). Similarly,

when assets are real, cδ,µ(s, l) =
∑

h µ
h
sx

h
sl (δ, µ)−Rsl for all (s, l) ≥ (1, 2).29

These constancy requirements can be interpreted by saying that as e varies,
pinning down equilibria of a particular fiber, it should not induce any aggregate,
welfare, effect (you may read our comments on (2.4) in section 2.2).

Our discussion implies the following.

• The set of CPO equilibria are contained in a linear submanifold of SJ of
codimension S(L− 1).

In fact, observe that for every fiber Fδ,µ we require that equilibria do also satisfy∑
h µ

h
s e

h
1 = cδ,µ. The latter impose S(L− 1) linear restrictions on e. Moreover, by

the definition of fibers, and the fact that each equilibrium belongs to a fiber only,
we find that:

• Every CPO equilibrium belongs, at most, to one fiber.

Since the planner’s problem needs not be convex, there might be points on the
fibers which are not CPO equilibria even if they satisfy the first order conditions
for CPO.

We can now gather our findings to prove our main result.

Proof of Theorem 2:
The set of CPO equilibria is contained in ∪δ,µFδ,µ. �

Finally, one can exploit the fiber bundle structure of SJ to establish the, generic,
constrained inefficiency of equilibria. This comes as a straightforward application
of Sard’s theorem,30 implying that the set of economies with CPO-equilibria has
measure zero.

29For an arbitrary H, one has to explicitly account for DθP1: in a GEI with real numéraire
assets, one would require that -along a fiber (δ, µ)- as e varies,

∑
h µh�(xh

1 (δ, µ)− eh
1)DθP1 = 0

(i.e. condition (2.4) holds). The latter being necessary to achieve a CPO. Observe, however, that

DθP1, being a function of spot prices, depends on (δ, µ) only, and is therefore constant along each

fiber (δ, µ).
30See, for example, Guillemin and Pollack (1974), p. 205.
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3.4. Economies and equilibria with real assets. For completeness, we are now
going to show how our construction can be used to study the efficiency properties
of a GEI with real assets.

A real asset GEI is parametrized by (e,R) on Ω × RSLJ , with R denoting the
real payoff matrix. When restricted to P×GJ,S ×RSLJ , the set of financial market
possibilities of this economy is,

MJ = {(p,L, e, R) : (I | ψσ(L))πσV (p1R) = 0, σ ∈ Σ s.t .L ∈Wσ}
where V (p1R) is the S × J asset matrix, of typical element psR

j
s. Then, the set of

pseudo equilibria in this economy is defined by

EJ = {(p,L, e, R) : Z(p,L, e) = 0, (p,L, R) ∈MJ)} .
Lemma 7. MJ is a manifold diffeomorphic to P × RSJL. Moreover as a fiber
bundle over GJ,S, MJ

∼= εNL−1+SJ(L−1) ⊕ Jυ.

Proof: see the Appendix.

The next proposition directly follows by Proposition 2 and Lemma 7.

Proposition 3. For all 0 < J < S, the set of equilibria EJ is diffeomorphic to
Ω(ω)×RSJL. Moreover, over GJ,S, it has a fiber bundle structure, EJ

∼= SJ ⊕MJ .

Finally, denoting by Es the Walrasian equilibrium manifold in the state s econ-
omy, and by E the Walrasian equilibrium manifold of an economy with a complete
set of contingent markets, we have the following.

Remark 4. Similarly to SJ the following consideration apply.
1) If markets are “totally” incomplete, J = 0, the set of equilibria is the Cartesian
product of the set of the S + 1 spot-market equilibria, E0 = ×S

s=0Es.
2) When markets are complete, J = S, the set of equilibria is equivalent to the set
of Walrasian equilibria, ES = E.
In any intermediate case, 0 < J < S, EJ has the (non-trivial) structure derived in
proposition 3.

