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Abstract

This paper aims at explanation of the R-package HAC, which provides user friendly
methods for dealing with high-dimensional hierarchical Archimedean copulae (HAC). A
computationally efficient estimation procedure allows to recover the structure and the
parameters of HACs from data. In addition, arbitrary HACs can be constructed to sample
random vectors and to compute the values of the corresponding cumulative distribution
as well as density functions. Accurate graphics of the important characteristics of the
package’s object hac can be produced by the generic plot function.

JEL classification: C51, C87.
Keywords: copula, R, hierarchical Archimedean copula (HAC).

1. Introduction

The success of copulae in applied statistics started at the end of the 90th, when Embrechts,
McNeil, and Straumann (1999) introduced copula to empirical finance in the context of risk
management. Nowadays, quantitative orientated sciences like biostatistics and hydrology
were doing attempts of measuring the dependence of random variables with copulae, e.g.,
Lakhal-Chaieb (2010); Acar, Craiu, and Yao (2011); Bárdossy (2006); Genest and Favre
(2007); Bárdossy and Li (2008). In finance, copulae became a standard tool, explicitly on
VaR measurement and in valuation of structured credit portfolios, see Mendes and Souza
(2004); Junker and May (2005) and Li (2000) respectively. This paper targets to provide the
necessary tools for academics and practitioners for simple and effective use of HAC in their
analysis.

Copula is the function splitting the multivariate distribution into the margins and a pure
dependency component. Formally copulae were introduced in Sklar (1959) stating that if
F is an arbitrary d-dimensional continuous distribution function of the random variables
X1, . . . , Xd, then the associated copula is unique and defined as a continuous function C :
[0, 1]d → [0, 1] which satisfies the equality

C(u1, . . . , ud) = F{F−11 (u1), . . . , F
−1
d (ud)}, u1, . . . , ud ∈ [0, 1],

where F−11 (·), . . . , F−1d (·) are the quantile functions of the corresponding marginal distribu-
tions F1(x1), . . . , Fd(xd). For an overview and recent developments of copulae we refer to
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Humboldt-Universität zu Berlin is gratefully acknowledged.



2 Hierarchical Archimedean Copulae: The HAC Package

Nelsen (2006), Cherubini, Luciano, and Vecchiato (2004), Joe (1997) and Jaworski, Durante,
Härdle, and Rychlik (2010). If F belongs to the class of elliptical distributions, then C is an
elliptical copula, which in most cases cannot be given explicitly, because the distribution func-
tion F and the inverse marginal distributions Fi usually have integral representations. One of
the classes that overcomes this drawback of elliptical copulae is the class of Archimedean cop-
ulae, which however is very restrictive even for moderate dimensions. Among other packages
dealing with Archimedean copula, we would like to mention the copula and the fCopulae pack-
age, c.f. Yan (2007), Kojadinovic and Yan (2010) and Wuertz et al. (2009). HAC generalizes
the concept of simple Archimedean copulae by substituting (a) marginal distribution(s) by
a further HAC. This class is thoroughly analyzed in Whelan (2004); Savu and Trede (2010);
Embrechts, Lindskog, and McNeil (2003); Hofert (2011). The first sampling algorithms for
special HAC structures were provided by the QRMlib package of McNeil and Ulman (2011),
which last available version on CRAN is 1.4.5.1, which is not updated anymore. Hofert and
Mächler (2011) presented the comprehensive nacopula package which among other features
allows to sample from arbitrary HAC and was integrated into the package copula from version
0.8-1. The central contribution of the HAC package is the estimation of the parameter and
the structure for this class of copulae, as discussed in Okhrin, Okhrin, and Schmid (2011a),
including a simple and intuitive representation of HACs as R-objects of the class hac. The
main estimation procedure relies on a multi-stage Maximum Likelihood (ML) procedure,
which determines the parameter and the structure simultaneously. This elegant procedure
endows the estimator with the usual asymptotic properties but avoids the computationally
intensive one-step ML estimation, which is also implemented for a predetermined structure.
Besides, the package offers functions to produce graphics of the copula’s structure, to sample
random vectors from a given copula and to compute values of the corresponding distribution
and density.

The paper is organized as follows. The next section describes shortly the theoretical aspects
of HAC and its estimation. Section 3 describes the functions of the HAC package and section
4 presents a simulation study. Section 5 concludes.

2. Hierarchical Archimedean copulae

As mentioned above, the large class of copulae, which can describe tail dependency, non-
ellipticity, and what is most important, has close form representation

C(u1, . . . , ud; θ) = φθ{φ−1θ (u1) + · · ·+ φ−1θ (ud)}, u1, . . . , ud ∈ [0, 1], (1)

where φθ ∈ L = {φθ : [0;∞) → [0, 1] |φθ(0) = 1, φθ(∞) = 0; (−1)jφ
(j)
θ ≥ 0; j = 1, . . . , d− 2}

and (−1)d−2φ
(d−2)
θ (x) being non-decreasing and convex on [0,∞), is the class of Archimedean

copulae. The function φ is called the generator of the copula and commonly depends on a
single parameter θ. For example, the Gumbel generator is given by φθ = exp(−x1/θ) for
0 ≤ x < ∞, 1 ≤ θ < ∞. Detailed reviews of the properties of Archimedean copulae can be
found in McNeil and Nešlehová (2009) as well as in Joe (1996).

