
Kauermann, Göran; Müller, Marlene; Carroll, Raymond J.

Working Paper

The efficiency of bias-corrected estimators for
nonparametric kernel estimation based on local
estimating equations

SFB 373 Discussion Paper, No. 1997,70

Provided in Cooperation with:
Collaborative Research Center 373: Quantification and Simulation of Economic Processes,
Humboldt University Berlin

Suggested Citation: Kauermann, Göran; Müller, Marlene; Carroll, Raymond J. (1997) : The efficiency of
bias-corrected estimators for nonparametric kernel estimation based on local estimating equations,
SFB 373 Discussion Paper, No. 1997,70, Humboldt University of Berlin, Interdisciplinary Research
Project 373: Quantification and Simulation of Economic Processes, Berlin,
https://nbn-resolving.de/urn:nbn:de:kobv:11-10064567

This Version is available at:
https://hdl.handle.net/10419/66263

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://nbn-resolving.de/urn:nbn:de:kobv:11-10064567%0A
https://hdl.handle.net/10419/66263
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


THE EFFICIENCY OF BIAS�CORRECTED

ESTIMATORS FOR NONPARAMETRIC KERNEL

ESTIMATION BASED ON LOCAL ESTIMATING

EQUATIONS

G�oran Kauermann� Marlene M�uller and Raymond J� Carroll �

June �� ����

Abstract

Stuetzle and Mittal ������ for ordinary nonparametric kernel regression and Kauermann and
Tutz ������ for nonparametric generalized linear model kernel regression constructed estimators
with lower order bias than the usual estimators� without the need for devices such as second
derivative estimation and multiple bandwidths of di	erent order
 We derive a similar estimator
in the context of local �multivariate� estimation based on estimating functions
 As expected�
this lower order bias is bought at a cost of increased variance
 Surprisingly� when compared to
ordinary kernel and local linear kernel estimators� the bias�corrected estimators increase variance
by a factor independent of the problem� depending only on the kernel used
 The variance increase
is approximately �� and more for kernels in standard use
 However� the variance increase is
still less than that incurred when undersmoothing a local quadratic regression estimator
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� INTRODUCTION

Nonparametric function estimation is greatly complicated by the problem of bias� and this has

important consequences for inferential methods such as con�dence bands and test statistics� For

example� consider the problem of ordinary nonparametric regression to estimate the regression

function ��x�	 of a response Y on a predictor X evaluated at a value x�
 ��x�	 � E�Y jX � x�	�

Local linear regression estimators are solutions to the locally weighted estimating equation

� �
nX

i��

wi�x�	 fYi � �� � ���Xi � x�	g ��Xi � x�	
T � �	

where the intercept is the regression estimate b��x�� h	 and the weights wi�x�	 increase with the

distance of Xi to x�� Consider the case that the weights are kernel weights Kh�Xi � x�	 �

h��Kf�Xi � x�	�hg with a symmetric kernel density function K��	� Let �����x	 be the second

derivative of the function ��x	� let fx�x	 be the density function of X and and suppose that the

variance of Y given X is constant and equal to ��� Then it is well�known �Fan � Gijbels� ��� is a

convenient reference	 that if x� is interior to the support of X� the bias and the variance are given

approximately by

bias
nb��x�� h	o � ���	h������x�	

Z
z�K�z	dz� ��	

var
nb��x�� h	o � �� fnhfx�x�	g

��
Z
K��z	dz� ��	

Results similar to ��	���	 hold for ordinary kernel regression� generalized linear models �Fan� Heck�

man � Wand� ���	 and more generally for local estimating equations �Carroll� Ruppert � Welsh�

���	� see section � for de�nitions�

In practice� one must estimate the bandwidth� and this is usually done by minimizing an estimate

of the mean squared error based on ��	���	� see Ruppert ����	 for review� For these bandwidth

estimators� for which h is proportional to n����� the squared bias and variance are set equal� The

net e�ect is that while the estimators are optimal in a mean squared error sense� the �squared	 bias

is approximately the same as the variance�

Thus� while optimal bandwidth estimators give good function estimates� the fact that their

squared bias approximately equals the variance has important implications for inferences� For

example� if one ignores the bias� con�dence intervals for the regression function at a point x� have

coverage levels asymptotically smaller than the nominal� To overcome this problem� a standard

technique is to estimate the second derivative function �����x�	� and then subtract the estimated

bias from b���x�� h	� a technique employed either e�ectively or explicitly by H�ardle � Bowman





