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WILD BOOTSTRAP VERSUS MOMENT�ORIENTED

BOOTSTRAP�

Volker Sommerfeld�

September ��� ����

Abstract

We investigate the relative merits of a �moment�oriented� bootstrap method of Bunke
�����	 in comparison with the classical wild bootstrap of Wu ���
�	 in nonparametric het�
eroscedastic regression situations� The �moment�oriented� bootstrap is a wild bootstrap based
on local estimators of higher order error moments that are smoothed by kernel smoothers� In
this paper we perform an asymptotic comparison of these two dierent bootstrap procedures�
We show that the moment�oriented bootstrap is in no case worse than the wild bootstrap�
We consider the cases of bandwidths with MISE�optimal rates and of bandwidths with rates
that perform an optimal bootstrap approximation� When the regression function has the same
amount of smoothness as the second and the third order error moment� then it turns out that�
in the former case� our method better approximates the distribution of the pivotal statistic
than the usual wild bootstrap does� The reason for this behavior is the unavoidable bias in
nonparametric regression estimation that permits only a suboptimal amount of smoothing in
the classical wild bootstrap case� In the latter case we need more smoothness of the error mo�
ments to make the moment�oriented bootstrap better than wild bootstrap� These results are
applied to the construction of pointwise con�dence intervals where we prove that our bootstrap
has a superior behavior for equal smoothness of the regression function and error moments�

� Introduction

We consider the nonparametric regression model

Yi � m�xi	 
 �i� � � i � n� ����	

with heteroskedastic errors �i� Throughout this paper we assume

�A�� a ��xed	 equidistant design x� � � � � � xn on the interval �� �� and �nite error
moments ���xi	� ���xi	� � � � of any order�

Note that all what follows holds also true for a non equidistant but regular design
in the sense of Sacks and Ylvisaker �����	� They assumed that the design fxig is
generated by a design density f � that isZ xi

�

f�x	 dx �
i� �

n� �
� i � �� � � � � n�

�Institut f�ur Mathematik� Humboldt�Universit�at zu Berlin� PSF ���	� D������ Berlin� Germany
 The research
was carried out within the Sonderforschungsbereich �	� at Humboldt University Berlin
 The paper was printed
using funds made available by the Deutsche Forschungsgemeinschaft
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where f � Lip���� ��	 is positive on �� ��� Obviously� this implies that max��i�n�xi�
xi��	 � O�n��	� The assumption of equidistance is only made for a simpler notation�
For sequences An and Bn we write An � Bn if An � Bn�C
 o��		 for some constant
C and An � Bn if additionally C � ��

We assume that

�A�� m is �k
s	�times continously di�erentiable� k� s � �� and

�A�� �� and �� are r�times continously di�erentiable� r � ��

Furthermore� we denote by Kj� j � �� �� � � �� a kernel of order j with compact
support� Without loss of generality � we assume supp�Kj 	 � ��� ��� Then�

�mh�x�	 �
nX

i��

wk�h�x�� xi	Yi ����	

is a Gasser�M�uller kernel estimator of the regression function at a �xed point x�
with weights given by

wk�h�x�� xi	 ��
�

h

Z si

si��

Kk

�
x� � u

h

�
du

where si �� �xi � xi��	���

The pivotal quantities considered here are derived from the quantity

Sn � Sn�h ��
�mh�x�	�m�x�	

V
���
n

����	

where Vn � Vn�x�	 �
Pn

i�� w
�
k�h�x�� xi	���xi	 is the variance of �mh�x�	� To obtain an

observable quantity we have to replace the unknown variance Vn by an appropriate
estimate�

That is� we have to estimate the error variance ���xi	� In this paper� this will be
done in two ways� At �rst� we consider an estimator

������xi	 �� ���i ����	

which is based on unsmoothed residuals ��i � Yi � �m�xi	� On the other hand� we
could assume that the error variance is smooth� In this case we estimate it by
smoothed local estimators� That is� we have the estimator

������xi	 ��
nX

j��

wr����xi� xj	����xj	 ����	

with the local estimators

����xj	 �
�Yj � Yj��	�

�
����	

That gives the pivotal statistics

T��n � T��n�h ��
�mh�x�	�m�x�	

�V
���
��n

� � � �� �� ����	

�



where

�V��n ��
nX

i��

w�
k�h�x�� xi	������xi	

�

nX
i��

w�
k�h�x�� xi	��

�
i ����	

and

�V��n ��
nX

i��

w�
k�h�x�� xi	������xi	

�

nX
i�j��

w�
k�h�x�� xi	wr����xi� xj	����xj	 ����	

are the corresponding estimates of Vn based on an unsmoothed and smoothed esti�
mators of the error variance� respectively�

Then� we approximate the distributions of the pivotal statistics T��n� � � �� � by
the corresponding distributions of the bootstrapped statistics

T �
��n � T �

��n�h��g���
�

�m�
h�

�x�	� �mg�x�	�
�V �
��n

���� �����	

where

�V �
��n �

nX
i��

w�
k�h�x�� xi	�������xi	 �����	

are the bootstrap counterparts of �V��n� In what follows� we will choose the bootstrap
bandwidth h� as h� � h� Note that we could also select h� according to the bootstrap
sample Y �

� � � � � � Y �
n � This would be a more natural but also more computer intensive

procedure� The assertions of this paper are easily generalized to the latter case� The
bandwidth g will be speci�ed later�

We remark that the bootstrap estimates ��������	 �� � �� �	 are obtained by the
following procedures� The unsmoothed estimator

������xi	
� � ����i 	

� �����	

is based on the classical �wild bootstrap� of Wu �����	 �see also H�ardle � Mam�
men� ����� for its application to nonparametric regression	 whereas the smoothed
estimator

������xi	
� �

nX
j��

wr����xi� xj	�����xj	 �����	

is based on a moment�oriented variant of wild bootstrap �see Bunke� ����	� More
precisely� these bootstrap procedures are de�ned as follows�

� We denote by Fi the �unknown	 distribution of the error �i� i � �� � � � � n� We

approximate Fi by a bootstrap distribution �Fn�i which has

�



� the �rst three central moments �� ���i and ���i �wild bootstrap	 or

� the �rst four central moments �� ����xi	� ����xi	 and ����xi	 �moment�orinted
bootstrap	� Here� the estimators ��j���xi	� j � �� are local estimators ��j
which are smoothed by a Gasser�M�uller kernel smoother with kernel of
order r and bandwidth �j� j � �� �� ��

� Bootstrap observations are given by independent random variables �condition�

ally under the observations ���	 Y �
i � �mg�xi	 
 ��i with ��i �

�Fn�i�

� A bootstrap estimator �m�
h�

of �mh is obtained by a kernel smoothing of the
bootstrap observations Y �

i with bandwidth h��

Thereby� we de�ne the local estimators of the error moments as follows�

� error variance�

����xi	 ��
�

�
�Yi � Yi��	

�

� third error moment�

����xi	 ��
�

�
��Yi � Yi�� � Yi�	

�

� fourth error moment�

����xi	 ��
�

��
��Yi � Yi�� � Yi�	

� �
�

�
�Yi� 
 Yi�� � Yi� � Yi	

�	

In order to deal correctly with the bias of �mh�x�	 and its bootstrap counterpart�
the bandwidth g has to be choosen as explained in the following� We denote by P�
the distribution of Y �

i �i � �� � � � � n	 conditional under the observations Y�� � � � � Yn�
Furthermore� we denote the expectation with respect to P� conditional on the ob�
servations Y�� � � � � Yn by E�� Then we get from Gasser � M�uller �����	� appendix ��
that����E� �m�

h�
�x�	� �mg�x�	� ���	k

hk�
k�

�m�k�
g �x�	

Z
ukKk�u	 du

���� � OP �n��	 
 oP �hk�		

Hence� we should make sure that�� �m�k�
g �x�	�m�k��x�	

�� � oP ��	

in order to achieve the same asymptotic bias for the statistic Tn and their boot�
strapped counterpart� respectively� In order to do that� for constants � and 
 with

 � � 
 � we denote by K����� the ��th derivative of ordinary �
� �	�th order kernel
K��� � Then� according to Gasser � M�uller �����	� the kernel K����� satis�es

Z �

��

K����u	uj du �

��
	

�� j � �� � � � � � � �� � 
 �� � � � � 
 � �
���	���� j � �

�� j � 
	
�����	

�



We estimate m�k� by

�m�k�
g �x�	 ��

nX
i��

w�ks�k��g�x�� xi	m�xi	 �����	

with

w�ks�k��g�x�� xi	 ��
�

g

Z si

si��

K�ks�s�

�
x� � u

g

�
du	 �����	

Then� according to Gasser � M�uller �����	 the variance of �m�k�
g �x�	 is of order

O�n��g���k��	 so that g has to tend slower to zero than n�����k�� to ensure the

consistency of �m�k�
g �x�	� For example� we could use the optimal bandwidth g for

the estimator �m�k�
g �x�	 of m�k��x�	 which is of order g � n������ks��� 	 n�����k���

That is� we assume

�A�� h�g 
 �� h��g 
 � and h� g� �i 
 �� nh� ng� n�i 
� for i � �� �� ��

In this paper we aim at compare the �asymptotic	 behavior of these two bootstrap
approximations� We make the following additional assumptions�

�A�� Kk� K�ks�k� and Kr are k�� �k
s	� and r�times continously di�erentiable�

�A	� �s�t	 � Lip���� ��	 for s � �� � � � � ��

In this paper it will be shown that for h 	 �� � �� or h � �� � �� the wild
bootstrap and tha moment�oriented bootstrap have the same rate of convergence�
Therefore we assume h � �� � �� in order to investigate the cases when the
moment�oriented bootstrap performs better� For h � �� � �� we will partly analyze
the corresponding constants�

Furthermore� as we indicated earlier� we assume for the bootstrap bandwidth h�
that h� � h� Yet� it is easily seen that all calculations can be performed for any
bootstrap bandwidth h� with �h� � h	�h � OP �n��	 for some �  ��

This paper is organized as follows� In section � we derive Edgeworth expansions
of the pivotal statistics T��n �� � �� �	 and their bootstrap counterparts� We show
that these approximations of the Edgeworth series by the bootstrapped ones de�
pend mainly on the variance di�erences j�V��n � V��nj� In section � we consider the

convergence of the two bootstrap estimates �V��n �� � �� �	 of the variance of the
regression function and calculate rates of convergence� Putting together the results
of the sections � and �� we give in section � rates of convergence of the Edgeworth
expansions to their bootstrapped versions� In section �� the results of section � are
applied to bootstrap con�dence intervals� The main results are stated in sections �
and �� Section � deals with some discussion of the obtained results� In section � we
give the proofs and in section � we prove some technical lemmas�

�



� Edgeworth expansions

Recall that we intend to construct con�dence intervals for m�x�	� In order to do
that� we consider the pivotal statistics T��n which are de�ned in ���� According to

lemma ��� of Sommerfeld �����	 the bias corrected statistic T��n�bn�V
���
n converges

in distribution to the standard normal distribution�

We have di�erent possibilities to deal with the unknown bias term bn�V
���
n which

is of order O�hk�nh	���	� At �rst� we could undersmooth� That is� we choose the
bandwidth h� n�����k�� smaller than the optimal one in order to ensure that the

bias term asymptotically vanishes� bn�V
���
n � o��	� Another possibility is to correct

T��n by an estimator �bn��V
���
��n of bn�V

���
n � This leads to a remaining bias which is of

higher order� To be more precise� we denote the remaining bias after correction by
�bn �� E�bn � bn� Then it follows immediately from ���� and ���� that

�bn � O�hkgs	 � bn � O�hk	 ����	

A third method that is investigated in this paper consists in performing the bias
correction implicitely by the bootstrap as follows� Note that the bootstrap pivots

T �
��n�

�bn��V ���
n �� � �� �	 converge in distribution to the standard normal distribution�

Hence� we have the asymptotic equivalence

P �T��n � t	� P��T
�
��n � t	 �

bn

V
���
n

�
�bn

�V ���
n

�
bn � �bn

V
���
n

where bn � �bn � V
���
n �

In this paper we consider the following two choices of the initial bandwidth h� At
�rst� we can choose h � n�����k�� with the MISE�optimal rate in order to perform
later a data�driven selection of h� On the other hand� Neumann �����	 proved that
for optimal rates of the coverage probability of bootstrap con�dence intervals we
have to choose some h� n�����k��� that is we undersmooth�

The derivation of Edgeworth series for these two choices of h is di�erent because
in the �rst case we have to consider a bias corrected version of T��n whereas in the
latter case we can derive the expansion for T��n directly� Therefore we treat these
two cases separately�

�
� MISE�optimal bandwidth h

In this subsection we consider Edgeworth expansions for the bias corrected statistic

T��nc �� T��n � bn�V
���
��n where

V��n ��
X
i�j

w�
k�h�x�� xi	���xi	 ����	

and
V��n ��

X
i�j

w�
k�h�x�� xi	wr����xi� xj	���xj		 ����	

�



We assume �A�	 to �A�	 and additionally

�A�� All error moments �j��	 are continous on the interval �� ��

and the Cram�er type condition �see Neumann� ����	

�A� maxi supktk	b

���E exp
n
it�



i

�i

�o��� � Cb � � for all b  ��

Note that �A�	 and �A�	 imply that all moments of the �i s are uniformly bounded�
Then the following Edgeworth expansions hold true�

Lemma �
� Assuming �A�� to �A�� we have for arbitrarily small �  �

P �T��nc � t	 � !�t	 
 �n�
�t� 
 �

�
��t	



�

�

bn

V
���
n

�n�t��t	 
 O��nh	���	 ����	

with

�n� � �n��x�	 � V
����
��n

nX
i��

w�
k�h�x�� xi	���xi	 � O��nh	����		 ����	

Furthermore� it holds true that

P �T��nc � t	 � !�t	 

�

�

Pn
i�� w

�
k�h�x�� xi	���xi	

V
���
��n

��t	



�

�

bn

V
���
��n

Pn
i�� dn�x�� xi	���xi	

V
���
��n

t��t	

�

�Pn
i�� w

�
k�h�x�� xi	���xi	

V
���
��n



�

�

Pn
i�� dn�x�� xi	���xi	

V
���
��n�

� � �
V��n
V��n

�
t� � �

�
��t	 
 O��nh	���	 ����	

with

dn�x�� xi	 � wk�h�x�� xi	
nX

j��

w�
k�h�x�� xj	wr����xj� xi	 � O��nh	���n��	

��	 ����	

for h� �� and
dn�x�� xi	 � O��nh	��		

for h	 �� or h � ���

For the corresponding bootstrap pivot the following lemma holds�

�



Lemma �
� We assume �A�� to �A��� Then

P��T
�
��nc � t	 � !�t	 
 ��n�

�t� 
 �

�
��t	



�

�

�bn
�V
���
n

��n�t��t	 
 OP ��nh	���	 ����	

where

��n� � �V ����
n

nX
i��

w�
k�h��x�� xi	������xi	� ����	

�bn �
nX
i��

wk�h��x�� xi	 �mg�xi	� �mg�x�	 �����	

and ������xi	 � ���i � Furthermore� it holds true that

P��T
�
��nc � t	 � !�t	 


�

�

Pn
i�� w

�
k�h�x�� xi	 ������xi	

�V ���
��n

��t	



�

�

�bn
�V
���
��n

Pn
i�� dn�x�� xi	������xi	

�V
���
��n

t��t	

�

�Pn
i�� w

�
k�h�x�� xi	������xi	

�V
���
��n



�

�

Pn
i�� dn�x�� xi	������xi	

�V
���
��n�

� � �
�V��n
�V��n


t� � �

�
��t	 
 O��nh	��� 	 �����	

where the estimator ������xi	 is de�ned in the introduction�

Now we can substract the equations ��� and ��� from the corresponding boot�
strapped ones in lemma ���� This gives the following upper bounds for the bootstrap
approximation of the distribution of the pivot statistics T��n�

Lemma �
� We assume �A�� to �A��� Then

jP��T
�
��n � t	� P �T��n � t	j �

�

�
jbnj

j�V��n � V��nj

V
���
��n


OP ��hkgs�nh	��� 
 �h�g	k���	


O��nh	��		 �����	

�
� Undersmoothing case

When we choose h � n�����k�� then we have the following counterparts of the
lemmas ��� and ����

�



Lemma �
� Assuming �A�� to �A�� and h � n�����k�� we have for arbitrarily
small �  �

P �T��n � t	 � !�t	 

bn

V
���
��n

��t	 
 �n�
�t� 
 �

�
��t	



�

�

bn

V
���
n

�n�t��t	 
 O��nh	��� 	 �����	

and

P �T��n � t	 � !�t	 

bn

V
���
��n

��t	 

�

�

Pn
i��w

�
k�h�x�� xi	���xi	

V
���
��n

��t	



�

�

bn

V
���
��n

Pn
i�� dn�x�� xi	���xi	

V
���
��n

t��t	

�

�Pn
i��w

�
k�h�x�� xi	���xi	

V
���
��n



�

�

Pn
i�� dn�x�� xi	���xi	

V
���
��n�

�� �
V��n
V��n

�
t� � �

�
��t	 
 O��nh	��� 	 �����	

Lemma �
� We assume �A�� to �A�� and h� n�����k��� Then

P��T
�
��n � t	 � !�t	 


�bn
�V
���
��n

��t	 
 ��n�
�t� 
 �

�
��t	



�

�

�bn
�V ���
n

��n�t��t	 
 OP ��nh	���	 �����	

and

P��T
�
��n � t	 � !�t	 


�bn
�V
���
��n

��t	 

�

�

Pn
i�� w

�
k�h�x�� xi	 ������xi	

�V
���
��n



�

�

�bn
�V ���
��n

Pn
i�� dn�x�� xi	������xi	

�V ���
��n

t��t	

�

�
�

�

Pn
i��w

�
k�h�x�� xi	������xi	

�V
���
��n



�

�

Pn
i�� dn�x�� xi	������xi	

�V
���
��n�

� � �
�V��n
�V��n


t� � �

�
��t	 
 O��nh	���	 �����	

The proofs of the �rst parts of these lemmas are given in Neumann �����	� the
proofs of the second parts are similarly to that given in lemma ��� and lemma ����

Finally� with the calculations of the preceeding subsection it follows that relation
���� holds also true in the undersmoothing case�

In the following section we investigate the asymptotic behavior of the di�erences
j�V��n � V��nj� � � �� ��

	



� Asymptotic behavior of the bootstrap estimates of the

variances V��n� � � �� �

In this section we calculate the asymptotic MSE of the bootstrap variance estimators
�V��n� � � �� ��

�
� Wild bootstrap

We assume �A�	 and �A�	 to �A�	� Then

E� �V��n � V��n	� � E

�
nX

i��

w�
k�h�x�� xi	��

�
i � ���xi	�

�

�

nX
i��

w�
k�h�x�� xi	E��i � ���xi	�

� ����	

�

nX
i��

w�
k�h�x�� xi	���xi	 � ����xi	�

� �nh	�����x�	� ����x��

Z
K�

k �z	 dz ����	

� O��nh	��	 ����	

where ��� follows from lemma ��� �i	 and ��� follows from lemma ����

�
� Moment�oriented bootstrap

We de�ne ���xi	 �� V ar����xi	� We assume �A�	 to �A�	� Then� by lemma ��� it
follows that

E� �V��n � V��n	� � E

�
nX

i�j��

w�
k�h�x�� xi	wr����xi� xj	����xj	� ���xj	�

�

�

nX
i�j�k�l��

w�
k�h�x�� xi	w

�
k�h�x�� xj	wr����xi� xl	wr����xj� xk	

E����xl	� ���xl	�����xk	� ���xk	�

�

nX
i�j�k�l��

w�
k�h�x�� xi	w

�
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Now� by lemma ��� and change in the integration variables we derive
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Thus� treating xk analogeously� we obtain
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On the other hand� from M�uller � Stadtm�uller �����a	� lemma ���� it follows that
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Furthermore� because of supp�Kr	 � ��� �� it holds that
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We denote Ij��� �� fijjxi � xjj � ��g and remark that "Ij��� � O�n��	� Then� for
�� 	 h� it follows from ���� ��� and lemma ��� �analogeously to the calculations
above	 that
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Analogeously� we deduce for �� � h or �� � h that

A� � �nh	��

�
�nh	��

�Z
K�

k �z	 dz

��



�
�

�
���x�	 
 ����x�	�

Z
K�

r �z	 dz 


�
��

r

r�
�
�r�
� �x�	

Z
zrKr�z	 dz

��

�����	

� O��nh	����nh	�� 
 ��r� 			 �����	

From ���� we see that the moment�oriented bootstrap can always achieve the same
rate of convergence as the wild bootstrap� namely by choosing �� � h small enough�
Yet� by ���� it follows that� if the error variance is smooth enough� the moment�
oriented bootstrap get a better rate for �� � n�����r�� 	 h� In what follows we
will restrict our attetion to this case� that is we assume �� 	 h� Furthermore� recall
that all calculations for the moment�oriented bootstrap are carried out under the
assumption n�� 
 �� Therefore they can t generalized to the �unsmoothed	 case
�� � � which is separately treated in the wild bootstrap subsection�

�
� Local variance estimators based on second order di�erences

An alternative local estimator of the error variance �which has to be smoothed in a
second step	 could be de�ned by second order di�erences�
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For the asymptotic variance of this estimator we get by M�uller � Stadtm�uller
�����a	� lemma ��� the same value as for the above de�ned �rst�order one� namely
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Therefore� we follow by lemma ��� and lemma ��� analogeously to ���� that for
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�
� Smoothed wild bootstrap

A third possibility is to smooth the classical wild bootstrap� First� note that

���xi	 �� V ar���i � ���xi	 
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Therefore� we deduce by ����� lemma ���� lemma ��� and lemma ��� that� analo�
geously to ����� it holds for �� 	 h that
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�
� Comparison of constants

By ���� ����� ���� and ���� the constants are interesting in the case k � r and MISE�
optimal bandwidths� For example� for k � r � � and the Epanechnikov kernel we
derive Z �

��

K�
k �

Z �

��

K�
r � ����

Z �

��

K�
k � �����

therefore �Z �

��

K�
k

�� Z �

��

K�
r � ������ � �	��� �

Z �

��

K�
k � ���� � �	���	

For k � r � � and the Quartic kernel we deriveZ �
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Hence� the constant for the smoothed wild bootstrap is better �in the variance
part	 whereas the constants of the moment�oriented procedures are worse than the
constants in the wild bootstrap case� Yet� in all cases except the wild bootstrap case
we have an additional positive bias that depend on the r�th derivative of the error
variance�

� Rates of convergence for the two bootstrap distributions

According to ���� ���� and lemma ���� we have the following asymptotic rates of the
two di�erent bootstrap approximations�
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�moment	oriented bootstrap�� Furthermore� for h 	 �� � �� or h � �� � �� we
have A��n� � A��n� � OP �hk	�
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We will investigate this theorem for two di�erent bandwidth choices� First� we can
select the bandwidths with MISE�optimal rates� That is� we choose h � n�����k���
g � n������ks��� and �� � �� � n�����r��� Then A��n� � n�k���k�� and A��n� �
n�r���r�� �the second and third term of ��� are of higher order	� hence
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because of n�s����ks��� 	 n��k���k�� for s � �� Let us �rst consider ���� For
�xed smoothness l �� k 
 s of the regression function m��	� the �rst term of ��� is
monotonically decreasing in k whereas the second one is monotonically decreasing
in s� Hence� we have to weight these two terms in order to get the best possible rate
of convergence for jP��T �

��n � t	� P �T��n � t	j� Now�
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Hence�
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for which k �
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 l��� � is the positive solution� From ���� ��� and ��� it follows
that
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Let us now consider ���� Weighting the two terms of the right side of ��� we get
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For this value of s it follows from ��� that
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Summing up ��� to ���� we conclude that the moment�oriented bootstrap gives a
better rate of convergence if n�r���r�� � n�k���k��� that is if

k �
p

� 
 l�� � � � r � l � �r�r 
 �		

This holds especially true if the regression function and the error variance have the
same amount of smoothness �that is l�r	�

Second� we can choose the bandwidths h� g� ��� �� such that the rates of conver�
gence in theorem ��� are as fast as possible� To begin this� we weight the two terms
containing the bandwidth g because they are monotonically inreasing and decreasing
in g� respectively� Doing this� we have
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For this value of g we get from theorem ���
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Note that the �rst and the second term of ���� is monotonically increasing in h
whereas the third term is decreasing in h� Hence� in order to minimize the maximum
of these three terms over the bandwidth h we have to weight the maximal term of
the two �rst ones with the third one� Let us �rst consider the case when the �rst
term in ���� is bigger� that is

hn
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Then we obtain for the optimal bandwidth h
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On the other hand it holds that
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Thus we have proved that for s  k�k 
 ���	 the optimal choices of the bandwidth
are g � n������ks��� and h � n����k��� Additionally� it follows from theorem
��� that in this case the moment�oriented bootstrap gives a better rate of conver�
gence because the dominant �rst term of the moment�oriented bootstrap is of order
OP �hk�nh	�����n��	�� 
 ��r� 	���	� see ��� �instead of OP �hk	 for the wild bootstrap�
see ���	 and can be improved by the choice of �� � n�����r�� if the smoothness
r of the error variance and the third order error moment is high enough� That
is� we choose �� � �� � n����r� and we weight �recalling that we have assumed
�� � �� 	 h� see the comments at the end of subsection ���	
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The corresponding rates of convergence are
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�according to ����	� From ���� and ���� it follows that the moment�oriented boot�
strap performs better if
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Let us now consider the case when the second term in ���� is bigger� that is

h	 n
� �k��

��k�s��� 	 �����	

Because of �� � �� 	 h we obtain from ���� the optimal bandwidth h by
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Hence� for s � k�k
 ���	 the choice of the bootstrap method does not in#uence the
leading term in ��� but only a term of higher order� The rates of convergence are
for � � �� � �according to ���� and ����	
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Furthermore� recall that for �� � �� � h the two considered bootstrap methods have
equal asymptotic performance� too� That is� in the second case the two bootstrap
methods have the same asymptotic rate�

From ���� and ���� it is obvious that weighting the second and the third term
of ���� gives a better coverage probability than weighting the �rst and third term
if r � �s � that is� for r � �s the two bootstrap methods have the same rates of
convergence	� For r  �s the moment�oriented bootstrap performs better�

The following corollary sums up the results of the preceeding calculations�

Corollary �
� We assume �A�� to �A��� Then� for MISE	optimal bandwidths
h� g� �� the moment	oriented bootstrap has a better rate of convergence if

l � �r�r 
 �		

This is especially ful�lled for equal amount of smoothness for the regression function�
the second and third order error moment� For a bandwidth choice that gives the
optimal rate for the bootstrap approximation the moment	oriented bootstrap has a
better rate of convergence if

r  �s and s  k�k 
 ���		 �����	

A su
cient condition for the latter case is

r  �l	

If condition ���� is not ful�lled� the two bootstrap methods have the same asymptotic
rate� This is especially the case for equal amount of smoothness of the regression
function� the second and third order error moment�

� Bootstrap con�dence intervals

In this section we will investigate asymptotic rates of the coverage probabilities
for con�dence intervals obtained by the two bootstrap methods� We will consider
one�sided� rather than two�sided con�dence intervals although the latter ones are
probably of greater practical interest� The reason is that the coverage error of
two�sided intervals is not so sensitive to the position of critical points as in the
case of one�sided intervals �for a discussion of this problem see Hall� ����� section
���	� Thus� one�sided intervals give a more rigorous assessment of the behavior of
the considered bootstrap methods� Furthermore� results for two�sided intervals are
easily deduced from those for one�sided intervals�

The technique of using Edgeworth expansions in order to obtain bootstrap con�
�dence intervals was largely developed by Hall �see e�g� Hall� ����b	� The idea is
to invert the Edgeworth expansions and then to deal with the di�erent terms sep�
arately by the delta�method� We de�ne for � � �� � and � � ��� �	 the bootstrap
crital values �t��� by

P��T
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The following theorem holds for h� n�����k�� or h � n�����k���
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Theorem �
� We assume �A�� to �A��� Then� for � � �� �� it holds that

P �T��n � �t���	 � � � � 
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We will investigate this theorem in the same way as theorem ���� Hereby note
that the terms in theorem ��� are only di�erent from those of theorem ��� by the
term �h�g	k� instead of �h�g	k��� in theorem ��� and in the terms containing the
bandwidth ��� Thus� the following calculations will be similar to those leading to
corollary ���� For MISE�optimal bandwidths we derive
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for r  k� which holds true in the MISE�optimal case with h� �� � ��� Note that
the asymptotic rates in the equations ��� and ��� are the same as the asymptotic
rates in the equations ��� and ��� concerning the speed of convergence of the two
bootstrap distributions� Hence� the conclusions of corollary ��� for MISE�optimal
bandwidth hold also true in the case of coverage probabilities for con�dence intervals�

Now we analyze the choice of the bandwidths h� g� ��� �� such that the rates of
convergence in theorem ��� are as fast as possible� At �rst� we weight again the two
terms containing the bandwidth g because they are monotonically inreasing and
decreasing in g� respectively� Thus we obtain
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where the �rst and the second term of ��� is monotonically increasing in h whereas
the third term is decreasing in h�

We begin our investigations with the case when the �rst term in ��� is bigger�
that is

n
k��

��k�s���h
k��s��
��k�s��� � � � h� n�

k��
k��s�� 	 ����	

Then we obtain for the optimal bandwidth h

hk � �nh	�� � h � n�
�
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On the other hand it holds that
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 �	�

� s  k�k 
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Hence� for s  k�k 
 �	�� the moment�oriented bootstrap has a better rate of
convergence whereas for s � k�k 
 �	�� the two bootstrap distributions have the
same rate of convergence�

To obtain the optimal rate for the moment�oriented bootstrap� we weight� ac�
cording to theorem ����

�nh	����r� � h��� � �� � �h�n	
�

��r��� 	 ����	

The corresponding rates of convergence are �see theorem ���	
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Let us now consider the case when the second term in ��� is bigger� that is
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Then we weight the second and the third term of ���� as follows�

hkn
k��

��k�s���h
k��s��
��k�s��� � �nh	�� � n���ks��k� � h��ks���k��k�s�

� h � n
� �k��s��s

	k��s����k���ks 	 �����	

�




The rates of convergence for the coverage probabilities are in that case for � � �� �
�according to ��� and ����	
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Now� by ���� and ����� after some algebraic calculations it is easily seen that the
moment�oriented bootstrap performs better if

n
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That is� when the smoothness r of the error variance is higher than the right hand
side of ���� then we can improve the wild bootstrap by the choice of s  k�k
�	���
Note that the right hand side of ���� is for k� s � � obviously smaller than �� Hence�
we have derived the following corollary�

Corollary �
� We assume �A�� to �A��� Then� for MISE	optimal bandwidths
h� g� �� the moment	oriented bootstrap has a better rate of convergence for the cov	
erage probability of con�dence intervals if

l � �r�r 
 �		

This is especially ful�lled for equal amount of smoothness for the regression function�
the second and third order error moment� For a bandwidth choice that gives the
optimal rate for the coverage probablities� the moment	oriented bootstrap has a better
rate of convergence for any smoothness r � � if we choose

s  k�k 
 �	��	 �����	

� Discussion

�� From theorem ��� and corollary ��� it follows that the �conditional	 bootstrap
distribution while using the moment�oriented bootstrap method better approx�
imates the true distribution of the pivotal statistic T��n if the error moments
����	 and ����	 are su$ciently smooth in comparison to the regression func�
tion m��	� If we choose the bandwidths of MISE�optimal order then a su$cient
condition for a superior behavior of the moment�oriented bootstrap is equal or�
der of smoothness of the regression function m��	 and the error moments ����	
and ����	� The reason of this property is that the estimator �mh�x�	 can only
use smoothness of order k instead the full smoothness of order k 
 s of the
regression function because the �rest� of the smoothness �of order s	 is needed
to estimate the bias of �mh�x�	�

��



�� If we estimate the error variance by estimators based on higher order di�er�
ences� then� by ��� and ����� the constant becomes worse whereas the rate
of convergence remains the same� The reason is that there are more covari�
ance terms in the asymptotic expansion �see lemma ���	� The best asymptotic
constant gives a smoothed classical wild bootstrap �see ����	� Yet� simulation
results in Bunke �����	 indicate that bootstrap methods based on higher order
di�erences have a better behavior for small and moderate sample sizes� In this
sense� we do not recommend a smoothed classical wild bootstrap�

�� By ���� the important constant in the asymptotic expansion is determined by

the r�th order derivative �
�r�
� �x�	 of the error variance and by the kurtosis

���x�	�����x�	 of the error distribution at x��

�� Error moments higher than third order do not in#uence �rst and second order
asymptotics� Yet� Bunke �����	 indicates that their estimation can be impor�
tant for the small and moderate sample bevavior�

�� By corollary ���� the moment�oriented bootstrap achieves better rates for the
coverage probability of studentized con�dence in the case of equal smoothness
of the regression function and the second and third order error moment�

�� The results of this paper are derived for nonrandom bandwidths� Yet� they
can easily be generalized to random� data�driven bandwidths by use of a full�
crossvalidation bandwidths choice criterion �see Bunke� Droge � Polzehl� ����
and Sommerfeld� ����	 and techniques of proving of Neumann ������ ����	
and Sommerfeld �����	�

	 Proofs

Proof of lemma �
�� The proof of relation ��� is essentially that of proposition ���
in Neumann �����	� The only di�erence to his paper is that he derived Edgeworth

expansions for T��n � �bn��V ���
��n instead of T��nc � bn�V

���
��n � Note that we can correct

by the unknown term bn�V
���
��n because it is implicitely estimated by the bootstrap�

Here we will only give a sketch of the proof containing the �very few	 di�erences
to that of Neumann� In part � of his proof he shows by results of Skovgaard �����	
the validity of an expansion of arbitrary length of the random vector
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����
��n

nX
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where ���j �� �nhwk�h�x�� xj	�j� �nh	�w�
k�h�x�� xj	���j����xj			

� and B��n �� Cov����j	�
Now� analogeously to part � of that proof we can derive from results of Skovgaard
�����	 the validity of the expansion of a su$ciently regular sequence of functions
fn�S��n	� In order to do that� we approximate T��nc by

�T��nc ��

Pn
j�� wk�h�x�� xj	Yj �m�x�	
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where �V��n ��
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j��w
�
k�h�x�� xj	��j � By a Taylor expansion of ��n� 
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we derive
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and V �
��n is between V��n and ���n� 
 V��n�

Recall that Neumann de�ned for a sequence of random variables fYng and for
sequences of constants f�n�g and f�n�g the notation

Yn �� �O��n�� �n�	

if
P �jYnj  C�n�	 � C�n�

holds for n � � and some C ���

Analogeously to his proof we deduce that

�T��nc � T �
��nc � �O��nh	������� n��	 ����	

for arbitrary �  �� Here� it does not matter that the bias bn is of order O��nh	����	
instead of o��nh	����	 as in Neumann s derivation� Hence we derive� according to
lemma ��� in Neumann �����b	� that the Edgeworth expansions of �T�nc and T �

nc

coincide up to a term of order O��nh	������ 
 n��	 and� hence� it su$ces to state
this expansion for T �

��nc�

The rest of the proof goes as that of proposition ��� in Neumann �����	� The
only di�erences are that the �rst order cumulant of T �

��nc is

����n � �
�

�
�n� 
 O��nh	��	

and that �with Neumann s notations	 V ��n � V��n because of Wnj � Wnj � The last
relation holds because in this paper there is no subsequent bias correction by an

estimator �bn��V ���
��n but by bn�V

���
��n �

��



Hence� we have the following expansion for �T��nc�
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To complete the proof of this lemma� by lemma ��� of Neumann �����	 it su$ces
to show that for arbitrarily small �  � it holds that

T��nc � �T��nc � �O��nh	��� � n��		

In order to do that� we write
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Hence� from

���i � ��i � � �mh�xi	�m�xi		
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�see ���	 we derive that
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By lemma ��� in Neumann �����	 it holds for arbitrary small �  � that
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where the last relation holds because of hk � �nh	����� Hence�
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To deal with Tn� we decompose
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According to lemma ��� in Neumann �����	 we derive
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Furthermore� note that
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On the other hand� again by lemma ��� of Neumann �����	 it follows that
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because V � diag����x�	� � � � � ���xn		 is bounded� Finally� we get by ���� ����� �����
���� and ���� that
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Thus� ��� is proven�

The validity of the Edgeworth expansion ��� follows analogeously to the �rst part
of this proof� To identify this expansion� we calculate the corresponding cumulants
in the following� In order to do that� we use again the paper of Skovgaard �����	 to
identify an expansion of fn�S��n	 where
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and V �
��n is between V��n and ���n� 
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Now� analogeously to the proof of proposition ��� in Neumann �����	 we deduce
that it is su$cient to state the expansion for

