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16 Route de Gray, F-25030 Besançon Cedex FRANCE

Abstract

Let Q be the set of equivalent martingale measures for a given process S, and let X
be a process which is a local supermartingale with respect to any measure in Q. The
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1 Introduction

Let S be an Rd-valued right-continuous semimartingale given on a stochastic basis (Ω,F ,F =
(Ft), P ) with the usual assumptions. We denote by Q the set of all probability measures Q
such that Q ∼ P and S is a local martingale with respect to Q. For a predictable integrand
ϕ we denote by ϕ ·S a right-continuous version of the process defined by (ϕ ·S)t =

∫ t
0 ϕsdSs.

Theorem 1 Assume that Q �= ∅. Let X be a right-continuous process which is a local
supermartingale with respect to any Q ∈ Q. Then there exist an increasing right-continuous
adapted process C with C0 = 0 and a predictable integrand ϕ such that X = X0 +ϕ · S −C.

Note that the conclusion of the theorem can be reformulated as follows: There exists a
predictable process ϕ such that the difference X−ϕ ·S is a decreasing process. Note also that
if X is bounded from below, then ϕ is admissible in the sense that the stochastic integral
ϕ · S is bounded from below.

In contrast to the standard Doob–Meyer decomposition, the process C is in general not
predictable but only optional, and it is not uniquely determined. On the other hand, the
decomposition in Theorem 1 is “universal” in the sense that it holds simultaneously for any
probability measure Q ∈ Q.

The existence of such an “optional decomposition” was shown by El Karoui and Quenez
in [5] for a special class of models; see also [11] and the references given there. Kramkov
[12] proved existence of an optional decomposition in a general semimartingale context,
but under the assumptions that S is locally bounded and X ≥ 0. The aim of this note
is to prove the theorem in full generality, and to give an interpretation of the integrand
values as Lagrange multipliers for some optimization problem with constraints. We follow
a probabilistic approach in the spirit of [5] which uses methods of stochastic calculus rather
than functional analysis and exploits the specific structure of the set of local densities.

In [5] and [11], optional decompositions arise in the context of incomplete financial mar-
kets. There, the process S describes the discounted price fluctuation of some underlying
financial assets; note that our results remove previous assumptions of local boundedness
and thus permit the inclusion of models with unbounded jumps as they appear, e.g., in [4]
and [1]. The process X is given in terms of essential suprema of conditional expectations of
a given FT -measurable contingent claim H ≥ 0 over the class of all equivalent martingale
measures, i.e., X is a right-continuous version of the process defined by

Xt = ess.supQ∈QEQ[H|Ft].

It follows that X is a supermartingale with respect to any Q ∈ Q. The point of the optional
decomposition is to identify X as the value process of a “superhedging” strategy where the
integrand ϕ specifies the amounts invested in the underlying assets. This strategy induces a
perfect hedge XT = H, and it generates an increasing process C = X − ϕ · S of cumulative
side payments. Thus, the strategy always stays on the safe side. Such an approach to the
problem of hedging in incomplete markets may seem rather “extreme”. In fact, in various
incomplete market models such as the multinomial extension of the binomial model, the
superhedging strategy can be identified with the unique strategy of perfect replication in an
associated extremal complete model specified by some martingale measure Q which is no
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longer equivalent to the initial measure P . In models based on Lévy processes studied in
[4], the strategy of superhedging for a call option simply reduces to the trivial strategy of
just holding the underlying asset. Nevertheless, there are good reasons to investigate the
structure of superhedging strategies and of the corresponding optional decompositions, not
only from a mathematical but also from an applied financial point of view. For example,
superhedging strategies appear as building stones in the construction of strategies which
maximize the probability of a successful hedge XT ≥ H under some given constraint on the
initial portfolio value; see [7]. In [6] the technique of superhedging is applied to models where
volatility is stochastic but respects some a priori bounds. Further examples can be found
in [13]. For an application of the optional decomposition to the arbitrage pricing theory for
large financial markets see [9].

