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Summary

Epidemiologists sometimes study the association between two measures of exposure

on the same subjects by grouping the data into categories that are de�ned by sample

quantiles of the two marginal distributions� Although such grouped data are presented in a

twoway contingency table� the cell counts in this table do not have a multinomial

distribution� We use the term �bivariate quantile distribution� �BQD� to describe the joint

distribution of counts in such a table� Blomqvist ����
� gave an exact BQD theory for the

case of only � categories based on division at the sample medians� The asymptotic theory

he presented was not valid� however� except in special cases� We present a valid asymptotic

theory for arbitrary numbers of categories and apply this theory to construct con�dence

intervals for the kappa statistic� We show by simulations that the con�dence interval

procedures we propose have near nominal coverage for sample sizes exceeding �
� both for

�� � and �� � tables� These simulations also illustrate that the asymptotic theory of

Blomqvist ����
� and the methods given by Fleiss� Cohen and Everitt ���	�� for

multinomial sampling can yield subnominal coverage for BQD data� although in some cases

the coverage for these procedures is near nominal levels�

�



� Introduction

Epidemiologists sometimes crossclassify continuous bivariate data by determining the

sample quantiles of each marginal distribution and categorizing the bivariate data into cells

determined by these sample quantiles� For example� Pietinen� Hartman� Haapa et al�

�����a� ����b� used sample quintiles �Table �� to compare data on vitamin E consumption

measured by two approaches� ��� two selfadministered food frequency questionnaires

based on recall of diet for the previous �� months� and ��� a detailed prospective food

consumption record covering �� twoday periods spaced over a 	 month interval� The

vitamin E consumption from the two food frequency questionnaires was computed as the

mean of the two measurements which straddled the interval during which prospective food

consumption records were taken�

To measure agreement between these two types of measurements� Pietinen� Hartman�

Haapa� et al� �����a� ����b� used Pearson correlation coe�cients based on the underlying

continuous measurements� but they also examined quantities based on the sample

quantiles� such as the proportion of subjects whose vitamin E consumption was rated in

the lowest quintile by the food frequency questionnaire among those in the lowest quintile

based on the food consumption record�

In this paper we develop asymptotic distribution theory for the counts in tables like

Table �� and we use this theory to derive con�dence interval procedures for one measure of

agreement in contingency tables� the kappa statistic �see Chapter �� in Fleiss ������ and

Landis and Koch �����a� ����b��� This theory can be used to derive the asymptotic

distribution of other measures of agreement� such as the proportion of measurements

classi�ed in the same or adjacent quantile categories on the two measurements �e�g�

Willett� Sampson� Stampfer et al�� ������

The counts in tables like Table � do not have a multinomial distribution because the

cutpoints used to classify the data are based on the sample quantiles� rather than �xed a

�



priori� In particular� using sample quantiles as cutpoints �xes the margins of the table�

except for rounding� as illustrated in Table �� We call the distribution of counts in such

tables the �bivariate quantile distribution� �BQD��

Blomqvist ����
� derived the exact theory for the BQD for � � � tables partitioned at

the sample medians� His asymptotic results are only valid under special assumptions�

however�

We present notation and assumptions �Section �� and derive asymptotic theory for

the BQD �Section ��� We derive asymptotic theory and methods for construction of

con�dence intervals for kappa �Section ��� We present simulations to study the coverage of

such con�dence intervals �Section ��� not only for methods based on the BQD� but for the

methods of Fleiss� Cohen and Everitt ���	��� which are appropriate for multinomial

sampling� and for a generalization of the results of Blomqvist ����
� to tables with more

than four categories� We compare these methods on the data in Table � �Section 	� before

discussing our results �Section ���

� Notation and Assumptions

Let the bivariate sample �Xk� Yk� for k � �� �� ���� t be i�i�d� from the distribution F � Let F

have marginal distributions G�x� and H�y� and conditional distributions G�xjy� and

H�yjx�� Also� let F �x� y� be di�erentiable as a function of �x� y� at the quantiles of G and

H� That is� fF �x� h��� y � h���� F �x� y�g�� � h�
�
�x
F �x� y� � h�

�
�y
F �x� y� � o���

uniformly in the direction vector �h�� h��� The term o��� is such that o����� tends to zero

as � tends to zero� Let �F �x� y�� �G�x�� and �H�y� denote the corresponding rightcontinuous

empirical distribution �EDFs�� For example� using the indicator function If�g� de�ne