Appendix

Proofs of Section 2
. Proof of lemma 2 (sketch): Let U ′ ⊂ U ⊂ R be the set containing utility func-
tion of h that admit local quadratic perturbations: a utility that admits qua-
dratic perturbations at x is a function, uh(xh; ε,Bh, x) = uh(xh)+ ε

2ρ(x
h)
∑

s(x
h
s −

xs)′Bh
s (xh

s − xs), where for all s > 0, Bh
s ∈ RL×L is a symmetric matrix, ε > 0 is

small enough such as to ensure that uh preserves strict-concavity, ρ : Rm
+ → [0, 1]

is a Cr≥2 (bump31) function, with compact support over Rm
++, taking value 1 in a

neighborhood of x, and 0 otherwise, for all s. Thus, at a point x, we take uh to
be defined on Rm

++ × [0, 1] × B where B ⊂ Rm×m is the set of symmetric matri-
ces. It is easily shown that for every convergence sequence of matrices Bh

n → Bh,
uh(·; ·, Bh

n) → uh(·; ·, Bh) in the Cr≥2 topology of uniform convergence.
Next, for fixed (P1,m1) such that Dmh

s
x̃h

s are well defined, let the mapping
Gh

s : C → C × RL be such that

(3.6) Gh
s (xh

s , λ
h
s ) =

[
fh

s

(
xh

s , λ
h
s , Ps,m

h
s

)
Dmh

s
x̃h

s −Dm1
s
x̃1

s

]
31See Hirch (1976).
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where C = RL
++×R+ is the set of the endogenous variables in the individual prob-

lem, (xh
s , λ

h
s ), for all s. We are going to show that there exists an open and dense

set U∗, such that for all Uh in U∗, there does not exist a (xh
s , λ

h
s ) ∈ RL+1

++ such that
Gh

s (xh
s , λ

h
s ) = 0, all s. Observe that by adjoining the L marginal propensities equa-

tions to each spot -demand first order conditions, we have added equations without
adding unknowns. Thus, to prove our result it suffices to show that we can (lo-
cally) control Dmh

s
x̃h

s independently from fh
s , and Dmh

s
x̃1

s. This is done by perturb-
ing the utility function of h with respect to Bh

s , around xs = fh
s

(
xh

s , λ
h
s , Ps,m

h
s

)
for all s (i.e. we want to make x a function of (P1,m1)). In doing so we ex-
ploit the fact that there exists an open neighborhood of x such that the following
three properties hold: uh(xh; ε,Bh, x) = uh(xh), Duh(xh; ε,Bh, x) = Duh(xh),
D2uh(xh; ε,Bh, x) = D2uh(xh) + εBh. So that the perturbation adopted neither
changes the utility level nor its gradient, leaving unaffected the first order condi-
tions for an individual optimum. Finally, to argue that U∗ is also open, we simply
observe that the property that (3.6) has independent rows is open. �

Proof of Lemma 3: Since (e, u) ∈ Ω′ ×U∗, DθP1 is well defined, and Dθh
j
P1 6= 0

for some (h, j) ≥ (2, 1), when it is evaluated at equilibrium. Fix u ∈ U∗, and define
Ω′′ the subset of Ω′ such that for every e ∈ Ω′′, there exists a regular equilibrium(
P , q, e

)
, with allocation x and individual, normalized, state prices λ. Then, the

set
Ωhj =

{
e ∈ Ω′′ :

∑
h

(
λ

h
�zh

1

)
Dθh

j
P1 = 0

}
is closed in Ω′′. Hence, Ω′hj = Ω′′\Ωhj is relatively open. We are now going to show
that Ω′hj is also dense in Ω′′. Since e ∈ Ωhj is a regular economy, then there exists an

arbitrary, open, neighborhood of e, Oe, such that, ∀ē ∈ Oe,
∑

h

(
λ

h
�zh

1

)
Dθh

j
P1 6=

0, and Z
(
P , q, ē

)
= 0. To see the latter, it suffices to show that there exists a

marginal perturbation of endowments such as to change spot trades, z, without
affecting consumption allocations and prices. Let this perturbation be ∆eh

1 ∈ RLS

(for some h 6= 1 such that Dθh
j
P1 6= 0) satisfy: i) p1�∆eh

1 = R∆θh for some

∆θh ∈ RJ ; ii) ∆e11 = −
∑

h≥2 ∆eh
1. Further, let ēh

1 = eh
1 + ∆eh

1, and take zh
1 =

xh
1 − ēh

1 = zh
1 −∆eh

1, for all h; consumption allocations are unaffected, x = x, and
Z
(
P , q, ē

)
= Z

(
P , q, e

)
= 0. Thus, the original equilibrium allocations, x, are still

demanded at
(
P , ē

)
, and

(
P , q

)
satisfies market clearing in the new economy, ē.