A disadvantage of Archimedean copulae is the fact that the multivariate dependency structure
is very restricted, since it typically depends on a single parameter of the generator function
φ. Moreover, the rendered dependency is symmetric with respect to the permutation of vari-
ables, i.e., the distribution is exchangeable. HACs (also called nested Archimedean copulae)
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overcome this problem by considering the compositions of simple Archimedean copulae. For
example, the special case of a four-dimensional HAC can be given by

C(u1, . . . , u4) = C1{C2(u1, . . . , u3), u4} = φ3{φ−13 ◦ C2(u1, . . . , u3) + φ−13 (u4)}
= φ3{φ−13 ◦ φ2[φ

−1
2 {C3(u1, u2)}+ φ−12 (u3)] + φ−13 (u4)}. (2)

The form (2) is called fully nested HAC. The composition can be applied recursively using dif-
ferent segmentations of variables leading to more complex HACs. For notational convenience
we denote the structure of a HAC by s = {(. . . (i1 . . . ij1) . . . (. . . ) . . . )}, where i` ∈ {1, . . . , d}
is a reordering of the indices of the variables and sj denotes the structure of subcopulae with
sd = s. Further, let the d-dimensional HAC be denoted by C(u1, . . . , ud; s,θθθ), where θθθ denotes
the vector of feasible dependency parameters. Thus, the fully nested HAC, given in (2), can
be expressed as

C(u1, . . . , u4; s = (((12)3)4), θθθ) = C{u1, . . . , u4; ((s3)4), (θ1, . . . , θ3)
>}

= φθ3(φ−1θ3 ◦ C{u1, . . . , u3; ((s2)(3)), (θ1, θ2)
>}+ φ−1θ3 (u4)).

Figure 1 presents the four-dimensional fully and partially nested Archimedean copula.

●

u1 u2

u3

u4 θ((u1.u2).u3) = 3

θ(u1.u2) = 4

θ(((u1.u2).u3).u4) = 2
●

u4 u3 u1 u2

θ(u4.u3) = 3 θ(u1.u2) = 4

θ((u4.u3).(u1.u2)) = 2

Figure 1: Fully and partially nested Archimedean copulae of dimension d = 4 with structures
s = (((12)3)4) on the left and s = ((43)(12)) on the right.

HACs can adopt arbitrary elaborate structures s. This makes it a very flexible and simulta-
neously parsimonious distribution model. The generators φθi within a HAC can come either
from a single generator family or from different generator families. If the φθi ’s belong to the
same family, then the required complete monotonicity of φ−1θi+1

◦ φθi usually imposes some

constraints on the parameters θ1, . . . , θd−1. Theorem 4.4 of McNeil (2008) provides sufficient
conditions on the generator functions to guarantee that C is a copula. It holds that if φθi ∈ L,
for i = 1, . . . , d− 1, and φ−1θi+1

◦ φθi have completely monotone derivatives, then C is a copula
for d ≥ 2. For the majority of generators a feasible HAC requires decreasing parameters from
the highest to the lowest hierarchical level. However, in the case of different families within a
single HAC, the condition of complete monotonicity is not always fulfilled, see Hofert (2011).
In our study, we consider HAC only with generators from the same family. If we use the same
single-parameter generator function on each level, but with a different value of θ, we may spec-
ify the whole distribution with at most d− 1 parameters. From this point of view, the HAC
approach can be seen as an alternative to covariance driven models. But for each HAC not
only the parameters are unknown, but also the structure has to be determined. One possible
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procedure is to enumerate and to estimate all possible HACs. Using a suitable goodness-of-fit
test, the optimal structure then can be determined. This approach is however unrealistic
in practice, because the variety of different structures is enormously large even in moderate
dimensions. Okhrin et al. (2011a) suggest a computationally efficient procedure, which allows
to estimate HACs recursively. The HAC package provides this method for estimating the
HAC parameters and structure in a user-friendly way.

2.1. Estimation of HAC

In the most cases the discussion is constrained to binary copulae, i.e., at each level of the
hierarchy only two variables are joined together. The whole procedure can be written in
the recursive way, where at the first iteration step we fit a bivariate copula to every couple
of the variables. The couple of variables with strongest dependency is selected. We denote
the respective estimator of the parameter at the first level by θ̂1 and the set of indices of
the variables by I1. The selected couple is joined together to define the pseudo-variable

ZI1
def
= C{(I1); θ̂1, φ1}. At the next step, we proceed in the same way by considering the

remaining variables and the new pseudo-variable as the new set of variables. This procedure
allows us to determine the estimated structure of the copula and if the restrictions on the
parameters are fulfilled always leads to a feasible copula function with d − 1 parameters.
Nevertheless, if the true copula is not binary, the procedure might return a slightly misspecified
structure. Despite of a difference in the structures, the difference in the distribution functions
is in general minor. To allow more sophisticated structures, we aggregate the variables of the
estimated copula afterwards, if the absolute value of the difference of two successive nodes is
smaller than a fixed small threshold, i.e., θ1 − θ2 < ε, with θ1 > θ2, as suggested by Okhrin
et al. (2011a).