����	� H�ardle � Marron ���	� Eubank � Speckman ����	 and Hall ����	� among others� The

result is to remove the bias� and asymptotically not change the variance� because the h� in ��	 is

of small order� and any error in estimating the second derivative is of even lower asymptotic order�

There are a few di�culties with this general approach� First� all the above referenced papers

include the need for a second bandwidth� which we will call g� The second bandwidth is needed

e�ectively to estimate the second derivative function and hence necessarily converges to zero more

slowly than the main bandwidth h� The second bandwidth g must be estimated as well� and

this if usually much harder to accomplish than estimating h itself� Second� outside the context of

estimating a mean function �Kauermann � Tutz� ���� Carroll� Ruppert � Welsh� ���	� while

it is possible to work out formulae similar to ��	���	� it is neither clear how best to estimate the

vector of second derivative functions �and their second bandwidths	 nor whether such estimation

leads to reasonable bias reduction properties in small samples�

To address these concerns� Kauermann � Tutz suggest an alternative method of bias reduc�

tion� While the method is given in its estimating equation form in section �� here we derive

it in ordinary kernel regression� The estimated regression function has the algebraic expressionb��x�� h	 �Pn
� wi�x�	Yi�

Pn
� wi�x�	� and from this one deduces that

b��x�� h	 ���x�	 � bn �En �

Pn
i��wi�x�	 f��Xi	���x�	gPn

i�� wi�x�	
�

Pn
i��wi�x�	 fYi ���Xi	gPn

i�� wi�x�	
�

The term bn determines the bias� while the term En is a mean�zero random variable which deter�

mines the variance� The simplest device to estimate bias is to plug�in b���	 for ���	 in bn� leading

to the bias�corrected estimator

b�c�x�� h	 � b��x�� h	� nX
i��

wi�x�	
nb��Xi	� b��x�	o � nX

i��

wi�x�	 ��	

�
nX

i��

wi�x�	
n
�b��x�	� b��Xi	

o
�

nX
i��

wi�x�	�

The estimator ��	 is a bias�corrected estimator which was called the twicing estimator by Stuetzle

and Mittal ����	
 it has bias of lower order than the usual kernel estimator� In section � we

discuss the generalization of this estimator to the estimating equation context�

One would expect that bias�corrected estimators such as ��	 should have larger variance than

the ordinary estimator� We consider this question for estimating equations using local average and

local linear kernel methods with symmetric kernel K��	� Our conclusion is surprising
 independent

of the problem� bias�corrected estimators are more variable by a factor depending only on the

�



kernel� namely

c�K	 �

R
K�z�	K�z�	 f�K�z�	�K�z� � z�	g f�K�z�	�K�z� � z�	dz�dz�dz�gR

K��z	dz
� ��	

For the Gaussian kernel� c�Gaussian	 � ���� while for the Epanechnikov kernel� c�Epanechnikov	 �

����

An alternative device to remove bias is direct undersmoothing� e�g�� using a local quadratic

regression with a bandwidth h � n���� from local linear regression� The increase in the variance�

d�K	 say� from this can be computed from results of Ruppert � Wand ����	� For the Gaussian

kernel� d�Gaussian	 � ���� while for the Epanechnikov kernel� d�Epanechnikov	 � ����� Both

variance increases are larger than for the bias�corrected estimators ��	�

� LOCAL ESTIMATING EQUATIONS AND ESTIMATES OF

BIAS

In parametric problems� estimation of a possibly vector�valued parameter � is typically based on

an unbiased estimating function ���	� so that if the data are generically denoted by eYi �i � � ���� n	�

then b� is the solution to the estimating equation

� � n��
nX

i��

�� eYi� b�	�
By an unbiased estimating function� we mean that E�� eY��	 � �� The choices of ���	 are well

known� For example� when the data eY consist only of a response Y and � is the mean of Y �

�� eY��	 � Y ��� In generalized linear models� the data eY consist of a response Y and covariates