Moreover, observe that also Dθh
j
P1 is not affected by the above perturbation of

endowments (and the resulting changes in m1), since it only depends on x, P (see
(2.7), (2.8)). Finally, Ω∗ = ∩h,jΩ′hj = Ω′′\ ∩h,j Ωhj , is open and of full Lebesgue
measure in Ω(ω). �

Proofs of Section 3
. Proof of Lemma 5: The fact that MJ is a manifold follows directly from being
defined as the set of matrices of rank (S − J). Take µ ∈ MJ and introduce the
following block decomposition (

µ/J µJ

µ/J µJ

)
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such that µ/J is a (S − J)−nonsingular matrix. Then there exists a matrix C ⊂
RS×S such that

(3.7) MC =
(
µ/J µJ

µ/J µ
′

J

)
=
(
µ/J µJ

µ/J 0

)
,

since rank(MC) = rank(M) = S − J if rank
(
µ
′

J

)
= 0 (i.e. µ

′

J = 0). The latest
poses a (system) of c◦ conditions, c◦ = ((H − 1)− (S − J)) J . Observe that,

C =
(
IS−J −µ−1

/J µJ

0 IJ

)
.

Hence, µ
′

J = µJ − µ/Jµ
−1
/J µJ = 0. Finally, codim (MJ) = c◦, and thus dim(MJ) =

c∗ = (H − 1)S − c◦ = (H − 1 + J) (S − J), exactly a number of coordinates equal
to the elements of µ/J , µJ , µ/J .32 �

Let A be the (S − J)J matrix representing the unique local coordinate sys-
tem of L and of its orthogonal L⊥. Further, denote by σ a permutation map-
ping from {1, .., S} onto itself, by Σ the set of all such permutations, and by
πσ the (S × S) permutation matrix associated to σ. For every σ ∈ Σ, Wσ ={
L ∈ GJ,S : ∃A ∈ R(S−J)×J s.t.

(
IS−J | A

)
πσ ∈ L

}
. {Wσ : σ ∈ Σ} is an open

cover of GJ,S , GJ,S ⊂ ∪σ∈ΣWσ. Finally, we define ψσ : Wσ → RJ(S−J) such that
ψσ(L) = A. This map is a homeomorphism of Wσ onto RJ(S−J).

Proof of Lemma 6: (MJ ,G
J,S , αJ) is a fiber bundle. Moreover, by lemma 5, for

every µ ∈ MJ there exist open neighborhoods Vµ ⊂ R(H−1)S and O ⊂ Rc∗ , and
a smooth homeomorphism h : O → Vµ. (O, Vµ, h) is a local parametrization of
MJ about µ. Moreover h−1 : Vµ → O defines a local coordinate system for every
µ ∈ Vµ. We now derive h.
Take L ∈ Wσ, and let h(γ,L;σ) = Γ

(
IS−J | ψσ(L)

)
πσ = µ, where Γ is

a (H − 1) × (S − J) matrix of typical row vector γh, and γ =
(
γ1, .., γH

)
∈(

RS−J\ {0}
)H−1. Thus, γh

(
IS−J | A

)
πσ = µh ∈ L⊥, for all h ≥ 2 (i.e.(

.., 1 + µh, ..
)
∈ (H − 1) υ⊥), where A = ψσ(L) is the local coordinate system

of L. Therefore, each µ ∈ Imh(γ,L;σ) is an element of MJ .33 Since (γ,A) ∈ Rc∗ ,
and c∗ is equal to the dimension of MJ , h is a, continuous, injection.
Next, let us define the inverse mapping h−1. for every µ ∈ Vµ, we can find a local
coordinate system in Rc∗ by taking Γ

