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Abstract

The problem of estimation of the �nite dimensional parameter in a par�

tial linear model is considered� We derive upper and lower bounds for the

second minimax order risk and show that the second order minimax esti�

mator is a penalized maximum likelihood estimator� It is well known that

the performance of the estimator is depending on the choice of a smooth�

ing parameter� We propose a practically feasible adaptive procedure for the

penalization choice�

� Introduction

In the partial linear model we estimate an unknown parameter � � R
d based on

the observations
Yi � �TZi �m�Xi� � �i� i � �� � � � � n� ���

where �i are i�i�d� random variables with zero mean and �nite variance �� � E��i �
It is assumed that the regressors Xi are i�i�d� random variables taking values in
	
� �� and do not depend on �i� The function m�x�� x � 	
� �� here is the unknown
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non�parametric nuisance function
 such that the random variables m�Xi� have zero
mean�

There are di�erent statistical models for the predictors Zi� Speckman ������
assumed that the entries of Z are functionally connected with the regressors Xi� In
the present paper we deal with a simpler case by assuming that the matrix Z does
not depend on the regressors Xi and the noise �i and that the empirical covariance
matrix V

Vkl �
�

n

nX
i��

ZikZil�

is nonsingular for all n � n��
Since the �noise� m�Xi� � �i has zero mean one could be tempted to use
 for

instance
 the �naive� least squares estimator

b�n � arg min
��Rd

�
�

n

nX
i��

�
Yi � �TZi

���

to estimate the unknown parameter �� Evidently

E�b�n � ���b�n � ��T �
V ��

n
f�� �Em��Xi�g�

where ���T denotes transposition� The estimator b�n does not use a priori information
about the nuisance function m���� If this function is su�ciently smooth
 then the
performance of b�n can be substantially improved� In Robinson ������ it was shown
that there exists an estimator b�ef such that

E�b�ef � ���b�ef � ��T � f� � o���g�
�V ��

n
� n��� ���

If �i are Gaussian then the estimator b�ef is often called asymptotically e�cient
or adaptive
 Bickel
 Klaassen
 Ritov and Wellner ������� Asymptotically e�cient
estimates of � are traditionally constructed in partial linear models in two ways�
by using kernel estimators as in Speckman ������ or by penalization of the log�
likelihood� For example
 the penalized least squares estimator

b� � arg min
��Rd

min
m

�
�

n

nX
i��

n
Yi � �TZi �m�Xj�

o�
� ��n

Z �

�

n
m����t�

o�
dt

�
� ���

where m������ denotes the derivative of the order � and the smoothing parameter
�n is of the order of n

���������
 is the e�cient estimator in the case of Gaussian
noise� More precisely for � � �
 it was proved in Rice ������ that ifZ �

�
fm����t�g�dt � L

then

E�b� � ���b� � ��T �
��V ��

n

n
� �O�n�����������

o
� n��� ���

�



The goal of the present paper is to make precise the remainder term in ���
and thereby to provide an asymptotic minimax estimator for the parameter ��
The existing �rst order theory does not help us to perform this program� The
available results in the second order theory Carroll and H�ardle ������
 Chen ������

Heckman ������
 Mammen and van de Geer ������ Speckman ������
 Rice ������
specify only the order of the second order term in the expansion of the risk� It is
known that reasonable candidate estimators have a second order term of the order
n���������������

To shed some light on the optimal estimator in partial linear models we do the
next natural step in investigation of the second order risk� We calculate it exactly
up to the constant� Our considerations show
 among other things
 that the spline
estimator in ��� is not the second order minimax� All asymptotically e�cient esti�
mators for partial linear models are based on some choice a smoothing parameter�
Our next goal is therefore to propose a data based choice of the smoothing param�
eter
 which gives the second order minimax estimator� This makes the adaptive
estimator practically feasible�

The approach we use here is essentially based on the method proposed by
Pinsker ����
�� To simplify technical details we assume that the regressors Xi are
i�i�d� random variables uniformly distributed on 	
� �� and m�x� integrates to zero
and belongs to a Sobolev ball� In other words m � W �

� 
 where

W �
� �

�
m �

Z �

�
fm����t�g�dt � L�

Z �

�
m�t�dt � 


�
�

It is assumed in the sequel that � is integer�
Our results can be extended in di�erent directions� For instance the second

order minimax estimator for the case of nonuniform X variables can be obtained�
The error variables may be heteroskedastic i�e� var �i may be a function of �Xi� Zi�
in particular of �TZi�m�Xi�� This case is important in generalized partially linear
models
 where the variance is a function of the mean� Generalized linear models
has been investigated by Severini and Staniswalis ������ and recently applied to
migration by H�ardle
 Mammen and M�uller ������� But we intentionally choose
the simplest partial linear model to demonstrate why the second order theory is
essential in semiparametric estimation� We will make comments on some possible
extensions of our theory later in the text�

The outline of the paper is as follows� We �rst calculate a lower bound for
the minimax risk� We then study in Section � an upper bound and turn �nally in
Section � to a practical method of adaptation�

� A lower bound

In the derivation of a lower bound we assume only that the random variables �i
have a density p�x�
 x � R

� with �nite Fisher information

I� �
Z �

��

p���x�

p�x�
dx ���

�



Our approach is based on the well�known idea of parametrization of the func�
tional class W �

� � We do this by constructing the following orthonormal system in
L�	
� ��
 which approximates the ellipsoid W

�
� in the minimax sense

f	kgN� � argmin�k
sup

m�W�
�

min
mk

Z �

�

�
m�t��

NX
k��

mk
k�t�

��

dt�

It is not di�cult to see that f	k�t�g�� is the system with double orthogonalityZ �

�
	k�t�	j�t� dt � �kjZ �

�
	
���
k �t�	

���
j �t� dt � ���k �kj�

where

���k � min
�s

sup
m�W�

�

min
ms

Z �

�

�
m�t��

NX
s��

ms
s�t�

��

dt�

Note that the �rst � � � functions 	k�t� are the standard orthonormal polynomial
of the orders �� � � � � � � �� Integration by parts easily reveals that �s and 	s�t�
satisfy the following boundary problem

�s	
����
s �t� � �����	s�t�� ���

	�k�
s ��� � 	�k�

s �
� � 
� k � �� � � � � �� � ��

Moreover it is well�known that f�� 	k�t�� k � �� � � �g is complete orthonormal sys�
tem in L��
� ��� Thus any function m�t� from W �

� can be represented as

m�t� �
�X
k��


k	k�t�� 
k �
Z �

�
m�t�	k�t�dt� ���

where the Fourier coe�cients 
k are such that

�X
k��


�k�
��
k � L� ���k � 
� k � �� � � � � � � �� ���

The asymptotic behavior of �k plays a very important role in approximation theory
since they de�ne Kolmogorov�s diameter of W �

� 
 Tikhomirov ������� From ��� one
can show by a simple algebra that uniformly in s � �

���s � ��s���
n
� �O�s���

o
� ���

For more details we refer to Duistermaat ������ or H�ardle and Nussbaum �������
Let Br���� be the ball in R

d of the radius r � 
 and with the center at ���
The following theorem provides a lower bound for the second order term in the
minimax risk expansion�

�



Theorem � For any estimator b�
sup

m�W�
�

sup
��Br����

E�b� � ���b� � ��T � V ��

nI�

�
� �

� � o���

n

�X
s��

hs

	
� ���

where
hs �

h
�� ������s

i
�

��
�

and � is a root of the equation

�

nI�

�X
s��

���s
h
�������s � �

i
�
� L� ����

Thus we see that the second order risk is controlled by the quantity

�n �
�

nI�

�X
s��

hs�

The statistical interpretation of this value is well�known� The theorem due to
Pinsker ����
� states that �n is the asymptotic minimax risk in the following
�ltering problem� Suppose that we wish to estimate the in�nite dimensional vector
�
�� 
�� � � ��

T based on observations

si � 
i � n�����i� i � �� �� � � �

where �i are i�i�d� N �
� I��� � and the parameters of interest 
i obey condition ����
Then as n��

infb� sup�
�X
k��

E�b
k � 
k�
� � f� � o���g�n�

where the inf is taken over all possible estimators� The value of �n can be calculated
as follows� From ��� one concludes with � solving ���� that