Z� The mean is ��ZT�	� the variance is proportional to V �ZT�	� and the estimating function

is the quasilikelihood score �� eY��	 � Z�����ZT�	
n
Y � ��ZT�	

o
�V �ZT�	� where ������	 is the

�rst derivative of the function ���	�

Nonparametric regression can be thought of as a varying coe�cient model �Kauermann � Tutz�

���	� where the coe�cient � varies with a covariate X� An estimate of ��x�	 can be obtained

using local polynomials of order p � � as follows� De�ne Gp�v	 � �� v� ���� vp	T � and let the weights

wi�x�	 be as in Section � Suppose that ��x	 is a vector of length q� Let � is the Kronecker product�

so that for example �a� c	��b� b�� b�	 � �ab�� ab�� ab�� cb�� cb�� cb�	� De�ne B
T � ��T

� � ���� �
T
p 	� Thenb��x�	 is the intercept b�� in the solution to the equation

� � n��
nX

i��

wi�x�	Gp�Xi � x�	� �
h eYi�

n
GT

p �Xi � x�	� Iq
o bBi � ��	

�



For these local polynomial estimators� formulae similar to ��	���	 hold� In fact� if p � � the

bias is still given by ��	� while the variance is the same as ��	 except that �� is replaced byn
g���x		�x	g�T �x	

o
� where g�T ��	 is the transpose of g����	� 
� eY��	 � ������	�� eY��	� g�x	 �

E�
f eY���X	gjX � x� and 	�x	 � E��f eY���X	g�T f eY���X	gjX � x��

A bias�corrected estimator is constructed as follows� De�ne

Bn�x�	 � n��
nX

i��

wi�x�	
h
Gp�Xi � x�	G

T
p �Xi � x�	� 


n eYi���Xi	
oi

�

Then� by a Taylor series expansion�

b��x�	���x�	 � bn �En� ��	

where

En � epB
��
n �x�	n

��
nX

i��

wi�x�	Gp�Xi � x�	� �
n eYi���Xi	

o
bn � epB

��
n �x�	n

��
nX

i��

wi�x�	Gp�Xi � x�	�
�
�
h eYi�

n
GT

p �Xi � x�	� Iq
o
B
i
� �

n eYi���Xi	
o�

�

with ep be the q � q�p� 	 matrix of zeros except that the �rst q � q submatrix is the identity

matrix� Just as in ��	� the idea is to estimate the terms in the bias� leading to the estimator

b�c�x�	 � b��x�	� ep bB��
n �x�	Cn�x�	� ��	

Cn�x�	 � n��
nX

i��

wi�x�	Gp�Xi � x�	�
�
�
h eYi�

n
GT

p �Xi � x�	� Iq
o bBi� �

n eYi� b��Xi	
o�

�

bBn�x�	 � n��
nX

i��

wi�x�	
h
Gp�Xi � x�	G

T
p �Xi � x�	� 


n eYi� b��Xi	
oi

�

In the case of the likelihood score ���	 with local averages� p � �� Gp�v	 �  and the bias�corrected

estimator derived from ��	 reproduces the bias corrected estimator of Kauermann � Tutz�

In the appendix� we show that for local averages �p � �	 and local linear smoothing �p � 	�

with bandwidth h � n���� the bias corrected estimator is always more variable asymptotically than

the uncorrected estimator ��	 by the factor ��	�

� DISCUSSION

There are two general ways to correct for bias in nonparametric regression
 �a	 estimate the second

derivative function directly and subtract a multiple of it from the usual estimator� and �b	 bias�

correct indirectly either by undersmoothing �applying a local�linear bandwidth to a local quadratic

�



estimator	 or the twicing technique� The major di�culty with method �a	 is the need for a second

bandwidth� We have shown that methods �b	 are more variable than method �a	� by a constant fac�

tor independent of the problem� Between the two possibilities in method �b	� the twicing estimator

is asymptotically less variable�

The twicing estimator shows another advantage with respect to application� If the bias corrected

estimators ��	 and ��	 are used� it is simple to estimate their variance
 take any variance estimator

for an uncorrected regression function which is already typically available in the literature� and

multiply it by the variance in�ation factor ��	�
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Appendix A PROOFS OF THEOREMS