(
IS−J | A

)
= µπσ′ , ψ−1

σ′ (A) = L = αJ (µ)
for some σ′ ∈ Σ. More precisely, since µ in MJ has rank S − J , we can always find
a permutation σ′ ∈ Σ,

µπσ′ =
(
µ/J µJ

µ/J µJ

)

32Notice that since µJ is determined when µ/J , µJ , µ/J are given, the latter three matrices

defines a local parametrization of MJ of dimension (H − 1) S −#µJ = (H − 1 + J) (S − J).
33The fact that MJ does not have a vector space structure emerges clearer at this point: loosely

speaking, the two set of local coordinates, (γ, A), are ”interdependent”.
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such that µ/J is a (S − J)−nonsingular matrix, and
(
µ/J µJ

)
, induces a sub-

space of dimension (S − J):34
(
µ/J µJ

)
= µ/J

(
I | (µ/J)−1µ/J

)
. Moreover,

there exists matrixQ ∈ Rr×(S−J), with r = (H−1)−(S−J), such that
(
µ/J µJ

)
=

Q
(
µ/J µJ

)
= Qµ/J

(
I | (µ/J)−1µ/J

)
. Clearly, Q = µ/J(µ/J)−1, Putting things

together,

µπσ′ =
(
µ/J

µ/J

)(
IS−J | (µ/J)−1µ/J

)
Therefore, L = αJ(µ) = ψσ′((µ/J)−1µ/J), and A = (µ/J)−1µ/J defines its coordi-

nate system in Wσ′ . The vectors γh form a matrix, ΓT =
(
µT

/J , µ
T
/J

)
. This defines

h−1; a continuous mapping.
We can conclude that the following diagram commutes,

MJ
h−1

→ GJ,S × R(H−1)(S−J)

α
J
= ρ ◦ h↘ ↙ ρ(natural proj.)

GJ,S

Finally, being a smooth manifold, MJ has a local vector space structure (on fibers),
and h is a diffeomorphism. Yet, MJ is not a trivial vector bundle. This is imme-
diately seen once it is noticed that the latter characterization represents MJ as a
(H − 1) copy of υ⊥. �

Observe that x ∈ (g1
(
p, e1

)
, .., fh

(
p,L, eh

)
, ..) if and only if there exist Lagrange

multipliers,
(
λh, γh

)
∈ R++\ {0}, and γh ∈ RS−J\ {0}, such that,

(3.8)
(
D0u

1
(
x1
)
, D1u

1
(
x1
))

= λ1 (p0, p1)
p
(
x− e1

)
= 0

(3.9)

(
D0u

h (x) , D1u
h (x)

)
= λh (p0, p1) +

(
0, γh (I | ψσ (L))πσ�p1

)
,∀h ≥ 2

p
(
x− eh

)
= 0,∀h ≥ 2

(I | ψσ (L))πσp1�
(
x1 − eh

1

)
= 0,∀h ≥ 2

where L is taken to be an element of Wσ.
Proof of proposition 1:

• Let us start with τ . When τT is restricted to SJ , x are equilibrium al-
locations, and δh = D01u

1(x)/D01u
h(x) ∈ R++, for all h ≥ 2. To show

that µ ∈ MJ , observe that xh ∈ fh(p,L, e), by individual first order con-
ditions, implies that there exists a γh ∈ RS−J/ {0} such that ∇1u

h(x) =
(1S + γh (IS−J | ψσ(L))�p1. By definition of τT , µh = γh (IS−J | ψσ(L)).
Finally, assuming that SJ is a smooth manifold, and observing that τT has
smooth coordinates, we conclude that τT is smooth.