�n � f� � o���gn��C����LnI�����������
where C��� is the Pinsker constant

C��� � �������������� � ���������� f���� � ��g��������� �
Remark �� If the regressors Xi have nonuniform density p�x�� x � 	
� �� the

corresponding basis f	kg�� is obtained as a solution of the following boundary
problem

�s	
����
s �t� � �����p�x�	s�t��
	�k�
s ��� � 	�k�

s �
� � 
� k � �� � � � � �� � ��
In this case the asymptotic behavior of �k is given by

���k � f� � o���g��k���

Z �

�
p�����x� dx

����
� k ���

For more details we refer to Utreras ����
� and Speckman �������
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� An upper bound

In this section we consider penalized least squares estimators� Recall the main
heuristic idea of the penalized likelihood� Let the noise �i be Gaussian� Assume
that the Fourier coe�cients 
k in ��� are i�i�d� N �
� ��k� and the parameters of
interest �k are i�i�d� N �
� n��� Then is it well known that the estimator

b� � arg min
��Rd

min
�k

�
�
� �

��

nX
i��

�B�Yi � �TZi �
X
��
k
	�


k	k�Xi�

�CA
�

�
X
��
k
	�


�k
��k
�
k�k�
n�

�
�
� ����

is the Bayesian estimator� Although in the minimax setting the above assumptions
are not ful�lled
 nevertheless we use �� in this situation� The problem is to calculate
its minimax risk and to choose the regularization sequence ��k to minimize the risk�
The following theorem shows how this approach works� Denote by Wn the number
of strictly positive ��k�

Theorem � Let E�k � 
� E�
�
k � ��� E j�kj����
� �� for some � � 
� and

lim
n��

W �
n logn

n
� 
�

Then for any A� as n��� uniformly in m � W �
�

sup
k�k�A

E�b�����b����T �
V ����

n
�
V ��f� � o���g

n

�X
k��

�

�k��� hk�

� �
��

n
h�k

	
� ����

where

hk �

�
� �

��

n��k

	��
� 
k �

Z �

�
m�x�	k�x�dx� ����

It follows from the above theorem and Theorem � that if ��k � ��hkfn�� �
hk�g��� where hk are de�ned by ��
� and ����
 then b� is the second order minimax
estimator in the case of Gaussian noise� To verify this fact note that if m � W �

� 

then from ��� we have

sup
m�W�

�

nX
k��


�k��� hk�
� � Lmax

k
�k��� hk�

� � L��

and by ����

I�L�
� �

�

n

nX
k��

h�k �
�

n

�X
s��

�����s

h
�� ������s

i
�
�
�

n

�X
s��

h
�� ������s

i�
�
�
�

n

�X
s��

hs

thus proving the required result�
Remark �� We added the additional term k�k� �n� into the de�nition of the

penalized least squares estimator ���� only to simplify the proofs of Theorem � and
Theorem � below�

�



Remark �� In the case when the distribution of the noise is non Gaussian but
known the penalized maximum likelihood estimator

b�p � argmax
��Rd

max
�k

�
�
�
nX
i��

log p

�B�Yi � �TZi �
X
��
k
	�


k	k�Xi�

�CA� �

�

X
��
k
	�


�k
��k

�
�
� �

might be used� Under additional assumptions on the density p��� one can show
that the asymptotic behavior of the risk of this estimator is given by ���� with
�� � I��� �

The optimal regularization sequence ��k strongly depends on the parameter L

which de�nes the functional class W �

� � Since in practice this parameter is never
known we can not make e�ective use of this estimator b�� Therefore our next step is
to construct a practically feasible second order e�cient estimator which does not
depend L�

� An adaptive estimator

In this section we consider an adaptive version of the estimator ����� The goal of
adaptation is to choose the regularization parameters ��k based on the observations�
Theorem � plays an essential role in such a choice since it states that the second
order risk is completely de�ned by

IMSE	h� �
�X
k��


�k��� hk�
� �

��

n

�X
k��

h�k

with h � �h�� h�� � � ��
T and 
k from ����� In order to minimize the second or�

der term in the risk expansion we have to minimize IMSE	h� with respect to h�
Unfortunately this functional depends on the Fourier coe�cients 
k
 which we do
not know� The main idea to overcome this di�culty is well�known and based on
�cross�validation�� It is commonly used in adaptive non�parametric estimation �see
e�g� Akaike ������
 Mallows ������
 Efroimovich and Pinsker ������
 Golubev and
Nussbaum ������
 Birge and Massart �������� Consider the functional