In what follows� we will assume that h � n����� and we will use the notation � to mean equality to

terms of order op�h
�	� Recall that fx��	 is the density of X� The kernel function K��	 is symmetric�

De�ne g�x	 � E�
f eY���X	gjX � x� and 	�x	 � E��f eY���X	g�T f eY���X	gjX � x��

Our argument here is heuristic but can be justi�ed under strong regularity conditions� e�g� X

and K are compactly supported� the density of X is bounded away from zero on its support� etc�

We provide details in the case of local averages� i�e�� p � � in ��	� The arguments are similar in

the local linear case �p � 	 because the expansion ��	 given below still holds in this case� but with

��	 replaced by ��	�

Carroll� et al� ����	 show that

b��x	���x	 � Cn�x	 � h�r�x	 �Dn�x	� where ��	

Bn�x	 � n��
nX

i��

Kh�Xi � x	
f eYi���x	g�

Cn�x	 � B��
n �x	n��

nX
i��

Kh�Xi � x	�f eYi���x	g�

Dn�x	 � B��
n �x	n��

nX
i��

Kh�Xi � x	�f eYi���Xi	g�

r�x	 � f���	�����x	 � f ���x �x	�����x	�fx�x	g

Z
z�K�z	dz� ��	

The variance of b��x	 is approximately
� � fnhfx�x	g

��
Z
K��z	dz

n
g���x		�x	g�T �x	

o
�

where g�T ��	 is the transpose of g����	�

Using these expansions� we have that

b�c�x�	���x�	

� B��
n �x�	n

��
nX

i��

Kh�Xi � x�	
h
�f eYi� b��Xi	g � �f eYi� b��x�	g� 
f eYi���x�	gfb��x�	���x�	g

i
� B��

n �x�	n
��

nX
i��

Kh�Xi � x�	
f eYi���x�	g��fb��x�	���x�	g � fb��Xi	���x�	g�

�B��
n �x�	n

��
nX

i��

Kh�Xi � x�	��f eYi���Xi	g � �f eYi���x�	g�

� B��
n �x�	n

��
nX

i��

Kh�Xi � x�	
f eYi���x�	gf�Dn�x�	�Dn�Xi	g

�h�B��
n �x�	n

��
nX

i��

Kh�Xi � x�	
f eYi���x�	gf�r�x�	� r�Xi	g

�



�B��
n �x�	n

��
nX

i��

Kh�Xi � x�	f�f eYi���Xi	g � �f eYi���x�	gg

� Gn� �Gn� �Gn��

It is easily shown that Gn� � h�r�x�	� Further� by calculations of �rst and second moments� it

follows that Gn� � �h�r�x�	� Finally� we have that Bn�x	 � fx�x	g�x	 � Op�h
�	� From this� it

follows that

b�c�x�	���x�	 � ffx�x�	g�x�	g
��n��

nX
i��

Kh�Xi � x�	
f eYi���x�	gf�Dn�x�	�Dn�Xi	g�

Now de�ne

Lni�x	 � ffx�x	g�x	g
��n��

nX
j��

Kh�Xj � x	�f eYj ���Xj	g

Then it is easily seen that

b�c�x�	���x�	 � ffx�x�	g�x�	g
��n��

nX
i��

Kh�Xi � x�	
f eYi���x�	gf�Lni�x�	� Lni�Xi	g� �	

Now write out �	 into a double sum in i and j� interchange the indices� eliminate the terms in

which i and j are equal since they are of order �nh	�� � op�h
�	 and use the assumption that K��	

is symmetric to get that

b�c�x�	���x�	 � ffx�x�	g�x�	g
��n��

nX
i��

�f eYi���Xi	gMn�x��Xi	� where ��	

Mn�x�� Xi	 � n��
nX

j���j ��i

Kh�Xj � x�	
f eYj ���x�	g

�
�Kh�Xi � x�	

fx�x�	g�x�	
�
Kh�Xj �Xi	

fx�Xj	g�Xj	

�

Recall the de�nition of c�K	 in ��	� The right side of ��	 is a mean zero random variable� and

its variance is easily calculated to be c�K	�f � o�	g� as claimed�

�


