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WILD BOOTSTRAP VERSUS MOMENT-ORIENTED
BOOTSTRAP.

Volker Sommerfeld*

September 10, 1997

Abstract

We investigate the relative merits of a “moment-oriented” bootstrap method of Bunke
(1997) in comparison with the classical wild bootstrap of Wu (1986) in nonparametric het-
eroscedastic regression situations. The “moment-oriented” bootstrap is a wild bootstrap based
on local estimators of higher order error moments that are smoothed by kernel smoothers. In
this paper we perform an asymptotic comparison of these two different bootstrap procedures.
We show that the moment-oriented bootstrap is in no case worse than the wild bootstrap.
We consider the cases of bandwidths with MISE-optimal rates and of bandwidths with rates
that perform an optimal bootstrap approximation. When the regression function has the same
amount of smoothness as the second and the third order error moment, then it turns out that,
in the former case, our method better approximates the distribution of the pivotal statistic
than the usual wild bootstrap does. The reason for this behavior is the unavoidable bias in
nonparametric regression estimation that permits only a suboptimal amount of smoothing in
the classical wild bootstrap case. In the latter case we need more smoothness of the error mo-
ments to make the moment-oriented bootstrap better than wild bootstrap. These results are
applied to the construction of pointwise confidence intervals where we prove that our bootstrap
has a superior behavior for equal smoothness of the regression function and error moments.

1 Introduction

We consider the nonparametric regression model
Yi=m(a)+e, 1<i<n, (1.1)

with heteroskedastic errors ¢;. Throughout this paper we assume

(A1) a (fixed) equidistant design 2y < --- < x,, on the interval [0, 1] and finite error
moments po(x;), gs(x;),. .. of any order.

Note that all what follows holds also true for a non equidistant but regular design
in the sense of Sacks and Ylvisaker (1970). They assumed that the design {;} is
generated by a design density f, that is

/lf(x)dx:: i=1,...,n,
0

n—1’
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where f € Lip([0,1]) is positive on [0, 1]. Obviously, this implies that mazq<i<,(2;—
z;_1) = O(n™'). The assumption of equidistance is only made for a simpler notation.
For sequences A,, and B,, we write A, < B, if A,, = B,(C +o(1)) for some constant
(' and A, ~ B, if additionally C' = 1.

We assume that

(A2) m is (k+s)-times continously differentiable, &, s > 2, and

(A3) p and pg3 are r-times continously differentiable, r > 2.

Furthermore, we denote by K;, j = 2,3,..., a kernel of order j with compact
support. Without loss of generality , we assume supp(K;) = [—1,1]. Then,

(o) = zzzlvhh(woadh)iﬁ (1.2)
=1

is a Gasser-Miiller kernel estimator of the regression function at a fixed point zg
with weights given by

1 [ To— U
W (Lo, ) 1= %/SH K, ( Oh ) du

where s; := (2; — x,-1)/2.

The pivotal quantities considered here are derived from the quantity
(o) — m(xo)
V172

where V,, = V,,(20) = > 1, wéh(:po, x;)pi2(x;) is the variance of my(x0). To obtain an
observable quantity we have to replace the unknown variance V,, by an appropriate
estimate.

Sn = Sn,h =

(1.3)

That is, we have to estimate the error variance py(x;). In this paper, this will be
done in two ways. At first, we consider an estimator

fraa(es) = & (1.4)

which is based on unsmoothed residuals ¢; = Y; — m(z;). On the other hand, we
could assume that the error variance is smooth. In this case we estimate it by
smoothed local estimators. That is, we have the estimator

fiz p(i) := Z ESWERERIZIES (1.5)

with the local estimators

. Vi =Y )
o) = =iz (16)
That gives the pivotal statistics
Ty = Ty 1= L0 Z000) (L.7)

o 1/2
Vi
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where

Vl,n : Zwkh o, Ti)fiz,1 (i)

Z wi (o, )¢} (1.8)
=1

and

VM = Zwkh (zo, xi)fr2,2(s)

= Z wkh Lo, L wT/\2($“$]),uQ($]) (19)

1,5=1

are the corresponding estimates of V,, based on an unsmoothed and smoothed esti-
mators of the error variance, respectively.

Then, we approximate the distributions of the pivotal statistics T, ,,, v = 1,2 by
the corresponding distributions of the bootstrapped statistics

* * mz*(xo) B mg(l'o)
v = Lo hgrs = <A 1/2 (1.10)
V)

where

_Zwkhxov )iy, (i) (1.11)

are the bootstrap counterparts of Vl,m. In what follows, we will choose the bootstrap
bandwidth h, as h, = h. Note that we could also select h, according to the bootstrap
sample Y7*, ..., Y *. This would be a more natural but also more computer intensive
procedure. The assertions of this paper are easily generalized to the latter case. The
bandwidth ¢ will be specified later.

We remark that the bootstrap estimates fi5 () (v = 1,2) are obtained by the
following procedures. The unsmoothed estimator

iz ()" = (&) (1.12)
is based on the classical “wild bootstrap” of Wu (1986) (see also Hardle & Mam-

men, 1993, for its application to nonparametric regression) whereas the smoothed
estimator

fiz2(x wa\z (2, 25)ji5(x;) (1.13)

is based on a moment-oriented variant of wild bootstrap (see Bunke, 1997). More
precisely, these bootstrap procedures are defined as follows.

e We denote by F; the (unknown) distribution of the error ¢;, ¢ = 1,...,n. We
approximate F; by a bootstrap distribution F},; which has



— the first three central moments 0, é# and & (wild bootstrap) or

— the first four central moments 0, f2(a;), fis(x;) and fi4(x;) (moment-orinted
bootstrap). Here, the estimators fi;2(x;), j < 4, are local estimators fi;
which are smoothed by a Gasser-Miller kernel smoother with kernel of
order r and bandwidth A;, 7 =2,3,4.

e Bootstrap observations are given by independent random variables (condition-
ally under the observations 1.1) Y;* = m,(x;) 4+ € with € ~ F, ;.

o A bootstrap estimator 7 of 7, is obtained by a kernel smoothing of the
bootstrap observations Y;* with bandwidth h..

Thereby, we define the local estimators of the error moments as follows.

e ERROR VARIANCE:

fia(x;) = %(K —Yiq)?
o THIRD ERROR MOMENT:
fis(s) = (2Y; = Vit = Vi
o FOURTH ERROR MOMENT:
falee) = 52V = Vit = Yiga)* — S(Viga o Y = Vigy = V)

In order to deal correctly with the bias of 1 (2¢) and its bootstrap counterpart,
the bandwidth ¢ has to be choosen as explained in the following. We denote by P.
the distribution of Y;* (: = 1,...,n) conditional under the observations Yi,...,Y,.
Furthermore, we denote the expectation with respect to P, conditional on the ob-
servations Yi,...,Y, by F.. Then we get from Gasser & Miiller (1979), appendix 1,
that

X . hE . _
E.ang (x9) — 1hg(xg) — (—l)kymgk)(xo) / uk[&k(u) du| = Op(n 1) + 0p(hf).

Hence, we should make sure that

8 (o) — m®(o)| = op(1)

in order to achieve the same asymptotic bias for the statistic T,, and their boot-
strapped counterpart, respectively. In order to do that, for constants v and n with
n > v+ 2 we denote by K,y the v-th derivative of ordinary (1 — v)-th order kernel
K,_,. Then, according to Gasser & Miiller (1984), the kernel K, ) satisfies

r 4 0, 7=0,....v—1Lv+1,...,n—1
/ Ky, () du=<¢ (=1)vl, j=v (1.14)
7 g, J=n



We estimate m®*) by

n

Thgk)(l'o) = Zw(k+s,k),g(x07xi)m(xi) (115)

=1

with

[ Tog— U
w(k+57k)7g(:1;0,:1;i) = ;/ [X(k_|_575) ( Og ) du. (116)

Then, according to Gasser & Miiller (1984) the variance of mgk)(xo) is of order

O(n~'g~(3+1)) 5o that ¢ has to tend slower to zero than n='/(**1) {0 ensure the

(%)

consistency of my ' (x¢). For example, we could use the optimal bandwidth ¢ for
the estimator mgk)(xo) of m(k)(:zjo) which is of order g < n=V/Rk+s)+1) 5 =1/ (2k+1)
That is, we assume

(A4) h/g— 0, h./g — 0 and h,g,\; — 0, nh,ng,nA; — oo for ¢ = 2,3, 4.

In this paper we aim at compare the (asymptotic) behavior of these two bootstrap
approximations. We make the following additional assumptions:

(A5) Ky, K(jqsp and K, are k-, (k+s)- and 1-times continously differentiable.
(A6) us(t) € Lipi([0,1]) for s =1,...,6.

In this paper it will be shown that for A > Ay < A3 or h < Ay < A3 the wild
bootstrap and tha moment-oriented bootstrap have the same rate of convergence.
Therefore we assume h < Ay < A3 in order to investigate the cases when the
moment-oriented bootstrap performs better. For A < Ay < A3 we will partly analyze
the corresponding constants.

Furthermore, as we indicated earlier, we assume for the bootstrap bandwidth h.
that h, = h. Yet, it is easily seen that all calculations can be performed for any

bootstrap bandwidth k. with (k. — h)/h = Op(n_é) for some 6 > 0.

This paper is organized as follows. In section 2 we derive Edgeworth expansions
of the pivotal statistics T,,,, (v = 1,2) and their bootstrap counterparts. We show
that these approximations of the Edgeworth series by the bootstrapped ones de-
pend mainly on the variance differences |V, ,, — V,,,|. In section 3 we consider the
convergence of the two bootstrap estimates VWL (v = 1,2) of the variance of the
regression function and calculate rates of convergence. Putting together the results
of the sections 2 and 3, we give in section 4 rates of convergence of the Edgeworth
expansions to their bootstrapped versions. In section 5, the results of section 4 are
applied to bootstrap confidence intervals. The main results are stated in sections 4
and 5. Section 6 deals with some discussion of the obtained results. In section 7 we
give the proofs and in section 8 we prove some technical lemmas.



2 Edgeworth expansions

Recall that we intend to construct confidence intervals for m(xg). In order to do
that, we consider the pivotal statistics 7}, which are defined in 1.7. According to

lemma 3.1 of Sommerfeld (1997) the bias corrected statistic 7T, — bn/an/2 converges
in distribution to the standard normal distribution.

We have different possibilities to deal with the unknown bias term bn/an/2 which
is of order O(R*(nh)'/?). At first, we could undersmooth. That is, we choose the
bandwidth h < n="/@¥1) gmaller than the optimal one in order to ensure that the
bias term asymptotically vanishes: bn/an/2 = o(1). Another possibility is to correct
T, by an estimator l;n/f/l,l/f of bn/an/Z. This leads to a remaining bias which is of
higher order. To be more precise, we denote the remaining bias after correction by
?)n = E?)n — b,. Then it follows immediately from 8.50 and 8.54 that

b, = O(h*g*) < b, = O(h¥) (2.1)

A third method that is investigated in this paper consists in performing the bias
correction implicitely by the bootstrap as follows. Note that the bootstrap pivots

T:n—?)n/f/nl/z (v = 1,2) converge in distribution to the standard normal distribution.
Hence, we have the asymptotic equivalence

b b, _ b.—b,
an/2 o Vn1/2 - Vn1/2

P(T,, < t)— P(T, < 1) =

v,n —

where b, — ?)n < an/Z.

In this paper we consider the following two choices of the initial bandwidth A. At
first, we can choose h < n=Y/ 1) with the MISE-optimal rate in order to perform
later a data-driven selection of k. On the other hand, Neumann (1997) proved that
for optimal rates of the coverage probability of bootstrap confidence intervals we
have to choose some h < n~"/ %+ that is we undersmooth.

The derivation of Edgeworth series for these two choices of & is different because
in the first case we have to consider a bias corrected version of T}, ,, whereas in the
latter case we can derive the expansion for 7, , directly. Therefore we treat these
two cases separately.