�F �x� y� � t��
tX

k��

I fXk � x� Yk � yg � �����

To categorize the �X�Y � data into r row and c column categories� choose an

increasing set of marginal proportions f�ig �i � 
� �� ���� r� and f�jg �j � 
� �� ���� c� such

�



that �� � �� � 
 and �r � �c � �� We will concentrate on evenly spaced quantiles� �i � i�r

and �j � j�c� For example� for quintiles� r � c � �� �i � i��� and �j � j��� The

corresponding population �iquantiles for X are �i � G����i�� and the population

�jquantiles for Y are �j � H����j�� We assume that g�x� � G��x� and h�y� � H ��y� exist

and are positive at the selected population quantiles� so these inverses are unique at the

selected quantiles� For completeness� let �� � �� � �� and �r � �c � ��� We also need

the following notation based on these population quantiles� 	ij � F ��i� �j�� �ijj � G��ij�j��

and �jji � H��jj�i�� The parameters �ijj and �jji are crucial determinants of the asymptotic

covariance structure� Sample estimates of these quantiles are given by the leftcontinuous

quantities ui � inffu � �i � �G�u�g for �i and vj � inffv � �j � �H�v�g for �j �Cs�org�o� ������

For completeness� let u� � v� � �� and ur � vc � ���

The proportion of counts falling in the �i� j�th classi�cation de�ned by ui�� 
 x � ui

and vj�� 
 y � vj is

pij � �F �ui� vj�� �F �ui��� vj�� �F �ui� vj��� � �F �ui��� vj���� �����

Note� for example� that p�� is the proportion of counts in the lowest quantiles of X and Y

and corresponds to the �upper left� cell of the table� as in Table � and Figure �� Thus� the

cell counts in the r � c BQD table are given by fpijtg �i � �� �� ���� r� j � �� �� ���� c�� As t

increases� the quantities pij tend to

�ij � F ��i� �j�� F ��i��� �j�� F ��i� �j��� � F ��i��� �j���� �����

We replace a subscript by a plus sign to indicate summation over that subscript� For

example� pi� �
Pc

j�� pij� Note that pi� � �i� � �i � �i�� and p�j � ��j � �j � �j���

�



� The Bivariate Quantile Distribution

��� Asymptotic Theory

We use the fact �equation ���� that the sample proportions� fpijg� are linear combinations

of the joint EDFs evaluated at the sample quantiles�
n

�F �ui� vj�
o
� and the expectations and

covariances of the limiting distribution of
n

�F �ui� vj�
o

� to compute the asymptotic normal

distribution for fpijg� In turn� we can use the deltamethod to approximate the variance of

measures of association that are functions of fpijg� such as the kappa statistic�

We approximate �F �ui� vj� in terms of �F ��i� �j�� �G��i�� and �H��j�� Consider the

decomposition

t
�

�

n
�F �ui� vj�� F ��i� �j�

o
� t

�

�

n
�F �ui� vj�� F �ui� vj�

o
� t

�

� fF �ui� vj�� F ��i� �j�g �

By the delta method� the second term on the right converges in distribution to

t
�

�

n
�
�x
F ��i� �j��ui � �i� � �

�y
F ��i� �j��vj � �j�

o
provided F is di�erentiable at the

quantiles� The �rst term on the right converges in distribution to

t
�

�

n
�F ��i� �j�� F ��i� �j�

o
� To show this result� note that ui and vj converge in probability

to �i and �j� and the continuity of F at ��i� �j� ensures the continuity of limiting sample

paths of t
�

�

n
�F �x� y�� F �x� y�

o
at ��i� �j�� Adding t

�

�F ��i� �j� to both sides of the

decomposition and then dividing by t
�

� � we obtain the representation�

�F �ui� vj� � �F ��i� �j� �
�

�x
F ��i� �j��ui � �i� �

�

�y
F ��i� �j��vj � �j� � op

�
t�

�

�

�
� �����

The notation op
�
t�

�

�

�
means that the remainder term is stochastically negligible� namely

t
�

� op�t
� �

� � converges to zero in probability �see Bishop� Feinberg� Holland� ����� page �����

Because the joint distribution function can be written as

F �x� y� �
Z x

��
H�yjz�g�z�dz �

Z y

��
G�xjz�h�z�dz� �����

we di�erentiate equation ����� with respect to x and y and evaluate at ��i� �j� to obtain

