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ABSTRACT
In a sequencing problem with linear time cost, Suijs (1996) proved that it
is possible to achieve first best. By first best we mean that one can find
mechanisms that satisfy efficiency of decision, dominant strategy incentive
compatibility and budget balancedness. In this paper we show that among a
more general and natural class of sequencing problems, sequencing problems

with linear cost is the only class for which first best can be achieved.
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1 Introduction

In a sequencing problem there is a large multi-unit firm with each unit in
need of the facility provided by a particular repair and maintenance unit.
The repair and maintenance unit can service only one unit at any given
time. Therefore, units which remain unattended, incur a cost for the time
they are down. In this framework, the firm’s role is that of a planner want-
ing to service the units by forming a queue that minimizes the total cost of
waiting. Each unit’s cost parameter is private information. The objective
of the firm is to determine the order in which the units are to be serviced.
The presence of private information implies that the firm has an incentive
problem. Sequencing, as an incentive problem, was studied by Dolan (1978).
He provided a mechanism which is incentive compatible but not budget bal-
ancing.

There is a vast literature on incentive theory under incomplete informa-
tion suggesting that under quasi-linear preferences the achievement of truth-
telling and efficiency is possible. The pioneering works of Groves (1973) and
Clarke (1971) have established the existence of a class of mechanisms, the
so called Groves mechanisms, where all individuals have a dominant strat-
egy to reveal their information. Moreover, the truth-telling outcome leads
to efficiency. Green and Laffont (1977) has proved the uniqueness of Groves
mechanism in the public goods problems. Holmstrom (1979) has proved that
if the domain of preferences in the quasi-linear framework is “smoothly con-
nected”, that is, if the domain is rich enough, then Groves mechanisms are
the only mechanisms that are dominant strategy incentive compatible and ef-
ficient in terms of decisions. However, Groves mechanisms are in general not
balanced, that is, there are preference realizations where aggregate transfers
are non-zero. The budget imbalance of Groves mechanisms, in the context of
public goods problem, is shown in Hurwicz (1975), Green and Laffont (1979)
and Walker (1980). Hurwicz and Walker (1990) proved the impossibility re-
sult in the context of pure exchange economies, that is, economies in which

there is no production and in which there are no public goods or other ex-



ternalities. The damaging nature of budget imbalance of Groves mechanism,
in the public goods context, was analyzed by Groves and Ledyard (1977).
They had shown, using a very simple model, that an alternative procedure
based on majority rule voting may lead to an allocation of resources which is
Pareto-superior to the one produced by Groves mechanism. However, Suijs
(1996), by assuming costs to be linear over time, has proved that a sequencing
problem is first best implementable. A sequencing problem is first best imple-
mentable if it is possible to design a mechanism that satisfies truth-telling in
dominant strategies, efficiency of decision and budget-balancedness. Further,
he conjectured that linearity of the costs is crucial for this result.

In this paper, sequencing problems with more general and natural class of
cost functions is analyzed. The main result of this paper is that, a sequencing
problem is first best implementable only if the cost function is linear over
time. Thus, while Suijs (1996) proved that for first best implementability of a
sequencing problem it is sufficient to have a linear cost, we prove its necessity.
If the cost function is linear then the relative queue position of any two units
is independent of the preferences revealed by the other units. Suijs (1996)
conjectured that independence of this sort, which we define as independence
property in this paper, is crucial for first best implementability. However, we
show that this type of independence is not the only requirement that drives
first best implementability in a sequencing problem. There exists other cost
functions, like exponential costs, that satisfy independence property. For first
best implementability it is also necessary that the cost function satisfies a
nice combinatorial structure. Therefore, the necessity of the independence
property and the combinatorial structure of the cost function together imply
that a sequencing problem is first best implementable only if the cost function
is linear.

This paper is arranged in the following way. In section two, the model is
developed. Section three is the main section of this paper where, among other
things, the necessary condition for first best implementability is derived.

Section four concludes the paper.



2 The Model

Let N = {1,2,...,n} be the set of units of a multi-unit firm in need of
the facility provided by a particular repair and maintenance unit. Each unit
j € N has a cost parameter 0; € O, that belongs to an interval in the
non-negative orthant R, of the real line R. Each unit j € N also has a
servicing time s; that belongs to the positive orthant R, of the real line.
Let C(S;;6;) = 6,F(S;) + 3; measure the cost of waiting S; € R, periods
in the queue for unit j € N with cost parameter (or unit type) ; € R..
Here the mapping F' : R, , — R, is the time dependent cost function and
B; is a fixed cost to unit j. We assume that the form of time dependent cost
function F'(S;) is identical for all units and that F' is continuous and strictly
increasing in S;. Let F be the class of continuous and strictly increasing
time cost functions. Observe that S; depends not only on the servicing time
s; of unit j but also on the servicing time of the units serviced before it.
The firm’s aim is to find an efficient queue, that is, a queue that minimizes
the aggregate cost. By means of a permutation o on N, one can describe
the positions of each unit in the queue. Specifically, o; = k indicates that
unit j has the kth position in the queue. Let X be the set of all possible
permutations of N. We define P(c,j) = [p € N —{j} | 0; > 0,] to be the
predecessor set of j in the queue o = (04, ..., 0,) € X. Given a servicing time
vector s = (s1,...,5,) and a queue o, the cost of waiting in the queue for
unit j € N is C(S;(0); 0;) = 0,F(S;(0)) + B, where Sj(0) = Yiep(o,j) 51+ 8-
The utility of unit j, with cost parameter 6, is given by U,(o,t;;60;) =
v; — C(Sj(0);6;) + t; where v; is the benefit, derived by unit j, from the
service and t; is the transfer that it receives.