2.1 MISE-optimal bandwidth &

In this subsection we consider Edgeworth expansions for the bias corrected statistic

Tu,nc = Ty,n - bn/‘/ylﬂéz where

Viw o= 3wl (w0, i )puale) (2.2)
0]

and

Vi 1= > wf (w0, 2wy, (26, 25)pia (). (2.3)
i
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We assume (A1) to (A6) and additionally
(A7) All error moments () are continous on the interval [0, 1]

and the Cramér type condition (see Neumann, 1997)

(A8) max; supyss [ I exp {zt’(i;)}‘ < Cy <1 forall b>0.

Note that (Al) and (A7) imply that all moments of the ¢;’s are uniformly bounded.
Then the following Edgeworth expansions hold true:

Lemma 2.1 Assuming (A1) to (A8) we have for arbitrarily small v > 0

22 + 1
P(Tipe <1) = ®(t)+ pus é(t)
1 b, _
+§Eyy%ﬂ¢a»+0«nM‘Hw (2.4)
with .
prs = pua(wo) = Vi w (w0, i)pa(as) = O((nh)™72), (2.5)
=1

Furthermore, it holds true that

12 imy win(wo, wi)pa(i)

P(Tope < 1) = ®(1)+ 5 T o(1)
1 b, o dy(To, T ;
_|_§ 1/2 22_1 (xg/;; )Iu'?)(x )t¢(t)
Von Vi
(ZL wi (o, wi)pa(xi) | 33T dn(wo, xi)pa(wi)
- 3/2 +5 3/2
Vo 2 Vo

0‘32Z>>ﬂ§1aw+0wmer (2.6)

with

do(wo, i) = wip(wo, 1) D wiy(wo, 2w, (2, @) = O((nh) > (nAs) ™) (2.7)

i=1

for h < Ay and
du(o, 1) = O((nh)).

for h > Xy or h < As.

For the corresponding bootstrap pivot the following lemma holds.



Lemma 2.2 We assume (A1) to (A8). Then

AT <) = 00+ pa Lo
s bt 6(1) + Op((nh) ™) (28)
2712

where B
pus = Vil Y wid (o, i) fisa (), (2.9)

=1
bo =Y Wi (w0, 2i)1i () — 1ing(o) (2.10)

=1

and ji31(x;) = €. Furthermore, it holds true that

132 wi (o, wi)paa(w:)

PATS,, <1) = &)+~ o(t)

2,nc 9 ‘723/2
1 ?)n Yo do(wo, @) iz 22y
§A1/2 =1 (A03/2) 32( )t¢(t)
Vo Vo
E?:l wi,h(xov l’i),&&z(l'i) 3 E?:l dn($07 xi);&?)a(l'i)
B V3/2 + 9 V3/2
2,n 2.n
Via ) Y121
13l ) ) L o(1) + O(nh) ™) (2.11)
2.n

where the estimator fisz(x;) is defined in the introduction.

Now we can substract the equations 2.4 and 2.6 from the corresponding boot-
strapped ones in lemma 2.2. This gives the following upper bounds for the bootstrap
approximation of the distribution of the pivot statistics 7, ,,.

Lemma 2.3 We assume (A1) to (A8). Then
|‘A/1/,n - ‘/1/,71|

Vil
+0p((h*g*(nh)'* + (h/g)+/?)
+O0((nh)™). (2.12)

1
\P(T;, <t)—=P(T,, <t)] < §|bn|

2.2 Undersmoothing case

When we choose h < n~"/Z¥1) then we have the following counterparts of the
lemmas 2.1 and 2.2.



Lemma 2.4 Assuming (A1) to (A8) and h < n= YY) we have for arbitrarily
small v >0

P(Tyy <1) = B{0)+ =20(1) + g o)
L b »
+§an3t¢(t) + O((nh) ™) (2.13)

and

P(To, <1) = ®(1)+_n ¢(t>+12?=1w2”%($0’”)” S(x")qs(t)

V! 2 Vil
1 b, ?_ dp(xg, z;)ps(x;
5 1/22_1 ( 2/2 ) 3( )t¢(t)
Vo Vin
D oimq i (o, wi)ps(xs) 330 du(wo, wi)ps(a)
o 3/2 35 3/2
Vi 2 Vi

0‘32Z>>ﬁ§1aw+owmr“w (2.1)

Lemma 2.5 We assume (A1) to (A8) and h < n~ V) Thep

. b, o241
PI7, <t) = O(1)+ WQW) + PnBTQW)
1,n
by

1
+§ Vn1/2

pusté(t) + Op((nh) ™) (2.15)

bn 1 7?— w3 Lo, g 3 Xy
P*(Tz*,n <t) = q)(t)_|_ qb(t)—|——22_1 k,h( 0 ),U3,2( )

A7
_I_l n ?:1 dn(x()’xi)ﬂB’Q(xi)tqb(t)

9 ‘721 2 ‘723/2
_ l ?:1 wi,h(xoawi)ﬂ3,2($i) n §Z?:1 dn(l'oyfl?i)ﬂ:a,z(fl?i)

2 Vil 2 Vil
Vin) Y12 -1
(1 -3 Al’ ) ) 6 ¢(t) + O((nh)_l-m) (2.16)
2.n

The proofs of the first parts of these lemmas are given in Neumann (1997), the
proofs of the second parts are similarly to that given in lemma 2.1 and lemma 2.2.

Finally, with the calculations of the preceeding subsection it follows that relation
2.12 holds also true in the undersmoothing case.

In the following section we investigate the asymptotic behavior of the differences

Vi — Vioul, v =1,2.



3 Asymptotic behavior of the bootstrap estimates of the
variances V,,, v = 1,2

In this section we calculate the asymptotic MSE of the bootstrap variance estimators

A~

Vim, v=12.

3.1 Wild bootstrap

We assume (A1) and (A3) to (A5). Then

n 2
B, - ) = E (z w2 (o2 — wm)
=1

~ Z wéh(l‘o, ) Eled — palx:)])? (3.1)
— Z wi (o, ) [palas) — p3(as)]

~ (b)) = i) [ K (3.2)
— O((nh)?) (33)

where 3.1 follows from lemma 8.1 (i) and 3.2 follows from lemma 8.2.

3.2 Moment-oriented bootstrap

We define vy(x;) := Varps(x;). We assume (Al) to (A6). Then, by lemma 8.3 it

follows that

A

E(‘/Q,n - ‘/Q,n)2

E (Z wi (o, @)wn s, (2, 25) [fra(f) — Mﬂ%‘)])

1,5=1

n
D wd(wo, 2wy (w0, 2 )we, (26, 20w, 0, (5, 25)
7,7,k 0[=1

x Eljia(2r) — po()][fia(r) — pa(zy)]

> wp (wo wiw] (o, ) we (20, 2w, (2, 78)

volar) [T S x— g
X [3 o /_T [XT(Z)[XT< " —|—Z> dz

., <(_1)T)\TQ!TN(2T)(xk)/ZT[(T(Z) dZ) <(_1)TA:!TM2T>(J;,)/ZTKT(z) dz)]

10



Now, by lemma 8.2 and change in the integration variables we derive

ZwM? :1;2,:1;1/ K, (2)K, (xl;xk—l-z:) dz

— 2

~ / / K, (2)K, ( ) dz K., (xl_u> du
A

i/ M — Xy —
~ / / K,( [T< )\2 wk—l—z) K, (t)dzdt
(l"—l /AQ 2
1
1

z/Al [
~ / / K, (xZ Tk —t—l—z) K, (t)dzdt
(zi=1)/ Ao J = )‘2
i/ 1
/( )/A2/—
11 v — 2
/ / K,(2)K, ( + q) K,(q)dzdq
—1J-=1 )\2
1
-1

~ / K, (x - Tk q> K,(q)dq. (3.5)
2

Thus, treating x; analogeously, we obtain

K,
,

(2)
K, (z)K (:1; ; T + q) K,(q)dzdq

2

Z wkh To, T; )Wy h(fl?Oa%)

7,7=1

va(a) [T e (T
X [3 W /_T [XT(Z)[XT< n —|—Z> dz

(e [ R ) (e [ d>]

=: As. (3.6)

On the other hand, from Miiller & Stadtmiiller (1987a), lemma 2.1, it follows that
vo(w;) = Varfis(;) < 5 (pa(ei) + py(2:)) - (3.7)

it holds that

= [\Dl»—\

Furthermore, because of supp(K,) = [—1,

K, (x;xf + z> =0 if o — 2] > s (3.8)
2

We denote 7, := {t]|x; — ;] < Ay} and remark that #7;,, = O(n)z). Then, for
A2 > h, it follows from 3.7, 3.8 and lemma 8.2 (analogeously to the calculations
above) that

Z Z wkh Lo, X wkh(%ax])

J=1 1€ Ao

11



» [3# | KK, (; ; ) iz

(o) [ rae) (ol e [om d)]
~ () (wz)-l ([ dz)2

x (g[m(xo) + #3(wo)] / K2(z)dz= + (A:fné%o) / 2K, (2) d)) )39)

= O((nh)7*((nA2) ™" + A7) (3.10)
Analogeously, we deduce for Ay < h or Ay < h that

A~ (nh)—2<(nh)—1 ( / K,f(z)dz>2
x (;M +an)] [ K2:)d (A:!Tué”(xo) K 93)1

= O((nh)2((nh)™' 4+ AZ")). (3.12)

From 3.12 we see that the moment-oriented bootstrap can always achieve the same
rate of convergence as the wild bootstrap, namely by choosing Ay < h small enough.
Yet, by 3.10 it follows that, if the error variance is smooth enough, the moment-
oriented bootstrap get a better rate for Ay < n=/*+1) > h. In what follows we
will restrict our attetion to this case, that is we assume Ay > h. Furthermore, recall
that all calculations for the moment-oriented bootstrap are carried out under the
assumption nAy — oo. Therefore they can’t generalized to the (unsmoothed) case
A2 = 0 which is separately treated in the wild bootstrap subsection.

3.3 Local variance estimators based on second order differences

An alternative local estimator of the error variance (which has to be smoothed in a
second step) could be defined by second order differences:

i 2Y; — Vig + Yie1)?
ol o= 2V o V) (3.13)

For the asymptotic variance of this estimator we get by Miiller & Stadtmiiller
(1987a), lemma 2.1 the same value as for the above defined first-order one, namely

i) = Vargia(e:) = 5 (ua(e) + 1)

Therefore, we follow by lemma 8.3 and lemma 8.2 analogeously to 3.10 that for
Ay > h

n

E(Vay = Vau)® ~ > wh (o, 2w} (w0, ,)wp , (2, 20w, 0, (25, 71)

1,7k, 0=1

12



XFE%EJ/BXQK;<m;xk+%>&
+Q—m%§@qu/foaw)1

~ () (wz)-l ([ dz)2
x(amuw+@wm/Kﬂaw+(ﬁ%?ww/meawf))

= O((nh)2((nAy)™" 4+ A3")) (3.14)

3.4 Smoothed wild bootstrap

A third possibility is to smooth the classical wild bootstrap. First, note that
Ty(z;) = Varé: = puy(x;) + pa(x;). (3.15)

Therefore, we deduce by 3.15, lemma 8.1, lemma 8.3 and lemma 8.2 that, analo-
geously to 3.10, it holds for Ay > h that

2
n
E(Vop = Vau)* = E'(j{:1ﬂ2ﬁ($07$0U%A2C%a$j)kf-—Am(wjﬂ)
7,7=1
n
= > wi(wo, wiw} (w0, @i )we (i, w)we, (25, 2k)
i ki=1

X E[& — pa(a))][6 — pa(zr)]

n

~ YW} (o wwp (o, w )W, (i 2w, (25, 1)
7,7,k 0[=1

x Elef — pa(ar)][ef — pa(xy)]

n

= Y wi(wo, w)wi (w0, w)we s, (w0, 2w, (2, 2k)
7,7,k=1

x Eleg — pa(p)]*

~ (nh)~? ((m?)—l ( / K2(2) dz>2
x (wo) + o)) [ K:) d 4 (%@%o) [#5) dz) ))

= O((nh)7*((nAg)™" 4+ A3)). (3.16)
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3.5 Comparison of constants

By 3.2, 3.11, 3.14 and 3.16 the constants are interesting in the case k = r and MISE-
optimal bandwidths. For example, for £ = r = 2 and the Epanechnikov kernel we

derive
/ xk_/] —3/5/ K* = 9/35,
1 2 1 1
(/ K,f) / Kf = 27/125 = 0.216 < / K,f =9/35 = 0.257.
-1 -1 -1

For k = r = 4 and the Quartic kernel we derive

/ &k_/ K?=5/T, / K} =1125/2431 = 0.463,
1 2 1

(/ K,f) / 1(3:125/329:0.380§/ K} = 0.463.
-1 -1 -1

Hence, the constant for the smoothed wild bootstrap is better (in the variance
part) whereas the constants of the moment-oriented procedures are worse than the
constants in the wild bootstrap case. Yet, in all cases except the wild bootstrap case
we have an additional positive bias that depend on the r-th derivative of the error
variance.

therefore

therefore

4 Rates of convergence for the two bootstrap distributions

According to 3.3, 3.10 and lemma 2.3, we have the following asymptotic rates of the
two different bootstrap approximations.