2 The discrete time version

In order to illustrate the basic idea of our construction we begin by proving the following
discrete time version of Theorem 1 which does not need advanced stochastic calculus:

Theorem 2 Let S = (Sn) be an adapted process with values in Rd on (Ω,F ,F = (Fn), P ),
0 ≤ n ≤ N . Let Q be the set of all probability measures equivalent to P such that S is a local
martingale with respect to Q and assume that Q �= ∅. Let X = (Xn) be a process which is
a local supermartingale with respect to any Q ∈ Q. Then there exist an increasing adapted
process C with C0 = 0 and a predictable process ϕ such that X = X0 + ϕ · S − C.

The structure of our proof is the following. We have to show the existence of a predictable
process ϕ such that ΔXn − ϕnΔSn ≤ 0 where ΔXn := Xn − Xn−1. It is easy to reduce
this problem to one period; details are given after Lemma 3. The one-stage problem is first
treated in the particular situation where the initial σ-algebra is trivial. In this case, the set
Q is given by all probability measures Q ∼ P such that EQ|η| < ∞, EQη = 0 for a given
Rd-valued random variable η (corresponding to ΔSn). For a given scalar random variable
ξ (corresponding to ΔXn), the supermartingale assumption means that EQξ ≤ 0 for all
Q ∈ Q . We need to show that there is a vector λ∗ ∈ Rd (corresponding to −ϕn) such that
ξ + λ∗η ≤ 0 a.s. In Lemma 1 we restate the problem in terms of the joint distribution of
(η, ξ) and show that λ∗ does exist and can be chosen from a set L of Lagrange multipliers
for an associated optimization problem. In Lemma 2 we consider the general case where
the initial σ-algebra is no longer trivial. In this case, the proof consists in combining the
construction of Lagrange multipliers with a measurable selection argument.

We shall use the notation m(f) for the integral
∫
fdm and π for the natural projection

of Rd+1 to the first d coordinates, i.e.

π(x) := (x1, . . . , xd)

for x = (x1, . . . , xd, xd+1) ∈ Rd+1.
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In view of measurable selection problems appearing in the proof of Lemma 2 it is conve-
nient to work with the Polish space C(R̄d+1) of all continuous real-valued functions on the
one-point compactification of Rd+1.

Lemma 1 Let m be a probability measure on Rd+1. Let G be the set of all functions g from
C(R̄d+1) with g > 0, m(g) = 1, m(|x|g) < ∞. Assume that G0 := G∩{g : m(πg) = 0} �= ∅
and m(xd+1g) ≤ 0 for all g ∈ G0. Then

(a) we have
inf

λ∈Rd
sup
g∈G

(m(xd+1g) + λm(πg)) = sup
g∈G0

m(xd+1g); (2.1)

(b) the set L of all λ∗ ∈ Rd such that

sup
g∈G

(m(xd+1g) + λ∗m(πg)) = inf
λ

sup
g∈G

(m(xd+1g) + λm(πg)) (2.2)

is nonempty;
(c) for any λ∗ ∈ L we have xd+1 + λ∗π(x) ≤ 0 m-a.s.

Proof. Let us consider the following optimization problem:

maximize f(g) := m(xd+1g) (2.3)

under the constraints
m(πg) = 0, (2.4)

g ∈ G. (2.5)

Let f ∗ be the optimal value; f ∗ ≤ 0 by the hypothesis. Following a well-known argument,
we show now that for this problem there exists a Lagrange multiplier λ∗ ∈ Rd removing the
equality constraint, i.e.

sup
g∈G

(m(xd+1g) + λ∗m(πg)) = f ∗. (2.6)

Without loss of generality we assume that the components of π(x) are linear independent
elements of L0(m); otherwise the problem can be reduced to a lower dimension. By our
assumption G0 �= ∅ there exists g0 ∈ G satisfying the constraint (2.4); for this g0 and any
λ ∈ Rd we have m(λπg0) = 0. Thus, if λπ ≤ 0 m-a.s. then λπ = 0 m-a.s. and hence, by
the assumed linear independence of the components of π, we have λ = 0.