• Next, consider φ. To show that φT is well defined, and smooth, it suffices to
prove that the set of solutions to (3.3) (call it K), is -respectively- nonempty
and its elements, x(δ, µ), are smooth functions on RH−1 ×MJ . Nonempti-
ness follows from the fact that (3.3) is the maximization of a continuous
function on a compact set. Because utilities are strictly concave, for every

34In other words,
(
µ1

σ , .., µS−J
σ , µS−J+1

σ , .., µH−1
σ

)
is such that the first (S − J) vectors are

the orthogonal basis of some L ∈ GJ,S . Moreover, since µπσ′ is of rank S − J , there exist ch ∈ R
such that µh′

σ =
∑S−J

h=1 chµh
σ , for all h′ = S − J + 1, .., H − 1.
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(δ, µ) ∈ RH−1 × MJ , there is a unique solution. We establish that x(δ, µ)
is smooth in lemma 8, below.

• We then argue that the image of φT is TJ .
: ImφT ⊂ TJ . Consider the first order (necessary and sufficient) conditions

of (3.3): for all h ≥ 2

(3.10)
δhD0u

h
(
xh
)

= D0u
1
(
x1
)

= p0

D1u
1
(
x1
)

= p1
δhD1u

h
(
xh
)

= ρ1(µh, p1) = ((1 + µh
s )ps)s≥1

where p ∈ Rm
++ is the vector of Lagrange multipliers of the resource con-

straints; and markets clear, x(δ, µ) ∈ Ω(ω). Notice that p = ∇u1(x1(δ, µ)) =
1

p01
p ∈ P, and e = x(δ, µ). We are left to check that, at (p,L, e) =(

∇u1(x1), αJ(µ), x
)
, agents optimize; i.e. individual first order conditions

in (3.8), (3.9) hold, respectively, for h = 1 and all h ≥ 2. With some
re-writing, the latter are,

(3.11)

1
λhD0u

h
(
xh
)

= 1
λ1D0u

1
(
x1
)

= p0
1
λ1D1u

1
(
x1
)

= p1
1

λhD1u
h
(
xh
)

= γ̂h (I | ψσ (L))πσ�p1

where γ̂h = 1
λh γ

h, for all h ≥ 2. Clearly, (λh)−1 = δh for all h ≥ 2, and
λ1 = D01u

1
(
x1(δ, µ)

)
. Second, as we argued in section 3.2.1, we use the

fact that given a µ ∈ MJ , and a permutation σ′ ∈ Σ, we can univocally
recover a matrix Γ ∈ R(H−1)×(S−J) of typical element-vector γ̂h, and a L
in GJ,S . Precisely, letting

µπσ′ =
(
µ/J µJ

µ/J µJ

)
L = αJ(µ) = ψσ′((µ/J)−1µ/J), and A = (µ/J)−1µ/J is the coordinate

system of L in Wσ′ . ΓT =
(
µT

/J , µ
T
/J

)
.35

: ImφT ⊃ TJ . Let us show that φT ◦τT = idTJ
when τT is restricted to TJ . If

(p,L, e) ∈ SJ , and the equilibrium allocation is x = e, then individual first
order conditions, (3.11), hold at e, and so do (3.10) at (δ, µ) = τ(p,L, e);
because

∑
h e

h = ω, e is a solution to (3.3) at (δ, µ) = τ(p,L, e).
• By Lemma 4, φT defines the desired diffeomorphism, and when τT is re-

stricted to TJ , τT ◦ φT = idRH−1
++ ×MJ

.
• Finally, the fiber bundle structure of TJ follows immediately from the struc-

ture of MJ . �

Lemma 8. x(δ, µ) is a smooth function on MJ ×∆H−1

Proof:
First, in analogy with a Pareto maximum problem, every solution of (3.3) is

interior. Then, first order (necessary and sufficient) conditions of (3.3) are,
1 χh

sDslU
h
s (xh)−DslU

1
s (x1) = 0, h ≥ 2, s ≥ 0, l ≥ 1

2
∑

h x
h
sl − ω = 0, s ≥ 0, l ≥ 1,

We denote this system as F (x;χ, ω) = 0. Since K = ImF−1 (0), 0 is a regular

35For the full argument, see the definition of the mapping h(γ,L; σ) in the proof of Lemma 6.
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value of F if its Jacobian, DxF , is of full rank. Since uh are Cr≥2, F and x(δ, µ)
are Cr≥1, by the Implicit Function Theorem. Computing DxF :

(3.12)

−D2U1 . . . 0

...

. . .
χh

sD
2
sU

h
s

. . .

−D2U1 0
. . .

Im Im Im Im

Since column operations do not affect the rank of (3.12), subtract the first column
block from the hth, for h = 2, ..,H; then, move the resulting Hth row block (a
block–row vector of typical element Im in the first H blocks) to the top row block.
The following matrix representation is obtained,

(3.13)
(
Im 0
∗ O

)

O =


G2 D2U1 · · · D2U1

D2U1 . . .
...

...
. . . D2U1

D2U1 · · · D2U1 GH


Gh =

 χ2
1D

2
1U

h
1 +D2

1U
1
1 0

. . .
0 χh

SD
2
SU

h
S +D2

SU
1
S


and Gh

s ∈ RL×L. We are going to show that O is of full rank, because otherwise
negative definiteness of D2uh (in assumption 2) would be contradicted. For r1 ∈
R(H−1)m, r1O has typical (L-vector) element, χh

s r
1
s,hD

2
sU

h
s +

(∑H
h=2 r

1
s,h

)
D2

sU
1
s .

Post multiplying the latter by r1
T

s,h, and summing over h ≥ 2, yields

(3.14)
H∑

h=2

χh
s

(
r1s,h

(
D2

sU
h
s

)
r1

T

s,h

)
+

(
H∑

h=2

r1s,h

)
D2

sU
1
s

(
H∑

h=2

r1s,h

)T

By assumption 2), the two terms in the latter expression are negative, and so is
their sum. Hence, (3.14) is equal to zero if and only if r1s,h = 0, for all s and all
h ≥ 2. Finally, observe that MJ ×∆H−1 ⊂ R(H−1)(S+1). �

Proof of Proposition 2:
Observe that the endowments restrictions in (3.4) imply that ImφS ⊂ SJ .

ImφS ⊃ SJ , follows from observing that φS ◦ τS = idS . φS , τS are smooth func-
tions, since their coordinates are smooth. Therefore, SJ = φS(∆H−1×MJ × Ω̂), is
a smooth manifold. �
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Proof of Lemma 7:36 We proceed by showing that MJ and εNL−1+SJ(L−1)⊕Jυ
are homeomorphic. Then, since the latter is a vector bundle, it has a vector space
structure on fibers (over GJ,S); therefore for MJ to be a manifold of dimension
(NL− 1)+SJL = (NL− 1)+(S − J) J+J2+SJ(L−1), we need to show that such
an homeomorphic is in fact a diffeomorphism (i.e. it is smooth and has a smooth
inverse). To define the desired homeomorphism, let r = (r (1) , r (−1)) ∈ RSLJ

represent the whole vector of real payoffs in R, where r (1) =
(
r111, ..., r

J
S1

)
∈ RSJ

refers to good l = 1 and r (−1) ∈ RSJ(L−1) to all the remaining goods. Define
φM (p,L, R) =

(
p,L,

(
V 1, .., V J

)
, r (−1)

)
such that V j ∈ L for all j. That is(

L,
(
V 1, .., V J

))
is an element of the J-copy of the canonical vector bundle υ, Jυ,

whose dimension, over GJ,S , is J2.
Next, let

(
L,
(
V 1, .., V J

))
∈ Jυ, τM

(
p,L,

(
V 1, .., V J

)
, r (−1)

)
= (p,L, R) is de-

fined such that R is formed by r = (r (1) , r (−1)) with
rj
s (1) = Rj

s,1 = 1
ps,1

(
V j

s −
∑

l>1 pslr
j
sl (−1)

)
for all (s, j) ≥ (1, 1).

Thus, φM is an homeomorphism between MJ and εNL−1+SJ(L−1) ⊕ Jυ, with its
inverse, φM

−1
= τM. Finally, to show that φM is also a diffeomorphism it suffices

to show 0 is a regular value of (I | ψσ(L))πσV (p1R), or that its Jacobian with
respect to R is of full row rank (S − J) J (as in Fact 7, Duffie and Shafer (1985)).�
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