Theorem 4.1 We assume (A1) to (A8). Then, for v =1,2,

|PATS, < 1) = P(Ty < 0] < Aua + Op((B*g°(nh) + ([ g)* V%) + O((nh) 7).
(4.1)
where, for h < Ay < Az,

Ay = Op(hk) (wild bootstrap) (4.2)
and

Mot = Op(BH(ah)P((ha) ™ 4 A2
‘|‘(nh)—1/2(((n)\2)—1 ‘|‘)\§T)1/2‘|‘ ((n)\?))—l ‘|‘)\;2gT)1/2)) (43)

(moment-oriented bootstrap). Furthermore, for h >> Xy < A3 or h < Ay X A3 we
have Al,nl == A2,n1 == Op(hk)

14



We will investigate this theorem for two different bandwidth choices. First, we can
select the bandwidths with MISE-optimal rates. That is, we choose h =< n~1/(2F+1)
g =< =/ CEEIY) and Ay < Ay < n~ Y@ D Then Ay, < n~ @+ and A, =
n~"/(2+1) (the second and third term of 4.3 are of higher order), hence

|P*(T1*7n < t) — P(Tl,n < t)| — Op (TL—# —|— n_m

1 1 N\k+1/2 2k
_|_<n h+1 /n 2(k+5)+1> 4+ n 24T

k s 2k
= OP <n_m + n 2kt | n_m>

o (n—zk’ll + n‘W) (4.4)
and
(P15, < 1) = P(Ty, < 1) = Op (n™7 4”755 4 734
— Oy (n——+ + mw) . (1.5)

because of n=s/Rk+s)+1) 5 p=26/26+1) for ¢ > (). TLet us first consider 4.4. For
fixed smoothness [ := k + s of the regression function m(e), the first term of 4.4 is
monotonically decreasing in k whereas the second one is monotonically decreasing
in s. Hence, we have to weight these two terms in order to get the best possible rate
of convergence for |P.(Ty, <t)— P(T\, <t)|. Now,

n_#:n_m RN k = 5
2k+1  2(k+s)+1
& s =k(2k+1). (4.6)
Hence,
l=k+s=k+kRk+1) & k¥ +k—-1=0 (4.7)

for which k = /1 4+ 1/2 —1 is the positive solution. From 4.4, 4.6 and 4.7 it follows
that
min | P17, < 1) = P(Ti,0 < 1) = Op <n——+> (4.8)

where k= /1 +1/2 -1 and s = k(2k + 1).

Let us now consider 4.5. Weighting the two terms of the right side of 4.5 we get

T — s T S
T — p TRFOTI —
nmEn < r+1 2(k+s)+1
& s=r2k+1). (4.9)
For this value of s it follows from 4.5 that
min |P.(T5, < 1) = P(Ty,, < )] = Op <n——+> . (4.10)

15



Summing up 4.5 to 4.10 we conclude that the moment-oriented bootstrap gives a
better rate of convergence if n="/(+1) « =k (2k+1) that is if

k=v14+12-1<rel<2r(r+2).

This holds especially true if the regression function and the error variance have the
same amount of smoothness (that is 1=r).

Second, we can choose the bandwidths &, g, Ay, A3 such that the rates of conver-
gence in theorem 4.1 are as fast as possible. To begin this, we weight the two terms
containing the bandwidth g because they are monotonically inreasing and decreasing
in g, respectively. Doing this, we have

(nh)!2hFg =< (hfg)+'/? & g = n~2wew (4.11)
For this value of g we get from theorem 4.1

\PAT;, <t)— P(Ty, <t)] = Op (hk + B T (k)2 4 (nh)—1>

2k+1 1/2
Op (hk (1 + <hn2(k+t)+1> ) + (nh)_l)ll.l?)

Note that the first and the second term of 4.12 is monotonically increasing in h
whereas the third term is decreasing in k. Hence, in order to minimize the maximum
of these three terms over the bandwidth h we have to weight the maximal term of
the two first ones with the third one. Let us first consider the case when the first
term in 4.12 is bigger, that is

hn @RI < 1 @ h < p T (4.13)
Then we obtain for the optimal bandwidth A
W =< (nh)™' & b= nw (4.14)
On the other hand it holds that
2k+1 1 2k 41

1 __2k+1
nTET & n TR &

k+1 >2(k—|—3)—|—1
& 2k+s)+1>2k+1)(k+1)
& s> k(k+1/2). (4.15)

Thus we have proved that for s > k(k + 1/2) the optimal choices of the bandwidth
are ¢ < n~YCEE)TD and h =< n~Y#+D Additionally, it follows from theorem
4.1 that in this case the moment-oriented bootstrap gives a better rate of conver-
gence because the dominant first term of the moment-oriented bootstrap is of order
Op(R*(nh) ?((nAg)™" + A2)1/2), see 4.3 (instead of Op(h¥) for the wild bootstrap,
see 4.2) and can be improved by the choice of Ay = n~ /(1) if the smoothness
r of the error variance and the third order error moment is high enough. That
is, we choose Ay < A3 < n~Y?+! and we weight (recalling that we have assumed
A2 X A3 > h, see the comments at the end of subsection 3.2)

RE(nh)Y3((nA)H 4+ XY < (nh)™t & BE(nh)Y T < (nh)™
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2r
& B = T3 me

o B3 o -
& k= nT TG (4.16)
The corresponding rates of convergence are
\P.(T},, < 1) = P(Th, < 1) = Op <n_T> (4.17)

(according to 4.12) and
|P(T5, <t) = P(Ty, <t)] = Op((nh)”

4r43 -1
= Op <nn <2r+1><2k+3>>
22kr+k+r
— OP n (2r+1)(2k+3)>
—= Op <n_—2k+3n 7<2r+1><2k+3>> (4.18)

(according to 4.16). From 4.17 and 4.18 it follows that the moment-oriented boot-
strap performs better if

R S T BT o b < 2k) 0~ EEEET
E+1 2k + 3
& (2r+ Dk <2r(k+1)
& k<o (4.19)

Let us now consider the case when the second term in 4.12 is bigger, that is
_ 2k41
h > n= 2kE9FT, (4.20)
Because of Ay < A3 > h we obtain from 4.12 the optimal bandwidth h by

hEn T (nh)V? < (nh)™ & BETYA < T 2 e

R2EFB < By T

=
& R n_m%
6k+4s43s
& hox o EOHEED (4.21)
On the other hand it holds that
"B S " T & s < k(k 4 1/2). (4.22)

Hence, for s < k(k+ 1/2) the choice of the bootstrap method does not influence the
leading term in 4.1 but only a term of higher order. The rates of convergence are

for v = 1,2 (according to 4.12 and 4.21)
O ((nn—7<2<kik;¢;;zz+3> ) )

2k(2k42541)46s
— OP <n_(2(k+s)+1)(2k+3)>

|P(T7, <t)— P(T,, <t)

2k 6s
= Op <n—2k+3n—4<2<k+s>+1><2k+3>> (4.23)



Furthermore, recall that for Ay < A3 < h the two considered bootstrap methods have
equal asymptotic performance, too. That is, in the second case the two bootstrap
methods have the same asymptotic rate.

From 4.18 and 4.23 it is obvious that weighting the second and the third term
of 4.12 gives a better coverage probability than weighting the first and third term
if r < 3s ( that is, for r < 3s the two bootstrap methods have the same rates of
convergence). For r > 3s the moment-oriented bootstrap performs better.

The following corollary sums up the results of the preceeding calculations.

Corollary 4.1 We assume (A1) to (A8). Then, for MISE-optimal bandwidths

h, g, Ay the moment-oriented bootstrap has a better rate of convergence if
[ <2r(r+2).

This is especially fulfilled for equal amount of smoothness for the regression function,
the second and third order error moment. For a bandwidth choice that gives the
optimal rate for the bootstrap approximation the moment-oriented bootstrap has a
better rate of convergence if

r>3s and s> k(k+1/2). (4.24)
A sufficient condition for the latter case is
r > 3l.

If condition /.24 is not fulfilled, the two bootstrap methods have the same asymptotic
rate. This is especially the case for equal amount of smoothness of the regression
function, the second and third order error moment.

5 Bootstrap confidence intervals

In this section we will investigate asymptotic rates of the coverage probabilities
for confidence intervals obtained by the two bootstrap methods. We will consider
one-sided, rather than two-sided confidence intervals although the latter ones are
probably of greater practical interest. The reason is that the coverage error of
two-sided intervals is not so sensitive to the position of critical points as in the
case of one-sided intervals (for a discussion of this problem see Hall, 1991, section
3.7). Thus, one-sided intervals give a more rigorous assessment of the behavior of
the considered bootstrap methods. Furthermore, results for two-sided intervals are
easily deduced from those for one-sided intervals.

The technique of using Edgeworth expansions in order to obtain bootstrap con-
fidence intervals was largely developed by Hall (see e.g. Hall, 1992b). The idea is
to invert the Edgeworth expansions and then to deal with the different terms sep-
arately by the delta-method. We define for v = 1,2 and « € (0,1) the bootstrap
crital values tAMy by

PAT;, <o) =1—a.

The following theorem holds for i < n="/ 1) o p =< p=1/Zk+1)

18



Theorem 5.1 We assume (A1) to (A8). Then, for v =1,2, it holds that
P(T,, <t,o)=1—a+6,,+0((nh)™) (5.1)
where
Sro = O((nh)'hrg* + (h/g)**" + h*)

and

620 = O((nh)20* g% + (h/ )"+t 4+ BE(nh)Y2N, 4+ BERJA,).

We will investigate this theorem in the same way as theorem 4.1. Hereby note
that the terms in theorem 5.1 are only different from those of theorem 4.1 by the
term (h/g)F+! instead of (h/g)"+'/? in theorem 4.1 and in the terms containing the
bandwidth A;. Thus, the following calculations will be similar to those leading to
corollary 4.1. For MISE-optimal bandwidths we derive

1

s k+1
51 o = O (n_m + <n_2k1+1 /n_2(k+s)+1>

k 2k
_|_n_ 2k+1 _|_ n~ 2k+1 )

and
52a = O(n_#{—n_m
T k41 1
o T +n—m/n—m>
= 0 <n_m T n‘ﬁ) (5.3)
because of

n_%/n_ﬁ < n~TA
for r > k, which holds true in the MISE-optimal case with & < Ay < A;. Note that
the asymptotic rates in the equations 5.2 and 5.3 are the same as the asymptotic
rates in the equations 4.4 and 4.5 concerning the speed of convergence of the two
bootstrap distributions. Hence, the conclusions of corollary 4.1 for MISE-optimal
bandwidth hold also true in the case of coverage probabilities for confidence intervals.