�

�x
F ��i� �j� � H��jj�i�g��i� � �jjig��i� �����

�



and

�

�y
F ��i� �j� � G��ij�j�h��j� � �ijjh��j� �����

Because G and H are di�erentiable at the quantiles� the results of Ghosh ������ and Gill

������ yield the Bahadur representation�

�ui � �i� � ��i � �G��i� �g��i� � op�t
� �

� � �����

and

�vj � �j� � ��j � �H��j� �h��j� � op�t
� �

� �� ���	�

Substituting equations ����� through ���	� into ������ we obtain

�F �ui� vj� � �F ��i� �j�� �jji
h

�G��i�� �i
i
� �ijj

h
�H��j� � �j

i
� op�t

� �

� �� �����

Because t
�

� � �F � F� �G�G� �H �H� are jointly asymptotically normal� equation ����� implies

that t
�

�

n
�F �ui� vj�� F �ui� vj�

o
tends to normality� and� indeed� t

�

�

n
�F �ui� vj�� F �ui� vj�

o
ij

tend to a jointly normal distribution�

To facilitate calculations� we de�ne the vectors �ij �
�

�� ��jji� ��ijj
�
�

��ij �
�


� �i� �j
�
� and w�

ij �
n

�F ��i� �j�� �G��i�� �H��j�
o
� Then� we can rewrite

equation ����� as

�F �ui� vj� � �ij�wij � �ij� � op�t
� �

� �� �����

Having approximated �F �ui� vj� as a linear function of the EDFs evaluated at the

population quantiles� we know it has a limiting normal distribution whose means and

variances can be computed� De�ne ��ij �
�
	ij �i �j

�
� and let m � minfi� kg and

n � minfj� lg� Standard calculations �Appendix A� show that for every sample size t

E
n

�F ��i� �j�
o

� 	ij �����

	



and

Cov
n
t
�

� �F ��i� �j�� t
�

� �F ��k� �l�
o

� �	mn � 	ij	kl�� ����
�

Note also that G�x� � F �x��� and H�y� � F ��� y�� which imply �i � 	ic and �j � 	rj�

Thus from equation ����
� we obtain

Cov
h
t
�

�wij� t
�

�wkl

i
�

��� �	mn � 	ij	kl� �	mj � 	ij�k� �	in � 	ij�l�
�	ml � �i	kl� ��m � �i�k� �	il � �i�l�
�	kn � �j	kl� �	kj � �j�k� ��n � �j�l�

��	 �X
ijkl

� ������

It follows from equations ������ ������ and ������ that t
�

�

n
�F �ui� vj�� 	ij

o
and

t
�

�

n
�F �uk� vl�� 	kl

o
are jointly asymptotically normal with mean zero and covariance

�ij
X
ijkl

kl� ������

In particular� the limiting variance of t
�

�

n
�F �ui� vj�� 	ij

o
may be written without matrix

notation as

	ij��� 	ij� � ��jji�i��� �i� � ��ijj�j��� �j�

� ��jji	ij�� � �i�� ��ijj	ij��� �j� � ��jji�ijj�	ij � �i�j�� ������

For most applications� the variances and covariances involve so many terms that matrix

notation and computer calculations are needed�

��� Parameter Estimation

To estimate the covariances of fpijg from equations ������ ����� and ������� we need to

estimate f	ijg� f�ijjg� and f�jjig� We estimate f	ijg by
n

�F �ui� vj�
o

�

The estimation of f�ijjg and f�jjig is di�cult because� for example�

�ijj � P �X � �ijY � �j�� and in �nite samples there will be no pairs �X�Y � with Y � �j

exactly� Thus some kind of smoothing procedure is needed� analogous to density estimation

�Silverman� ���	�� Our estimate is based on

�ijj � G��ij�j� � P fX � �ijY � �jg � P fG�X� � �ijH�Y � � �jg � ������

�



which leads to

��ijj � �P



�G�Xk� � �ij j �H�Yk��
�
�j �

�

�t

�
j � �t�t



�

Pt
k�� I

n
�G�Xk� � �i� j �H�Yk�� ��j � �

�t
�j � �t�t

o
Pt

k�� I
n
j �H�Yk�� ��j � �

�t
�j � �t�t

o � ������

In an analogous fashion� we can de�ne estimates
n

��jji
o

of
n
�jji

o
� To obtain consistent

estimates of �ijj and �jji� we require �t �� and �t�t� 
 as t��� In �� � tables

partitioned by medians� we use �t � �t���
�

� and in �� � tables partitioned by tertiles� we

use �t � �t���
�

� �

We could also estimate the covariances of fpijg by a bootstrap procedure �Efron and