Define the nonempty convex set

Ξ := {(y1, y2) ∈ R1 × Rd : y1 < m(xd+1g), y2 = m(πg) for some g ∈ G}.

The point (f ∗, 0) does not belong to Ξ. Hence, by the separation theorem there exists a
nonzero vector Λ = (λ1, λ2) ∈ Rd+1 such that

λ1y1 + λ2y2 ≤ λ1f
∗ (2.7)

for all (y1, y2) in the closure of Ξ. Since y1 can be a negative number with arbitrary large
absolute value, λ1 ≥ 0. If λ1 were equal to zero, then we would have that for all g ∈ G,
hence for all Borel functions g ≥ 0 with m(g) < ∞ and m(|x|g) < ∞,

m(λ2πg) = λ2m(πg) ≤ 0.

4



This means that λ2π ≤ 0 m-a.s. As we observed, this inequality holds only when λ2 = 0.
But Λ �= 0. Hence λ1 > 0.

Put λ∗ := λ2/λ1. The inequality (2.7) implies that

sup
g∈G

(m(xd+1g) + λ∗m(πg)) ≤ f ∗.

On the other hand, for any λ we have

sup
g∈G

(m(xd+1g) + λm(πg)) ≥ sup
g∈G,m(πg)=0

(m(xd+1g) + λm(πg)) = f ∗ (2.8)

and so we have shown (2.6).
We infer from (2.6) and (2.8) that λ∗ ∈ L and that (2.1) holds and this proves (a) and

(b). For λ∗ ∈ L it follows from (2.6) that m((xd+1 +λ∗π)g) ≤ 0 for all Borel functions g ≥ 0
with m(g) < ∞ and m(|π|g) < ∞; this property implies (c). �

Lemma 2 Let G be a sub-σ-algebra of F . Let ξ and η be random variables taking values
in R and Rd, respectively. Assume that E(ξz | G) ≤ 0 for all random variables z > 0 with
E(z|G) = 1, E(|ηz||G) < ∞, E(|ξz||G) < ∞, and E(ηz|G) = 0. Suppose that at least one
such z does exist. Then there exists a G-measurable d-dimensional random variable λ∗ such
that ξ + λ∗η ≤ 0 P -a.s.

Proof. Without loss of generality we assume that (Ω,F , P ) is a complete probability
space, that G contains all null sets from F , and that the random variables z appearing in
the assumption are σ{G, ξ, η}-measurable. Let m(ω, dx) be a regular conditional distribution
of the d + 1-dimensional random variable (η, ξ) with respect to G. Then the hypothesis of
the lemma can be formulated as follows:

for any strictly positive G ⊗ Bd+1-measurable function g on Ω × Rd+1 such that∫
g(ω, x)m(ω, dx) = 1, (2.9)

∫
|x|g(ω, x)m(ω, dx) < ∞ P -a.s., (2.10)∫
π(x)g(ω, x)m(ω, dx) = 0 P -a.s. (2.11)

we have ∫
xd+1g(ω, x)m(ω, dx) ≤ 0 P -a.s., (2.12)

and there exists at least one strictly positive function g0 satisfying (2.9) – (2.11).
To prove the lemma it is sufficient to find a G-measurable random variable λ∗ with values

in Rd such that xd+1 + λ∗π(x) ≤ 0 m(ω, dx)-a.s. for almost all ω. To this end let us show
that there exists a G-measurable set Γ with P (Γ) = 1 such that for any ω ∈ Γ we have the
following property:

for any strictly positive function g ∈ C(R̄d+1) such that

m(ω, g) :=
∫

g(x)m(ω, dx) = 1, (2.13)
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m(ω, |x|g) :=
∫

|x|g(x)m(ω, dx) < ∞, (2.14)

m(ω, πg) :=
∫

π(x)g(x)m(ω, dx) = 0 (2.15)

we have
m(ω, xd+1g) :=

∫
xd+1g(x)m(ω, dx) ≤ 0. (2.16)