For better understanding, let us consider a three-dimensional example with uj , j = 1 . . . , 3,

being uniformly distributed on [0, 1]. All possible pairs C(12)(u1, u2, θ̂(12)), C(13)(u1, u3, θ̂(13))

and C(23)(u2, u3, θ̂(23)) are estimated by regular ML, see Franke, Härdle, and Hafner (2011).
To compare the strengths of the fit one can use goodness-of-fit tests, which are however
computationally complicated and do not necessarily lead to a function which will be a copula
on the final level of aggregation due to the restrictions on θ. For that reason we compare simply
the parameters θ̂(12), θ̂(13) and θ̂(23). This is due to the fact that for the most Archimedean
copulae, the larger the parameters the stronger is the dependency (the larger is the parameter
the larger is Kendalls τ correlation coefficient). Let the strongest dependence be in the first

pair θ̂1
def
= θ̂(12) = max{θ̂(12), θ̂(13), θ̂(23)}, then I1 = {1, 2} and we introduce the pseudo-

variable Z1
def
= C1(I1; θ̂1) = C1(u1, u2; θ̂(12)). On the next and final step for this example

we join together u3 and Z1. The theoretical validation is also reported by Proposition 1 of
Okhrin, Okhrin, and Schmid (2011b) stating that HAC can be uniquely recovered from the
marginal distribution functions and all bivariate copula functions.

In practice, the marginal distributions Fj , j = 1, . . . , d, are either parametrically or non-

parametrically estimated in advance, whereby F̂j(·) is an estimator of the marginal cdf Fj .

Accordingly, the marginal densities f̂j(·), j = 1, . . . , d, are estimated by an appropriate kernel

density estimator. If we estimate the margins parametrically then F̂j(·) = Fj(·, α̂ααj), where αααj
denotes the vector of parameters of the j-th margin.

The estimation of the copula parameters on each step of the iteration can be sketched as
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follows: at the first stage, we estimate the parameter of the copula at the first hierarchical
level assuming that the marginal distributions are known. At further stages the next level
copula parameter is estimated assuming that the margins as well as the copula parameters at
lower levels are known. Let X = {xij}> be the respective sample, for i = 1, . . . , n, j = 1, . . . , d,
and θθθ = (θ1, . . . , θd−1)

> be the parameters of the copula starting with the lowest up to the

highest level. The multi-stage ML estimator θ̂θθ solves the system(
∂L1
∂θ1

, . . . ,
∂Ld−1
∂θd−1

)>
= 0, (3)

where Lj =

n∑
i=1

lj(Xi), for j = 1, . . . , d− 1,

lj(Xi) = log

c[{F̂m(xim)}m∈sj ; sj , θj
] ∏
m∈sj

f̂m(xim)


for j = 1, . . . , d− 1, i = 1, . . . , n,

where sj is referred to the two (pseudo)-variables considered at the j-th estimation stage.
Note, a d-dimensional density f can be split in the copula density c and the product of
the marginal densities. Chen and Fan (2006) and Okhrin et al. (2011a) provide asymptotic
behaviour of the estimates. As long as the structure is determined through grouping binary
structures, it seems to be appropriate to estimate Kendall’s τ at each step of the iteration and
exploit the bivariate relationship between Archimedean copulae and Kendall’s τ(·), implied
through Proposition 1.1 of Genest and Rivest (1993), see table 2. On the other hand, the
asymptotic theory for Kendall’s τ is usually restricted to the two-dimensional case and cannot
be carried over to a higher-dimensional framework as necessary for the considered purpose.
Moreover, the copula parameters θj ,j = 1, . . . , d − 1, estimated with Kendall’s τ cannot be
guaranteed to be increasing from the lowest to the highest hierarchical level and therefore,
the estimated copula can fail to be a properly defined cdf. In the ML setup, this problem is
tackled by shortening the feasible parameter space.

3. Applications of HAC

Core of the HAC package is the function estimate.copula estimating the parameters and
determining the structure for given data. Let us consider a dataset from Yahoo! Finance con-
sisting of the log-returns of four oil corporations: Chevron Corporation (CVX), Exxon Mobil
Corporation (XOM), Royal Dutch Shell (RDSA) and Total (FP), covering n = 283 observations
from 20110202 to 20120319. Time dependencies are removed by usual ARMA-GARCH mod-
els, whose standardized residuals are employed as sample in the subsequent analysis.

> library(HAC)

> t = Sys.time()

> result = estimate.copula(sample, margins = "edf")

> Sys.time() - t

Time difference of 0.04680014 secs

http://finance.yahoo.com/
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zi,(CVX.XOM)
def
= Ĉ{F̂CVX(xi,CVX), F̂XOM(xi,XOM)} zi,(FP.RDSA)

def
= Ĉ{F̂FP(xi,FP), F̂RDSA(xi,RDSA)}

(CVX.FP)  θ̂(CVX.FP)
(CVX.XOM)  θ̂(CVX.XOM)
(FP.RDSA)  θ̂(FP.RDSA)
(FP.XOM)  θ̂(FP.XOM)

(RDSA.XOM)  θ̂(RDSA.XOM)

b
es

t
fi
t

(C
V
X
.
X
O
M
)

⇒
(CVX.XOM)FP  θ̂(CVX.XOM)FP

(CVX.XOM)RDSA  θ̂(CVX.XOM)RDSA
(FP.RDSA)  θ̂(FP.RDSA) b

es
t

fi
t

(F
P
.
R
D
S
A
)

⇒ ((CVX.XOM)(FP.RDSA))

 θ̂((CVX.XOM)(FP.RDSA))

Table 1: The estimation procedure in practice.

> result

Class: hac

Generator: Gumbel

((FP.RDSA)_{2.1}.(XOM.CVX)_{2.83})_{1.83}

The returned object result is of class hac, whose properties are explored below.

The multi-step estimation procedure is illustrated in table 3 for the four-dimensional example
from above. At the lowest hierarchical level, the parameter of all bivariate copulae are esti-
mated. The couple (XCVX, XXOM) produces the strongest dependency, hence the best fit. Then,

the pseudo variable Z(CVX.XOM)
def
= φθ̂(CVX.XOM)

[
φ−1
θ̂(CVX.XOM)

{
F̂XOM (XXOM)

}
+ φ−1

(θ̂CVX.XOM)

{
F̂CVX (XCVX)

}]
is

defined and the corresponding realizations are computed. The involved variables XXOM and
XCVX are substituted by this pseudo variable in the dataset. At the next nesting level the
parameters of all bivariate subsets are estimated and the variables XFP and XRDSA exhibit the
best fit. Finally, the realizations of the remaining random variables Z(CVX.XOM) and Z(FP.RDSA) are
grouped at the highest level of the hierarchy, where Z(FP.RDSA) is defined analogously to Z(CVX.XOM).

In general, estimate.copula includes the following arguments:

> names(formals(estimate.copula))

[1] "X" "type" "method" "hac" "epsilon"

[6] "agg.method" "margins" "theta.eps" "na.rm" "max.min"

[11] "..."

The whole procedure is divided in three (optional) computational blocks. First, the margins
are specified. Secondly, the copula parameter, θθθ, is estimated through the multi-stage pro-
cedure as explained above and finally the HAC is checked for aggregation possibilities. The
margins of the (n×d) data matrix, X, are assumed to follow the standard Uniform distribution
by default, i.e., margins = NULL, but the function permits non-uniformly distributed data as
input, if the argument margins is specified. The marginal distributions can be determined
non-parametrically, margins = "edf", or in a parametric way, e.g., margins = "norm". Fol-
lowing the latter approach, the log-likelihood of the marginal Distributions is optimized
with respect to the first (and second) parameter(s) of the density dxxx. Basing on these esti-
mates, the values of the univariate margins are computed. If the argument is defined as scalar,
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all margins are computed according to this specification. Otherwise, different margins can be
defined, e.g., margins = c("norm", "t", "edf") for a three-dimensional sample. Except
the Uniform distribution, all continuous Distributions of the stats package are available:
"beta", "cauchy", "chisq", "exp", "f", "gamma", "lnorm", "norm", "t" and "weibull".
The values of non-parametrically estimated distributions are computed accordingly to

F̂ (x) = (n+ 1)−1
n∑
i=1

I (Xi ≤ x) . (4)

Inappropriate usage of this argument might lead to misspecified margins, e.g.,
margins = "exp" although the sample contains negative values. Even though the mar-
gins might be assumed to follow parametric distributions if margins != NULL, no joint log-
likelihood is maximized, but the margins are estimated in advance. As the asymptotic theory
works well for parametric and nonparametric estimation of margins, for the univariate analy-
sis we refer to other built-in packages. In practice, the column names of X should be specified,
as the default names X1, X2, ... are given otherwise.

A further optional argument of estimate.copula determines the estimation method. We
present three procedures: based on quasi ML, on Kendall’s TAU and full ML FML respectively.
Generally, the implemented HAC types are not able to describe negative dependence, for
which reason any identified negative dependence is set to the predefined minimal correlation
theta.eps equal to 0.001 by default, if method = TAU. If a simple Archimedean copula is fit-
ted to the data, the routines of the copula package are imported, see Yan (2007); Kojadinovic
and Yan (2010). The supplementary function theta2tau computes Kendall’s rank correla-
tion coefficient basing on the value(s) of the dependency parameter(s), whereas tau2theta

corresponds to the inverse function, see table 2.

At the final computational step of the procedure the binary HAC is checked for aggregation
possibilities, if epsilon > 0. Then, the new dependency parameter is computed according
to the specification agg.method, i.e., the "min", "max" or "mean" of the original parameters.
To emphasize this point, recall the four-dimensional binary HAC

C(u1, . . . , u4; (((12)3)4), θθθ) = φθ3

{
φ−1θ3 ◦ C{u1, . . . , u3; ((12)3), (θ1, θ2)

>}+ φ−1θ3 (u4)
}
,

from section 2. If we assume additionally θ1 ≈ θ2, such that θ1− θ2 < ε, the copula C can be
approximated by

C∗(u1, . . . , u4; ((123)4), θθθ) = φθ3

{
φ−1θ3 ◦ C{u1, . . . , u3; (123), θ∗}+ φ−1θ3 (u4)

}
,

where θ∗ = (θ1 + θ2)/2. This is referred to as the associativity property of Archimedean
copulae, see Theorem 4.1.5 of Nelsen (2006). If the variables of two nodes are aggregated,
the new copula is checked for aggregation possibilities as well. Beside the threshold approach,
the realized estimates θ̂1 and θ̂2 can obviously be used to test H0 : θ1 − θ2 = 0, since the
asymptotic distribution is known. On the other hand, this approach is extremely computa-
tionally expensive. The estimation results for the non-aggregated and the aggregated cases
are presented in the following:
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Family φ (u; θ) Parameter range τ (θ)

Gumbel exp
(
−u1/θ

)
1 ≤ θ <∞ 1− 1/θ

Clayton (u+ 1)−1/θ 0 < θ <∞ θ/ (θ + 2)

Table 2: Generator functions and the relations between the copula parameter and Kendall’s
τ .

> result.agg = estimate.copula(sample, margins = "edf", epsilon = 0.3)

> plot(result, circles = 0.3, index = TRUE, l = 1.7)

> plot(result.agg, circles = 0.3, index = TRUE, l = 1.7)

●

FP RDSA XOM CVX

θ(FP.RDSA) = 2.1 θ(XOM.CVX) = 2.83

θ((FP.RDSA).(XOM.CVX)) = 1.83 ●

XOM CVX

FP RDSA θ(XOM.CVX) = 2.83

θ((XOM.CVX).FP.RDSA) = 1.97

Figure 2: Plot of result on the left and result.agg on the right hand side.

3.1. The hac object

hac objects can be constructed by the general function hac, with the same name as the object
it creates, and its simplified version hac.full for building fully nested HAC. For instance,
consider the construction of a four-dimensional fully nested HAC with Gumbel generator, i.e.,

> G.cop = hac.full(type = HAC_GUMBEL,

+ y = c("X4", "X3", "X2", "X1"),

+ theta = c(1.1, 1.8, 2.5))

> G.cop

Class: hac

Generator: Gumbel

(((X1.X2)_{2.5}.X3)_{1.8}.X4)_{1.1}

where y denotes the vector of variables of class character and theta denotes the vector
of dependency parameters. The parameters should be ascending ordered, so that the first
parameter, 1.1, is referred to the initial node of the HAC and the last parameter, 2.5,
corresponds to the first hierarchical level with variables "X1" and "X2". Guarantee that the
vector y contains one element more than the vector theta.

The returned output of hac objects is structured by three lines: (i) the object’s Class, (ii)
the Generator function and (iii) the HAC structure s. The structure can also be produced
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by the supplementary function tree2str. Variables, grouped at the same node are separated
by a dot “.” and the dependency parameters are printed within the curly parentheses.

Partially nested Archimedean copulae are constructed by hac with the main argument tree.
For a better understanding let us first consider a four-dimensional simple Archimedean copula
with dependency parameter θ = 2:

> hac(tree = list("X1", "X2", "X3", "X4", 2))

Class: hac

Generator: Gumbel

(X1.X2.X3.X4)_{2}

Obviously, the copula tree is constructed by a list consisting of four character objects,
i.e., "X1", "X2", "X3", "X4", and a number, which denotes the dependency parameter of
the Archimedean copula. According to the theoretical construction of HAC in section 2,
we can induce structure by substituting margins through a subcopula. The four variables
"X1", "X2", "X3", "X4" can for example be structured by

> hac(tree = list(list("X1", "X2", 2.5), "X3", "X4", 1.5))

Class: hac

Generator: Gumbel

((X1.X2)_{2.5}.X3.X4)_{1.5}

where the nested component, list("X1", "X2", 2.5), is referred to the subcopula of the
lower hierarchical level. Note, that the nested component is of the same general form
list(..., numeric(1)) as the simple Archimedean copula, where numeric(1) denotes the
dependency parameter and “...” refers to arbitrary variables and subcopulae, which may
contain subcopulae as well, like presented in the following

> HAC = hac(tree = list(list("Y1", list("Z3", "Z4", 3), "Y2", 2.5),

+ list("Z1", "Z2", 2), list("X1", "X2", 2.4),

+ "X3", "X4", 1.5))

> HAC

Class: hac

Generator: Gumbel

((Y1.(Z3.Z4)_{3}.Y2)_{2.5}.(Z1.Z2)_{2}.(X1.X2)_{2.4}.X3.X4)_{1.5}

We cannot avoid the notation becoming more cumbersome for higher dimension, but the
principle stays the same for arbitrary dimensions, i.e., variables are substituted by lists of
the general form list(..., numeric(1)). The function hac provides a further argument for
specifying the type of the HAC.