Now we analyze the choice of the bandwidths h, g, A5, A3 such that the rates of
convergence in theorem 5.1 are as fast as possible. At first, we weight again the two
terms containing the bandwidth ¢ because they are monotonically inreasing and
decreasing in g, respectively. Thus we obtain

(nh)'2h*g* < (h/g)"*" & g = (hfn) T, (5.4)

For this value of g we get from theorem 4.1

k42s+1

810 =0 (hk <1 n n2<kﬁ+ﬁ+1>h2<k+s+1>> n (nh)—1> (5.5)
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where the first and the second term of 5.5 is monotonically increasing in h whereas
the third term is decreasing in h.

We begin our investigations with the case when the first term in 5.5 is bigger,
that is

n%kﬁil)hiﬁib Llehkg N R (5.6)
Then we obtain for the optimal bandwidth A
B* =< (nh)™' & b= nw (5.7)
On the other hand it holds that

n_kl_1<<n_k+k2%+1 = 1 > k1
E+1 E+2s+1

& k+2s+1>(k+1)°
& s> kk+1)/2. (5.8)

Hence, for s > k(k + 1)/2 the moment-oriented bootstrap has a better rate of
convergence whereas for s < k(k 4 1)/2 the two bootstrap distributions have the
same rate of convergence.

To obtain the optimal rate for the moment-oriented bootstrap, we weight, ac-
cording to theorem 5.1,

(nh)2N] < hfAy & Ay < (h/n)Z09D. (5.9)
The corresponding rates of convergence are (see theorem 5.1)
810 =0 <n_T> (5.10)
and
2o = ORFA) 2N 4+ h/Ay))
= O (WH(nh) (b /)75 )
_ 0 (Wi,
- O<n‘2?ﬁ—ii>n‘mr+—1>. (5.11)

Let us now consider the case when the second term in 5.5 is bigger, that is

k41

k1 k42s41
RIEFAD 30D > 1 & h > T R (5.12)

Then we weight the second and the third term of 5.5, as follows.

k41 k+2s41
hkn2(k+t+1)h2(:+sil) - (nh)—l o 20 REL o 2(kes ) (k) R 25+ 1

3k+2s43s

& hx n R, (5.13)
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The rates of convergence for the coverage probabilities are in that case for v = 1,2

(according to 5.5 and 5.13)
6ve = O((nh)™!

?
_ 3k42s+3 -1
= 0 <nn 5k+4s+3+2k2+2ks>

2(kts+k>+ks

= 0O <n_5k+4s+3+2k2+2ks )) . (514)

Now, by 5.11 and 5.14, after some algebraic calculations it is easily seen that the
moment-oriented bootstrap performs better if

_2k41 k42 r_ 2kt sth?ths

+2 T v T ree
n 2(k+1) g~ 2(k41) 741 <n bk44s+3+42k2 42ks)
4k + 7k + 2ks + 3

& T 515 T I3k? 1 20k + 2k2s + 10ks 185 1 9

(5.15)

That is, when the smoothness r of the error variance is higher than the right hand
side of 5.15 then we can improve the wild bootstrap by the choice of s > k(k+1)/2.
Note that the right hand side of 5.15 is for k,s > 1 obviously smaller than 1. Hence,
we have derived the following corollary.

Corollary 5.1 We assume (A1) to (A8). Then, for MISE-optimal bandwidths
h, g, Ay the moment-oriented bootstrap has a better rate of convergence for the cov-
erage probability of confidence intervals if

[ <2r(r+2).

This is especially fulfilled for equal amount of smoothness for the regression function,
the second and third order error moment. For a bandwidth choice that gives the
optimal rate for the coverage probablities, the moment-oriented bootstrap has a better
rate of convergence for any smoothness r > 2 if we choose

s> k(k+1)/2. (5.16)

6 Discussion

1. From theorem 4.1 and corollary 4.1 it follows that the (conditional) bootstrap
distribution while using the moment-oriented bootstrap method better approx-
imates the true distribution of the pivotal statistic T, , if the error moments
ti2(®) and ps(e) are sufficiently smooth in comparison to the regression func-
tion m(e). If we choose the bandwidths of MISE-optimal order then a sufficient
condition for a superior behavior of the moment-oriented bootstrap is equal or-
der of smoothness of the regression function m(e) and the error moments (o)
and p3(e). The reason of this property is that the estimator my(x¢) can only
use smoothness of order k& instead the full smoothness of order k& + s of the
regression function because the “rest” of the smoothness (of order s) is needed
to estimate the bias of (o).
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2. If we estimate the error variance by estimators based on higher order differ-
ences, then, by 3.9 and 3.14, the constant becomes worse whereas the rate
of convergence remains the same. The reason is that there are more covari-
ance terms in the asymptotic expansion (see lemma 8.3). The best asymptotic
constant gives a smoothed classical wild bootstrap (see 3.16). Yet, simulation
results in Bunke (1997) indicate that bootstrap methods based on higher order
differences have a better behavior for small and moderate sample sizes. In this
sense, we do not recommend a smoothed classical wild bootstrap.

3. By 3.9, the important constant in the asymptotic expansion is determined by

the r-th order derivative IM(QT)(J}O) of the error variance and by the kurtosis
ra(x0)/ 13 (o) of the error distribution at .

4. Error moments higher than third order do not influence first and second order
asymptotics. Yet, Bunke (1997) indicates that their estimation can be impor-
tant for the small and moderate sample bevavior.

5. By corollary 5.1, the moment-oriented bootstrap achieves better rates for the
coverage probability of studentized confidence in the case of equal smoothness
of the regression function and the second and third order error moment.

6. The results of this paper are derived for nonrandom bandwidths. Yet, they
can easily be generalized to random, data-driven bandwidths by use of a full-
crossvalidation bandwidths choice criterion (see Bunke, Droge & Polzehl, 1995
and Sommerfeld, 1997) and techniques of proving of Neumann (1992, 1995)
and Sommerfeld (1997).

7 Proofs

Proof of lemma 2.1: The proof of relation 2.4 is essentially that of proposition 3.1
in Neumann (1997). The only difference to his paper is that he derived Edgeworth

expansions for Tj , — l;n/f/ll/ instead of T} ,. = b /Vll/2 Note that we can correct

by the unknown term bn/Vlln because it is implicitely estimated by the bootstrap.

Here we will only give a sketch of the proof containing the (very few) differences
to that of Neumann. In part 1 of his proof he shows by results of Skovgaard (1986)
the validity of an expansion of arbitrary length of the random vector

= B I/QZ% (7.1)

where ay ; := (n hwg (20, 2;5)e;, (nh)zwéh(xo, l’j)(é?-ﬂz(l’j)))/ and By, := Cov(aq ;).
Now, analogeously to part 2 of that proof we can derive from results of Skovgaard
(1981) the validity of the expansion of a sufficiently regular sequence of functions
fn(S1,n). In order to do that, we approximate T} ,,. by

> iy Wk, 7)Yy —m(xo) b,
V12 N /2

1,n 1,n

Tl,nc =
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> iy Wrn(To, x)ej + by b,

= - (7.2)
VIl 0t w0, ) (€@ = o) + Vi,
by
= ( + ba) (@12 + Vi) M2 = = (7.3)
1,n

where ‘N/ln =50 wéh(:po, l’j)é?. By a Taylor expansion of (a2 + VLn)_l/2 at Vi,
we derive ( b)a

~ ) Qn1 + n 0517712

Tl,nc = T1/7nc ‘I’ 3_2 ‘/1/ 7/2 (74)

where
T/ o (07751 —I' bn 1 (anl —I' bn)al,nZ 3 (Oé?ﬂ —I_ bn)airﬂ bn
R AT S S
T l(am + by ) 2 n §(O‘n1 + bn)ainz (7.5)
I A e S |

and Vl’m is between Vi ,, and oy n2 + Vi n.

Recall that Neumann defined for a sequence of random variables {Y,} and for
sequences of constants {7,1} and {7,2} the notation

Yn = 0(7n177n2)
if
P(|Ya] > Cyn1) < Conz
holds for n > 1 and some C < oo.

Analogeously to his proof we deduce that
Tan -7 = (3((nh)_3/2+4w, n') (7.6)

1,nc
for arbitrary 4 > 0. Here, it does not matter that the bias b, is of order O((nh)~"/?)
instead of o((nh)~'/?) as in Neumann’s derivation. Hence we derive, according to
lemma 3.1 in Neumann (1992b), that the Edgeworth expansions of Tlnc and T,
coincide up to a term of order O((nh)=3/2*47 £ n=') and, hence, it suffices to state
this expansion for Ty .

The rest of the proof goes as that of proposition 3.1 in Neumann (1997). The
only differences are that the first order cumulant of 77, _ is

1
/%l,n = _§pn3 + O((nh)_l)

and that (with Neumann’s notations) Vlm = V1,, because of an = an. The last
relation holds because in this paper there is no subsequent bias correction by an
estimator bn/Vllé2 but by bn/Vllé2
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Hence, we have the following expansion for TLM:

2%+ 1

P(Tine <t) = 1)+ pus (1)
1 b

+ayastdld) + 0l ™) (7.7)

To complete the proof of this lemma, by lemma 3.1 of Neumann (1997) it suffices
to show that for arbitrarily small v > 0 it holds that

Tan — Tl,nc = O((nh)_l'm, n_l).

In order to do that, we write

. 1 1

Tl,nc - Tl,nc — (anl + bn) — - —
Vin Vin

\/ ‘N/l,n - Al,n

— (anl + bn) — —
V ViV
‘N/ n V n
(atn1 + by L. (7.8)

)wl,m,nwm NG

¢ — ¢ = () —m(x)? — 2ei(rhn(ai) — m(a))

(see 8.2) we derive that

Hence, from

n
‘/l,n - ‘/l,n - Z wlih(xov xl)(ézz - 622)
=1

= Z wi (o, i) (o (i) — m(a))? + 2 Z wi (o, i) (m(ai) — i (2s) )€

By lemma 8.1 in Neumann (1992) it holds for arbitrary small 6 > 0 that

() —m(x;) = Z Wi (i, 7)€ + Z wi (i, vi)m(x;) — m(x;)

= Z wkﬁ(:z;i, J}]‘)GJ‘ + O(hk)

i=1

I
@)

" 1/2
(Z w;h(:z;i,:z;j)) névn_l + O(hk)
7=1

((nh)—1/2n6 + hk, n—l)

0
(3((nh)_1/2n5,n_1) (7.10)
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where the last relation holds because of h* < (nh)~'/2. Hence,
Try = O((nh) 2% 071, (7.11)

To deal with T,,; we decompose

T., = szﬁ(xo,xi) (m(:z:z) — Zwk,h(%a%‘)m(l’j)> €
—I_Zwkh xOy (Zwkh xﬂx] )62

According to lemma 8.1 in Neumann (1992) we derive

. . N\ 1/2
T. = O Z w (w0, ;) (m(:z;z) — Zwk7h(xi,xj)m(xj)> n®,n=t
=1 7=1

= O((nh)™*2h*n’ n1)
= 0((nh)_2n5,n_1). (7.13)

Furthermore, note that

Tn4 — Z wkh Lo, T wk h(l’“l'])G]GZ
7,7=1
= Mye
= FEdMye+ (€ Mpe — E¢' Mye)

where M}, is a n xn - matrix with (i,j)-th element w} , (zo, :)w 5 (2;, ;). Obviously,

Tn5 — Zwkh xOv wk h(xzv )ﬂ?(wz)
- O((nh) 2, (7.15)
On the other hand, again by lemma 8.1 of Neumann (1992) it follows that
Twe = O@tr(M,VMV)'/*n n71)
= O(tr(MhM’)1/2n5 n 1)
1/2
= (Z wi p (o, i) wy h(l‘m51?‘)wz,h(l‘ml‘j)wk,h(l‘mxi)> n’ n~!

= O((nh)™2n%,n7h). (7.16)

because V' = diag(pz(x1),. .., u2(xy,)) is bounded. Finally, we get by 7.8, 7.11, 7.13,
7.15 and 7.16 that . )
Tan - Tan = O((nh) 1-I-’7 _1).
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Thus, 2.4 is proven.

The validity of the Edgeworth expansion 2.6 follows analogeously to the first part
of this proof. To identify this expansion, we calculate the corresponding cumulants
in the following. In order to do that, we use again the paper of Skovgaard (1981) to
identify an expansion of f,(S2,,) where

o= By)*> . (7.17)

az; = (nhwyp(wo, )¢, (nh)*wi (20, @) Sy we, (2, 2:) (fia(w) —pa(0)))s fio(as) =
(e, — €-1)*/2 and By, := Cov(ay;). As in the proof of 2.4 we approximate T5 . by

7 . E?:l UJkJL(l'O, x])}/] - m(:z;o) by
2,nc < -

Vv v
> iey Wea(To, 25)€ + by b, (7.18)
n T 1/2
Vb wd (o aow (@ @) (€ = pale)) + Ve Vai
by
= (anl + bn)(QQ,nQ + ‘/Q,n)_l/z - V1/2 (719)
2.n
where
‘N/Qﬂ”b = Z wkh Lo, L wT /\2(1’“1’])#2(1?])
7,7=1
By a Taylor expansion of (a2 + Vzm)_l/2 at Vi, we derive
= 5 (on + b )on n2
Tope =Ty, + S RETIE (7.20)
2.n
where
T/ . (07751 —I' bn 1 (anl —I' bn)a2,n2 3 (anl —I_ b )OéQ ,n2 bn
2,nc -5 -
S S Vo
7S (e +bp)agne 3 (1 + b )a2 n2 7 9]
IERTAE 9 V32 T3 S Vo2 (7.21)
2.n 2.n 2,n

and Vzl,n is between V3, and a2 + Vo 0.

Now, analogeously to the proof of proposition 3.1 in Neumann (1997) we deduce
that it is sufficient to state the expansion for

(anl —I' bn)a2,n2

" L (07751

1
ne 1= — = (7.22)
B S e
In the following we calculate the cumulants #,, (v = 1,2,3,...) of T} . We have
1 E n i3 —
= BTY, = ——=202m2 4 (k)Y (7.23)

2,nc T 2

‘/23/2
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where, because of (A6) and 8.29,

Ean1a2,n2 = Z (U)kﬁ(l’o, Zwkh xva])wT /\2(1;]7 )) IMS(x])

=1 7=1
1€
where #7 = min{nh,nA;} and

d, ) = O((nh)™2, if h>> Ayor h < Ay
PO TT T O((ndg) " (nh) 72, if b < Ay
Hence,
B O((nh)™2, if h>> Ayor h < Ay
EOénloé2,n2 - { O((n)\g)_l(nh)_l, Zf h < )\2‘ (725)
Furthermore,
b, FEoniasz, _
B, = 1 i P 4 0l (7.26)
Eao? 3Ea (a1 + by)az g
" N3 nl nl n n ) -1
E(TQ,n) ‘/237/12 - 5 ‘/257/12 + O((nh) )
iz Wi (e, wi) pa(i)
- ‘/23/2
92 1 ($07 ) 3(x2)‘/1n -1
= ’ O((nh . 7.27
st e o). (1)

Hence, Ky, = E(TY,.) + O((nh)™") and

(
)

R3n = E(TQ//nc S — 3E(T2”nc) ETQan + (ETQan)
= B(1y,.)° = 3E(1;,.) BTy, .+ O((nh)™")
o 2im wig(xo, wi)us(@)
R vy
3 2 ich dul®o, i) pis(y) Vi 1
+5 1 T 1— 3V2n + O((nh)™). (7.28)

Thus, according to the proof of proposition 3.1 in Neumann (1997), we have for the
characteristic function 7, (e) of T3 . the relation

) 12 . it)”
nn(t) e eXp (—5) (1 —I‘ Zt/an —I_ %(/{2,71 - 1)

(it)”

-|-3'

K3, + O((nh)™H (2 + t8))> ) (7.29)
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which implies

~ 1 o wS (x T 2,
P(Ty,.<t) = q)(t)+_zz_1 k,h( 0, i) ps(x;)

(1)

2 V23/2
1 b, tody (2, 15 T;
+§ 1/2 Zl_l ( 2/2 )IMS( )t¢(t)
Vain Vin
. E?:l wi,h(xov xl)lu?)(xl) 4 §E?:1 dn(x07 xl)/'[/v?)(xl)
V23/2 9 ‘/23/2

(1 - 352 n> ) : 3 Lo(1) + O((nh)™+). (7.30)

Accordind to lemma 3.1 in Neumann (1997), it remains only to show that
Ty pe — Ty e = O((nh)™1H7, 071, (7.31)
We will show it in what follows. Note that analogeously to 7.8 it holds that

A V no V N
TQ,nc - TQ,nc = anl + b 2 2 (732)

Furthermore, recall that

Vo = Vo = Z wi (w0, wi)wnn, (24, 25) (fin () = fra(2;)) (7.33)

7,7=1

and, because of the Lipschitz continuity of the regression function m(e),

| = (m(x;) — m(aj—1)(m(x;) — m(zj1 +2(e; — ¢j-1)]
Im(2;) — m(z;_1)[|(m(2;) — m(zj—1 +2(e; — €¢j-1)]
Clm(z;) —m(xj-1)]

C'aj = xj1]

O(n™"). (7.34)

iy () — fiz(;)]

VANRVANRVAN

Finally, summing up 7.32, 7.33 and 7.34 completes the proof of this lemma.

a

Proof of lemma 2.2: In the case of a moment-oriented bootstrap which is based on
a continous distribution the validity of this expansion follows by the same arguments
as given in the proof of lemma 2.1. The validity of this expansion in a discrete
distribution based bootstrap case is proven in Neumann (1997), proposition 4.1. He
showed that in this case the € do not fulfill Cramér’s condition. However, we are
not in the case of a sum of lattice distributions. Hence, he is able to prove some
version of Petrov’s condition. The rest of the proof goes completely analogeous to
the parts of the proof of lemma 2.1 where we identified the Edgeworth expansions.
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a

Proof of lemma 2.3: Recall that, according to lemma 2.1, it holds for v = 1,2

that
P(T,,<t) = P(Tyu <t—1b,/V}]?)
= Ot — by /V/*) + Runo + O((nh) ™) (7.35)
with
2t — b, [V + 1
R0 = pos ( /6 7 ) ¢(t_bn/vul,7/12)
L b, 1/2 1/2
‘|‘§m/}n3(t — b [V, 1 5)o(t — b,/ V, %), (7.36)
R 120 imy wip (o, wi)ps (i)
2,n0 2 ‘/2:?7/12
L by, Eﬁ—l dn(woafl?i)ﬂi%(wi) 1/2 1/2
5 = (t— b/ V) (t — b, JV1?)
2y, Vil
- ( LY wia(wo,pa(es) | 33, dulwo, vo)ps()
2 v, 2 Vo
Vi t—b, VY2 1
1 -3~ ( [Vu') ot — b, V) (7.37)
Vo 6
and o )
PAT;, <t)=o(t - bn/vy{f) + Rypo + Op((nh)™117) (7.38)

where f%)u,no are the bootstrap counterparts of R, o for v = 1,2. Hence,

¢(t) dt ‘I’ |Ru,n0 - I%y,n0| —I' OP((nh)_l—I—’y)

t—min(bp [V, 2 b VL)
|P(T,. <t)—PAT}, <t)] < /
t

—maX(bn/Vl},{z2 75n/‘7yl,{12 )
b, b,

Vi

+ |Ru,n0 - ﬁgy,n0| + OP((nh)_l-I—’y) (739)

Now, note that we have by lemma 8.5 that
fsn3 — Pn3 = OP((nh)_l)

From this relation we obtain

| R0 — Ri ol = Op((nh)™"). (7.40)
Analogeously, we deduce by lemma 8.5
|[Ramo — Bano| = Op(((nh)™*[(nXa)™" +A5)"?)
+(nAa) T AN + b (nh)'))
= Op((nh)™"(1 + h*(nh)"/?)) (7.41)
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because of h < As.

Now we consider the first difference in relation 7.39. By a Taylor expansion of
VUTHI/Q at V,,, we get

. 1 A 3~
Vol = Vol = SV (Ve = Vi) + SV (Vo = Vi)’ (7.42)
where ‘N/l,n is between V,,,, and VWL Therefore,
o, R -
Vi v Vi 2 v 8 v Vi

?)n - bn 1 ‘A/l/,n - ‘/1/,71

‘/1/17/12 5 n %3742

1 ‘/1/,71 — ‘/1/,71 (V — ‘/1/,71)2
—=(by — bn)w N

Now, recall that V,,,, = O((nh)™), V,,, = Op((nh)™") (v = 1,2), b, = Op(h*),
furthermore b, — b, = Op(h*g® + (ng)_l/z(h/g)k)) by lemma 8.6 and Vi n—WVin =
Op((nh)=21%), Vo, — Vo = Op((nh)™"(A¥ + (nX2)"")"/?) by 3.3 and 3.10. Hence,
for v = 1,2 it holds that

3.
+ b (7.43)

A

7 Vi — ‘/1/,71

(by—by) an:a/z = Op((K*¢°+(ng) 2 (h/g)") (k) ™)+ (nh) " (AT +(nAa) ™))

’ (7.44)
and .

7 ‘/un - ‘/un 2 — —

b(v—/) = Op(W((nh) ™2 + (A + (md))%) (745
are of higher asymptotic order than

?)n - bn s — s
N TE Op((h*g® + (ng) ' 12(h/9)*)(nh)'7*) = Op((h*g*(nh)'* + (h/g)*+'1?)
and
Vyn — Vi 3 3/2 —3/2 —1/y2 —1/2
bn NETE Op(h*(nh)**((nh) ™" + (nh)™ (Agr + (nAs))7/7))

= Opl(nh)20%)
because of h < A;. Additionally,

?)n - bn
iz
does obviously not depend on estimators of the error moments. Therefore we obtain
?)n bn 1 ‘A/u,n - ‘/1/,71 s —
R TC ~3hn ek +O0p((h*g* (nh)' 2 +(h/g)* /%) +O((nh)™"). (7.46)

Finally, from 7.39, 7.40 and 7.46 it follows the validity of equation 2.12.
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Proof of theorem 5.1: Part [ (h < n~/(ZF+1);

At first, we consider the wild bootstrap case. We invert the Edgeworth expansions
2.13 and 2.15. That is, from 2.13 it follows by Taylor expansions of ®(e) and ¢(e)
at t that

b, 202 4+1 1 b,
P<T1n<t+vl/2+pn3 6 ‘|‘2V1/2Pn3t>
b, 202 4+1 1 b,
= (I) (t ‘I’ V1/2 —I' Pn3 6 —I' 2 V1/2pn3t>
2
2t2 -|-1 1 by
2 (t + 1/2 + Pn3 + 3 fo pn3t> +1 b, %41 1 b,
T Pn3 6 olt+ an/2 Pn3 6 +35 9 V1/2 Prst

2V 6

+0((nh) )
= B(t) + O((nh)~1*).

The corresponding bootstrap version is given by

P (Tin iy vil@ 4 [)”3%26—'_1 .\ % Vbz ﬁn3t>
= O(t)+ Op((nh)~'t7). (7.48)
Now we define for o € (0, 1) the crital values %,, {, and z, by
PATy, <lo)=P(T, <to) = ®(za) =1 — . (7.49)

Then it follows from 7.47 and 7.48 that

b, 2:241 1 b,
P Tl,n < Za —I' —I' pn3 = —I' = anZoz
( V1/2 1/2

6 2V

= (=) 4 O((nh)) |
— a4 O((nh)*)

= P(Ty, <t,)+O((nh)™'*7) (7.50)
and
b, 2:241 1 b,
P* T* o ~ An = o A An o
( <z +‘/11£2+p3 G +2V1177/12p32>

= @(z,) + Op((nh)™7)
= a+Op((nh)™"*")
= P(Ty, <o)+ Op((nh)™'*7), (7.51)
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+= 1/2pn3 t+ V1/2 + Pn3 + 2V1/2pn3t ¢ t+ an/2 + Pn3 6 + =

2 Vl/zf’”?’t)

(7.47)



respectively. From 7.50 and 7.51 we obtain

b, 222 +1 1 b, 14+
toz = Zoz —I_ ‘/117/12 —I_ pn3 6 —I_ 2 ‘/117/12pn320l —I_ OP((nh) )
and . .
" bn « 222 +1 1 bn 1+
to = 2o + = 172 Pn3 6 + 5‘7 /2 anZoz + OP((nh) 7)7
17n l,n
hence

. b, b, . 222 41
toz = toz + <A— - —> + (an - an)

‘/117/%2 ‘/117/%2 6

1 Z;n ~ bn —1+

570 | it — e |+ Op((nh) 7). (7.52)
Vin Vin

For v = 1,2 we denote the coverage error we seek by
b 1= P(Ty < 1,) — (1 — ).
and we claim that for arbitrary small v > 0 it holds that
81,0 = O((nh)'2hFg* + (h/g)* " + B* + (nh) ™11, (7.53)

Result 7.53 may be proved by the so-called “delta-method” (see e.g. Hall, 1992), as
follows. We write

e Vf}% Ty
and
+O0p((nh)™'17)
and remark that we can rewrite 7.52 as
lo = 1o+ A1+ Ay +O0p((nh)™ 1) (7.54)
= t,+ A1+ A, (7.55)

Now note that by Markov’s and Whittle’s inequalities and by the results of the
sections 2 and 3 we have

P(|Ag| > (nh)™7) = O(((nh) ™17 =2 1,.. (7.56)
Furthermore,
P(Ty, <t,) = P(Ty, <to+ A +Ay) (7.57)
< P(Tin <tlo+ Av+0.) 4+ P12 > 1)
< P(Thn <ta+Av4n0) +0(0)
= P(Tl n — Al — Nn < ta) + O(nn) (758)
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where 7.57 follows by 7.55 and 7.58 follows by 7.56. Analogeously,
P(Ty, <ty) > P(Ty, — Ay + 1, < to) + O(,). (7.59)

As in the proof of lemma 2.1 we expand T4 , — Ay in an Edgeworth series. In order
to do that, we approximate

T1,n,A = T1,n—A1
m(zo) —m(zo) by b,
- ~1/2 1/ + 1/2
Vin Vinm Vi
_ iz W(wo, wi)m(wi) —A@(Zfﬁo)JrZ?:lW(wo?xi)@Jr bln/z (7.60)
Vin Vin

with

W(wo, @) 1= e (o, @) = Y Wk (X0, )Wkt (255 6) = Wikt py,g (20, 25) (T.61)
7=1

by
- (g, x)m(x;) — mlxo) + D, W(wo, 24)e b,
by 1o STt — mlan) + S Tawmles b
Vin Vin

Then, by Skovgaard (1986) the validity of an Edgeworth expansion of Tl,n,A follows.

We calculate the cumulants of T17n7A, as follows. At first, recall that as in relation

7.43 we have by lemma 8.6 and 7.3

A= S - b 4R,
S A

O )+ 3 ualw)e L, i

o V11/2 9 ”V3/2

1,n

= A+ R, (7.63)

+ R,

with u,(z;) = O((ng)~t(h/g)*) defined in lemma 8.6 and a remainder term R, of
higher order. On the other hand, we remark that it is analogeously to 7.5 sufficient
to approximate 1), by

(07751 —I' bn 1 (anl —I' bn)al,nZ
T = R T e (7.64)

That is, we appoximate Tl,n,A by

(07751 —I' bn . l(anl —I' bn)al,nZ

e T T
O(h* ¢ g un(z)e 1 n
B (h"g®) + 21:/2:1 Up (i )€ _ _bnal?: ; (7.65)
v 20V
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Recall that we defined o1 and aq ,2 in 7.3. Because of

Eal,n? — Z wk,h(l'm $2)E(622 - IMQ(J;Z)) =0

=1

it holds that
EAy = O((nh)'?hFg*),

hence

R = BT, o = w10+ O((nh)'2hEg%) + O((nh) 7).

where &, , denotes the i-th cumulant of T} ,,. Now, denote

by,
Tlltn,A = Tll,n,A - W
and
Tlltn = Tll,n - bn/vnl/2
Then

an 1 a1 n2
1/29 7" 1,3/2
Vin © Vin

1 (anl —I' bn)al,nZ O(hkgs) —I_ E?:l un(xl)el

9 Nk V12

1,n 1,n
L (an1 + by)ag n2 lb a1 n2

2 ‘/13/2 2 ”‘/13/2
anm O(h*g*) + 300 un(i)es

- ) +0((nh) ™)

V1/2 V1/2
= BT}, +Ti+To+Ts+ Ty + O((nh)~'*7).

It holds that

i3 i3
Eamaim = EY winlwo,x:)e Y w}(wo, )€ — pa(z;))
=1 7=1

= D winleo, wi)ps(x;)
i=1

= O((nh)™).
Therefore, Y

T, = 2221 wk,h‘(/i;iv xz)NB(xz)bn _ O(hk)
Furthermore, |

(7.66)

(7.67)

(7.68)

(7.69)

T, = ‘/1,_712E< (Z Wi p (2o, )€ + O(hk)> (Z wi (o, 2)(€ — Mﬂ%)))

i=1
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X (O(hkgs) + Zun($1)61> )

= V! ( 3w} (o, wi)un (@i we (wo, ;) pa () pa ()

ij—l

O(h") Zwkh o, i )un () 3 ()

0<h’fgs>Zwi,mo,wg(m)

= O((hg)" + B (h/g) + Hrg?)
= O((h/9)™" +h*g)

It holds
Is = _ﬁE((O‘nl + ba)ad n2)
Now,
Banaf 5 =Y w} (o, 2i)ps(zi) = O((nh)™)
=1
and .
buBa] o = Y wi i (wo, wi)pa(wi) = O(hF (k) ™).
=1
Therefore,
Ty = O((nhPRH(nh)™ + *(nh)™2))
= O(h*((nh)™" + h%).
Finally,
T4 = _2V Z Wk, h xOv )qu( )
= O((h/g)k“)-

From 7.69, 7.70, 7.71 and 7.72 it follows that

Fog = B(T7, 0)" = (BT, A)* = k2 + O((h/g)**! + 1 + (nh) 7).

Furthermore,

E(TV, A)* = E(T{,)" + E(T{,)* A} + BTV (A})* + E(A))?

= O((nh)?htg" + (n)™)

because of

E(TY,)"AL = Ok Zun Jei + O((nh)™!

V13/2
= 0((nh)1/2h’“95+(nh) Y,
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ET! (A})? = O((nh)~') and E(A})? = O((nh)™"). Tt is easily deduced that
E(T{,2) = B(T{,)' + O((nh)™") (7.75)
for [ > 4. Hence,
Ran = BV, A)° = 3E(T{, AV BT, A +2(ET], A)°
= ks, 4+ O((nh)Y2hFg® + (nh)™h) (7.76)
and
Foip = k1 + O((nh)™Y) = O((nh)™") (7.77)
for > 4.
From 7.66, 7.73, 7.76, 7.77 and
Ty — Ty = O((nh)™1*7, 071
for arbitrarily small v > 0 we deduce that
P(Ty,— Ay < t) = P(Ty, < )+0((nh)?h*¢> 4+ (h/g)* +hF 4 (nh)~1+7). (7.78)

Again by an Edgeworth expansion of T}, + 1, we easily derive that
P(T, <ty+n,) =PI, <t,)+ O(n,). (7.79)
Finally, by 7.58, 7.59, 7.78 and 7.79 we obtain that
P(Ty, <t,) = P(Ti, <ty) 4+ O((nh)2h g® + (h/g)™*' 4+ bF + (nh)~1H7)
=t ORI £ (R 4 B+ (nh)). (1.80)
Thus, we have shown 7.53.
For the moment-oriented bootstrap we claim that
2.0 = O((nR)2 05 g* 4 (h/g)F T + BE(nh)Y2N, + BFR/ N, + (nh)71F7). (7.81)

The proof of relation 7.81 follows the lines of that of 7.53. In the following we only
deal with the differences to the proof of 7.53.

As we will see below, there are only differences to the wild bootstrap case when
h < Ay what is assumed in the following. According to lemma 8.3 it holds that

EVan = > wi,(wo,2i) Efia(:)
=1

X

" AT ” T R
Z wi,h(wo, vi) b (Nz(l'i) + —'S,u(g )(:L'z)/ u" K, (u) du)
i1 r! B
n A" T
2 . 2 (r) . [ e
Vo + Z; wkﬁ(l'oa ;) (r! s () /_ u" K, (u) du)

Ay H— .
Vo + (nh)™" (r_lZ'M(Q )(:1;0)/ u" K, (u) du) /[&z(z) dz

T

= Vi + O((nh)"'A3). (7.82)

X

X
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Hence,

i = BTG, 0 = fn + O(R (nh)' 205+ (nh)2hrg") 4 O((nh) 7).

(7.83)

In higher order cumulants there are only differences in the term 77 and in terms of

higher order. These differences
7.25 it follows that

Therefore,

arise (according to 7.25) only if A < As. Thus, from

T, = b—nEOémOéz n2
V2 ’
= O(h*(nh)(nry)™)
= O(h"h/Ay). (7.84)
Fom = kan + O(h" Ao /b + (h)g)"' + (nh)™). (7.85)

Part IT (h < n_l/(zk"'l)):

The proof in the MISE-optimal case A =< n~'/+1) is similar to part I of the proof

of this theorem. For t := ¢ + b,

/‘/1142 we deduce that, by 2.4 and 2.8,

. 20241 . 1 b, . B
Q1) + ps—p—9() + 5@%3%@) +0((nh)™")
b, .
= P<T1,n_T/2<t>
— P(Ty, < 1)+ O((nh)™) (7.86)
and
2 b, .
1) + G000 + Ftzalold) + O™
b R
= P|Ty, — —= <1
1, an/z )
* 7 ?)n
= P T, <t+ AW)
.. b, b, b,
nfrce b ()
* An bn -1
Note that X
by by
Anl/z - an/z = Op(l)



vanishes asymptotically and is nonstochastic in the bootstrap world. Therefore, we
obtain by inversion of 7.87 (see part I of this proof) that

b, b, b, b, _

Vil |
(7.88)
Hence, we have derived
PTY, <t)—=P(Th, <1)
b, b, . @241 . 1 b, . b, .
= (W - W) O(t) + (Pnz — pn3) TQW) + 5 (Vnuz Pn3 — e Pn3> to(t)
+O0p((nh)™). (7.89)
The rest of the proof is analogeous to part I.
O

8 Some technical lemmas

Lemma 8.1 Assume (A1), (A3) and (A4). Then
(i) E[E = pa(x))(& — pa(w))] = Ele = pa(wi)l[€] = pafa;)]
+O(h*6;; + B + (nh)™1),
(i) E[& — pa(z)(& — pa(x;)] = Ele — pa(xi)]le] — pal;)]
+O(h*6;; + (nh)™")

where 6;; denotes the Kronecker delta.

Proof: (i)

E[&f = pa(2:))(6F — pa(w;)]
= L& — &) + (& = pa(x))I(& — &) + (6] — pala)))]
= Ble} — pa(@i)l[e] — pala))] + E[& = ][& = €]
+E[E — €)][e; — pa(x))] + E[& — €)][€] — pa(a)]

= Elel — pa(@)][e; — pa(j)] + Ry + Ry + Rs (8.1)
Recall that ¢, = Y; — m(x;) and & = Y; — my(x;). Therefore

& — = 2Yi(m(x) — n(ai)) + g (2i) — m? ()
))? = 2ei(mn (i) — m(xs)) (8.2)

Furthermore we have

mh(l'z) — m(:z;z) = bn(l'z) + Z wkﬁ(:z;i, 1}1)61 (83)
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with the bias

Zwkh J}Z,J}l l’l) ( )

defined in lemma 2.1. Because of Eej = ua(z;), by(x;) = O(R*) and wy (s, ;) =
O((nh)~!) we derive from 8.1, 8.2 and 8.3

Ry, = FE ((bn(xz) + Z wr (24, :1:1)@) — 2¢ (bn(l’z) + Z Wi (@i, $1)61> (6? - ”Q(xf)D)

= 2ba(w)wpn(i, 2 E(ej(€l — paa))) + wi (w0, 25) E(65(¢] — pa(z;)))
=28 ((eiba(wi) + win(i, 2:1)€) (€ — pa(z;)))
= O(R*(nh)™ + (nh)™2 + 6;;(R* + (nh)™)). (8.4)
On the other hand,

R, = K <€2 - 62> <€2 — 62>

k3 k3 7 7

= E ((bn(:z;z) —|— Z wkﬁ(:z;i, $1)61> — 262' (bn(l'z) Z wkﬁ(:z;i, l’l)q))
X ((bn(l']) + Z wkﬁ(l']‘, $1)61> — 26]‘ (bn(l']) Z wkﬁ(l']‘, l’l)q)) (85)

We calculate the different terms of 8.5. First,

(bn(xz) + Z Wik (24, l’l)él)

n

= bi(:z;l) + Z Wi h(l‘z,l'l)wk h(ll?],:lim)élém + 25 Zw“ :1;2,:1;1

{,m=1

Hence,

E ((bn(l'z) —|— Z wkﬁ(:z;i, $1)61> (bn(l']) —|— Z wkﬁ(l']‘, $1)61> )

n

= bi(l’z)bi(l']) —|— 4bn($2)bn($]) Z wkﬁ(:z;i, xl)wkﬁ(:z;j, J}I)Eélz

=1

+ > (Wi i 2)w] (2, wm) + 2w (2, 2wk (T T Jwr (2, 2wk (25, 70)) Befer,
{,m=1

+2b,,( Zwkh wi, v wi (25, 1) Eel 4 2b,(x; Zwkh wj, v wi (i, ) Eef
I=1 I=1

= O(K™ + K2 (nh)~! + (nh)~2 + K (nh)~2). (3.6)
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On the other hand,

E (62' (bn(l'z) —|— Z wkﬁ(:z;i, $1)61> (bn(l']) —|— Z wkﬁ(l']‘, $1)61> )

= bu(zy) (wih(% DEE + 2, (x)wep(ws, v) Eel) + b2 (x))wi p (w:, v0) Ee}

n

+wp (2, @ Z wk w25, J}I)Eé q + wip(a;, ;) Z W p (5, ) w0 p (2, J}I)EG?GIQ

—|—bn($i)wk7h($i, xi)wk,h(l']‘, xz)Eef’ =
= O(hk((nh)_2 + (nh)_l) + hzk(nh)_l + (nh)_2 + hk(nh)_Q)
= O(h*(nh)™" + (nh)~%). (8.7)

E (62' (bn(l'z) + Z wkﬁ(:z;i, $1)61> €; (bn(l']) + Z wkﬁ(l']‘, x1)61>>

= 52]bn($2)bn($])E6? — bn(xi)wkﬁ(:z;j, J}Z)Eéz

k3

Finally,

n

—bn(:zjj)wkﬁ(:z;i, J}]‘)Eéi —|— Z wkﬁ(:z;i, xl)wkﬁ(:z;j, J}I)Eélz

=1
= O(h**6;; + h*(nh)™" + (nh)™")
== O(hzk@] + (nh)_l) (88)
From 8.6, 8.7 and 8.8 it follows that
Ry = O(h**6;; + h* + (nh)™h). (8.9)

Obviously, R3 is of the same asymptotic order as R,. Hence, we obtain from 8.1,

8.4 and 8.9
B[& = pa(2)(& — palx)] = Bl — palai)][€] — pa(aj)] + O(R* 655 + B + (nh) ™),
which completes the proof of the first part of the lemma.

(ii) The proof of the second part is in spirit the same as that of the first part.
Therefore we present only the main steps. First, we write

E[&) = pa(wi))(&] = pa(x;)]
= E[(& =€)+ (& — pa(x))][(& — &) + (e
(€ — ns(@i)ll€] — pal))] + E[E] — €][€]

|
o

+E[E — )lle] — palx)] + EIE — e))]le] — MS( i)l
= Bl — pa(x)lle] — pa(z;)] + B+ Ry + Rs. (8.10)
Now, the difference ¢! — ¢ can be written as (see 8.2 and 8.3)
& —¢ = =3V (hn(i) — m(ar)) + 3Yi(ivg () — m® (@) — (i () — m*(x))
= =3¢ (rhnlwr) —m(2:)) + 3ei (i) — m(w:))* = (n(e:) — m(x))”
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n n 2
= —36? (bn(l‘z) + Z wi,p (@, 51?1)61) + 3¢ (bn(xz) + Z Wik (24, l’l)él)
=1 =1
" 3
— (bn(l'z) + Z wkﬁ(:z;i, $1)61> (811)
=1

with b,(z;) = O(h*) defined in lemma 2.1. From 8.10 and 8.11 we derive

R2 == E(( — 3622 (bn(l'z) + Z wkﬁ(:z;i, $1)61> + 362' (bn(l'z) + Z wkﬁ(:z;i, $1)61>
— (bn(xz) + Z w5, 1?1)61) ) (6? - NS(%)))

= =3 (bulwi)(ps (i) — pa(@i)ps(2:))0s + wip(@i, v ) pa(@i) palz;)) + Rs
O(h*é;; + (nh)™) (8.12)

because
Ry =3 (bi(%)m(%)% + 2bp(wi)wep (@, w0 (ps(2:) — pa(@i)ps(:))6;

(2w (i, ) (6, 5) + Wiy (2, 20) ) pa (@) prale)
=02 (wi)wpp (i, @) pals) = bn(@i)wi (s, ) (s () — pale;)ps(e;))

- Z wi,h(xi, 1 )wp (i, wj)ﬂ?(xl)ﬂ4(xf)>

= O((:h?’“ + B*(nh) 6 + (nh) 2 4 B**(nh) ™t + A5 (k)2 + (nh)7?)
= O((h* 4 h¥(nh)™1)é;; + (nh)~2 4+ A?*(nh)™) (8.13)

is of higher asymptotic order.

Furthermore, we easily deduce that

Ry = E(=3b,(:)})(=3ba(2,)€) + E(=3€)(=36) Y w}(ws, @)} + Ry
=1

= O(8;h* 4 (nh)™) (8.14)

because Rg includes only terms of higher order. Finally, we obtain from 8.10, 8.12
and 8.14

E[& — pa(x)) (€3 — palay)] = Ele] — pa(ai)][€} — ps(a;)] + O(h"8;; + (nh)™")

which completes the proof of the lemma.

a

The following two lemmas are generalizations of assertions contained in appendix

2 of Gasser & Miiller (1979).
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Lemma 8.2 We assume (A1), (A4), (A5) and that ¢(-) is some continous function
on the interval [0,1]. Then for any r > 1 it holds that

n | X ) ’ o
> winlwo,wi)gle) = Wﬁ/o g(u)[x};< Oh >du
=1

+ O((nh) "~y (8.15)
_ o gl@o) [T
- & /_T[xk( )dz + R, (8.16)

where

o(l), g continous

fn = { O(h* + ((nh)7=(=v%)), if r =1 and g k-times continously differentiable.

Proof: We have

" , 1 1 1 o —u
> whalwo.wi)g(a) - W%/o g(u)m< Oh ) du
=1

1 o o To—u ! 1 I o To—u
= (S (L () ) st - g [t (057

€T

where 7 is the index set of design points x; which the weight function w;h(:z;o, ;)
does not weight to zero. Then it holds obviously #Z = O(nh) and x; € T iff
|zo — x;] < h. From 8.17, the mean value theorem, the continuity of the function ¢
and the Lipschitz continuity of the kernel function K} we derive for &;,0; € [s,_1, 5]

1 To — &
A = Z [ﬁ(Si — si—1) K, ( ; 5)9(:1%)
1€
11 xo — 0;
_(nh)T_lﬁ(Si — 5i_1)g9(0:) K} ( - >] ‘
1 o To—& [ To — 0
= (nhy ze; (Ak ( h ) — B ( h )) =)
1 [ To — fz [ TO — 0; )
< air (25 - () e
1 02 _ 52 YKy, '
S AT 26; - lg(:)|
= O((nh)" =07, (8.18)

Note that the last relation holds according to |6; — &;| = O(n™') and #Z = O(nh).
Thus, 8.15 is proven. For continous funtion ¢, the equation 8.16 follows by A — 0,
the continuity of ¢ and

1 _ T
/ g(u) K}, (%) du = h/ g(xg — zh)K[(2) dz
0 -

T
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= hg(xo) /_T Ki(z)d-=. (8.19)

T

When r = 1 and g is k-times continously differentiable, a Taylor expansion of g up
to to the kernel order k gives for h € [0, h]

/Olg(u)Kk ("”Oh_ “) du

- k-1 .

~ h(g(:z;o)/_ Ky(2) dz—l—Z(—l)”%g(”)(xo) /_ 2" Ki(z)dz

T

_|_(_1)kH /_T gW (2o — 2h) 2" Ky (2) dz)

= h(g(:z:o) /_T Ki(2)dz + (—1)’“];—]; /T g W (2o — 2h) 2" Ky (2) dz)

T —T

= A (g(:z;o) /_ Ki(2)d> + O(hk)) (8.20)

T

which completes the proof of this lemma.

We denote .
ﬂ57m17m2(xi) = Z w7«7/\5($2', xl)la&mhﬁm(xl) (8'21)

=1

fsmy s (i) := (Z aHYz_H> (8.22)

K=1M1

where

with constants a, that fulfill the inequalities a,,, # 0, a,,, # 0. For example, for
s =2, my =0 and my; =1 we have

fr201(21) = Zwr,A2($i7$l)ﬂ2,0,1($l)
=1
with
fizoa(zr) = (aoY; + G1YI—1)2-
Furthermore, we define vy(ay, ;) := cov(fis(xy), fis(x;)) and vs(xg) := ve(@g, k).

Then, recall that (under (Al) and (A6)) by lemma 2.1 in Miller & Stadtmiiller
(1987a) and lemma 8.4 it follows that v4(-,-) is continous for s = 2, 3.

The following lemma generalizes theorems 1 and 2 of Gasser & Miiller (1979) for
the moments of the above kernel smoother based on such s - dependent errors jis
which appear because of the higher order differences.
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Lemma 8.3 Under (A1) to (A6) is

oy )\Z r 7 r T
Eﬂs,m1,m2(x0) = ,Us(l'o) + F,Mg )(l'o)/ U [XT(U) du

T

+0(n™") + o(A]), (8.23)
o). a2 = (20 =) )= [

)

(2ms — my) + 1) 22201

></ [X’T(Z)[X’T< JA_“' +z> dz  (8.25)

Proof: The equation 8.23 is proven in Gasser & Miiller (1979), appendix 1. Without
restriction of generality we prove 8.24 and 8.25 for the case s =2, m; =0, my =1,
the proofs for local estimators with other parameters s, m; and my are essentially
the same.

At first, recall that ve(xy, 1) := cov(fig(xk), fiz(x;)) = 0 for |k — 1] > 2. Hence,

X

cov(fiz(x;), fia(x;))

= > Wi (Tis Tp)wr (25, ) V(g 1)
keT, 1eT; | k—1|<1

1 Sk - EN i T—u
= )\—% Z vo( Tk, 1) (/S K, ( " ) du) (/5 K, ( ])\2 ) du) )
kET; I€T; [k—1|<1 k-1 -1

Therefore we derive by the mean value theorem

1 ! T;— U
1 1)y 1 ) —3—3 ’ [IT :
coutiaen a(er)) — 35 [ vt (2
1 > (@p, 1) /k K (5= a /Sl K (Z2=2) a
)\% o Vol T, Xy " r )\2 U o T )\2 U
€7;,1e7;,|k-1<1
/ T; — U
Ao
k€T, 1T, | k—1]<1

i Lj— M
—321/27717771fﬁ< N >IT< ~ )‘
leZ;n;

= A, (8.26)

Now, note that |k—1I| < 1 implies |z —a;| = O(n™!). Thus we derive by the Lipschitz
continuity of the kernel K, by the continuity of vy(-, ) and by #{k,[l||k—1| <1} =3

2 IET;NT;

(nAz)?
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that

Ay

X

E Vo xlvxl (

leZ;n;

I
=
> o
[N~}
~

§

&
/\
/\

3 r; — 91) m— & |
< volxy, xp) | K,
(= =0 e
K. J
o (5 )
= o((nXy)™h) (8.27)

which proves 8.24. For the proof of 8.25 note that by the continuity of v(-,-) it

follows that
! T — U T —
vo(u,u) K, K. du
/0 2(;u) ( A2 ) ( A2 )

= )\2/ vo(; + 2z, 1 + 2 X)) K, (2) K, <$])\_ L + Z) dz
_r 2

= )\21/2(:1;2',:1;2')/ K, (2)K, (:1;])\—:1;2 —|—Z> dz (8.28)
_ 2

T

which completes the proof of the lemma.

Recall that we defined in 8.22 a local estimate

mo 3
/23,m17m2 (1’2) = (Z aﬁi/i—ﬁ>

K=1M1

for the third order error moment ps(x;). Further note that Bunke (1997) shows
that a necessary condition for the unbiasedness of fi3n, m,(2;) under local linear
regression models is that the equalities E 2, @ =0 and E;njml a?} =1 hold which
we assume in what follows. The following lemma, generalizes lemma 2.1 from Muiiller
& Stadtmiiller (1987a) for such estimators of third order error moments.

Lemma 8.4 We assume (A1) and (A6). Then
Efiz g mo (v5) X pa(2:) (8.29)
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and

Variism, m (i) < pe(w:) Y af+ 1pa(w)pa(a;) Y alaf
j=m il
+ 93 () + 1505 () Z alajay. (8.30)

L £k, j#k

Proof: At first, because of the Lipschitz continuity of the regression function m(x)
and because of Y 72 a, = 0 we have

i a.Yi . = i €y + i aﬁm(l‘i_ﬁ)
= i Arp€i_p + O(n_a). (8'31)

Then, by 8.31 and the Lipschitz continuity of ps(-) we derive

Efigmym(v:) = Y alBe , +0((n™)
= 3 sl 4 O
= ps(a;) Z a’ 4+ 0(n™ 4+ n™%)
= wps(a;)+ 0™+ n_CS). (8.32)

Now, using similar arguments and the independence of the error terms ¢; we show
that

mo 2
Eﬂ§7m17m2 (xz) = b (Z aﬁei—“> + O(n_a)

K=1M1

m2

SO RN W IREIRE) St

j=m il

1/6
#5(3) S watide) + it S it

2l GELUER, 7k
+0 (R 4 n(GHtGG)) (8.33)

which completes the proof of the lemma because of
Varfismams (26) = B (20) + (Efis s ma(21))°

and

m2

Za?zl.

Jj=mq
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a

The following lemmas give asymptotic rates for differences of coefficients of the
Edgeworth expansions in lemma 2.1 and lemma 2.2.

Lemma 8.5 Assume (A1) to (A6). Then, for h < Ay < A3,
Pn3 — Pn3 = OP((nh)_l)v (8.34)
2 iz1 Wih(o, i) fiz (i) _ 2 i Whn(@o, i) ps (i)
(s V!
= Op((nh)2((nd2)™ + M)12) + (nda) ™+ 23)12)

(8.35)

and
2 izt dn(@o, @) fis (@) _ > i1 dul@o, i) ps ()
v Var
= Op((nh)™Y2((nAy)~ + XY 4 ((nAg) ™ 4 AZN)Y2)) (8.36)
where d,(zo, ;) is defined in 2.7. For h > Xy < A3 all expressions are of orderOp((nh)™").

Proof: The proof goes along the lines fo that of 3.12. We show this lemma only for
h < Ay < A3, the other case is analogeous. Recall that because of h = h.

Pn3 — pn3 = _3/2 Z wk n(o, @ 3/2 Z wk n(o, wi)pa ()
_3/2 Z wk n(wo, wi) (jfis(w:) — pa(:))
4 (V2P = V2) 3 o)) (8.37)
=1

By Taylor expansion of ‘71;13/2 at Vi, we get for some ‘N/ln between V; ,, and ‘A/ln

_ _ 3. _
V1 n3/2 vy 3/2 ——V1 5/2(‘/1 o — Vi) = Op(nh) (8.38)

because of ‘N/ln = Op((nh)™!) and VLn —Vin= Op(nh_3/2) which holds due to 3.3.

Hence,
(1777 - ‘3/2>Zwkhxo, iz a(x:) = Op((nh)™). (8.39)

Now, we have

E (Z wi (o, ) [€] — MS(%)])
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~ Z w%h(l'o, ) B} — ps(x:))? (8.40)
= Z wh g (o, @) [pali) — p5 ()]

~ (k) funtan) = i) [ KE() dz (8.41)
= O((nh)™") (8.42)

where 8.40 follows from lemma 8.1 (ii) and 8.41 follows from lemma 8.2. Hence,

from 8.42 and Vi, = O((nh)™') it follows that

—B”Ewwo, ) (i) = pua(2.)) = Op((nh) ™). (8.13)

Summing up 8.39 and 8.43 proves 8.34.

For the proof of 8.35 recall that according to 3.10 it holds that Vgn — Vi, =

Op((nh) ™ H((nA2)™t + )\37«)1/2))‘ Therefore we derive analogeously to 8.38
Vol =V = 0p((nh)*((nAa) ™+ A3 (8.44)

L3

Thus,

(V2. - _S/Z)Zwkhxo, Vs ) = Op((nh) P2 (nha) ™ +0)2). (8.45)

The following rest of the proof is analogeous to that of 3.10. By lemma 8.3 and
lemma 8.2 we have

(Zwkh (2o, 2;)[fiz2(z:) — NS(%)]>

= Zwkh o, @)Wy g (w0, 25) Blita o) — pa(i)][fia o) — pa(z)]

2]1

~ Zwkhxov wkh(%ax])

7,7=1

x[51/2(;;) /_ K, (2)K, (x];f +z> dz

Now, from lemma 8.4 it follows that
vs(x;) = Varps(z;)
16 9 135 4
~ g telw) FAbpa (i) pals) + () + —=pp(e). (8.47)
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Finally, from 8.47 and lemma 8.2 we obtain

A~ (nh)—4<< / K;j(z)dz>2

x [5<m3>-1 (%axo) 45113 (20)na (o) + 9y (wo) + g,@(%)) [ w2y

.\ (Ar{ W) (o) / SK(2) dz) 2] (8.48)

= O((nh)™*((nA3)™" 4+ AZ)) (8.49)

which completes the proof of 8.35. The proof of 8.36 is analogeous.

Lemma 8.6 Under (A1) to (A5) it holds that
by — by = Op (K*g* + (h/g)"(ng)™/?) .

Proof: Recall that because of h, = h we have
b, — b, = zn: Wi, (20, i)y (1) — 1y (o)
=1
— zn: W n (w0, T )m(z;) — m(zo)
=1

= z”: W (w0, i) [y (@) — m(xi)] = [hg(x0) — m(zo)]
=1
+ zn: [k ko (w0, i) = whn(To, wi)] 112y (:)

. z (0. :) Dy (22) — m(z)] — [y () — m(zo)]

= E Wi h l’o, 2 ‘I‘ E Wk, h x07 W(k4+s,k),g (l’“l’])ﬁj

- (bn,g(xo) + Z W(ks,k).9 (0, %)q)

i=1

= Z Wi (T0, )b, g (%) — by g(0)

_|_Z (Zwkh l’o, W(k4+s,k),g (l’i,l']‘)
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—W(ks,k),9(Z05 %‘)) € (8.50)

where
brg(w0) = > Wiks kg (o, )m(;) — m(wo) (8.51)
7=1
= K" Bias mgk>(x0). (8.52)

The last relation follows from
P (x0) = By wips (2o, ;)m(a;).
7=1

Now, according Gasser & Miiller (1984) it holds that

S T

Biasmgk)(xo) = (—1)’“""5@771(“5)(:1;0)/_ K(H&k)(z)zk"'sdz
= 0(g°).

T

Thus,

hk s T
bg(wo) < (—1)k+swgg)!m(k+s)($o)/ Koy (2)27°dz = O(h'g%)  (8.53)

from which follows that

T

en(o) = O(hkgs). (8.54)
On the other hand, we have
Un () = Z w1 (o, xi)w(k—l—s,k),g(xiv xj) — w(k—l—s,k),g(xm ;)
i=1

1 &« 5 To — U 57 T — U

g =1 S5—1 S5—1 g

1 [ Ty — U

g 5]—1 g

1 &« /Si To — U 57 T — U

LSS ) e (e ()

hg =1 Si—1 h S5—1 g
_[X’(;H_S)Jg (xog_ U> du)

— A, (8.55)

Now, according to (A6) we derive by a Taylor expansion of Ky <l”g_“> at <“g—_“>

that
5 R T;— U R Ty — U
/ (IX(k-I—s),k ( ) du — [X(k-l—s),k ( 0 ) du)
5]—1 g g
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i— a0\ 1 /Sﬂ - (#) (xo—u>
= F du+ R,
S () (Y

k
=
k

K (ro—s5-1)/9
— Zo (K
- E ( ) /( i ((k_)l_s)k(z) dz + R,

k=1 ro—s;5)/9

with a higher order remainder term R,,. By integration by parts we have for k = 1
/(l’o s5-1)/9 %) )
K7 z)dz
(o-s)fs T
— g _q. (zo—s5-1)/g
S (1;(),,#) du— Kfyp s (:1;0 SJ) du —/( 2K oy i (2) dz

9 zo—5;)/9
(zo—s;-1)/9
= —/ 2K (pysyn(2) dz
(

wo—5;)/9

< —/ 2K (kg k(2) dz

T

for sufficiently large n, that is for sufficiently small bandwidth ¢g. For general x > 1
we derive analogeously that

(wo—s;j-1)/g () (ro—s5-1)/9
/( K(k-|-s),k(2) dz = (—1)”/( 2K (ko) 6 (2) dz

wo—5;)/9 wo—5;)/9

< (—1)”/ 2K (o) 6 (2) dz

T

where the last relation holds for sufficiently large n. Recall that for k < &k —1 it

holds f_T 2" K(j4s),6(2) dz = 0 Hence,
_ ko pleo—s;)/9
) du ( :EO) / ZkK((:_)I_S) k(z) dz + R,
9 (zo—s5-1)/9 7

wos gy [ ("
- g [l w (W) ("57)
o () e,
)

l/sﬂ (xo—u>
><_
g S5-1 g

J

< Z/ K <$Oh_ Y du ( ) max(K)(ng)™"' + R,
= Zwk,h(l‘o,:Ei)O((ng)_l(h/g)k)
= O((ng)™"(h/9)").

Finally,

E(Zun(%‘)ﬁj> = ) ul(x)EE

J€I;
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= ) ul(a))pa())

= O((ng)""(h/9)*"). (8.56)

Note that the last relation follows because (due to the weights in w,(x;)) the sum
is taken over a set Z; with cardinality ng. Thus, the lemma is proven.
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