Let 6 = (01,...,0;-1,04,0,41,...,6,) be a state of the world or a profile
and let (0},0_;) be another profile of the form (01, ...,0;1,05,0;11,...,0),
where both 6 and (6,6 ;) belong to ©". Consider the problem of the firm
whose objective is to minimize the aggregate cost of waiting in the queue.
A queue o* € ¥, given s, is efficient or minimizes aggregate waiting cost if
o* € argminses Y. jen C(S;(0); 0;). Throughout this analysis, the servicing



time vector s = (s1,...,8,) is assumed to be common knowledge. If the
firm also knows 6 = (61, ...,6,), then it can calculate the efficient queue and
service the units accordingly. However, if 0, is private information to unit j,
the firm’s problem is to design a mechanism that will elicit this information
truthfully. Formally, a mechanism M is a pair (o,t), where ¢ : " — X
and t = (t1,...,t,) : ©" — R". A sequencing problem under incomplete
information is written as Q = (N, F, (©; R, ,)), where N is the number of
units of a firm in need of the facility, F' € F represents the cost of each unit
of the firm which takes identical functional form for all units j € N, O is
the type space of each unit representing the cost parameter and R, is the
space of servicing time for each unit. Under M = (o,t), given all others’
announcement ¢_;, the utility of unit j of type 6;, when its announcement
is 0, is given by U;(0(0;,0-;),1;(6;',0—;),0;) = v; — C(S;(0(6;',0-5)); 6;) +
t;(6;',0—;).

DEFINITION 2.1 A sequencing problem 2 = (N, F,(©;R,.)), is said
to be implementable, if there exists an efficient rule ¢* : ®” — X and a
mechanism M = (0*, t) such that, for all j € N, for all (6;,6,") € ©2 and for
all 0_; € ©" 1, Uj(0*(0),t;(0);0;) = U (0™ (05, 0—;), (05, 0—;); 0;).

This definition says that for any given 6_;, unit j cannot benefit by re-
porting anything other than it’s true type. In other words, truth-telling is a
dominant strategy for all units. Moreover, implementability also means that

in each state the queue selected is an efficient one.

DEFINITION 2.2 A sequencing problem ©Q = (N, F,(O;R,,)), is first
best implementable, if there exists a mechanism M = (¢*,t) which imple-
ments it and such that, for all 6 € ©", 3=, nt;(0) = 0.

Thus, a sequencing problem is first-best implementable if, it can be im-
plemented in a manner such that aggregate transfers are zero in every state
of the world. In such problems, incomplete information does not impose any
welfare loss.



We define the minimum cost function C : ©" x ©™ — R. For a state ¢,
with announcement 6, C(0*(0);0') = X ;en C(S;(0*(0));0), where o*(0) €
argminges, Y jeny C(Sj(0);0;). For simplicity of notation, we write the mini-
mum cost function C(c*(0); ) as C(#). In other words, C(¢) represents the

minimum cost when announced state 6 is also the true state.

DEFINITION 2.3 A mechanism M = (o, t) is a Groves mechanism if, for
all j € N and for all € O,

t;(0) = —C(0) + C(5;(07(0)); ;) + 7;(6-) (2.1)

In a Groves mechanism the transfer of any unit j € N, in any state 6, is
the negative of minimum cost C(6) less the cost of unit j up to a constant
v;(6—;). The utility of unit j with a Groves transfer is its benefit v; less
the minimum cost in state 6 plus the constant. It is well known that such
a transfer results in dominant strategy incentive compatibility because the
firms’s objective of minimizing the aggregate cost is now an objective of unit
j as well and this is true for all j € N.

REMARK 2.1 A sequencing problem (2 is implementable if and only if the
mechanism is a Groves mechanism. This result is not new in the literature.
Under relatively weak assumptions, on the domain of preferences, Groves
mechanisms have been shown, by Holmstrom (1979) and more recently by
Suijs (1996), to be the only ones to satisfy implementability condition. The
domain of any sequencing problem Q2 = (N, F, (©; R, )), with ' € F| satis-
fies Holmstrom’s definition of “convex” domains.! Moreover, the domain of
preferences in a sequencing problem also satisfies Suijs’ definition of “graph
connectedness” (see Suijs (1996)). Thus it follows, from Theorem 2 of Holm-
strom (1979) and Theorem 3.2 of Suijs (1996), that sequencing problems are

implemented uniquely by Groves mechanism.

'Tf the domain of preferences is “convex” then it is “smoothly connected” (see Holm-
strém (1979)).



The main difficulty with Groves mechanisms is that they are not balanced
for a broad class of public decision problems (see Green and Laffont (1979),
Walker (1980)). The question of whether or not Groves mechanism can first

best implement sequencing problems is addressed in the following section.

3 Main Result

Consider a sequencing problem Q = (N, F (©; R, ,)). Let the servicing time
vector be s = (s1,...,8,) and let the state be . Consider a particular queue
o= (01,...,04), with o, = 0;+1, in state . Let P(0;j,1) =[pe N—{j,(} |
op < min{o;,01}] and § = 3¢ p(y.ip) Sp > 0. Consider a different queue o,
obtained by interchanging only the queue positions of j and [. In other
words, 0’ = (oy,...,0,) is such that, o}, = 0y, for all m € N/{j,1}, 0} = oy
and o, = 0. The difference in total cost is given by C(o;0) — C(0’;0) =
O{ F(5+s;+5)—F(5+5))} —0;{ F(5+5;+s,)—F(5+s;)}. This interchange will
lead to an increase (a decrease) in total cost if, C(o;0) < (>)C(0’; 0), that is,
if 3 > (<) Rt Let f(355),91) = Forstd—fGr. Therefore,
the ratio function f($;s;,s;), plays an important role in determining the

efficient queue. In particular, the numerator of the ratio function f(5;s;,s;)
measures the increase in the time cost of unit [ if unit j is served ahead of
unit [ given that unit [ is already incurring a cost of § + s;. Similarly, the
denominator of the ratio function f(5;s;,s;) measures the increase in the
time cost of unit j if unit [ is served ahead of unit j given that unit j is
already incurring a cost of § 4 s;. Independence property, defined below, is a

restriction on the ratio function f(s;s;,s;).

DEFINITION 3.4 A sequencing problem Q2 = (N, F, (©; R, ,)), with cost

function F' € F, satisfies the independence property, if there exists a map
g : R2, — Ry, such that, for all § > 0, for all s; > s, > 0 and for all
J,1 € N such that j # 1, f(5;s;,5) = g(sj,s1).

2Observe that § = 0 < P(0;4,1) = ¢.