Indeed, the set

B := {(ω, g) ∈ Ω × C(R̄d+1) : g > 0, (2.13) – (2.15) hold but (2.16) does not}

is G ⊗B(C(R̄d+1))-measurable. Denote by Γ the complement of the projection of B onto Ω.
By the measurable selection theorem, see, e.g., [3], III.44-45, B admits a measurable selector,
i.e. there exists a G-measurable mapping F : Ω → C(R̄d+1) such that (ω, F (ω)) ∈ B for all
ω ∈ Γc (recall that (Ω,G, P ) is assumed to be complete). Notice that the scalar function
F (ω, x) := F (ω)(x) being G-measurable in ω and continuous in x is G ⊗ Bd+1-measurable.
Put g̃(ω, x) := g0(ω, x) for ω ∈ Γ and g̃(ω, x) := F (ω, x) for ω ∈ Γc. If P (Γc) were not equal
to zero, the function g̃ would violate the assumption (2.9) – (2.12).

By our assumption, there exists a null set N ∈ G such that for all ω /∈ N there exists
a strictly positive Bd+1-measurable function, namely, g0(ω, .) such that the relations (2.13)
– (2.16) hold. But from Lemma 3 below it follows that for each such ω there is a function
g0
1(ω, .) ∈ C(R̄d+1) with the same properties. Thus, the hypotheses of Lemma 1 are satisfied

for m(ω, .) when ω /∈ N∪Γc. It follows that for any such ω there exists a Lagrange multiplier
λ∗ ∈ Rd from the nonempty set L(ω) defined as in (b) of Lemma 1. It remains to show
that one can choose representatives from the sets L(ω) in a measurable way. To this end we
notice that

Φ : (ω, g, λ) �→ m(ω, xd+1g) + λm(ω, πg)

is a G ⊗ B(C(R̄d+1)) ⊗ Bd+1-measurable function, and that the sets

ΔN := {(ω, g) ∈ Ω × C(R̄d+1) : g > 0, m(ω, g) = 1, m(ω, |x|g) ≤ N}

and
Δ := {(ω, g) ∈ Ω × C(R̄d+1) : g > 0, m(ω, g) = 1, m(ω, |x|g) < ∞}

belong to G ⊗ B(C(R̄d+1)); see [2], Lemma 2.5. Denote by GN(ω) and G(ω) the ω-sections
of ΔN and Δ. Put Φ̃N(ω, g, λ) := Φ(ω, g, λ) if (ω, g) ∈ ΔN and −∞ otherwise. Clearly, Φ̃N

is G ⊗ B(C(R̄d+1))-measurable. It follows that for any fixed λ the function

φN(ω, λ) := sup
g∈GN (ω)

Φ(ω, g, λ) = sup
g∈C(R̄d+1)

Φ̃N(ω, g, λ)

is G-measurable in ω; see, e.g., the proof of IV.33 in [3]. For any fixed ω, the function φN(ω, ·),
as a supremum of linear functions, is convex in λ and, being bounded, it is continuous in
this variable. Hence, φN is G ⊗ Bd-measurable. It follows that the function φ defined by
φ(ω, λ) := supg∈G(ω) Φ(ω, g, λ) has the same property. Thus, the set

{(ω, λ∗) : λ∗ ∈ L(ω)} = {(ω, λ∗) : φ(ω, λ∗) = inf
λ
φ(ω, λ)}
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belongs to G ⊗ Bd. We have shown that the projection of this set onto Ω has full measure.
Applying again the measurable selection theorem we obtain the existence of a G-measurable
selector λ∗(ω). �

Lemma 3 Let m be a probability measure on (Rn,Bn) and let g be a strictly positive Bn-
measurable function on Rn with m(g) = 1 and m(|x|g) < ∞. Then there exists a function
g1 ∈ C(R̄n) such that g1 > 0, m(g1) = 1, m(|x|g1) < ∞, and m(xg) = m(xg1).