T ��
��nc ��

�n�

V
���
��n

�
�

�

��n� 
 bn	���n�

V
���
��n

	 �����	

In the following we calculate the cumulants ���n �� � �� �� �� � � �	 of T ��
��nc� We have
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Thus� according to the proof of proposition ��� in Neumann �����	� we have for the
characteristic function �
n��	 of �T��nc the relation
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which implies
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Accordind to lemma ��� in Neumann �����	� it remains only to show that
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We will show it in what follows� Note that analogeously to ��� it holds that
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Furthermore� recall that
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Finally� summing up ����� ���� and ���� completes the proof of this lemma�

�

Proof of lemma �
�� In the case of a moment�oriented bootstrap which is based on
a continous distribution the validity of this expansion follows by the same arguments
as given in the proof of lemma ���� The validity of this expansion in a discrete
distribution based bootstrap case is proven in Neumann �����	� proposition ���� He
showed that in this case the ��i do not ful�ll Cram�er s condition� However� we are
not in the case of a sum of lattice distributions� Hence� he is able to prove some
version of Petrov s condition� The rest of the proof goes completely analogeous to
the parts of the proof of lemma ��� where we identi�ed the Edgeworth expansions�

��
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Proof of lemma �
�� Recall that� according to lemma ���� it holds for � � �� �
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Now� note that we have by lemma ��� that
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Finally� from ����� ���� and ���� it follows the validity of equation �����
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Proof of theorem �
�� Part I �h� n�����k��	�
At �rst� we consider the wild bootstrap case� We invert the Edgeworth expansions
���� and ����� That is� from ���� it follows by Taylor expansions of !��	 and ���	
at t that

P

�
T��n � t 


bn

V
���
n


 �n�
�t� 
 �

�



�

�

bn

V
���
��n

�n�t



� !

�
t 


bn

V
���
n


 �n�
�t� 
 �

�



�

�

bn

V
���
��n

�n�t




�n�

�

�
t
 bn

V
���
n


 �n�
�t��
�


 �
�

bn

V
���
��n

�n�t

��


 �

�
�

�
t 


bn

V
���
n


 �n�
�t� 
 �

�



�

�

bn

V
���
��n

�n�t





�

�

bn

V
���
��n

�n�

�
t


bn

V
���
n


 �n�
�t� 
 �

�



�

�

bn

V
���
��n

�n�t


�

�
t 


bn

V
���
n


 �n�
�t� 
 �

�



�

�

bn

V
���
��n

�n�t




O��nh	���	

� !�t	 
 O��nh	���		 �����	

The corresponding bootstrap version is given by
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Now we de�ne for � � ��� �	 the crital values t�� �t� and z� by
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For � � �� � we denote the coverage error we seek by

���� �� P �T��n � �t�	� �� � �		

and we claim that for arbitrary small �  � it holds that
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Result ���� may be proved by the so�called �delta�method� �see e�g� Hall� ����	� as
follows� We write
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and remark that we can rewrite ���� as
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Now note that by Markov s and Whittle s inequalities and by the results of the
sections � and � we have
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where ���� follows by ���� and ���� follows by ����� Analogeously�
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As in the proof of lemma ��� we expand T��n�%� in an Edgeworth series� In order
to do that� we approximate
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Then� by Skovgaard �����	 the validity of an Edgeworth expansion of �T��n�� follows�

We calculate the cumulants of �T��n��� as follows� At �rst� recall that as in relation
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with un�xi	 � O��ng	���h�g	k	 de�ned in lemma ��� and a remainder term Rn of
higher order� On the other hand� we remark that it is analogeously to ��� su$cient
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Thus� we have shown �����

For the moment�oriented bootstrap we claim that

���� � O��nh	���hkgs 
 �h�g	k� 
 hk�nh	����r� 
 hkh��� 
 �nh	���		 �����	

The proof of relation ���� follows the lines of that of ����� In the following we only
deal with the di�erences to the proof of �����

As we will see below� there are only di�erences to the wild bootstrap case when
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In higher order cumulants there are only di�erences in the term T� and in terms of
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Part II �h� n�����k��	�
The proof in the MISE�optimal case h � n�����k�� is similar to part I of the proof
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vanishes asymptotically and is nonstochastic in the bootstrap world� Therefore� we
obtain by inversion of ���� �see part I of this proof	 that

P�

�
T �
��n � t 


�
�bn

�V ���
n

�
bn

V
���
n


� P��T

�
��n � t	


�
�bn

�V ���
n

�
bn

V
���
n


��t	
OP ��nh	��		

�����	
Hence� we have derived

P��T
�
��n � t	� P �T��n � t	

�

�
�bn

�V ���
n

�
bn

V
���
n


��t	 
 ���n� � �n�	

��t� 
 �

�
���t	 


�

�

�
�bn

�V ���
n

��n� �
bn

V
���
n

�n�


�t���t	


OP ��nh	��		 �����	

The rest of the proof is analogeous to part I�
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 Some technical lemmas

Lemma 
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Furthermore we have
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We calculate the di�erent terms of ���� First��
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On the other hand�
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From ���� ��� and ��� it follows that
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Obviously� R� is of the same asymptotic order as R�� Hence� we obtain from ����
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which completes the proof of the �rst part of the lemma�

�ii	 The proof of the second part is in spirit the same as that of the �rst part�
Therefore we present only the main steps� First� we write
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���i � ��i � ��Y �
i � �mh�xi	�m�xi		 
 �Yi� �m�

h�xi	�m��xi		� � �m�
h�xi	�m��xi		

� ����i � �mh�xi	�m�xi		 
 ��i� �mh�xi	�m�xi		
� � � �mh�xi	�m�xi		

�

�




� ����i

�
bn�xi	 


nX
l��

wk�h�xi� xl	�l



 ��i

�
bn�xi	 


nX
l��

wk�h�xi� xl	�l

�

�

�
bn�xi	 


nX
l��

wk�h�xi� xl	�l

�

�����	

with bn�xi	 � O�hk	 de�ned in lemma ���� From ���� and ���� we derive
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is of higher asymptotic order�

Furthermore� we easily deduce that
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because R� includes only terms of higher order� Finally� we obtain from ����� ����
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which completes the proof of the lemma�

�

The following two lemmas are generalizations of assertions contained in appendix
� of Gasser � M�uller �����	�

��



Lemma 
� We assume �A��� �A��� �A�� and that g��	 is some continous function
on the interval �� ��� Then for any r � � it holds that
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where I is the index set of design points xi which the weight function wr
k�h�x�� xi	

does not weight to zero� Then it holds obviously "I � O�nh	 and xi � I i�
jx� � xij � h� From ����� the mean value theorem� the continuity of the function g
and the Lipschitz continuity of the kernel function Kk we derive for �i� �i � si��� si�
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Note that the last relation holds according to j�i � �ij � O�n��	 and "I � O�nh	�
Thus� ���� is proven� For continous funtion g� the equation ���� follows by h 
 ��
the continuity of g andZ �
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When r � � and g is k�times continously di�erentiable� a Taylor expansion of g up
to to the kernel order k gives for �h � �� h�Z �
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which completes the proof of this lemma�
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We denote

��s�m� �m��xi	 ��
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where

��s�m��m��xi	 ��
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m�X
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with constants a that ful�ll the inequalities am� �� �� am� �� �� For example� for
s � �� m� � � and m� � � we have

��������xl	 �
nX
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wr����xi� xl	��������xl	

with
��������xl	 � �a�Yl 
 a�Yl��	

�	

Furthermore� we de�ne �s�xk� xl	 �� cov���s�xk	� ��s�xl		 and �s�xk	 �� �s�xk� xk	�
Then� recall that �under �A�	 and �A�		 by lemma ��� in M�uller � Stadtm�uller
�����a	 and lemma ��� it follows that �s��� �	 is continous for s � �� ��

The following lemma generalizes theorems � and � of Gasser � M�uller �����	 for
the moments of the above kernel smoother based on such s � dependent errors ��s
which appear because of the higher order di�erences�

��



Lemma 
� Under �A�� to �A�� is
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Proof� The equation ���� is proven in Gasser � M�uller �����	� appendix �� Without
restriction of generality we prove ���� and ���� for the case s � �� m� � �� m� � ��
the proofs for local estimators with other parameters s� m� and m� are essentially
the same�
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Now� note that jk�lj � � implies jxk�xlj � O�n��	� Thus we derive by the Lipschitz
continuity of the kernel Kr� by the continuity of ����� �	 and by "fk� ljjk�lj � �g � �
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which proves ����� For the proof of ���� note that by the continuity of ���� �	 it
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which completes the proof of the lemma�
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Recall that we de�ned in ���� a local estimate

����m��m��xi	 ��

�
m�X

�m�

aYi�

�

for the third order error moment ���xi	� Further note that Bunke �����	 shows
that a necessary condition for the unbiasedness of ����m��m��xi	 under local linear
regression models is that the equalities
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aj � � and

Pm�

j�m�
a�j � � hold which

we assume in what follows� The following lemma generalizes lemma ��� from M�uller
� Stadtm�uller �����a	 for such estimators of third order error moments�
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� We assume �A�� and �A��� Then
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which completes the proof of the lemma because of
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�

The following lemmas give asymptotic rates for di�erences of coe$cients of the
Edgeworth expansions in lemma ��� and lemma ����
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��n� � �n� � OP ��nh	��	� �����	

Pn
i�� wk�h�x�� xi	����xi	

�V ���
��n

�

Pn
i�� wk�h�x�� xi	���xi	

V
���
��n

� OP ��nh	������n��	
�� 
 ��r� 	���	 
 ��n��	

�� 
 ��r� 	���		

�����	

and Pn
i�� dn�x�� xi	����xi	

�V
���
��n

�

Pn
i�� dn�x�� xi	���xi	

V
���
��n

� OP ��nh	������n��	
�� 
 ��r� 	���	 
 ��n��	

�� 
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where dn�x�� xi	 is de�ned in ���� For h	 �� � �� all expressions are of orderOP ��nh	��	�

Proof� The proof goes along the lines fo that of ����� We show this lemma only for
h� �� � ��� the other case is analogeous� Recall that because of h � h�

��n� � �n� � �V ����
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By Taylor expansion of �V ����
��n at V��n we get for some �V��n between V��n and �V��n�
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�
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because of �V��n � OP ��nh	��	 and �V��n � V��n � OP �nh����	 which holds due to ����
Hence� �
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where ���� follows from lemma ��� �ii	 and ���� follows from lemma ���� Hence�
from ���� and V��n � O��nh	��	 it follows that
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Summing up ���� and ���� proves �����

For the proof of ���� recall that according to ���� it holds that �V��n � V��n �
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The following rest of the proof is analogeous to that of ����� By lemma ��� and
lemma ��� we have
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Now� from lemma ��� it follows that
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Finally� from ���� and lemma ��� we obtain
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which completes the proof of ����� The proof of ���� is analogeous�
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Lemma 
	 Under �A�� to �A�� it holds that
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Now� according to �A�	 we derive by a Taylor expansion of K�ks��k
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with a higher order remainder term Rn� By integration by parts we have for � � �Z �x
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holds

R �

�� z
K�ks��k�z	 dz � � Hence�

A� � ���	k
�

h

nX
i��

Z si

si��

Kk

�
x� � u

h

�
du

�
xi � x�

g

�k Z �x
�sj��g

�x
�sj����g

zkK
�k�
�ks��k�z	 dz 
 Rn

� ���	k
�

h

nX
i��

Z si

si��

Kk

�
x� � u

h

�
du

�
xi � x�

g

�k


�

g

Z sj

sj��

�
x� � u

g

�k

K
�k�
�ks��k

�
x� � u

g

�
du 
 Rn

� ���	k
�

h

nX
i��

Z si

si��

Kk

�
x� � u

h

�
du

�
xi � x�

g

�k

max�K	�ng	�� 
 Rn

�
nX

i��

wk�h�x�� xi	O��ng	���h�g	k	

� O��ng	���h�g	k		

Finally�

E

�
nX

j��

un�xj	�j

�

�
X
j�Ij

u�n�xj	E�
�
j

��



�
X
j�Ij

u�n�xj	���xj	

� O��ng	���h�g	�k		 �����	

Note that the last relation follows because �due to the weights in un�xj		 the sum
is taken over a set Ij with cardinality ng� Thus� the lemma is proven�
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