3.2. Graphics

As the string representation of the structure becomes more unclear as dimension increases,
the package allows to produce graphics of hac objects by the standard generic plot function.
Figure 3 illustrates for example the dependence structure of the lastly defined object HAC.
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●

Y1

Z3 Z4

Y2 Z1 Z2 X1 X2

X3 X4 θ = 2.5

θ = 3

θ = 2 θ = 2.4

θ = 1.5

Figure 3: Plot of the final object HAC.

> plot(HAC, cex = 0.8, circles = 0.35)

The explanatory power of these plots can be enhanced by several of the usual plot parameters,
e.g.,

> names(formals(plot.hac))

[1] "x" "xlim" "ylim" "xlab" "ylab" "col"

[7] "fg" "bg" "col.t" "lwd" "index" "numbering"

[13] "theta" "h" "l" "circles" "digits" "..."

where the optional, boolean argument theta determines, whether the dependency parameter
of the copula θ or Kendall’s τ is printed, whereby Kendall’s τ cannot be easily interpreted
in the usual way for more than two dimensions. If index = TRUE, strings illustrating the
subcopulae of the nodes, are used as subsrcipts of the dependency parameters. If additionally
numbering = TRUE, the parameters are numbered, such that the subscripts correspond to the
estimation stages, if the non-aggregated output of estimate.copula is plotted. The radius of
the circles, the width l and the height h of the rectangles and the specific colors of the lines
and the text can be adjusted. Further arguments “...” can for example be used to modify
the font size cex or to include a subtitle sub.

3.3. Random sampling

To be in line with other R-packages providing tools for different univariate and multivariate
distributions we provide: (i) dHAC for computing the values of the copula density, (ii) pHAC for
the cumulative distribution function and (iii) rAC and rHAC for simulations. rAC is based on
the algorithm of Marshall and Olkin (1988) for sampling from simple Archimedean copulae
and rHAC simulates from arbitrary HAC as suggested in Hofert and Mächler (2011), who
summarize the procedure for the former nacopula package as follows:
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Algorithm 1 (Hofert and Mächler (2011)). Let C be a nested Archimedean copula with root
copula C0 generated by φ0. Let U be a vector of the same dimension as C0.

1. sample from inverse Laplace transform LS−1 of φ0, i.e., V0 ∼ F0
def
= LS−1 (φ0)

2. for all components u of C0 that are nested Archimedean copulae do:

(a) set C1 with generator φ1 to the nested Archimedean copula u

(b) sample V01 ∼ F01
def
= LS−1 {φ01 (·;V0)}

(c) set C0
def
= C1, φ0

def
= φ1, and V0

def
= V01 and continue with 2.

3. for all other components u of C0 do

(a) sample R ∼ Exp(1)

(b) set the component of U corresponding to u to φ0 (R/V0)

4. return U

The function requires only two arguments: (i) the sample size n and (ii) an object of the class
hac specifying the characteristics of the underlying HAC, e.g.,

> sim.data = rHAC(500, G.cop)

> pairs(sim.data, pch = 20)

In particular the contributions of McNeil (2008), Hofert (2008) and Hofert (2011) provide
the theoretical foundations to sample computationally efficient random vectors from HACs.
Since the functions of the HAC package are not directly compatible with R-objects for nested
Archimedean copula of the copula package and vice versa, we implemented algorithm 1 to
avoid transformations of elaborate structures from one object to another. The algorithm
exploits the recursively determined structure of HACs and samples from the major random
components F0 and F01, which are presented in table 3, where S denotes the stable distribution
with S1 parametrization, Γ denotes the Gamma distribution and S̃ refers to the exponentially
titled stable distribution. Consider Nolan (1997); Samorodnitsky and Taqqu (1994) for the
first, Ahrens and Dieter (1974, 1982) for the second and Hofert (2011); Hofert and Mächler
(2011) for the third as a reference.

3.4. The cdf and density

The arguments for pHAC are a hac object and a sample X, whose column names should be
identical to the variables’ names of the hac object, e.g.,

> probs = pHAC(X = sim.data, hac = G.cop)

As the copula density is defined as d-th derivative of the copula C with respect to the ar-
guments uj , j = 1, . . . , d, c.f. Savu and Trede (2010), the explicit form of the density varies
with the structure of the underlying HAC. Hence, including the explicit form of all possible
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Family F0 F01, α = θ0/θ1
Gumbel S(1/θ, 1, cosθ{π/(2θ)}, I{θ = 1}; 1) S(α, 1, {cos(απ/2)V0}1/α, V0I{α = 1}; 1)

Clayton Γ(1/θ, 1) S̃(α, 1, {cos(απ/2)V0}1/α, V0I{α = 1}, I{α 6= 1}; 1)

Table 3: Functions of algorithm 1. The parameters of S (α, β, γ, δ; 1) and S̃ (α, β, γ, δ; 1)
denote the index parameter α ∈ (0, 2), skewness parameter β ∈ [−1, 1], scale parameter
γ ∈ [0,∞) and shift parameter δ ∈ (−∞,∞). The first parameter of Γ(·, ·) refers to the shape
and the second parameter to the intensity parameter.
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Figure 4: Scatterplot of the sample sim.data.



Ostap Okhrin, Alexander Ristig 13

d-dimensional copula densities is absolutely unrealistic in practice. Our function dHAC derives
an analytical expression of the density for a given hac object, which can be instantaneously
evaluated, if eval = TRUE. The analytical expression of the density is found by subsequently
using the D function to differentiate the algebraic form of the copula “symbolically” with re-
spect to the variables of the inserted hac object. Although the derivation and evaluation of
the density is either computationally or numerically demanding, dHAC provides a flexible way
to work with the HAC densities in practice, because they have not to be derived manually or
numerically. Since the densities of the two-dimensional Archimedean copulae are frequently
called during the multi-stage estimation procedure, their closed form expressions are given
explicitly.

3.5. Empirical copula

As long as our package does not cover goodness-of-fit tests, which are difficult to implement
in general and involve intensive computational techniques via bootstrapping, see Genest,
Rémillard, and Beaudoin (2009), it might be difficult to justify the choice of a parametric
assumption. However, the values of probs can be compared to the values the corresponding
empirical copula, i.e.,

Ĉ (u1, . . . , ud) = n−1
n∑
i=1

d∏
j=1

I
{
F̂j (Xij) ≤ uj

}
,

where F̂j denotes the estimated marginal distribution function of variable Xj . Figure 5
suggests a proper fit of the empirical copula computed by

> probs.emp = emp.copula.self(sim.data, proc = "M")

There are two functions, which can be used for computing the empirical copula:

> emp.copula(u, x, proc = "M", sort = "none", margins = NULL,

+ na.rm = FALSE, ...)

> emp.copula.self(x, proc = "M", sort = "none", margins = NULL,

+ na.rm = FALSE, ...)

The difference in the arguments of these functions is, that emp.copula requires a matrix u, at
which the function is evaluated. In contrast, emp.copula.self evaluates the sample x itself.
The argument proc enables the user to choose between two computational methods. We
recommend to use the default method, proc = "M", which is based on matrix manipulations,
because its computational time is just a small fraction of the taken time of method "A", see
figure 6. However, method "M" is sensitive with respect to the size of the working memory
and therefore inapplicable for very large datasets. Figure 6 illustrates rapidly increasing
computational times of the matrix based method for more than 5000 observations until the
method collapses. In contrast, the runtimes of the alternative method proc = "A" are more
robust against increasing the sample size. An other option to deal with large datasets is
specifying the matrix u manually in order to reduce the number of vectors to evaluate.
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Figure 5: The values of probs on the x-axis against the values of probs.emp.
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Figure 6: The figure shows the computational times for an increasing sample-size but a fixed
dimension d = 5 on a log-log scale. The solid line is referred to proc = "M" and the dashed
line to proc = "A".
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4. Simulation study

To ensure the accuracy of the proposed methods, we generate random data from six copula
models of different dimension Cji = C (·; si, θθθi)j , for i = 1, 2, 3 and j = C,G, and show, that the
parameter estimates almost coincide with the theoretical models. Here, j denotes the copula
family (Clayton or Gumbel) and the structures are given by s1 = ((12)3), s2 = ((((12)3)4)5)
and s3 = ((12)(34)5). The values of θθθi are presented in the respective tables 4, 5 and chosen,
such that the similar strength of dependence is produced by the Clayton and Gumbel based
models.

The summary statistics of tables 4 and 5 rely on n = 1000 estimates, whereby only estimates
with the same structure are to be compared. For this reason the procedure was m times
replicated till n = 1000 estimates were available. As estimate.copula approximates the
true structure, we set epsilon = 0.15 for C3, which is not based on a binary structure.
The simulated samples for the copula estimation consist of 500 observations for the three-
dimensional case and 1000 for the five-dimensional cases. Tables 4 and 5 indicate, that the
estimation procedure works properly for the suggested models, as the estimates are on average
consistent with the true parameters. Nevertheless, a few points remain to mention: (i) the
statistic s̄ denotes the percentage of correctly classified structures, i.e., s̄ = n/m, taking the
permutation symmetry of the variables at the same node into consideration. The procedure
detects the true structure as long as it is binary and the parameters exhibit the imposed
distance. (ii) The estimates at lower hierarchical levels show a higher volatility than the
estimates close to the initial node and the estimates for the Clayton models are more volatile
than the estimates of the Gumbel based HACs. (iii) All estimated models indicate more
imprecise estimates for higher nesting levels implying the high number of trials m to yield
n = 1000 usable sample realizations of θθθ for computing the summary statistics in the case of
model C3, see table 5, which contains the frequencies for adopted misspecified structures and
the averaged full ML estimates as well.

To shed some light on this issue, let us recover the estimation procedure step by step. After
estimating θ12 and θ34 at the first and second interation step respectively, the realizations of
the variables

Z12
def
= φθ̂12

[
φ−1
θ̂12
{F1 (X1)}+ φ−1

θ̂12
{F2 (X2)}

]
Z34

def
= φθ̂34

[
φ−1
θ̂34
{F3 (X3)}+ φ−1

θ̂34
{F4 (X4)}

]
are computed. At the next step, the pseudo variables are grouped and the corresponding
parameter is apparently overestimated. If additionally the parameter at the fourth estima-
tion stage is underestimated, like the parameter of the initial node for the CC2 model, the
variables of the first and second node of the binary structure cannot be aggregated, i.e.,
θ̂((12)(34)) − θ̂(((12)(34))5) 6< 0.15. Hence, the procedure leads to the binary approximation
s = (((12)(34))5) for 62.71% of the Gumbel and 93.95% of the Clayton based HACs respec-
tively. The distributions based on this binary structure are however very good approximations
of the true distributions and provide more flexibility. The gains from the full ML approach
regarding the precision are only observable at the root node of the copula. However, this
minor improvement is costly since the results are based on a preestimated structure. Note,
any Warning messages related to the full ML estimation stating that NaNs were produced
are reasoned by the numerically challenging evaluation of the density as mentioned above.
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Statistics
Model θθθ s̄ min median mean max sd

CG1
θ2 = 1.500

100%
1.32 1.50 1.50 1.71 0.05

θ1 = 3.000 2.68 3.00 3.00 3.35 0.11

CC1
θ2 = 1.000

100%
0.77 0.99 0.99 1.44 0.09

θ1 = 4.000 3.42 4.01 4.01 4.62 0.20

CG2

θ4 = 1.125

100%

1.04 1.10 1.10 1.17 0.02
θ3 = 1.500 1.36 1.45 1.45 1.58 0.03
θ2 = 2.250 2.06 2.24 2.24 2.44 0.06
θ1 = 4.500 4.08 4.50 4.50 4.94 0.12

CC2

θ4 = 0.250

100%

0.06 0.17 0.17 0.28 0.03
θ3 = 1.000 0.73 0.92 0.92 1.09 0.06
θ2 = 2.500 2.20 2.49 2.49 2.83 0.10
θ1 = 7.000 6.26 7.00 7.00 7.75 0.22

Table 4: The models for the Gumbel family CG1 , CG2 and for the Clayton family CC1 , CC2 ,
where θθθ denotes the true copula parameters and s̄ = n/m the percentage of correctly classified
structures with n = 1000.

Irrespective of this inaccuracy, the distributions of samples from the nacopula package can
also be reconstructed by the HAC package with identical results.

5. Conclusion

The package HAC focuses on the computationally efficient estimation of hierarchical
Archimedean copula, which is based on grouping binary structures within a recursive multi-
stage ML procedure. Its theoretical and practical advantages are (i) the avoiding of the
demanding asymptotic theory, which arises due to one-step ML estimation and (ii) the consec-
utive optimization of the two-dimensional log-likelihood instead of the singular optimization
of the d-dimensional one. Since HACs permit to model high-dimensional random variables,
the package allows to plot the related hac objects. According to the usual naming of distribu-
tions in R, we provide dHAC, pHAC and rHAC to compute the values of density- and distribution
functions or to sample from arbitrary HACs. The constructed framework can be easily ex-
tended to generator families for which the required nesting condition is fulfilled, e.g., Frank
and Joe. Finally, the accuracy of the methods is shown in a small simulation study.
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Statistics for multi-stage ML
Model θθθ ((12)(34)5) min median mean max sd

CG3

θ3 = 1.125
35.41%

1.10 1.17 1.17 1.23 0.02
θ2 = 1.500 1.37 1.51 1.51 1.61 0.04
θ1 = 3.000 2.80 3.01 3.01 3.30 0.08

CC3

θ3 = 0.250
06.05%

0.15 0.29 0.28 0.41 0.06
θ2 = 1.000 0.79 1.00 1.00 1.22 0.06
θ1 = 4.000 3.65 4.01 4.01 4.50 0.14

Misspecified structures
(((12)(34))5) (((12)34)5)

CG3 - 62.71% 01.88%
CC3 - 93.95% 00.00%

Statistics for full ML
- min median mean max sd

CG3

θ3 = 1.125
-

1.08 1.12 1.12 1.17 0.01
θ2 = 1.500 1.36 1.51 1.51 1.62 0.04
θ1 = 3.000 2.81 3.01 3.01 3.30 0.08

CC3

θ3 = 0.250
-

0.19 0.24 0.24 0.32 0.03
θ2 = 1.000 0.79 1.00 1.00 1.22 0.06
θ1 = 4.000 3.64 4.01 4.02 4.51 0.14

Table 5: The model for the Gumbel family CG3 and for the Clayton family CC3 , where θθθ
denotes the true copula parameters and the column ((12)(34)5) refers to the percentage of
correctly classified structures, i.e. n/m with n = 1000. The misspecified structures and the
results of the full ML estimation are also presented.
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