Proof. Let a := m(xg). Set Ta(x) := x − a, ma := T−1
a m, and ga(x) := g(x + a). Since

ma(xga) = 0, the problem is reduced to the case a = 0. But the latter property means that
m̃(dx) := g(x)m(dx) is an equivalent martingale measure for the identity mapping, and the
existence of another equivalent martingale with density g1 ∈ C(R̄n) follows, e.g., from Th.
2.1 in [2]. �

Reduction to a one-stage problem. Any measure Q ∼ P has the form Q = ZNP where
ZN = z1z2 . . . zN where zn is a strictly positive Fn-measurable random variable such that
E(zn | Fn−1) = 1. In the discrete time the class of local martingales coincides with the
class of generalized martingales, see [14], Ch. 7. Hence, Q ∈ Q iff E(|ΔSn|zn | Fn−1) < ∞
and E(ΔSnzn | Fn−1) = 0. If the process X is a generalized Q-supermartingale then
E(Xnzn | Fn−1) ≤ Xn−1. After these remarks the result follows from the application of
Lemma 2 for each n (with G = Fn−1, ξ = ΔXn, η = ΔSn, and ϕn = −λ∗

n). �

3 Proof of Theorem 1

Let us consider the continuous time case. Without loss of generality we may assume that
P ∈ Q. Under P , the d + 1-dimensional process W := (S,X) is a special semimartingale.
Denoting by μ the jump measure of W and by ν the compensator of μ we can write the
canonical decomposition of W in the form

W = W0 + W c + x ∗ (μ− ν) + D (3.1)

where W c = (Sc, Xc) is a continuous local martingale with the covariance process C and
where D is a predictable process of locally bounded variation, see [8], II.2.38. Since S is
a local martingale and X is a local supermartingale under P , the first d components of D
vanish, and the last component has the form −U where U is a predictable increasing process
with U0 = 0. Thus, (3.1) can be rewritten as

S = S0 + Sc + π(x) ∗ (μ− ν), (3.2)

X = X0 + Xc + xd+1 ∗ (μ− ν) − U, (3.3)

where π is the projection of Rd+1 to the first d coordinates. Moreover,∫
π(x)ν({t}, dx) = 0,

∫
xd+1ν({t}, dx) = −ΔUt. (3.4)

and (|x|2 ∧ |x|) ∗ ν belongs to the set A+
loc of locally integrable increasing processes or,

equivalently, (|x|2 ∧ |x|) ∗ νt < ∞ for finite t, see [8], II.2.29.
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Notice that, in the notation of [8], the triplet of predictable characteristics of the semi-
martingale W is given by (B,C, ν) (with truncation function h(x) = xI|x|≤1) where B =
D − xI|x|>1 ∗ ν and ν, C,D are defined as above.

According to Proposition II.2.9 in [8] one can choose a “good” version of the character-
istics of W with respect to some predictable reference process A ∈ A+

loc, i.e., a version such
that U = u·A, Cij = cij ·A, ν(ω, dt, dx) = K(ω, t, dx)dAt(ω) where u is a predictable process,
c is a predictable process with values in the set of all non-negative symmetric (d+1)×(d+1)
matrices, and K(ω, t, dx) is a transition kernel from (Ω×R+,P) into (Rd+1,Bd+1) with the
properties II.2.11 in [8].

Now we describe the special properties which are induced by our assumptions on the
behavior of X under a measure P̃ ∈ Q. Let P denote the predictable σ-field on Ω×R+. Since
P̃ ∼ P , the general Girsanov theorem [8], III.3.24 in connection with [8], III.5.7 simplifies as
follows: There exists a predictable Rd+1-valued process β and a positive P⊗Bd+1-measurable
function Y = Y (ω, t, x) such that

H∞ := β′cβ · A∞ + (1 −
√
Y )2 ∗ ν∞+

+
∑
s≥0

(
√

1 − as −
√

1 − Ŷs)
2 < ∞,

{0 < a < 1} = {0 < Ŷ < 1}, {a = 1} = {Ŷ = 1} where

as := ν({s},Rd+1), Ŷs :=
∫

Y (s, x)ν({s}, dx),

and the triplet of predictable characteristics (B̃, C̃, ν̃) under P̃ has the form:

B̃ = B + cβ · A + xI{|x|≤1}(Y − 1) ∗ ν, (3.5)

C̃ = C, ν̃ = Y ν.

The integrals in (3.5) exist in the usual sense. Being a special semimartingale with respect
to P̃ , the process W admits the canonical decomposition

W = W0 + W̃ c + x ∗ (μ− Y ν) + D̃,

where (|x|2 ∧ |x|)Y ∗ νt < ∞ for finite t, and B̃ = D̃ − xI|x|>1Y ∗ ν.

Since S remains a local martingale with respect to P̃ , the first d components of D̃ vanish,
i.e.

d+1∑
j=1

cijβj · A + xi(Y − 1) ∗ ν = 0, i ≤ d. (3.6)

The condition that X remains a local supermartingale with respect to P̃ can be written in
the following way:

d+1∑
j=1

cd+1,jβj · A + xd+1(Y − 1) ∗ ν − U is a decreasing process. (3.7)
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The above relations make sense because for finite t we have

|cβ| · At < ∞, (3.8)

|x(Y − 1)| ∗ νt < ∞. (3.9)

In terms of “intensities” the conditions (3.6) and (3.7) take the form

d+1∑
j=1

cijt (ω)βj
t +

∫
xi(Y (ω, t, x) − 1)K(ω, t, dx) = 0, i ≤ d, (3.10)

d+1∑
j=1

cd+1,j
t (ω)βj

t +
∫

xd+1(Y (ω, t, x) − 1)K(ω, t, dx) ≤ ut (3.11)

P ⊗ A-a.e.
For a point (ω, t) ∈ {a = 0} we define the set Lω,t of all pairs (β, Y ) ∈ Rd+1 ×C+(R̄d+1)

such that∫
(|x|2 ∧ |x|)Y (x)K(ω, t, dx) < ∞,

∫
(
√
Y (x) − 1)2K(ω, t, dx) < ∞, (3.12)

and
d+1∑
j=1

cijt (ω)βj +
∫

xi(Y (x) − 1)K(ω, t, dx) = 0, i ≤ d; (3.13)

for (ω, t) ∈ {0 < a < 1} we include in the definition of Lω,t also the constraint

0 <
∫

Y (x)ν(ω, {t}, dx) < 1 (3.14)

while for (ω, t) ∈ {a = 1} we add the constraint∫
Y (x)ν(ω, {t}, dx) = 1. (3.15)

Lemma 4 There is a set Γ ∈ P with (P ⊗ A)(Γ̄) = 0 such that for (ω, t) ∈ Γ we have

d+1∑
j=1

cd+1,j
t (ω)βj +

∫
xd+1(Y (x) − 1)K(ω, t, dx) ≤ ut(ω) (3.16)

for all (β, Y ) ∈ Lω,t.

Proof. Without loss of generality we can assume that

1′c1 · A∞ + A∞ ≤ const

where 1 is the (column) vector with unit coordinates.
Let us consider in Ω × R+ × Rd+1 × C(R̄d+1) the subset