If a sequencing problem (2, with cost function F', satisfies the indepen-
dence property then the relative queue positions of any two units 7 and [,
with given 6;, s; and 6;, s;, is independent of the preferences of all other units.
In particular, if 6;, s; and 6;, s; are such that %li > g(s;, s;), then for all servic-
ing time vectors and states with given (s;,s;) and (0;,6;), efficient queue o*
will imply that S;(0*) < Si(0*), that is, 0 < of. In the next paragraph, we
provide some examples of sequencing problems that satisfy the independence
property and one example of a sequencing problem that fails to satisfy the
independence property.

Consider a sequencing problem ! = (N, F', (©; R, )), for which the cost
function is linear. Therefore, for the sequencing problem !, F'(z) = a;z+ay,
for all z € R, and a; > 0. Observe that for Q!, f!(3,s;,5,) = L= g (s;,81),
for all § > 0 and for all s; > s; > 0. Therefore, Q' satisfies independence prop-
erty. Suijs (1996) conjectured that the independence property of a linear cost
sequencing problem €)' plays a crucial role in its first best implementability.
Consider the sequencing problem Q° = (N, F°, (©;R,.)), where the time
cost function is exponential, that is, F'°(z) = a1€® + ao, for all z € R,
and a; > 0. In this problem, f¢(s;s;,s) =

65j+sl _eSl
es]-+sl 765-7.

= ¢°(s;, s1), for all
5 > 0 and for all s; > s; > 0. Therefore, 2 also satisfies the independence
property. In general, all sequencing problems 2%, with cost function of the
form F*(x) = ai1¢® + ap, where a; > 0 and ¢ > 1, satisfy the independence
property since f*(8;s;,s) = % = g*(sj, ), for all § > 0 and for all
s; > s; > 0. Thus, the set of sequencing problems, satisfying independence
property, includes non-linear time cost functions. Consider a sequencing
problem Q7 = (N, F'7,(O; R, ,)), where Fi(z) = z?, for all z € R, . In this
problem, given s; > s, > 0, the ratio f(8;s;,5) = {1 - f%} is not
independent of 5. Therefore, 29 fails to satisfy the independence property.

THEOREM 3.1 A sequencing problem Q = (N, F, (0; R, )), with F' € F,
is first best implementable if and only if the cost is linear and there are at

least three units.



The if part of the Theorem is due to Suijs (1996) and hence we omit its
proof. We now state three Lemmas and prove two of them. These Lemmas
are necessary for proving the only if part of Theorem 3.1. For these Lemmas,
some more notations and definitions are introduced. Consider two profiles
0= (6h,...,0,) and ' = (01,...,0,). We define, for S C N, a type 6,(S) =
0; if j & S and 0;(S) = 0 if j € S. Therefore, for each S C N, a state 0(S)
is of the form (6,(S5),...,6,(95)).

LEMMA 3.1 A sequencing problem (), with F' € F, is first best imple-
mentable only if, for all pairs of profiles {0,0'}, Sgcn(—1)¥IC(0(5)) = 0.

This Lemma is due to Walker (1980). Given the form of the Groves transfer
(2.1), balancedness requires that the minimum aggregate cost is (n — 1)
type separable, that is, (n — 1)C(0) = >;env;(0—;). Thus, it follows that
for all pairs 0 = (61,...,0,) and 0 = (0},...,0,), Secn(—1)1C(0(S)) =
ﬁ Yjen Ssen(—1)11y;(6_;(S)) = 0. Lemma 3.1 will help prove the next

two Lemmas.

LEMMA 3.2 A sequencing problem (), with F' € F, is first best imple-
mentable only if, for all s € R, .,

i(—n’“(;‘: i)F(kE) =0 (3.2)

k=1

To prove Lemma 3.2, we first consider a situation where the servicing time of
all individuals are identical. We then construct two states to derive condition
(3.2). Before giving the proof of Lemma 3.2, we provide a general criterion
for calculating an efficient queue when servicing costs are identical for all
units. Consider a sequencing problem Q = (N = {1,2,3}, F,(O; R, )) with
three units. Let the servicing time vector be § = (s; = 5,82 = 5,83 = 3).

Given the servicing time vector 3, calculating the efficient queue in each state



0 = (01,0,,03) € ©3 is quite easy. For example, if a state 0 = (61, 0,,05) € ©3
is such that 03 > 6, > 6y, then § > FEEETE — f(3:5,5) = 1 and >
f(5;5,8) =1, for both § = 5 and § = 0. Therefore, the efficient queue in state

0 = (01, 05,0s), with given servicing cost vector § = (s; = 5,59 = 5,83 = ),
is 0*(0) = (07(0) = 3,05(0) = 2,05(6) = 1). In general, if units have
identical servicing costs and non-identical types, then efficient queue, in any
state 0, can be obtained from the ascending order of unit types in that state.
That is, in state 60, if the types of units j and [ are such that §; > 60;, then
07(0) < o7 (0). This is the general criterion, with identical servicing cost and

non-identical types, for finding an efficient queue in any sequencing problem

PROOF OF LEMMA 3.2: To prove the Lemma, we first construct two
profiles and then apply Lemma 3.1. Consider a servicing time vector where
the servicing time of each unit is the same, that is, consider § = (s; =
5,...,8,=35). Let 0 = (61,...,0,) and ' = (0, ...,0)) be any two profiles
satisfying the following condition: 6] > 05, > ... >0, > 6, >0y > ... > 0,.
For all S C N, we consider profiles 0(S) = (61(5),...,6,;(5),...,0,(9)),
where 0;(S) = 0; if j ¢ S and 0;(S) = ¢ if j € S. Since the ser-
vicing costs are taken to be identical for all j € N and unit types are
non-identical, we use the general criterion to derive the efficiency queue in
each state. Observe that, for all S C N — {1}, with profiles (6,,60_1(S)),
01(61,6_1(S)) = |S| + 1. Thus, Yscnyq13(—1)1C(S1(07(61,0-1(5))); 61) =
St (=) (75‘1) F((|S]41)3)8;. Moreover, for all S C N such that n € S,
that is, for profiles (6.,,0_,(5)), 05(0,,0_,(S)) = |S| and hence, it follows
that, Seen (LSO, (0 (6. 0-,(5))): 04) = s (- 111 (15 ) E(S[3)6.
Finally, for all other types z; € {6s,...,6,,0},...,0,_,} = T, if the sets
{m1,...,my}, all subsets of N — {j}, are such that o7(z;,0_;(m,)) = k, for

3Tt is quite easy to observe that if units have identical types then one can easily impose
a tie breaking rule to calculate the efficient queue. It is important to note that finding
the efficient queue is quite difficult if the servicing cost is different for different units and

if the cost function does not satisfy the independence property.



all ¢ € {1,...,p}, then >7_ (—1)"F(k5) = 0 because >r_;(—1)™ = 0.
Thus, for all T; € T, ZSQN/U}(—].)'S'C(SJ(O'*(.'L‘],Q_J(S))),.'L‘j) = 0. There-
fore, the sum Y gcn(—1)I¥1C(0(S)) is independent of all x; € T. Combining
all these observations we get
i —1
> (0TCs) = - ) -0 (). 63
SCN k=1 k—1
Applying Lemma 3.1 and using ¢, # 6/, in condition (3.3) we get condition
(3.2). |

Condition (3.2) in Lemma 3.2 is a combinatorial condition on the time
cost function F'. The meaning of this condition will become explicit from the
following discussion. Define A(h)F(z) as A(h)F(x) = F(x+h)—F(x). Thus,
A(h)F(xz) measures the increase in time cost as one moves from time z to
time z+h. Using this definition observe that A(x)F(z) = F(2z)—F(x). Sim-
ilarly, A2(z)F(z) is given by A%(z)F(z) = A(z)[A(x)F(z)] = A(x)[F(2x) —
F(z)] = F(3z) — 2F(2z) + F(x). We can similarly derive A®*(z)F(z),
A*(z)F(z) and so on. It is now quite easy to verify that condition (3.2)
can be rewritten as Yp_,(—1)*! (Z:})F(k‘x) = A" !(z)F(x) = 0. Thus, F

satisfies Lemma 3.2 if the (n — 1)th order difference is zero.

REMARK 3.2 The most obvious implication of Lemma 3.2 is that for a
sequencing problem with two units, condition (3.2) holds only if, for all z > 0,
F(z) — F(2x) = 0, that is, F'(z) = ¢. However, F(z) = c for all z > 0, is a
violation of our assumption that F' is strictly increasing in R, . Therefore,
there does not exist a sequencing problem Q = (N = {1,2}, F, (©;R,.)),
with strictly increasing F, that satisfies condition (3.2) in Lemma 3.2. Thus,

a sequencing problem with two units is not first best implementable.

REMARK 3.3 Another implication of Lemma 3.2 is that for a sequencing
problem Q = (N = {1,2,3}, F,(©;R,.)), F(€ F) must be linear. For a
sequencing problem with three units, Lemma 3.2 implies that, for all z €
R,,, F(z)+ F(3z) = 2F(2z). From this condition it is obvious that, if

10



F € F, then F = F!, where F'(z) = ajz + ag for all z € R, . Therefore,
Lemma 3.2 proves that if there are three units then a sequencing problem is

first best implementable only if the cost function is linear.

Lemma 3.2 is not enough to prove the only if part of Theorem 3.1 for
a sequencing problem with more than three units. For example, consider
Q1 = (N = {1,2,3,4}, F7, (©;R,,)), such that the time cost function
F? € F is quadratic. Thus, the function F'? is such that, for all x € R,
Fi(z) = ap + a1z + asx?® and F(z + h) > F4(x), for all h > 0. It is obvious
that for a sequencing problem with four units, F'¢ € F satisfies condition
(3.2) of Lemma 3.2.* To prove the only if part of Theorem 3.1 for sequenc-
ing problems with more than four units, we need another result which is

summarized in the next Lemma.

LEMMA 3.3 A sequencing problem © = (N, F, (©;R,)) with at least

four units is first best implementable only if it satisfies the independence

property.

We prove this Lemma by contradiction. We first assume that the state-
ment in Lemma 3.3 is false. We then consider all possible ways in which a cost
function may fail to satisfy the independence property. For each such possi-
bility we construct a pair of profiles that fails to satisfy Lemma 3.1. Before
providing the proof of Lemma 3.3, we introduce some more relevant defini-
tions and observations. Consider the servicing time vector s = (s1, ..., Sy).
We define the sum of servicing times of all units p € N — {j,{} as M (jl) =

Y. Sp. For units j and [, with servicing time s; and s; respectively, let
p#{5l}
4In general for a sequencing problem Q™ = (N, F™ (0; R, )) having polynomial time

cost functions of order m (that is F™(z) = Y a;2%) where m < n — 2 satisfies condition
i=0

(3.2). Thus if we have a sequencing problem with three units, then polynomial of order
m = 1, that is, F = F! satisfies condition (3.2). If we have a sequencing problem with
four units, then polynomials of order m = {1,2}, that is, F = F! and F = F satisfies

condition (3.2) and so on.

11



mj € [0, M(jl)] be a number such that f(rm;s;,s1) > f(y;s;,s1), for all
y € [0,M(jl)]. Note that m;; always exists since f(y;s;,s;) is continuous
and we are considering all y in the closed and bounded interval [0, M (j1)].
We define H(s) > f(mj; s;, ) for all j € N and for all { € N — {j}. There-
fore, H(s) is at least as large as the highest value that the ratio function f,
corresponding to F', can take given the servicing time vector s. Similarly,
let m; € [0, M(j1)] be a number such that f(m;s;,s1) < f(y;s;,s) for all
y € [0, M(j1)] and we define L(s) < f(mji;s;,s;) for all j € N and for all
l € N—{j}. L(s) is at most as small as the lowest value that the ratio func-
tion f can take given the servicing time vector s. Using the numbers H(s)

and L(s), we make the following observations about the efficient ordering.