L	h� �
�X
k��


�k�h
�
k � �hk� �

��

n

�X
k��

h�k� ����

which coincides with IMSE	h� up to the term
P�

k�� 

�
k � We can estimate this

functional by replacing the unknown 
�k by unbiased estimators� Then we minimize
the obtained risk predictor and �nd the optimal hk or
 equivalently
 the optimal
regularization ��k�

The implementation of this general idea for partial linear models has speci�c
features� In order to obtain an unbiased estimator for 
�k we must use a subsample

namely the �rst Tn observations Y�� � � � � YTn� The number Tn � n will be speci�ed

�



later on� Based on Y�� � � � � YTn we calculate the least squares estimates of 
k as
follows

b
k � argmin
�k
min
�

���
TnX
i��

�
Yj � �TZi �

NnX
k��


k	k�Xi�

	�
��� � ����

where the number Nn will be speci�ed later on� The unbiased estimators for 

�
k areb
�k � ���Tn and the unbiased risk estimator for L	h� is given by

Ln	h� �
NnX
k��

�b
�k � ��

Tn

	
�h�k � �hk� �

��

n

NnX
k��

h�k� ����

Next the following adaptive regularization is used

���k �
��h�k

n��� h�k�
� with h� � arg min

h�Hn

Ln	h�� ����

where Hn is the set of admissible �lters
 see ��
�

Hn �
n
hk � hk � 	�� ��

����
k ��� hk � 
� k � Nn� � � 	
���

o
� ����

Then we �nally de�ne the adaptive estimator as follows

�� � arg min
��Rd

min
�k

��� �

��

nX
i��

�
Yi � �TZi �

NnX
k��


k	k�Xi�

	�

�
NnX
k��


�k
���k

�
k�k�
n�

��� � ��
�

Theorem � Let �j be i�i�d� Gaussian N �
� ��� and uniformly in k� l � 	�� d�� as
n��

nX
i��

ZikZil � f� � o���g
nX

j�Tn

ZikZil� ����

If for some � � 


Nn �
p
n log���
 n� ����

Tn � n log���
 n� ����

then �� de�ned by ����	�
�� is the second order minimax estimator� that is

sup
m�W�

�

sup
k�k�A

E��� � ����� � ��T � V ����

n

�
� �

� � o���

n

�X
s��

hs

	
�

where hs �
h
�� ������s

i
�
with � de�ned as a root of the equation

��

n

�X
s��

���s
h
�������s � �

i
�
� L� ����

�



Remark �� The main di�culty in the proving of this theorem lies in the fact
that the empirical risk n���� ������ ��T is not degenerate� More precisely
 for any
�good� estimator ��

p
n��� � �� � �V ������ � f� � o���gr���� ����m�V �������

where ��� �� are i�i�d� N �
� E� and r�����m� is the empirical L��risk of the recovering
the nuisance function m���� We can predict the second order term r�����m�
 since
this random variable is degenerate� In order to make the dependence between the
second order term and the �rst order weaker we used the subsample Y�� � � � � YTn with
Tn � n log���
 n� � � 
� This is of course the trick
 to avoid technical di�culties�
In practice the whole sample must be used for the risk prediction�

Remark �� We assumed so far that the variance of the noise �� is known� If
this is not the case we may use the estimator

��n � min�k
min
�

��� �

Tn

TnX
i��

�
Yj � �TZi �

NnX
k��


k	k�Xi�

	�
���

instead of �� in the construction of our adaptive estimator�
Remark �� We take into account only Nn nuisance parameters 
k� The re�

maining 
k� k � Nn� � � � do not e�ect the second order risk since by ��� and ���

�X
k�Nn��


�k � L�Nn � ��
��� � Ln�� log�����
� n� n�����������

� Proofs of the theorems

��� Proof Theorem �

We begin with a lower bound for the Bayesian risk� Assume that the nuisance
function m��� has the form

m�x� �
nX

k��


k�k�x��

where �k�x� is a certain orthonormal system in L��
� �� such thatZ �

�
�k�x�dx � 
�

To induce a prior distribution on unknown parameters we assume that 
k are inde�
pendent N �
� ��k�� It is also assumed that �k � ���k � rd����� ��k � rd����� are i�i�d�

random variables with �nite Fisher information I�� Let R�b�� � E

�b� � �
� �b� � �

�T
be the Bayesian risk�

�



Lemma � If uniformly in k � �Z �

�
��k�x�dx � C�

then for any estimator b�
R�b�� � V ��

nI�

�
� �

�

n

nX
k��

hk

�
�� �

n

nX
s��

hs �O


�

n

���
�

where hk � n��kI���� � n��kI���

Proof� Let � � ��T � 
T �T � Then from the Van Trees ������ inequality it follows
that for any estimator b�

Ef�b�� ���b�� ��T jX�� � � � � Xng � �I � I����� ����

where I� is the Fisher information matrix of the prior distribution� This matrix is
diagonal with entries

I�kk �

�
I�� k � d�
���k k � d�

The matrix I in ���� is the ordinary information matrix� In the considered model
it is de�ned as

Ikl � EX
�

��k

nX
j��

log p

�
Yj � �TZj �

nX
k��


k�k�Xj�

	
����

	 �

��l

nX
j��

log p

�
Yj � �TZj �

nX
k��


k�k�Xj�

	
�

It is easy to see from ���� that I admits the following representation

I � nI�

�
V �Z
Z� ��

	
� ����

where the matrixes �Z� Z�� �� are

��kl �
�

n

nX
j��

�k�Xj��l�Xj�� �Zkl �
�

n

nX
j��

�k�Xj�Zjl� Z�kl �
�

n

nX
j��

Zjk�l�Xj��

Let  be the diagonal matrix with entrees  kk � ���k � Then from ���� one
obtains

�I � I�� � nI�

�
V �Z
Z� ��

	
�

�
I�E 


  

	
����

� nI�

�
Vn 


 E � �nI��

�� 

	
�
nI�p
n

�



p
n�Zp

nZ�
p
n���� E�

	
�

�




where E is identity matrix and Vn � V � �nI��
��I�E� Denote
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According to ���� we have to evaluate �A� n����B��� from below� We get
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Representing the matrix A�� as
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where H is the diagonal matrix with entries Hkk � n��kI�����n�
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kI�� and applying

a simple algebra
 we arrive at
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Here and later in the text 
 denotes some matrix that is not needed in further
calculations� Thus from the above equations and ����
 ����
 ��
� we get
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Note also that

E�Z �H � Z�kl � E
�

n�

nX
i�j��

nX
m��

Zjk�m�Xj�hm�m�Xi�Zil

� E
�

n�

nX
j��

nX
m��

Zjk�
�
m�Xj�hmZjl � Vkl

�

n

nX
m��

hm

and

E��Z �H � ���� E� �H � Z��kl
� E

�

n	

nX
p�i�j��

nX
q�m��

Zjk�m�Xj�hm��m�Xp��q�Xp�� ��m� q��hq�q�Xi�Zil

� E
�

n	

nX
j��

nX
q�m��

Zjk�m�Xj�hm��m�Xj��q�Xj�� ��m� q��hq�q�Xj�Zjl

� Vkl
�

n�

nX
q�m��

E�m�Xj�hm��m�Xj��q�Xj�� ��m� q��hq�q�Xj�

� Vkl
�

n�

�
nX

m��

hm

	�

� Vkl
�

n�

nX
m��

h�m�

��



These equations together with ���� complete the proof of the lemma�
Proof of Theorem � follows now from Pinsker�s theorem ����
� and Lemma ��

��� Proof of Theorem �

We start with some simple properties of the matrixes !!� !Z� Z!�
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where k�k is the ordinary matrix norm kBk � maxkxk�� xTBx�
Proof� By the Markov inequality one obtains
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Since Xi are i�i�d� random variables and E	k�Xi� � 
 we have by Taylor expansion
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n

nX
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uniformly in ���n � C� Substituting the above inequality in ���� and minimizing
with respect to �
 we arrive at ����� Inequalities ����"���� are proved by the same
way�

Let B be a measurable set in R
n� Denote for brevity by EB the conditional

expectation
EBf�g � Ef�j�X�� � � � � Xn�

T � Bg�
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be an estimator of � with a penalization sequence ��k possibly depending on the

observations Yi� Assume that E j�kj����
� �� for some � � 
� and B is such that
for any p
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Proof� Noting that
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Thus we arrive at the assertion of the lemma�
Proof of Theorem 
� Let B �
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where C is some su�ciently large constant and the matrix B is de�ned by �����
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be the penalized mean square estimator of the parameter of interest � and the
nuisance parameter 
� Di�erentiating ���� one easily obtains that b� satis�es the
following linear equations see �����
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and  is the diagonal matrix with entries  kk � ����n��k�� From ���� we see that
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where Vn � V � n��E� To evaluate the right�hand side of the above equation use
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here the diagonal matrix H has entries Hkk � � � ����n��k�� Thus by Taylor
expansion and ��
� we obtain with ��
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Next consider the covariance matrix of the estimator b�� From ���� we have
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The �rst term in the right hand�side of the above equation was already evaluated
in proving Theorem �� It was proved that if trH � o�n� then
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The last term is easily evaluated by comparison with ��
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According to the de�nition of the matrixes H and  we have
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This together with ����
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The above equation together with ���� and Lemma � proves the theorem�

��� Proof of Theorem �

We start the proof with some auxiliary results�

Lemma � Let �k be i�i�d� N �
� �� and hk � Hn be a sequence possibly depending
on �k� Assume that 
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Then

E

�
�X
k��

�k
k��� hk�
�

��

� C k
k�
n

� C lognE
�X
k��


�k��� hk�
�� ����

Proof� Let H

n be the minimal ��net in Hn� Choose � � �n logn���� It is clear

that the cardinality of H

n is less than �

��� Let h
k be a point in H

n such that

kh� h
k � �� ����

Then we have

E

�
�X
k��

�k
k��� hk�
�

��

� � E

�
�X
k��

�k
k��� h
k�
�

��

����

� �E

�
�X
k��

�k
k
n
��� hk�

� � ��� h
k�
�
o��

�

The last term in the right�hand side of the above equation can be estimated from
above by the Cauchy�Schwartz inequality
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and using ����"���� one completes the proof of the lemma�
We will use in the sequel the following result analogous to Lemma ��
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Applying the Cauchy�Schwartz inequality to estimate the last term in the right�
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The proofs of the next two lemmas are quite analogous to the proofs of Lemmas

�
 � and therefore omitted�
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Our �rst step is to estimate EBL	h
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 � are independent white Gaussian noises�
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This equation together with ���� yields the assertion of the lemma�
Proof of Theorem �� Assume that the regressors X�� � � � � Xn belong to the set
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Now let us look at the three last terms in ����� It is not very di�cult to see that
they are su�ciently small� Indeed
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From Lemmas �
 � we get
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and
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Consider now the interference terms� We begin with EB!Z �H� � �!�V �� � �Z�T �
From ����
 Cauchy�Schwartz�s inequality and Lemma � we have
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The next interference term is also easy to estimate from above using Lemma � and
the Cauchy�Schwartz inequality���EB!Z � �E �H��
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It remains to consider one more interference term
 which has in fact the main order�
Namely from Lemma � one obtains

EB!Z �H� � Z! � V ���Z � �V ���Z�T ����

� EB!Z
� �H� � Z!� � V ���Z � � �V ���Z ��T

� T �
nn

��
EB!ZT �H� � Z!T � V ���Z � � �V ���Z ��T

� T �
nn

��
EB!Z

� �H� � Z!� � V ���ZT � �V ���ZT �
T

� T �
nn

��
EB!ZT �H� � Z!T � V ���ZT � �V ���ZT �

T

� E
n
� � o��� �O

�
n��Tn log

� n
�o

��n��EB
�X
k��

h�k�

The remaining interference terms are of the order o�EBL	h
���� This follows easily

from the Cauchy�Schwartz inequality and ����"����� Therefore by noting that

EB�Z � �ZT � f� �O�n���gV �
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we have from ���� and ����"����
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This inequality together with Lemma � yields that for any h� � Hn
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Choosing h�k �
h
�� ������s

i
�
with � de�ned in ���� applying Lemma � and ����

completes the proof of the theorem�
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