Δ :=
{
(ω, t, β, Y ) : |β| ≤ k1,

∫
(|x|2∧|x|)Y (x)K(ω, t, dx)+

∫
(
√
Y (x)−1)2K(ω, t, dx) ≤ k2,
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Y (x) > 0, (3.10) holds, (3.11) fails
}
∩ Δ1 ∩ Δ2

where

Δ1 :=

{
Ω × R+ × Rd+1 × C(R̄d+1), (ω, t) �∈ {0 < a < 1},
Ω × R+ × Rd+1 ×

{
Y : 0 <

∫
Y (x)ν(ω, {t}, dx) < 1

}
, (ω, t) ∈ {0 < a < 1},

Δ2 :=

{
Ω × R+ × Rd+1 × C(R̄d+1), (ω, t) �∈ {a = 1},
Ω × R+ × Rd+1 ×

{
Y :

∫
Y (x)ν(ω, {t}, dx) = 1

}
, (ω, t) ∈ {a = 1}.

Note that Δ is measurable with respect to the σ-algebra P̄ ⊗ Bd+1 ⊗ B(C(R̄d+1)) where P̄
is the completion of P with respect to P ⊗ A.

If the claim of the lemma is false then for some constants k1 and k2 the projection of Δ
onto Ω × R+ has a positive measure P ⊗A. Applying the measurable selection theorem as
in the proof of Lemma 2 we can construct a predictable process β and a positive P ⊗Bd+1-
measurable function Y such that the relation (3.11) is violated on a set of positive P ⊗ A-
measure and H∞ ≤ const. Theorem 12 in [10] (see also [8], Lemma III.5.30) implies that
there exists a probability measure with these parameters β and Y , and this is a contradiction.
�

Lemma 5 There exist a predictable process λ∗ with values in Rd and a set Γ ∈ P with
(P ⊗ A)(Γ̄) = 0 such that for all (ω, t) ∈ Γ we have

d+1∑
j=1

cd+1,j
t (ω)βj +

∫
xd+1(Y (x) − 1)K(ω, t, dx)+

+
d∑

i=1

λ∗i
( d+1∑

j=1

cijt (ω)βj +
∫

xi(Y (x) − 1)K(ω, t, dx)
)
≤ ut(ω) (3.17)

for any (β, Y ) ∈ Lω,t.

Proof. As in Lemma 1, we first show that for any (ω, t) such that the set Lω,t is nonempty
there exists a vector λ∗ depending on (ω, t) which is a Lagrange multiplier of the following
optimization problem:

maximize f(z) (3.18)

under the constraints
l(z) = 0, (3.19)

z ∈ G, (3.20)

where f and l denote the functions defined by the left-hand sides of (3.11) and (3.10), and
where we put G := {z = (β, Y ) ∈ Rd+1 × C(R̄d+1) : Y (x) > 0, (3.12) holds}. Let f ∗ be
the optimal value; f ∗ ≤ ut by (3.11). It is sufficient to consider only the case when the
components of l are linearly independent. Define the nonempty convex set

Ξ := {(y1, y2) : y1 < f(z), y2 = l(z) for some z ∈ G} ⊂ Rd+1.
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By the separation theorem there exists a nonzero vector Λ = (λ1, λ2) ∈ Rd+1 such that

λ1y1 + λ2y2 ≤ λ1f
∗ (3.21)

for all (y1, y2) from the closure of Ξ. Clearly, λ1 ≥ 0. The only problem is to show that λ1

is not equal to zero. Indeed, if λ1 = 0 then λ2l(z) ≤ 0 for all z ∈ Ξ. In particular, taking
z = (β, Y ) with β = 0 and arbitrary Y > 0 which satisfies (3.12) we have

d∑
i=1

λi
2

∫
xi(Y (x) − 1)K(ω, t, dx) ≤ 0. (3.22)

Suppose that (ω, t) ∈ {a = 0}. There is a Bd+1-measurable function ε(x) with values in
]0, 1[ such that the functions Y (x) = 1 ± ε(x) satisfy (3.12); hence the same holds for all
functions Y (x) = 1 + α(x)ε(x) where α ≥ −1 and bounded. This implies the identity

d∑
i=1

λi
2x

i = 0 K(ω, t, .) − a.e. (3.23)

It follows that λ2l(z) = 0 for all z ∈ G, the situation which we excluded.
If (ω, t) is in {0 < a < 1} or in {a = 1} we need to include the additional constraint.

Now the measure K(ω, t, .) is finite and by (3.4) the relation (3.22) has the form

d∑
i=1

λi
2

∫
xiY (x)K(ω, t, dx) ≤ 0. (3.24)

As in Lemma 1 we get that
∑

λi
2x

i = 0 (a.e. with respect to K(ω, t, .)) and again λ2l(z) ≤ 0
for all z ∈ G which is impossible. Hence, a Lagrange multiplier exists if Lω,t is nonempty.

Making use of Lemma 3 we conclude that the set of the Lagrange multipliers is nonempty
for P ⊗A-almost all (ω, t). Taking a measurable (predictable) selector we get the result. �

Now we easily accomplish the proof of Theorem 1. For the sake of clarity we first consider
the case d = 1. By Lemma 5 there exists a scalar predictable process λ∗ such that

c21
t β1 + c22

t β2 + λ∗
t (c

11
t β1 + c12

t β2) +
∫

[x2(Y − 1) + λ∗
tx

1(Y (x) − 1)]K(t, dx) ≤ ut,

or

(c21
t + λ∗

t c
11
t )β1 + (c22

t + λ∗
t c

12
t )β2 +

∫
[(x2 + λ∗

tx
1)Y (x) − (x2 + λ∗

tx
1)]K(t, dx) ≤ ut

where β1, β2 are arbitrary numbers, Y is any positive function which satisfies the integrability
conditions. It follows that

c21
t + λ∗

t c
11
t = 0, c22

t + λ∗
t c

12
t = 0, (3.25)

x2 + λ∗
tx

1 ≤ 0, −
∫

(x2 + λ∗
tx

1)K(t, dx) ≤ ut. (3.26)

From the Galchouk–Kunita–Watanabe decomposition we have that Xc = g · Sc + N c

where g = c12(c11)⊕ (⊕ denotes the pseudoinverse) and N c is a continuous local martingale
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with 〈N c, Sc〉 = 0. Considering densities of the form E(v · N c) with bounded predictable
integrands v where E denotes the Doléans exponential, it follows as in the proof of the
optional decomposition in [5] that N c = 0. Thus, X can be written as follows:

X = X0 + (−λ∗) · S + (x2 + λ∗x1) ∗ (μ− ν) − U. (3.27)

It follows from (3.26) that (x2 + λ∗x1) ∗ (μ − ν) is a process of locally bounded variation
which is dominated by U . Hence, (3.27) is the optional decomposition in the scalar case.

Let us now consider the general case with arbitrary d ≥ 1. There exists a predictable
process λ∗ with values in Rd such that the relation (3.16) holds, and so we have

d+1∑
j=1

(
cd+1,j
t +

d∑
i=1

λ∗i
t c

ij
t

)
βj +

∫ [(
xd+1 +

d∑
i=1

λ∗i
t x

i
)
Y (x) −

(
xd+1 +

d∑
i=1

λ∗i
t x

i
)]
K(t, dx) ≤ ut.

As above it follows that

cd+1,j
t +

d∑
i=1

λ∗i
t c

ij
t = 0, i ≤ d, (3.28)

xd+1 +
d∑

i=1

λ∗i
t x

i ≤ 0, −
∫ (

xd+1 +
d∑

i=1

λ∗i
t x

i
)
K(t, dx) ≤ ut. (3.29)

The Galchouk–Kunita–Watanabe decomposition of Xc with respect to Sc has again the form
Xc = g · Sc where g is a predictable process such that

cd+1,j −
d∑

i=1

gicij = 0, i ≤ d; (3.30)

as an integrand in this decomposition, we can take any predictable function satisfying (3.28).
The resulting representation

X = X0 + (−λ∗) · S + (xd+1 + λ∗π(x)) ∗ (μ− ν) − U (3.31)

is the desired optional decomposition. �
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