Tibshirani� ���	�� This procedure is valid under the same conditions needed for the

asymptotic theory in Section ���� as follows from general results in Gill �������

� The Kappa Statistic ���� its Asymptotic Variance�

and Con�dence Intervals

��� The Kappa Statistic ���

The kappa statistic ��� �Cohen� ��	
� measures the agreement between two variables in

r � r tables� This statistic was originally used in psychological studies with nominal

categories and� thus� for counts following the multinomial distribution� Landis and Koch

�����a� ����b� discuss the use of � for ordinal data and provide some useful benchmarks

for its interpretation�

Let !� �
Pr

i�� �ii and !e �
Pr

i�� �i���i� Then !� represents the limiting proportion

of diagonal observations� while !e represents the limiting proportion of diagonal counts

that we would expect if the underlying variates X and Y were independent� The quantity

� is de�ned by

� �
!� �!e

� �!e
� �����

�



Note that � � � corresponds to perfect agreement� The sample estimate of � is

�� �
P� � Pe
�� Pe

� �����

where P� and Pe estimate !� and !e respectively� by replacing �ij by pij in the de�ning

formulas above�

Under bivariate quantile sampling� the marginal distributions are �xed� and Pe � !e�

Therefore� we estimate the variance of � as

�VarBQ ���� � �� �!e�
��

rX
i��

rX
j��

�CovBQ�pii� pjj�� �����

The needed �CovBQ�pii� pjj� is obtained as in Section � under bivariate quantile sampling�

��� Estimates of the Variance of �� Under Other Sampling
Models

For completeness� we compare variance estimates under BQD sampling with other

estimates of the variance of �� appropriate for other sampling plans� Under multinomial

sampling �MULT�� the cell counts have random marginal totals� and both P� and Pe are

random variables� Fleiss� Cohen� and Everitt ���	�� �FCE� used the deltamethod to

derive the estimated variance of �� for multinomial samples� Agresti ����
� presented an

algebraically equivalent but computationally simpler asymptotic approximation� namely�

�Var ���� � t��
�
P��� � P��

�� � Pe��
�

���� P��C�

��� Pe��
�

��� P��C�

�� � Pe��

�
� �����

where C� � �P�Pe �
Pr

i�� pii�pi� � p�i� and C� �
Pr

i��

Pr
j�� pij�pj� � p�i�� � �P �

e � We can

replace fpijg by f�ijg to obtain the asymptotic variance of �� for multinomial tables�

Blomqvist ����
� gave the following asymptotic formula for the variance of the fpijg

in �� � tables partitioned by sample medians�

Var
�
t
�

�pij
�
� ��� �
��� ���� � �����

�



The following argument shows that this result corresponds to the asymptotic variance from

the singular multivariate normal distribution to which the multivariate extended

hypergeometric �MXH� distribution converges asymptotically� The multivariate extended

hypergeometric distribution is obtained from an arbitrary multinomial distribution of

counts in an r � c table by conditioning on the margins �Plackett� ����� page 	��� The

term �extended� refers to the fact that cell means may di�er from their expectations under

independence� Under MXH sampling� the marginal counts are �xed� and Pe � !e�

Therefore bVarMXH ���� can be estimated from equation ����� with multivariate extended

hypergeometric covariances �CovMXH�pii� pjj� in place of �CovBQ�pii� pjj�� The terms

�CovMXH�pii� pjj� may be estimated by substituting pij for �ij in asymptotic expressions

given by Plackett ������ page 	��� Plackett gives the asymptotic quadratic form in the

normal approximation to the distribution of fpijg� from which required covariances can be

calculated� In the special case of �� � tables under MXH sampling�

Var�pij� � t�������� � ����� � ����� � ����� ���� which reduces to equation ����� because