Observation [1]: Given the servicing time vector s = (s1, ..., s,), if for any
two units j and [, %li > H(s), then from the construction of H(s) we know
that H(s) > f(8;s;,s1), for all § € [0,M(jl)]. Therefore, %li > (5585, 81),

for all § € [0, M(jl)] since Z—j > H(s). Thus, given s, iff;—fl' > H(s), then

o (0;,60,0_51) < 07 (0;,0,,0_;), for all 6_;_, € O"2
Observation [2]: Given the servicing time vector s = (s1, ..., s,), if for any
two units j and I, %li < L(s), then from the construction of L(s) we know
that L(s) < f(5;s;,s), for all § € [0,M(jl)]. Therefore, %f < f(5;s5,81),
for all § € [0, M(jl)] since ¢ < L(s). Thus, given s, if ¢ < L(s) then
o (0;,6,0_5_1) > 07 (0;,0,,0_;), for all 6_;_, € O

These two observations will be used in proving Lemma 3.3.

PROOF OF LEMMA 3.3: Consider a sequencing problem (2, with at
least four units, that fails to satisfy the independence property. To prove
the Lemma, we show that for such a sequencing problem (), there exists a
servicing time vector s and there exist profiles, for which the condition in
Lemma 3.1 is violated. Since €2, does not satisfy the independence property,
there exist s; > sy > 0 and an appropriate selection of interval [0, A], such
that, the ratio function f(y; s1, s3) is monotonic and non-constant in y, when-

ever y € [0, A]. Given that F' is continuous and strictly increasing and the

12



denominator of f(y; sy, s2) is non-zero, for all y, it follows that f(y;s1,s2)
is continuous, monotonic and non-constant in y € [0, A]. Therefore, on

y € [0, A], f(y; 1, s2) satisfies at least one of the following four conditions:

1. There exists B € (0, A), such that f(y;si,s2) is constant in y, if y €
[0, B) and strictly increasing in y, whenever y € [B, A].

2. f(y; s1, 82) is strictly increasing in y € [0, A].

3. There exists B € (0, A), such that f(y;s1,s2) is constant in y, if y €
[0, B) and strictly decreasing in y, whenever y € [B, A.

4. f(y;s1,82) is strictly decreasing in y € [0, A].
We consider each of these conditions in different steps.

STEP [1]: In this step we consider condition 1. Since the sequencing prob-
lem under consideration is the one that fails to satisfy the independence
property, we construct profiles in such a way that the relative queue position
of two particular units, with given types, change as the type of other units
change. This type of construction leads to a violation of Lemma 3.1.

Let s; and ss, in condition 1, represent the servicing time of units 1 and
2 respectively. Let the servicing time of unit 3 be s3 = A — B and the
servicing time of all other units j € N — {1,2,3} be s; = % = 5. Thus,
the servicing time vector is given by § = (s1, s2, 83, 5,...,5). Note that the
servicing time vector is constructed in such a way that (n — 3)5 + s3 = A.
From condition 1 and from the construction of 5 it follows that f(ks; sq, s2) <
f(kS+ s3;81,52) and f(kS; s1,52) < f(A;s1,89) forall k € {0,...,n—3} and
f(k5+s3;81,82) < f(A;s1,82) forallk € {0,...,n—4}. Let D = (mazx[f((n—
3)5; 51, 82), f((n—4)5+s3; 51, 52)], f(A; 51, 82)). Note that the interval always
exists since maz{(n — 3)s,(n — 4)s + s3} < A implies that maz[f((n —
3)5;51,82), f((n — 4)5 + s3;51,52)] < f(A;s81,52)). Consider two numbers
z4(1) and (1), such that, z,(1) € D, z,(1) € D and z,(1) < z(1). Observe
that since s; > s9, z,.(1) > 1, for all € {a,b}. Using the numbers z,(1) and
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(1), we define z(2) = Jz,(1
two profiles " = (0{ = xr 1
07 =1,05 =x(2),... (2)) where r € {a,b}. Define, for S C N, a type
0;(5)=05ifj ¢ S and 9’“(5) = ¢ if j € S. Therefore, for S C N, a state
07(S) is of the form (67(S),..., HZ(S)). Now we consider the terms containing
07 (= z,(1)) in the sum Y gcn(—1)IC(67(5)). From the construction of z(2)
it follows that w((Ql)) < L(3). Therefore, from Observation [2] it is obvious
that, for all S € N — {1}, such that j € N—{1} and j € S, o{(07,0" ,(5)) <
o3 (07,07(S)). Similarly, from the construction of x(3) we get ﬂ(% > H(3).
Therefore, from Observation [1] it is obvious that, for all S € N — {1}, such
that j € N—{1,2} and j € S, o7(07,07,(S5)) > o;(67,0",(S)). Now consider
all possible S C N — {1}, such that 2 ¢ S. We start with S = ¢, that
is, 6"(S) = 0". Note that since z(3) = z,(1) + xT(l)H(§) and z,(1) > 1,
z(3) > H(S). Therefore, for all j € N — {1, 2}, 5= = z(3) > f(5;s,52),
for all 5 € [0, M(52)]. Thus 03(0") > o7(07), for all j € N — {1,2}. Again,
from the construction of z,(1), it follows that Z—% = z,(1) < f(4;s1,52).
Therefore, given 03(0") > o73(¢") and o}(0") > 0j(0"), for all j € N — {1,2}
and z,.(1) < f(A;s1,s2), we obtain that o7(6") =n > 05(0") =n — 1. From
the construction of z,.(1), we also know that, gf;- = z,(1) > maz[f((n —
3)5;51,52), f((n — 4)5 + s3; 51, 52)]. Therefore, if S C N — {1}, S # ¢ and
2 ¢ S, then o7(67(S)) < 05(07(S)). Combining all these observations and
simplifying the sum Y gen (13 (—1)¥1C(S1 (0 (07,07 1(5))); 67), we get for all
r € {a,b},

S (=D)FICE™(S) = 2 (D[F(s1+s2+ A) = F(s1 + A+ Z  (3.4)

SCN

L(8) and z(3) = x(1) 4+ x(1)H(5). Consider

)
),05 = 1,05 = x(3),...,0;, = x(3)) and ¢ =

| |
=

where Z is the sum of terms that are independent of x,.(1), in the sum
Ssen(—1)SIC(07(S)). From Lemma 3.1 we know that for first best im-
plementability of 2, it is necessary that Y gen(—1)I¥IC(07(S)) = 0, for all
r € {a,b}. Therefore, it is obvious that for first best implementability it is
necessary that

> (=1FCE(S) - Y (-1FICE"(8) =0 (3:5)

SCN SCN
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Simplifying condition (3.5) using (3.4), we get
{a(1) —zp(1)}HF (51 + 52+ A) — F(s1 + A)] =0 (3.6)

Condition (3.6) cannot hold since from the construction of z,(1) and from
our assumption that F' is strictly increasing in R, it follows that the left
hand side of condition (3.6) is strictly negative. Therefore, if condition 1
holds then, given 5, there exist profiles for which Lemma 3.1 is not satisfied.
Observe that when unit 1’s type is 6] = z,.(1) and that of unit 2 is 65 = 1,
the construction of profiles 6_;_»(S), for all S C N — {1,2} are such that :

L. 0?(9{,95,921_2(5)) > 0;(9{,95,921_2(5)), if [S = ¢] (that iS, if the
state is 0"(S) = 0") and

2. 05(07,05,0",_,(S)) < 03(07,05,0",_,(S)), for all [S C N — {1,2} and
S# 4.

Therefore, the change in relative queue positions of units 1 and 2, given their
types 0] and 67 respectively, with the change in the types of other units is

crucial for the result.

STEP [2]: In this step we consider condition 2. Let s; and sy in condition
2 represent the servicing time of units 1 and 2 respectively. Let the servicing
time of all other units j € N — {1,2} be s; = -4 = 5. Therefore, the
servicing time vector is given by § = (s1,$9,85,5,...,5). By replacing s3 in

Step [1] with 5 and by following the same steps we get the result.

STEP [3]: In this step we consider condition 3. Let s; and s, in condition 3,
represent the servicing time of units 1 and 2 respectively. Let the servicing
time of unit 3 be s3 = A — B and the servicing time of all other units
jeN—-{1,2,3} bes; = niig = 5. Thus, the servicing time vector is given by
§ = (s1, $2, 53,8, ...,5). From condition (3) and from the construction of 3, it
follows that, f(ks;s1,s2) > f(kS + s3;81,52) and f(kS; sq,82) > f(A;s1,82),
for all £ € {0,...,n — 3} and f(kS + s3;51,82) > f(A;s1,892), for all k €
{0,...,n —4}. Let D = (f(A4;s1,s2), min[f((n — 3)S;s1,52), f((n —4)5 +
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s3;81,52)]). Note that the interval always exists since min{(n — 3)s,(n —
4)5 + s3} < A implies that min[f((n — 3)5; s1, s2), f((n — 4)5 + s3; 51, $2)] >
f(A;s1,52)). Consider two numbers x,(1) and (1), such that, z,(1) € D,
25(1) € D and z,(1) < x5(1). Note that since s; > s9, z,(1) > 1, for all
r € {a,b}. Using the numbers z,(1) and z,(1), we define, z(2) = 32,(1)L(3)
and z(3) = x(1) 4+ z,(1)H(5). Consider two profiles 6" = (6] = z,(1),0; =
x(3),05 = x(3),...,0, =x(3)) and ' = (0] = 1,0, = 1,04 = 2(2),....0, =
z(2)) where r € {a,b}. Define, for S C N, a type 05(S) = 0] if j € S and
07(S) = 0 if j € S. Therefore, for each S C N, a state 7(S) is of the
form (07(S),...,0:(S)). Now we consider the terms containing 07 (= z,(1)),
in the sum Y gcn(—1)1¥/C(67(S)). Consider all possible S C N — {1}. From
the construction of z(2) and from Observation [2], it follows that, for all
S C N — {1}, such that, j € N —{1,2} and j € S, o5(07,0",(5)) <
o7 (07,07,(S)). Similarly, from the construction of x(3) and from Observation
[1], it follows that, for all S C N — {1}, such that, j € N — {1} and j ¢ S,
o1(07,07,(S)) > o7(07,07,(S)). Now consider S € N — {1}, such that,
2 € S. First we consider S = {2}, that is, we consider the state "(S) =
07 = z.(1 ) (9’ = 1,05 = z(3),...,0, = x(3)). Observe that, for all j €
N — {1, 2}, = ﬂlél > H(S), since x(3) = xp(1) + (1) H(5) and x(1) > 1.
Therefore, if 5= {2}, then 03(67(S)) > o3(67(S)), for all j € N — {1,2}.
We have already established that if S = {2}, then o7(6"(S)) > o3(07(5)),
for all j € N — {1,2}. From the construction of z,.(1), we get, 7+ er = Mlll =
z,(1) > f(A;s1,52). Therefore, if S = {2}, then given z,(1) > f(A; S1,82),
o1 (07(S)) > o3(07(S)) and 03(67(S)) > o3(07(S)), for all j € N — {1,2},
we get 07(07(S)) =n—1 < 03(0"(S)) = n. From the construction of 6] =
z,(1), we know that z,.(1) < min[f((n — 3)5;s1,52), f((n — 4)5 + s3; 51, 52)].
Therefore, for all S C N — {1}, such that, S # S and 2 € S, we get
o1(07(S)) > 03(07(S)). Combining all these observations and simplifying the
sum Y gen (13 (—1)¥1C(S1 (0 (07,07,(9))); 67) we get, for all r € {a, b},

> (—1)I¥IC(07(S)) = 2 (1)[F(s1 + s + A) — F(s1 + A)| + Z (3.7)

SCN
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where Z is the sum of terms that are independent of z,(1) in the sum
Ssen(—1)SIC(07(S)). From Lemma 3.1 we know that for first best im-
plementability of €2, it is necessary that Y gen(—1)1¥IC(07(S)) = 0, for all
r € {a,b}. Therefore, it is obvious that for first best implementability it is

necessary that

> (=DFICE*(8)) = 3 (-1FCE"(s) =0 (3-8)

SCN SCN

Simplifying condition (3.8) using (3.7) we get
{za(1) —2p(1)}EF(s1 +s2+A) — F(s1+A)] =0 (3.9)

Condition (3.9) is not true since from the construction of z,(1) and from
our assumption that F' is strictly increasing in R, it follows that, the left
hand side of condition (3.9) is strictly negative. Therefore, if condition 3
holds then, given 3, there exist profiles for which Lemma 3.1 is not satisfied.
Observe that when unit 1’s type is ] = z,(1) and that of unit 2 is ¢}, = 1,
the construction of profiles 6 1 o(5), for all [S C N — {1} and 2 € 5] are
such that :

L. UT(0{70/2702172(S)) < 05(0{70/2702172(‘5’))7 1f [S = {2}] and

2. UT(0{70/270T—1—2(S)) > 0-;(0{7057021—2(5))7 fOI‘ au [S g N - {1} and
2e9].

Therefore, the construction that leads to the result in this step is similar to
that in Step [1]. Here, the change in relative queue positions of units 1 and
2, given their types 0] and 6/, respectively, with the change in the types of

other units is crucial for the result.

STEP [4]: In this step we consider condition 4. Let s; and s, in condition
4 represent the servicing time of units 1 and 2 respectively. Let the servicing
time of all other units j € N — {1,2,} be s; = -4 = 5. Therefore, the
servicing cost vector is given by § = (s1,$92,5,5,...,5). By replacing s3 in

Step [3] with 5 and by following the same steps we get the result. [
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Finally, we come to the proof of the only if part of Theorem 3.1. We
show that the necessity of condition (3.2) in Lemma 3.2 and the necessity of
the independence property (as derived in Lemma 3.3), for first best imple-
mentability of a sequencing problem together imply that the cost function F'

must be linear.

PROOF OF THEOREM 3.1: From Remark 3.2, it follows that for first
best implementability of a sequencing problem, it is necessary that there are
at least three units. For a sequencing problem €2 with three units the proof of
the only if part of Theorem follows from Remark 3.3. To prove the Theorem
for sequencing problems {2 with at least four units, we show that Lemmas
3.2 and 3.3 imply that F' = F'. By rewriting condition (3.2) in Lemma 3.2
in terms of first difference A(z)F(kz), we get

S0 (At <o .10

Consider the ratio function f(y;2z,z). From Lemma 3.3, we know that,
for first best implementability of the sequencing problem €, f(y;2z,z) =
g2z, x), for all y > 0. After simplifying the relation f(kz;2zx,z) = g(2z,z)
we get, for all k € {1,...n — 1} and for all z > 0,

A(z)F(kz) = r* 1 A(z)F () (3.11)

where g(2z,2) = 1+1.° By substituting (3.11) in (3.10) and then simplifying
it, we get, (1 —r)"2A(x)F(z) = 0, for all z > 0. Therefore, r = 1 simply

SFor all k € {1,...,n — 2} consider,

A(2z)F(kx)
A(z)F((k+1)x)
By rewriting A(2x)F(kz) as A(x)F((k + 1)x) + A(z)F(kx) in (3.12) and substituting
f((k—1)x;22,2) = g(2x,2) = 2 + 1 we get

(k= 1)z 22, 2) = (3.12)

A(x)F(kz) B l
A(@)F((k+1z) (3.13)
for all k € {1,...,n — 2}. Solving (3.13) recurssively we get
A(@)F(kx) = r* 1 A() F(x) (3.14)
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because F' is strictly increasing implies that A(z)F(z) > 0. By substituting
r=1in (3.11) we get

F((k + 1)z) — F(kz) = F(2z) — F(x) (3.15)

forall k € {1,...,n—1} and for all z > 0. From condition (3.15) it is obvious
that F' = F'. [

We have thus derived that a sequencing problem with continuous and
strictly increasing time cost function is first best implementable only if the
cost function is linear and there are at least three units. The sufficiency part
of the Theorem is due to Suijs (1996).

To complete our analysis, we now provide a Groves transfer that first
best implements a sequencing problem with linear cost. Before providing
the transfer, we propose an algorithm to calculate an efficient queue. Since
a sequencing problem with linear cost satisfies the independence property,
calculation of the efficient queue is very transparent. It can be obtained by
considering the urgency index v; = %, for all 7 € N. In particular, if u; =
91 >w =%, then 0}(0;,6,0 ;1) < 07(6;,0,0 ;1), for all 0 ; , € O™,
Ties can be broken by considering the natural ordering, that is, if u; = w
then o7 (0;,01,0_;_1) < 07(0;,01,0_;_1) if j < (See Curiel, Pederzoli and Tijs
(1989)). For example, given s, if state 6 is such that % > g—’;’ > ... > i—z,
then o*(0) = (o5(0) = 1,05(0) =2,...,0%(0) =n).

Consider a linear cost sequencing problem ¥ with at least three units. In
this problem, F'(x) = ag+ a;z and a; > 0. Consider a servicing time vector
s =(s1,...,5,) and a state § € ©™. Let the transfer for unit j € N be

BO) =ar Y s — “_12291{ Y s (3.16)

pEP(a*(0),5) n I#j q€@;(0,5)

where Q,(0,7) ={q € N —{j,I} [ ¢ & P(c"(0),])}.
To write an explicit form of the transfer for each state # € ©", we consider

. . . 0
the “inverse” of the order o*, suppose i is a permutation such that 4—15“(; >
14

for all k € {1,...n— 1} and for all z > 0.
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@ > > %) Therefore, the transfer (3.16) can be rewritten in terms

Su(2) _' Su(n)
of the inverse ordering u as

> Su(r) (3.17)

>
q#k =

tu(i) (0) = arsuqe) (29 h)) -

h<k

for all k € {1,2,...,n}. It is quite simple verify that these transfers add up
to zero, that is, >-7_; t,x)(#) = 0. In the discussion that follows, we provide
a detailed analysis of incentive compatibility of the transfer scheme (3.17)
for a linear cost sequencing problem with three units.

Consider a sequencing problem ' = (N = {1, 2, 3} F' (0;R,.)). In this
problem, for each state § € ©3, with O > fuy > (3) we get using the

Su(l) T Su@ T S’

equation (3.17), tu(l)(g) = —alep(g)sp(g), tp(g)(e) = a0 L@l )( w2 — Su(3)) and

tu)(0) = a1(0,01) + 0u(2))5u3) — a10,4(1)Su(2)- We now verify that this transfer
scheme is incentive compatible. Consider a servicing vector s = (s; = 3, 59 =
2,s3 = 1) and let the type vector be § = (6; = 1,0, = 2,05 = 3). Observe
that, given s and 6, w3 = 3 < wp = 2 =1 < ug = 2 = 3.5 Therefore,
o*(0) = (07(0) = 3,05(0) = 2,05(0) = 1) and the transfers are ¢,(0) =
tu3)(0) = a1(0s + 03)s1 — a103s0 = ay, ta(0) = tu2)(0) = a1f3(s2 — 51) =
—3ay and t3(0) = t,1)(0) = —ai0ss1 = —6ay. Observe that Y°7_, ¢;(0) =
i1 tu(0) = 0. Given s and true type vector 6, we consider all possible

5

deviations by unit 1 from its true type 6; and argue that the benefits to unit 1,
from all these deviations, are non-positive. Define B(6y,6;;0,,03), to be the
benefit derived by unit 1 by deviating from its true type 6; to 6, given that
the other two units have announced (6, 6s). Therefore, B(0;,0y;0,0s) =
Uy (0*(01,04,03),t1(01,02,03);01) — Uy (0*(8),£1(0); 0;). Consider, a deviation
by unit 1 from 6; to any type ¢; < 3. Note that, under this deviation,
w =% <1<u,=1<ug = 3. Therefore, 0*(6},05,05) = (07(0}, 02, 05) =
3,035(0],02,03) = 2,05(0,02,03) = 1) = 0*(0) and hence 1 (0], 02, 03) = t1(0).
Thus, B(0},0;;6,,05) = 0. Consider, the deviation by unit 1 from 6; to
any type 6¢ € [3,9). Note that, under this deviation, u, = 1 < wy =

fRecall that u; = %—, for all j € N.
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% < uz = 3. Therefore, o*(6%,05,03) = (07(62,05,05) = 2,05(65,05,6) =
3,05(05,02,03) = 1) # 0*(0) and hence t,(0%,04,05) = a105(s1 — s2) = 3a1 #
t1(0) = 9ay. Thus, B(0¢,01;04,03) = a101s9 + t1(65,02,03) — t1(0) = 2a; +
3a; — 9a; = —4a; < 0. Finally, consider the deviation 9? > 9. Note that,
under this deviation, u, =1 <uz =3 <u; = %?. Therefore, a*(Qlﬁ, 0s,03) =
(0307 ,05,03) = 1,05(07,04,05) = 3,0%5(67,0,,05) = 2) # 0*(0) and hence
t1(07,05,03) = —ay03sy = —6ay # t,() = 9a;. Thus, B(6Y,61;0,,05) =
a191(32+33)+t1(9f, 05,03) —t1(0) = 3a; —6a; —9a; = —12a; < 0. Therefore,
for unit 1 with type 61, B(01,01;0,,05) < 0, for all §, # 6,. By applying
similar arguments we can check that neither unit 2 nor unit 3 can benefit
by deviating from their true types. Therefore, the transfer scheme is both

budget balancing and incentive compatible.

4 Conclusion

We can make a comparative study of a linear cost sequencing problem with
that of the classic incentive problem of non-excludable public goods where,
like the sequencing problem, the set of decisions is finite. In the public goods
problem the decision is whether or not to produce the public good. The
public goods problem is not first best implementable because the budget
balancedness condition cannot be satisfied in all states of the world. The
reason for budget imbalance is the externality that an individual can impose
on the remaining set of individuals. Here, an individual, by changing his
announcement can change the decision of all other individuals (see Green
and Laffont (1979)). While for the linear cost sequencing problem, the ex-
ternality that can be imposed by a unit on the remaining set of units is more
‘subtle’ and is captured by the independence property. If a unit is allotted
a position k in the queue in some state, then by changing its cost parameter
the unit can either change the cost of the units serviced before it (that is its
predecessor set) or the cost of the units serviced after it (that is its successor

set). The unit cannot simultaneously affect both the predecessor and the
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successor sets. This sort of externality, which is certainly less severe than
the externality in public goods problem, is one of the crucial requirement for
first best implementability of sequencing problems. The analysis presented
in this paper achieves something more. In this paper we have proved that the
type of externality that is present in the linear cost sequencing problem is
also present in a sequencing problem where the cost function is exponential.
In addition to this type of externality we need a nice combinatorial struc-
ture of the cost function. This additional need makes linear cost sequencing

problems the unique class of first best implementable sequencing problems.

22



REFERENCES

Clarke, E. H. (1971). “Multi-part Pricing of Public Goods,” Public Choice
11, 17-33.

Curiel, I., Pederzoli, G., and Tijs, S. (1989). “Sequencing Games,” European
Journal of Operational Research 40, 344-351.

Dolan, R. (1978). “Incentive Mechanisms for Priority Queueing Problems,”
The Bell Journal of Economics 9, 421-436.

Green, J., and Laffont, J. J. (1977). “Characterization of Satisfactory Mech-
anisms for the Revelation of Preferences for Public Goods,” FEconometrica
45, 427-438.

Green, J., and Laffont, J. J. (1979). Incentives in Public Decision Making.
North Holland Publication, Amsterdam.

Groves, T., (1973). “Incentives in Teams,” Econometrica 41, 617-631.

Groves, T., and Ledyard, J. O. (1977). “Some Limitations of Demand Re-
vealing Processes,” Public Choice 29, 107-124.

Holmstrom, B. (1979). “Groves’ Schemes on Restricted Domains,” Econo-
metrica 47, 1137-1144.

Hurwicz, L. (1975). “On the Existence of Allocation Systems Whose Manip-

ulative Nash Equilibria are Pareto Optimal,” mimeo University of Minnesota.

Hurwicz, L. , and Walker, M. (1990). “On the Generic Non-optimality of
Dominant Strategy Allocation Mechanisms: A General Theorem that in-

cludes Pure Exchange Economies,” Econometrica 58, 683-704.

Suijs, J. (1996). “On Incentive Compatibility and Budget Balancedness in
Public Decision Making,” Economic Design 2, 193-209.

Walker, M. (1980). “On the Non-Existence of Dominant Strategy Mecha-~
nisms for Making Optimal Public Decisions,” FEconometrica 48, 1521-1540.

23