��� � ��� � �

�
� ��� � �

�
� ���� To improve performance in sparse tables �Cox ���
� page

���� we substituted pij � ��t��� for �ij in the formulas of Plackett� and we divided the

resulting estimated asymptotic covariances of t
�

� pij by t� �� instead of by t� to obtain

�CovMXH�pii� pjj�� Division by �t� �� agrees with the exact calculation of Cov�pii� pjj�

under MXH sampling when X and Y are independent�

The limiting normal distribution theory for BQD sampling and MXH sampling agree

under certain conditions� de�ned in Corollaries � and � and Theorem ��

Theorem �� The quantities t
�

� �F �ui� vj� and t
�

� �F �uk� v�� have the same limiting

covariance under BQD and MXH sampling if �ijj � �i� �jji � �j� 	ij � �i�j� �kj� � �k�

��jk � �� and 	k� � �k��� Proof is in Appendix B�

Corollary ��
n
t
�

�pij
o

have the same limiting variances and covariances under BQD

and MXH sampling for all i � 
� �� ���� r� j � 
� �� ���� c if �ijj � �i� �jji � �j and 	ij � �i�j for

�




all i � 
� �� ���� r and j � 
� �� ���� c� Proof� This Corollary follows from Theorem � and

equation ������

Corollary �� If X and Y are independent�
n
t
�

�pij
o

have the same limiting variances

and covariances under BQD and MXH sampling� Proof� Independence implies �ijj � �i�

�jji � �j and 	ij � �i�j for all i and j� Comment� Independence of X and Y is a stronger

condition than the conditions in Corollary �� which only require that counts based on the

crossclassi�cation of X and Y according to the population quantiles be independent in the

table de�ned by this crossclassi�cation�

The conditions of Corollary � also apply to �� � tables� In the case �� � �� � 
���

corresponding to division at the medians� however� we have the following special result�

Theorem �� For a � � � table with �� � �� � 
���
n
t
�

� pij
o

have the same limiting

variances and covariances under BQD and MXH sampling if ��j� � ��j� � 
��� Proof�

Under MXH sampling� the limiting variance of t
�

� pij is ����
��� ���� � 	���
��� 	��� from

equation ������ Under BQD sampling� substitution of ��j� � ��j� � �� � �� � 
�� into

equation ������ yields the same limiting variance� Because p�� � p��� p�� � 
��� p�� and

p�� � 
�� � p��� all other limiting variances and covariances of
n
t
�

�pij
o

are also equal under

MXH and BQD sampling� Comment� Independence is not required for the conditions of

Theorem � to hold� For example� the conditions hold for the bivariate normal distribution

with nonzero correlation�

��� Con�dence Interval Construction

We study con�dence intervals ��� Z�����

n
�Var����

o� �

� � where �Var���� is estimated either

under bivariate quantile� multinomial or multivariate extended hypergeometric sampling

models� as in Section �� and where Z����� � "����� ���� is the � � ��� quantile of the

standard normal distribution "�

We also study con�dence intervals based on the bootstrap algorithm �Efron and

��



Tibshirani� ���	�� The validity of these procedures follows from general results in Gill

������ under the same assumptions required for the asymptotic theory of Section ���� If ��b

represents an estimate of �� based on bootstrap replicate b� and if there are B bootstrap

replicates� then we compute a con�dence interval from ��� ���	s� where

s� � #���b � $����B � �� and $� � #��b�B� We describe this as the BSV procedure to indicate

that it is based on the bootstrap sample variance� We also calculate a con�dence interval

��L� �U � where �L and �U are the ���th and ����th percentiles of the bootstrap sample�

This con�dence interval procedure is denoted BPC� Bootstrap samples are obtained by

resampling t pairs with replacement from the original sample �Xk� Yk�� k � �� �� ���� t�

	 Simulations and Other Numerical Studies

	�� Asymptotic Theory for Several Bivariate Distributions

F �x� y�

We consider several bivariate distributions to illustrate di�erences in asymptotic theory

that arise under BQD sampling� multinomial sampling �MULT� and multivariate extended

hypergeometric sampling �MXH�� We let �i � i�r and �j � j�r correspond to equal

marginal proportions in an r � r table�

Bivariate normal distribution� BVN����

The distribution is bivariate normal with means zero� variances � and correlation ��

Unreported numerical studies by us con�rm �see Theorem �� that the asymptotic

covariance of t
�

�pij under BQD sampling equals that under MXH sampling for � � � tables

based on medians� regardless of �� Note that �� � ��j� � �� � ��j� � 
��� regardless of � in

the �� � case �Table �� part a�� Likewise� unreported numerical studies con�rm the result

of Corollary � for � � � tables with �� � ��j� � ��j� � �

�
� �� � ��j� � ��j� � �

�
and � � 


�Table �� part a�� The asymptotic covariances of t
�

�pij under multinomial sampling di�er

from those under BQD and MXH sampling in all BVN��� cases and in all other cases

��



described below�

Despite the fact that the counts have di�erent asymptotic covariances under

multinomial sampling� it is a mathematical coincidence that the limiting variance of t
�

� �� is

the same for MULT� MXH and BQD sampling in � � � tables when the underlying

distribution is BVN��� �Table �� part b�� For �� � tables with � 	� 
� there are slight

di�erences in the limiting variance of t
�

� �� for BQD� MULT and MXH sampling �Table ��

part b��

Bivariate chisquared distribution� BCH���

BCH��� data are obtained by generating pairs from BVN��
�

� � and squaring each

component� The marginal distributions G�x� and H�y� are each chisquare� and

independence corresponds to � � 
�

For � � 
� Corollary � applies� and the asymptotic covariances of t
�

�pij are equal for

BQD and MXH sampling� but not for MULT sampling� both for �� � and �� � tables�

For � � 
�� or 
��� �ijj 	� �i �Tables � and �� part a�� and the asymptotic covariances of

t
�

�pij di�er for BQD� MXH and MULT sampling�

For � � 
� the asymptotic variances of t
�

� �� are equal for all three sampling schemes

�data not shown�� but slight di�erences are present with � � 
�� or 
�� for �� � �Table ��

part b�� and � � � �Table �� part b� tables�

Nicked square distribution� NS

The NS has density � in the grey region of Figure �� � in the black region of Figure �

and 
 in the white region� Note that Y and X are dependent but uncorrelated�

For �� � tables� ��j� � P �X � �

�
jY � �

�
� � 
��� but ��j� � P �Y � �

�
jX � �

�
� � 


�Table �� part a�� The asymptotic covariances of t
�

�pij di�er for BQD� MXH and MULT

sampling in this case� and the limiting variance of t
�

� �� is ��
 for BQD sampling and ��
 for

MXH and MULT sampling �Table �� part b�� For �� � tables� �ijj � �i� �jji � �j and

	ij � �i�j �Table �� part a�� In this case� the asymptotic covariances of t
�

� pij agree for BQD

��



and MXH sampling �Corollary ��� but not for MULT sampling� Nonetheless� the

asymptotic variances of t
�

� �� are the same under all three sampling plans �Table �� part b��

Three squares distribution� TS

The TS distribution has density equal to � in the dark squares �Figure �� and zero

elsewhere� The lower left dark square is
h

� �

�

i
�
h

� �

�

i
� the middle right dark square is�

�

�
� �
i
�
�
�

�
� �
�

i
� and the remaining dark square is

�
�

�
� �
�

i
�
�
�

�
� �
i
� The variates Y and X are

each uniformly distributed on �
� � � but Y and X are dependent� with covariance

���
�
������
��
� and correlation ������

For �� � tables� ��j� � 
 and ��j� � 
 �Table �� part a�� and the limiting covariances

of t
�

�pij di�er for BQD� MXH and MULT sampling� The limiting variance of t
�

� �� is four

times as great under BQD sampling as under MXH and MULT sampling �Table �� part b��

For �� � tables� ��j� � ��j� � 
 �Table �� part a�� However� �� � �� � �

�
� and G���jy�

is discontinuous in y at y � �

�
� Likewise� H���jx� is discontinuous in x at x � �

�
� Similarly

for �� � �� � �

�
� G���jy� is discontinuous in y at y � �

�
and y � �

�
and H���jx� is

discontinuous in x at x � �

�
and �

�
� Thus� the conditional probabilities ��j�� ��j�� ��j�� ��j��

��j� and ��j� are not de�ned �Table �� part a�� It follows that expressions ����� and ����� are

not de�ned� and the variances and covariances of t
�

� pij under BQD sampling cannot be

determined �Table �� part b � by the methods of Section ���� Under MXH sampling� the

limiting variances and covariances of t
�

�pij are all zero� The limiting variances of t
�

� �� are


�� and 
�
 under MULT and MXH sampling� respectively� and undetermined for BQD

sampling �Table �� part b��

	�� Simulation Studies of the Variances of t
�

� �� From Finite BQD
Samples

We undertook simulation studies under BQD sampling to determine how large sample sizes

must be for asymptotic BQD variance calculations to yield reliable results for t
�

� �� and to

verify that asymptotic variance calculations under MXH and MULT sampling can be

��



incorrect�

Random numbers were generated in the GAUSS ��
 programming language �Aptech

Systems� Inc�� ����� using the procedure RNDNS� an acceptancerejection algorithm� for

BVN��� variates and the procedure RNDUS� a multiplicativecongruential algorithm� for

uniform variates� Normal variates were used to generate BVN��� and BCH��� data� as

described in Section ���� and uniform variates were used to generate NS and TS data� The

estimated variance of the quantity t
�

� ��i � ai� from simulation i� based on n��

�




simulations� was s� � �n� ����#�ai � $a��� where $a � #ai�n and summations range from

i � � to i � n � �

� 


� Each column in Table �� part c and Table �� part c required

about � hours of computing time on a �
 MHz PentiumTM processor� Each entry in part c

of Tables � and � is independent of other entries�

For �� � tables� the sample variance is within �% of the BQD asymptotic variance for

sample size t��
 for all BVN��� distributions and for BCH���� �Table �� part c�� For

BCH���� data� a sample size of t�	
 is su�cient to bring the sample variance within �% of

the asymptotic variance� That is� ���������
����

&���
�����%� Likewise� for t�	
� the

sample variance is only ���% smaller than the asymptotic variance for TS data� For NS

data� the sample variance remains �
��% smaller than the asymptotic variance� ��
� even

for t���

� and for smaller sample sizes the asymptotic variance seriously overestimates

the actual variance under BQD sampling�

The asymptotic variances computed under MULT and MXH sampling di�er

signi�cantly from sample variances with t���

 for BCH����� BCH����� NS and TS data�

These are cases in which the asymptotic variances under MULT and MXH sampling di�er

from the BQD asymptotic variance� Assuming s��n� �� 
 ����n��� where �� � Var�t
�

� ���

and that n is large enough so that the chisquare distribution is well approximated by

normality� we can test whether the quantity �� equals the asymptotic variance computed in

Table �� part b� using the standard normal deviate Z � �s���� � �� f�n� ����g
�

� � For

��



example� for BCH���� data and �� � ����� computed under MXH sampling�

z � ���	�������� � �� ���������
�

� � ����� giving strong evidence that the MXH calculation

�and the identical MULT calculation� are misleading� These deviations are even more

obvious for BCH����� NS and TS data�

Very similar results are obtained for �� � tables� except that the BQD asymptotic

variance is close to the sample variance for NS data� even with t � �
 �Table �� part c��

Moreover� sample variances from BVN��� data di�er signi�cantly from asymptotic

variances computed for MXH sampling when � 	� 
�

	�� Simulated Coverage Under BQD Sampling

We simulated data under BQD sampling to assess the coverage of various procedures for

constructing nominal ��% con�dence intervals on �� The same simulated data were

analyzed by each procedure to facilitate comparisons� Results are based on �

�




simulated trials except for the bootstrap procedures BSV and BPC� for which ��


 trials

and B��

 bootstrap repetitions were used�

For �� � tables �Table ��� the BQD procedure �see Sections ��� and ���� has near

nominal size for sample sizes t of �
 or more� except for the TS distribution� for which a

sample size of ��
 yields near nominal coverage� The BSV procedure performs similarly to

the BQD procedure� although the BSV coverage is appreciably higher than 
��� for small

sample sizes� The BPC procedure has coverage consistently above nominal levels� even for

t��

� except for the TS distribution� Simulations with ��


 trials and with t���


 from

the BVN�
� distribution yield a coverage of ��	
 for the BPC procedure� 
���� for BSV and


���� for BQD�

The MXH and MULT procedures are identical for � � � tables �see Table �� part b��

For samples of t���
 or more and for all BVN��� distributions� for which these procedures

have the appropriate asymptotic variance� coverage is near nominal levels �Table ��� Even

�	



for distributions such as BCH���� for which these procedures have inappropriate variances�

the coverage is near nominal levels for t � ��
� The coverage is substantially less than

nominal� however� for the NS and TS distributions� for which the MXH and MULT

sampling theory yields misleading results under BQD sampling�

Similar results were found for � � � tables �Table ��� except that the BQD procedures

performs well even for the TS distribution� for which the variance is illde�ned� and the

BSV bootstrap procedure tends to have supranominal coverage even for t��

� Both the

MXH and MULT procedures have near nominal coverage for t � ��
 for all distributions

except the TS distribution�

To summarize� the BQD procedure yields near nominal coverage under BQD sampling

for sample sizes above �
� and the bootstrap procedure BSV also works well for slightly

larger sample sizes� The BPC procedure tends to have supranominal coverage in these

simulations� The MXH and MULT procedures perform well except for distributions such as

NS and TS� for which the MXH and MULT asymptotic theory is quite misleading under

BQD sampling�


 Example

We estimated ���
����� from Table � and obtained estimated standard deviations of �� of


�
���� 
�
��� and 
�
��� respectively from BQD� MULT and MXH procedures� The

estimated standard deviation of �� is 
�
�

 if a di�erent bandwidth� �� �t���
�

� � is used

instead of �t���
�

� � Con�dence intervals for �� computed under the BQD� BSV� MXH and

MULT procedures were� respectively� �������������� ���
	������	�� �����
���
��� and

����
����
����

Based on asymptotic theory and on the simulations in Section �� we recommend the

BQD procedure and con�dence interval �������������� It is reassuring� however� that

discrepancies among these procedures are small�

��



� Discussion

In this paper we develop the asymptotic theory for counts in a contingency table de�ned

by BQD sampling� This theory extends and corrects the asymptotic theory given by

Blomqvist ����
� for �� � tables� which is only correct for certain distributions� such as

the bivariate normal distribution� that satisfy the conditions of Theorem ��

This BQD asymptotic theory can be used to study many measures of association or

agreement in BQD tables� We have focussed on the kappa statistic because of its frequent

use� despite well known objections �Maclure and Willett� ������ It is a mathematical

coincidence that the asymptotic distribution of the estimate �� is the same under BQD�

MXH and MULT sampling for �� � tables partitioned at the sample medians when the

underlying data are bivariate normal� This result suggests� and our simulations con�rm�

that available con�dence interval procedures for kappa constructed under multinomial

sampling �Fleiss� Cohen and Everitt� ��	� and Agresti� ���
� will not be very misleading in

many cases� We have constructed examples from nonnormal distributions� however� for

which the coverage of con�dence intervals based on MXH or MULT sampling is below

nominal levels� Therefore� we recommend the procedures developed for BQD sampling� or

the bootstrap procedure� BSV� when the data arise by BQD sampling�

Further work might be useful to develop and evaluate alternative nonparametric

estimators of parameters such as �ijj� We are currently developing parametric theory for

BQD sampling to investigate issues of e�ciency� Nonetheless� it is an attractive feature of

the procedures presented in this paper that parametric assumptions are avoided�
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Appendix A� Covariance of �F ��i� �j� and �F ��j� ���

The expectation of �F ��i� �j� is E fI�X � �i� Y � �j�g � 	ij � Likewise�

Cov
n

�F ��i� �j�� �F ��k� ���
o

� t��Cov

�
tX

a��

I�Xa � �i� Ya � �j��
tX

b��

I�Xb � �k� Yb � ���

�

� t��
tX

a��

Cov fI�Xa � �i� Ya � �j�� I�Xa � �k� Ya � ���g

� t�� �E fI�Xa � �i� Ya � �j�I�Xa � �k� Ya � ���g � 	ij	k� 

� t�� �Prob fXa � min��i� �k�� Ya � min��j� ���g � 	ij	k� �

�




Appendix B� Proof of Theorem �

Under the assumptions of Theorem �� expression ������ for the limiting covariance of

t
�

� �F �ui� vj� and t
�

� �F �uk� v�� under BQD sampling reduces� after some algebra� to

��m � �i�k���n � �j��� �A����

where m � min�i� k� and n � min�j� ���

Now consider a �� � table with �xed marginal counts as shown in Figure �� From

standard results �page 	� in Plackett� ����� for the multivariate hypergeometric

distribution under the independence condition 	ij � �i�j � the limiting covariances of t
�

�

times the quantities a� b� c and d are�

Cov
�
t
�

�a� t�
�

�a
�
� ����� �������� ����

Cov
�
t�

�

�a� t�
�

� b
�
� ������ � �������� ���

Cov
�
t�

�

�a� t�
�

� c
�
� ������ �������� � ��� and

Cov
�
t�

�

�a� t�
�

�d
�

� Cov
�
t�

�

� b� t
�

� c
�
� ����� � �������� � ����

��


