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Strong approximation of density estimators from weakly

dependent observations by density estimators from

independent observations

Michael H� Neumann
Humboldt�Universit�at

Sonderforschungsbereich ���
Spandauer Stra�e �
D 	 �
��� Berlin

Germany

Abstract� We derive an approximation of a density estimator based on weakly
dependent random vectors by a density estimator built from independent random
vectors� We construct� on a su�ciently rich probability space� such a pairing of the
random variables of both experiments that the set of observations fX�� � � � � Xng
from the time series model is nearly the same as the set of observations
fY�� � � � � Yng from the i�i�d� model� With a high probability� all sets of the form
�fX�� � � � � Xng�fY�� � � � � Yng� � ��a�� b�� � � � � � �ad� bd�� contain no more than
O�f�n���

Q
�bi�ai��	
g log�n�� elements� respectively� Although this does not imply

very much for parametric problems� it has important implications in nonparametric
statistics� It yields a strong approximation of a kernel estimator of the stationary
density by a kernel density estimator in the i�i�d� model� Moreover� it is shown
that such a strong approximation is also valid for the standard bootstrap and the
smoothed bootstrap� Using these results we derive simultaneous con�dence bands as
well as supremum�type nonparametric tests based on reasoning for the i�i�d� model�
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�� Introduction

Density estimation on the basis of i�i�d� observations is one of the most often studied
problems in nonparametric statistics� Important asymptotic properties concerning
the pointwise as well as the joint probabilistic behaviour of commonly used estimators
are now well�known and allow for powerful methods of statistical inference such
as tests for certain hypotheses or simultaneous con�dence bands which guarantee
asymptotically the desired error probability of the �rst kind and coverage probability
respectively�
In contrast much less is known in the case of dependent observations� This case is
very important from the practical point of view since data from time series usually
show some dependence� In order to develop analogous tools as in the independent
case it seems to be on �rst sight unavoidable to account for the dependence by
speci�c corrections� This might however turn out to be quite a di�cult and messy
task� Hence it is tempting to seek for conditions which ensure asymptotically the
same behaviour of certain statistics as known from the i�i�d� setting�
Whereas long�range dependence usually leads to phenomena essentially di�erent from
those under independence there seems to be some hope for asymptotic similarities
to the independent case under short�range dependence� Some commonly imposed
conditions for weak dependence are strong ���� mixing and absolute regularity
���mixing�� Provided the corresponding mixing coe�cients decay fast enough
then commonly used nonparametric estimators converge with the same rates as in
the independent case� cf� Gy�or� H�ardle Sarda and Vieu ������� The fact that
desirable properties of the estimators remain valid in the dependent case provides
a strong motivation for applying just the same estimation techniques as under the
assumption of independence� However some important tools for statistical inference
require a more accurate knowledge of the asymptotic properties of the underlying
estimators� Assuming mixing and some additional not very restrictive condition on
the boundedness of the joint densities of consecutive random variables Robinson
������ Masry ������ and Hart ������ showed that certain nonparametric estimators
have actually the same asymptotic variance as in the independent case� This
phenomenon which was described as �whitening by windowing� by Hart is in sharp
contrast to what happens in ��nite�dimensional� parametric problems� For example
the asymptotic variance of the mean of time�series data does of course depend on
the covariances as well� Results such as those of Robinson ������ Masry ������
and Hart ������ on the pointwise behaviour of nonparametric estimators allow one
for example to neglect the dependence structure when one establishes pointwise
con�dence intervals for the density function� Such an e�ect was also observed by
Hall and Hart ����
� who showed that the mean integrated squared error �MISE� of
a kernel density estimator from a MA����process may be expanded as the sum of the
MISE of a kernel estimator based on an i�i�d� sample plus a term E�X �X��

R
�f ���

which is O�n��� under short�range dependence�
On the other hand other problems of statistical inference require an even stronger
notion of asymptotic equivalence� For example the construction of simultaneous
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con�dence bands or the determination of critical values for certain tests against
a nonparametric alternative require knowledge about the joint distribution of the
nonparametric estimator used to de�ne the corresponding statistic� A �rst step in
this direction has been done by Neumann and Kreiss ������� They characterized
the asymptotic equivalence of nonparametric autoregression and nonparametric
regression through a strong approximation of a local polynomial estimator of the
autoregression function by a local polynomial estimator in an appropriate regression
setup� However the nonparametric autoregressive model automatically imposes
certain structural conditions on the data�generating process which were essential
for the approximation method used� Since this restricts the applicability of such a
method in practice it would be very desirable to develop similar results without any
such structural assumptions�
In the present paper we show quite a surprising similarity between the observations
that stem from a time�series model and a set of independent observations� Let
X�� � � � �Xn be d�dimensional weakly dependent random vectors with a stationary
density f � As a counterpart we consider i�i�d� random vectors Y�� � � � � Yn with the
same density f � Let �n � fX�� � � � �Xng�fY�� � � � � Yng be the symmetric di�erence of
both sets of observations� We show that there exists on a su�ciently rich probability
space a pairing of the random variables of both models which preserves the respective
joint distributions such that the following fact is true� With a probability exceeding
��O�n��� the relation

� ��n � �a� b�� � O

���
n���

dY
i��

�bi � ai�

�
� �

�
log�n�

�

is simultaneously satis�ed for all hyperrectangles �a� b� � �a�� b��� � � �� �ad� bd� where
� � � is an arbitrarily large constant� The link is achieved by embedding both
the random variables from the time series model and the i�i�d� model in a common
Poisson process on �
����Rd�
Let bfh�x� � �nhd���Pn

i��K��x�Xi��h�� and efh�x� � �nhd���Pn
i��K��x � Yi��h��

be kernel estimators of f�x� where K is a compactly supported kernel function�
Then we see that with a high probability supxf���n � supp�K��x � ���h���g �
O�n���hd log�n�� and therefore

sup
x�Rd

n bfh�x�� efh�x�o � O
�
n���� log�n�

	
�

In view of the fact that supxfvar� bfh�x��g � �nhd��� we have a useful strong

approximation of the kernel estimator f bfh�x�gx�Rd by f efh�x�gx�Rd�
As some interesting applications we construct simultaneous con�dence bands
for f as well as tests based on the maximum absolute deviation between the
above kernel estimator bfh and estimators corresponding to hypotheses of lower�
dimensional parametric or semiparametric structures� To determine the required
tuning parameters that is the width of the bands and the critical value for the
test respectively we propose two bootstrap methods both developed under the
assumption of independence�
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�� The approximation scheme

The main goal in this section is to establish a link between density estimation under
weak dependence and density estimation based on independent observations� This
will be achieved in a mainly constructive way by embedding the random variables
of both models in a common Poisson process indexed by time as well as spatial
position in Rd� The seemingly quite involved problem of �nding a global �in x�

connection between kernel estimators bfh�x� and efh�x� in these models will be reduced
to a collection of one�dimensional problems which can be analyzed separately from
each other� Hence in contrast to many other papers on strong approximations
the pleasant fact with our approximation method is that the technical part of the
calculations becomes quite elementary�

���� The model and basic assumptions� Assume we have d�dimensional
realizations X�� � � � �Xn of a stationary process with a stationary density f � Let
F j
i � ��Xi�Xi��� � � � �Xj� be the ���eld generated by Xi� � � � �Xj � Throughout the

paper we use the letter C to denote a generic constant which may attain di�erent
values at di�erenet places� Sometimes we use the letters C�� C�� � � � for constants
whose exact value is important in subsequent calculations� To obtain some kind of
asymptotic equivalence to the case of i�i�d� random variables we impose the following
conditions�

Assumption �
The coe�cient of absolute regularity ���mixing coe�cient� is de�ned as

��k� � sup
i
E sup

V �Fn
i�k

n
jP �V j F i

�� � P �V �j
o
�

We suppose that the ��k� decay with an exponential rate that is

��k� � C exp��C�k��

Assumption �
Let fXijF

i��
j

be the density of the conditional distribution L�Xi j Xj � � � � �Xi��� �

We assume that there exist constants C�� C� 	 
 such that

sup
i



P
�
sup
x
fjfXijF

i��
�

�x� � fXijF
i��
i��

�x�jg 	 C exp��C�
�
�

� C exp��C�
� �

and

sup
i

sup
x�Rd

n
fXijF

i��
�

�x�
o
� C�

Remark ��
�i� Our assumption of exponentially decaying mixing coe�cients is stronger than
actually needed and can possibly be relaxed on the expense of a slightly larger
error in our approximation� Nevertheless many of the commonly used time series
models describe processes which are geometrically absolutely regular under natural
conditions� For example su�cient conditions for geometric absolute regularity of
multivariate MA��� processes and ARMA processes can be easily read o� from



�

results of Pham and Tran ������� see also Mokkadem ������ for geometric ��mixing
of vector ARMA processes� Pham ���� � established this property for generalized
random coe�cient autoregressive models and bilinear models� Mokkadem ����

Theorem ���� provides su�cient conditions for a Markov chain to be geometrically
��mixing� Ango Nze ������ used this result to derive su�cient conditions for a vector
autoregressive process with conditional heteroscedasticity given as

Xi�� � m�Xi� � g�Xi��t���

�i i�i�d� to be geometrically ergodic which implies geometrical ��mixing if the chain is
stationary� Franke Kreiss Mammen and Neumann ������ extended this to the case of
not necessarily identical distributions of the innovations which may also have compact
support� A survey on available results concerning mixing properties of popular time
series models is given by Doukhan �������
�ii� Some kind of mixing seems to be a minimal requirement which brings the time
series model close to an i�i�d� situation� This is however not enough to get the
desired asymptotic equivalence� We need some additional condition which ensures
that closely neighbored �in time� observations do not behave too di�erently from an
i�i�d� situation� Whereas Robinson ������ Masry ������ and Hart ������ imposed
a condition on the boundedness of the joint densities we set this slightly stronger
Assumption � which also re!ects a rapidly decaying memory of the process fXig�

���� Embedding the random variables in a common Poisson process� Now
we relate the random vectors X�� � � � �Xn from the above setup to i�i�d� random
vectors Y�� � � � � Yn having a density f � For that we de�ne on a su�ciently rich
probability space copiesX �

�� � � � �X
�
n and Y

�
� � � � � � Y

�
n with the same joint distribution as

X�� � � � �Xn and Y�� � � � � Yn respectively� As the connecting device which determines
both X �

�� � � � �X
�
n and Y �

� � � � � � Y
�
n we use a Poisson process N on �
��� � Rd with

an intensity function equal to the Lebesgue measure� For details concerning the
de�nition and construction of N  see Reiss ����� Section ����� In contrast to Reiss
we use the equivalent formulation of a set�valued process instead of a point measure�
valued process� Furthermore since it is unlikely that this causes any confusion we
do not distinguish between Xi and X �

i as well as Yi and Y �
i and denote the versions

of these random variables on the common probability space simply by Xi and Yi
respectively�
First we describe in detail how the Poisson process N is used to generate the
observations X�� � � � �Xn retaining the joint distribution of these random vectors�
The embedding of Y�� � � � � Yn is completely analogous since independence is a special
case of weak dependence�
For the purpose of illustrating our embedding method we show some pictures to
a simulated example which was carried out on the basis of the XploRe system� see
H�ardle Klinke and Turlach ������� A part of a realization of a Poisson process on
�
����R is shown in Figure ��

�Please insert Figure � about here�

�i� Embedding of X�

Let f�Uj� Vj�� j � �� �� � � � g denote a realization of N  where Uj � �
��� and Vj � Rd�
The basic idea of how X� is represented by N ��� � N may be explained as follows�
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consider the graph �tfX��v�� v� of the function gt�v� � tfX��v� which spreads out
starting from f
g �Rd with a velocity proportional to fX��v�� We de�ne

X� � Vj� �

where �Uj� � Vj�� is the �rst realization of N ��� hit by �tfX��v�� v� as t grows from zero
to in�nity� In other words we have

j� � arg inffUj�fX��Vj�g�
Note that f�Uj�fX��Vj�� Vj�� j � �� �� � � � g is a Poisson process on �
��� � Rd with
intensity function p�u� v� � fX��v�� Hence it is clear that X� has just the desired
density fX� � f �
To explain the following steps in a formally correct way we introduce in the sequel
stopping times � �i�v indexed by spatial position v � Rd  i � 
� � � � � n� De�ne

� ���v 	 


and
� ���v � � ���v � �Uj��fX��Vj���fX��v��

The process of determining �Uj� � Vj�� is sketched in Figure �� We generated a Gaussian
time series Xi � aXi�� � �i  where �i 
 N�
� � � a�� are i�i�d� and a � 
�� �
�Uj� � Vj�� is marked by a star and the corresponding value of X� is marked by a circle�
The graph of the stopping times � ���v is drawn as a solid line�

�Please insert Figure � about here�

If we order f�Uj�fX��Vj�� Vj�� j � �� �� � � � g with respect to the �rst component we
may alternatively construe this object as a marked Poisson point process where the
second argument has the density fX� � If we denote the corresponding realizations of
this process by �Sj�Wj� S� � S� � � � �  then X� is just equal to W�� By the strong
Markov property of a marked Poisson point process the remaining part of N 

N ��� �
n
�Uj � �

���
Vj
� Vj�

o
�
�
�
����Rd

	
�

is again a Poisson process on �
����Rd�
�ii� Embedding of Xi

Assume that X�� � � � �Xi�� have already been embedded in N  according to their
conditional distributions L�Xk j Xk��� � � � �X�g� Moreover assume that
� ���v � � � � � � �i���

v are already de�ned� We embed Xi in the remaining part of N  that is

N �i� �
n
�Uj � �

�i���
Vj

� Vj�
o
�
�
�
����Rd

	
�

In other words we use from the whole set of realizations f�Uj� Vj�g of N only those

from the subset f�Uj� Vj� j Uj 	 �
�i���
Vj

g� By the strong Markov property of

the corresponding marked Poisson point process N �i� is again a Poisson process
on �
����Rd� Now we de�ne

Xi � Vji �

where
ji � arg inf

n
�Uj � �

�i���
Vj

��fXijF
i��
�

�Vj�� Uj 	 �
�i���
Vj

o
�



�

Further we set

� �i�v � � �i���
v � ��Uji � �

�i���
Vji

��fXijF
i��
�

�Vji��fXijF
i��
�

�v��

The process of determining �Uj� � Vj�� is sketched in Figure �� �Uj�� Vj�� is marked by
a star and the corresponding value of X� is marked by a circle� The graph of the
stopping times � �i�v is drawn as a solid line�

�Please insert Figure � about here�

Finally we obtain that

fX�� � � � �Xng � fVj j Uj � �
�n�
Vj
g������

�iii� Embedding of Y�� � � � � Yn
The embedding of Y�� � � � � Yn is completely analogous to that of X�� � � � �Xn� Since
L�Yi j Yi��� � � � � Y�� � L�Y�� we have to deform the time axis only once�

Let f� eTj� fWj�� j � �� �� � � � g be the marked Poisson point process corresponding to

f�Uj�f�Vj �� Vj�� j � �� �� � � � g� That is we have in particular eT� � eT� � � � � � Then
we de�ne

Yi � fWi� i � �� � � � � n�

We may introduce stopping times e� �i�v analogous to the � �i�v "s� We obtain e� �n�v �eTnf�v� which implies that

fY�� � � � � Yng � fVj j Uj � e� �n�Vj
g������

Figure � displays the �rst three realizations of the processes fXig �left side� and fYig
�right side��

�Please insert Figure � about here�

Remark ��
�i� It may well happen that the Xi"s emerge in a di�erent chronological order than the
Yi"s� Since the transition densities are usually di�erent from the stationary density
the construction for the time�series model �borrows� some probability mass assigned
to future time points in the i�i�d� model� This is just the reason why we introduce a
�time axis� for our embedding method�
�ii� Poisson processes are occasionally used to generate other stochastic processes�
Br#emaud and Massouli#e ���� � used a marked Poisson point process to generate a
Poisson process with random intensity� However apart from the common fact in
both papers that a Poisson process is used to generate some other stochastic process
both the purpose as well as the method of embedding in their paper are completely
di�erent from ours� The author is not aware of any other work where time series data
are generated by a Poisson process in the way described here�

���� Approximation results� To get estimates for the number of elements of �n

that fall in certain hyperrectangles we derive �rst an estimate for the distance
between � �n�v and e� �n�v  respectively and their common expectation nf�v��
Since many assertions in this article are of the type that a certain random variable is
below some threshold with a high probability we introduce the following notation�



�

De�nition ���� Let fZng be a sequence of random variables and let f�ng and
f
ng be sequences of positive reals� We write

Zn � eO��n� 
n��

if
P �jZnj 	 C�n� � C
n

holds for n � � and some C �� �

This de�nition is obviously stronger than the usual OP and it is well suited for our
particular purposes of constructing con�dence bands and nonparametric tests� see its
application in Section ��
Further we make throughout the paper the convention that  	 
 will denote an
arbitrarily small and � �� an arbitrarily large constant�

Lemma ���� Suppose that Assumptions � and � hold� Then� for arbitrary �xed
v � Rd �

j� �n�v � nf�v�j � je� �n�v � nf�v�j � eO �n��� log�n�� n��
	
�

Whereas the pointwise �in v� similar behavior of � �n�v and e� �n�v does not imply anything
essential a uniform version of the result given in Lemma ��� will �nally yield the
desired result about the di�erence set �n� To derive such a uniform version we
impose the following smoothness condition on the conditional densities�

Assumption �
There exists some constant C �� such that

sup
i

sup
F�Fi��

�

n���fXijF �v� � fXijF �v
��
���o � Ckv� v�k�

Lemma ���� Suppose that Assumptions � through � are ful�lled� Then we have� for
any �xed hyperrectangle �a� b� � �a�� b��� � � �� �ad� bd�� that

sup
v�	a�b


n
j� �n�v � nf�v�j � je� �n�v � nf�v�j

o
� eO �n��� log�n�� n��

	
�

Now we are in a position to relate both experiments to a common experiment given
by the restriction of N to

Sn �
n
�u� v�

��� 
 � u � nf�v�� v � Rd
o
�

Let

fZ�� � � � � Z�g � fVj j Uj � nf�Vj�g������

We obtain estimates for the cardinality of the sets
�fX�� � � � �Xng�fZ�� � � � � Z�g� � �a� b� as well as �fY�� � � � � Yng�fZ�� � � � � Z�g�� �a� b�
from Lemma ��� and an appropriate exponential inequality for Poisson processes�



�

Proposition ���� Suppose that Assumptions � through � are ful�lled� Then� with a
probability exceeding � �O�n��� �

� f�fX�� � � � �Xng�fZ�� � � � � Z�g� � �a� b�g
� f�fY�� � � � � Yng�fZ�� � � � � Z�g� � �a� b�g

�
� O

�
f�n���

Y
�bi � ai�� � �g log�n�

	
holds simultaneously for all hyperrectangles �a� b� � �a�� b�� � � � � � �ad� bd� with
maxifbi � aig � O�nC��
If additionally P �X� � �a� b�� � C

Qd
i����bi � ai� � �� is satis�ed� then the above

assertion holds� with a probability exceeding ��O�n��� � for all �a� b��

Now we obtain as an immediate consequence of Proposition ��� the desired strong
approximation of a kernel estimator bfh in the time series model by a kernel estimatorefh in the i�i�d� model� Let

bfh�x� �
�

nhd

nX
i��

K
�
x�Xi

h

�
and efh�x� �

�

nhd

nX
i��

K
�
x� Yi
h

�
�

For simplicity we impose the following condition�

Assumption �
The kernel K is supported on ���� ��d and supxfjK�x�jg � K��

It is obvious that with a probability exceeding � �O�n��� 

j bfh�x� � efh�x�j
� K�

nhd
� f�fX�� � � � � �Xng�fY�� � � � � Yng� � ��x� � h� x� � h�� � � �� �xd � h� xd � h��g

� eO ��n���� � �nhd���� log�n�� n��
	

�����

holds simultaneously for all x � Rd� This is formalized by the following theorem�

Theorem ���� Suppose that Assumptions � through � are ful�lled� Then

sup
x�Rd

n
j bfh�x� � efh�x�jo � eO ��n���� � �nhd���� log�n�� n��

	
�

Now it becomes clear what we have achieved by our embedding of �X�� � � � �Xn� and
�Y�� � � � � Yn� in a common Poisson process� the seemingly quite di�cult task of getting

a uniform �in x� approximation of bfh�x� by efh�x� is reduced to the technically much
simpler task of proving a pointwise result as in Lemma ����



	

�� Application to simultaneous confidence bands and nonparametric

tests

Theorem ��� in the previous section provides an approximation of a kernel estimator
in the time series model by a kernel estimator in an i�i�d� model� Besides the more
fundamental message that weak dependence is asymptotically negligible the practical
signi�cance lies on the possibility to transfer methods of inference originally developed
under the assumption of independence to the case of weakly dependent random
variables� As two important applications we propose in this section con�dence bands
and supremum�type tests based on a bootstrap approximation of the distribution of
the L��distance between bfh and E bfh� We did not attempt to develop versions of these
methods based on asymptotic theory� Although at least in the one�dimensional

case the process f� bfh�x� � E bfh�x���qvar� bfh�x��gx�	a�b
 can be well approximated
by a Gaussian process the approximation of the supremum of the modulus of this
Gaussian process by its limit as proposed by Bickel and Rosenblatt ������ converges
with the very slow rate �log�n����� cf� Hall ������� In contrast it will be shown that
the bootstrap approximation converges with a certain algebraic rate�

���� Two bootstrap proposals� We consider two methods of bootstrapping the
empirical process the standard bootstrap and the smoothed bootstrap� Both versions
were proposed by Efron ������ in the context of i�i�d� observations�
Denote by Pn the empirical distribution based on fX�� � � � �Xng� In the standard
bootstrap we draw with replacementn independent bootstrap resamplesX�

� � � � � �X
�
n�

That is the unknown distribution P is replaced by its empirical analog Pn� In the
smoothed bootstrap we draw n independent bootstrap resamplesX��g

� � � � � �X��g
n from

a smoothed version Pn�g of Pn� Pn�g is the distribution function which corresponds to
the kernel estimate bfg�x� �

�

ngd

nX
i��

L

�
x�Xi

g

�
of f�x�� We use the letters L and g to indicate that one may use a kernel and a
bandwidth di�erent from K and h respectively� It will turn out that there is very
much freedom for the choice of g�
A discussion about the relative merits of the standard bootstrap and the smoothed
bootstrap as well as some examples may be found in Efron ����� ����� Silverman
and Young ������ Hall DiCiccio and Romano ������ and Falk and Reiss �����a
����b�� A survey is given in Hall ����� Appendix IV�� Roughly speaking smoothing
does not improve the convergence rate of the bootstrap estimate if that estimate can
be expressed as �or is well approximated by� a smooth function of a vector sample
mean� In other cases such as in estimating the distribution of a quantile estimate
the smoothed bootstrap can signi�cantly outperform the unsmoothed one� cf� Hall
et al� ������ and Falk and Reiss �����a�� Moreover Falk and Reiss �����b� showed
that the smoothed bootstrap is consistent w�r�t� the variational distance whereas the
unsmoothed one is merely correct w�r�t� the Kolmogorov�Smirnov distance�
The derivation of asymptotic properties of the bootstrap methods goes again via
strong approximations� We begin with the smoothed bootstrap and construct a
pairing of �Y�� � � � � Yn� and �X��g

� � � � � �X��g
n � which are both vectors of i�i�d� random

variables as follows� First we draw n independent Bernoulli random variables



�


Bi 
 Bernoulli�p� where p �
R
�f�x� � bfg�x�� dx� If Bi � � then we generate

Yi according to the density �f�x� � bfg�x���p and set X��g
i � Yi� If Bi � 
 then

we draw independently Yi according to the density ff�x� � �f�x� � bfg�x��g��� � p�

and X��g
i with the density f bfg�x� � �f�x� � bfg�x��g��� � p�� It is easy to see that

Y�� � � � � Yn are i�i�d� with density f and X��g
� � � � � �X��g

n are i�i�d� with density bfg� The
next theorem shows that this construction actually leads to a useful approximation
of f bfh�x��E bfh�x�gx�Rd by f bf��gh �x�� E bf��gh �x�gx�Rd where

bf��gh �x� �
�

nhd

nX
i��

K

�
x�X��g

i

h

�
�

Since the proofs of the assertions of this section use approximations of the kernel
estimators on �ne grids we impose the following additional conditions�

Assumption �
The kernel K is Lipschitz continuous and of second order� Moreover f � is Lipschitz
continuous�

Assumption �
The kernel L is Lipschitz continuous and of second order� Moreover L is supported
on ���� ��d and supxfjL�x�jg � L��

Theorem ���� Suppose that Assumptions � through 	 are ful�lled� Let

�n � g� � �ngd�����
q
log�n��

Then there exists a pairing of the random variables X�� � � � �Xn and X��g
� � � � � �X��g

n
such that

sup
x�Rd

n���� bfh�x�� E bfh�x�� � � bf��gh �x�� E bf��gh �x��
���o

� eO �n���� log�n� � �nhd��� log�n� � �nhd���������
n

q
log�n�� n��

�
�

Now we turn to the standard bootstrap� Here f bfh�x��E bfh�x�gx�Rd is approximated

by f bf���h �x�� E bf���h �x�gx�Rd where
bf���h �x� �

�

nhd

nX
i��

K
�
x�X�

i

h

�
�

In contrast to the case of the smoothed bootstrap the distributions P and Pn are
actually orthogonal� Hence there is no hope to �nd such a pairing of both experiments
that enough random variables from them coincide� However obviously one can de�ne
a pairing of �X��g

� � � � � �X��g
n � and �X�

� � � � � �X
�
n� such that kX��g

i �X�
i k �

p
dg for all i�

Hence for g  h bf���h �x� is well approximated by bf��gh �x� which �nally provides the

desired strong approximation of f bfh�x��E bfh�x�gx�Rd by f bf���h �x�� E bf���h �x�gx�Rd�



��

Theorem ���� Suppose that Assumptions � through 
 are ful�lled� Then there exists
a pairing of the random variables X�� � � � �Xn and X���

� � � � � �X���
n such that

sup
x�Rd

n���� bfh�x�� E bfh�x�� � � bf���h �x�� E bf���h �x��
���o

� eO �n���� log�n� � �nhd��� log�n� � �nhd�����
q
log�n� inf

g
f�ngd�����

q
log�n� � g�hg� n��

�
�

In order to assess the signi�cance of the above strong approximation results for the
desired approximation of the distribution of the maximum absolute deviation of bfh
from its expectation we still need an upper bound for the probabilities that this
supremum falls into small intervals�

Proposition ���� Suppose that Assumptions � through 
 are ful�lled�

P

�
sup
x�Rd

n
j bfh�x� � E bfh�x�jo � �c� d�

�
� O

�
�d� c��nhd�����log�n����� � h log�n� � �nhd������log�n������

� hd���log�n����� � �nhd������log�n�����
	
�

This estimate will �nally imply in conjunction with Theorems ��� ��� and ���
the validity of the bootstrap for the supremum functional� We apply this to
the construction of simultaneous con�dence bands and nonparametric tests in the
following two subsections�

���� Simultaneous con�dence bands� Con�dence bands are an important
universal tool which provide some impression about the exactness of a nonparametric
estimator� Similarly to nonparametric tests they can indicate whether there is
empirical evidence for certain conjectured features of the curve�
There already exists a considerable amount of literature on the construction of
con�dence bands in the context of independent observations� Work on simultaneous
con�dence bands in nonparametric density estimation dates back to the seminal paper
by Bickel and Rosenblatt ������ who used a �rst�order asymptotic approximation of
the distribution of the supremum of a certain Gaussian process that approximates
the deviation of the kernel estimator from its mean� The use of the bootstrap to
determine an appropriate width for con�dence bands for a univariate density was
proposed by Faraway and Jhun ����
� on a heuristic level and investigated in more
detail by Hall ������� One of the main messages in Hall ����� ����� is that the
application of the bootstrap leads to much smaller errors in coverage probability
than the approach of Bickel and Rosenblatt �������
In contrast to the papers mentioned above we consider con�dence bands of uniform

size rather than bands with a varying size proportional to
�
�var� bfh�x������

� The

latter bands seem to be somewhat more natural and they work well as long as they



��

are restricted to some compact set on which the density f is bounded away from zero�
One has to exclude regions where the density is low because the performance of the
bootstrap approximation deteriorates there� Such a truncation is not necessary with
uniform bands because then the problematic regions are automatically faded out�
Let t�� be the �� � ���quantile of the distribution of supxfj bf��gh �x�� E bf��gh �x�jg that
is

P

�
sup
x�Rd

n
j bf��gh �x�� E bf��gh �x�j

o
	 t��

����� X�� � � � �Xn

�
� �������

For simplicity we restrict the following considerations to the smoothed bootstrap�
Using Theorem ��� instead of Theorem ��� one may derive results similar to the
following theorems for t�� based on the standard bootstrap�
Let Kh be the smoothing operator de�ned by

Kh�f��x� �
Z

�

hd
K
�
x� z

h

�
f�z� dz������

Although statisticians usually focus on con�dence intervals or bands for the density
itself we consider �rst simultaneous con�dence bands for Kh�f�� The reason is that
this problem is much easier to deal with and with bands for Kh�f� we have also more
freedom to choose h� Theorems ��� and ��� and Proposition ��� imply the following
theorem�

Theorem ���� Suppose that Assumptions � through 	 are ful�lled� Then

P
�
Kh�f��x� � � bfh�x�� t���

bfh�x� � t��� for all x � Rd
	

� � � � � O
�
hd���log�n����� � �nhd������log�n����� � ����

n log�n��

�h log�n� � �nhd������log�n�����
	
�

If

h � o
�
�log�n�������d����

	
������

�nhd��� � o
�
�log�n����

	
�����

and

�n � o
�
�log�n����

	
������

then the con�dence band will have asymptotically the prescribed coverage probability
for Kh�f�� Certain qualitative features of f such as unimodality or monotonicity
in some region remain valid for the smoothed version Kh�f� under mild regularity
assumptions on the kernel K� Hence the con�dence band for Kh�f� can also be used
as a criterion to assess whether there is enough evidence for such a feature� This is
of course closely related to the formal test proposed in Subsection ����
Since density estimation is an ill�posed inverse problem there are certain limitations
for any kind of pointwise inference about f�x�� For example one cannot consistently
distinguish between two densities that di�er only on an interval shrinking at a



��

su�ciently fast rate� This is in some way re!ected in the bias problem one necessarily
encounters in the construction of con�dence bands for f � Nevertheless there seems
to be considerable interest in such bands because they provide an easily accessible
quantitative characterization of the precision of a nonparametric estimator�
To determine the width of the con�dence band we will use again the ������quantile
t�� of the bootstrapped maximum absolute deviation of the density estimator from its
mean� We will obtain an asymptotically correct coverage probability if the bias ofbfh is of smaller order of magnitude than its standard deviation� Hence the nominal
coverage probability is asymptotically attained for an undersmoothed estimator bfh
which however excludes the usual mean�squared�error optimal choice of h�

Theorem ���� Suppose that Assumptions � through 	 are ful�lled� Then

P
�
f�x� � � bfh�x�� t���

bfh�x� � t��� for all x � Rd
	

� � � � � O
�
hd���log�n����� � �nhd������log�n����� � ����

n log�n��

�h log�n� � �nhd������log�n����� � h��nh�����log�n�����
	
�

We see from this theorem that the con�dence band has asymptotically the desired
coverage probability if besides ����� ����� and �����

h� � o
�
�nhd������log�n������

	
��� �

is satis�ed� ��� � means that we have to undersmooth in order to make the bias ofbfh which was not mimicked by the bootstrap negligible� A well�known alternative
consists in an explicit bias correction which allows then also bandwidths h � hn
decaying at the mean�squared�error optimal rate n������d��
We do not dwell on the e�ect of a data�driven bandwidth choice which is important
for a real application of this method� Usually data�driven bandwidths bh are designed
to approximate a certain nonrandom bandwidth hn� If �bh � hn��hn converges at

an appropriate rate then the estimators bfbh and bfhn are su�ciently close to each
other such that the results obtained in this paper remain valid� see Neumann ������
for a detailed investigation of these e�ects for pointwise con�dence intervals in
nonparametric regression�

���� A nonparametric test� Tests against a nonparametric alternative are an
important tool to assess the appropriateness of a parametric or a semiparametric
model� In contrast to classical tests such as the Kolmogorov�Smirnov or the Cram#er�
von Mises test our density�based test is more powerful for local deviations from
the assumed model� Moreover by considering the supremum statistic we exploit
the whitening�by�windowing principle which allows one to neglect the dependence
structure� We allow for a composite hypothesis that is

H� � f � F �



��

where the only requirement is that the functional class F allows a faster rate of
convergence than the full nonparametric model� We will assume

Assumption 	

There exists an estimator
bbf of f such that for f � F 

sup
x�Rd


����Z h�dK
�
x� z

h

�
�
bbf�z�� f�z�� dz

���� � oP
�
�nhd������log�n������

	
�

Note that Assumption � is in particular ful�lled if

sup
x�Rd


����bbf�x�� f�x�
���� � oP

�
�nhd������log�n������

	
�

In the case d � � this includes some parametric models

F � ff�� � � $g�
In the higher�dimensional case one may test for parametric but also for
certain semiparametric models such as a multiplicative nonparametric model that
corresponds to the assumption that the components of the Xi"s are independent

F �

�
f�x� �

dY
i��

fi�xi�

����� fi �su�ciently smooth�

�
�

or a semiparametric model proposed by Friedman Stuetzle and Schroeder ������

F �

�
f�x� � f��x�

MY
i��

fi��
�
ix�

����� fi �su�ciently smooth�

�
�

In accordance to our theory above we consider the maximum absolute deviation

between bfh and Kh�
bbf� that is

T � sup
x�Rd


���� bfh�x� � Z
h�dK

�
x� z

h

� bbf�z� dz���� �
The next theorem shows that the prescribed error of the �rst kind is asymptotically
guaranteed�

Theorem ���� Suppose that Assumptions � through � as well as ����� ����
and ���
 are ful�lled� Then

PH� �T 	 t��� �� � as n���

Remark �� It seems that L��tests such as those proposed by Bickel and Rosenblatt
������ for the density and by H�ardle and Mammen ������ in the regression setup
are the most popular ones among nonparametric statisticians� Such tests can be
optimal for testing against smooth alternatives whereas supremum�type tests have
less power in in such a situation� On the other hand supremum�type tests can also
outperform L��tests for testing against local alternatives having the form of sharp
peaks� see Konakov L�auter and Liero ������ and Spokoiny ���� � for more details�
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Our methodology is obviously restricted to supremum�type tests� The negligibility of
weak dependence for L��tests if it holds at all requires di�erent methods of proof�

�� Discussion

�� Mixing plus extra conditions on joint densities
By now strong mixing and absolute regularity have been accepted as being benchmark
conditions to characterize weak dependence� A lot of e�orts have been devoted
to show that estimation problems under weak dependence allow the same rates of
convergence as under independence�
However as we see in this paper as well as in Robinson ������ Masry ������ and
Hart ������ suitable extra conditions on the joint densities lead to qualitativelymuch
stronger results� then we obtain asymptotic equivalence on the level of constants�
In many instances such an extra condition is not very restrictive and leads to
an immediate applicability of important statistical methods developed under the
assumption of independence�

�� Does a multiscale approach lead to a better approximation�
In many cases one obtains better rates for strong approximations by a multiscale
approach based on a dyadic partition of the interval of interest� A classical example
is the construction by Koml#os Major and Tusn#ady ������� A dyadic approximation
scheme has also been employed by Neumann and Kreiss ������ for constructing a
strong approximation of nonparametric autoregression by nonparametric regression�
The simultaneous consideration of di�erent resolution scales makes sense for the
above examples because the relative approximation rate deteriorates as one moves
to smaller intervals�
However in our context the possibility to approximate density estimators under
weak dependence by density estimators under independence is essentially based on
the �whitening by windowing��principle� Therefore the relative approximation rate
becomes even better for �ner scales� It seems to be unlikely that a multiscale approach
leads to better approximation rates between kernel estimators from both models�

�� Optimality of the approximation
Our basic result �Proposition ���� is stronger than usual as well as stronger than
necessary� For our particular purpose of constructing a strong approximation of
kernel estimators it is not necessary at all that most of the observations coincide�
Therefore it is natural to ask whether our pairing on the level of exact coincidence
of random variables is actually an appropriate method�
However it seems that our pairing is indeed the closest possible for the maximum
absolute deviation between nonparametric estimators in both models perhaps up to
some logarithmic factor� Suppose for example that f has support �
� �� and that
we have such a pairing of �X�� � � � �Xn� with �Y�� � � � � Yn� that the corresponding
histogram estimators satisfy

sup
k������ �	h�� 
��

n
�nh��� j�fi j Xi � ��k � ��h� kh�g � �fi j Yi � ��k � ��h� kh�gj

o
� eO �rn� n��	 �



��

Let fXi � h�Xi�h� and eYi � h�Yi�h� � Then

n����

�X
i

fXi �
X
i

eYi
�

� n����
	h��
��X
k��

�k � ��h ��fi j Xi � ��k � ��h� kh�g � �fi j Yi � ��k � ��h� kh�g�

� eO �n���rn� n
��
	
�

If rn were of order o�n����� then the asymptotic distributions of n����P fXi and

n����P eYi would coincide what is not necessarily the case under our conditions�
Hence although it is not impossible that one can �nd a closer pairing of the
nonparametric estimators at one single point it seems that there does not exist an
essentially better approximation in the uniform norm�

�� Are these non�standard proofs really necessary�
Compared to existing literature on similar topics the methods of proof in this paper
are somehow non�standard� In particular all proofs are based on certain constructive
pairing techniques instead of the commonly used �rst�order approximation by the
supremumof the limitingGaussian process� This is done for the following two reasons�
First a purely analytical derivation of the asymptotic distribution of the maximal
deviation between bfh and its expectation is presumably very technical and neither
pleasant for the author nor for the reader� Second it is well�known that �rst�order
asymptotic theory leads to poor rates of convergence in this context� Once we had
used such an approximation at any point we were not be able to prove that the
bootstrap actually leads to better rates of convergence�
There exists an extensive literature on strong approximations for empirical cumulative
distribution functions by certain Gaussian processes� For example Dhompongsa
������ showed for absolutely regular processes that the cumulative distribution
function can be approximated by a Gaussian process with an error of order n������
for a certain � 	 
� Such a result can also be used to show that a kernel density
estimator is approximated by a certain Gaussian process� However in dependence
on the value of � there are limitations for the signi�cance of such results� Kernel
estimators with small bandwidths h will require more localized approximations�

�� Two stages of generation of time series data
The successful simultaneous embedding of time series data and i�i�d� data in a common
Poisson process provides a new view on the generation of random variables from
stochastic processes� Actually our embedding shows that the generation of each
new datum can be construed as a two�stage process� �rst the in!uence of the past
is re!ected by the speci�c manner how the graphs �tpXijF

i��
�

�x�� x� spread out as

t � � � and second the remaing uncertainty can be driven by an independent
process� The result of our embedding procedure turns out to be comparable to a
result in an i�i�d� situation because the determining conditions are on average the
same as those for the i�i�d� counterpart� This has of course similarities to well�
known embeddings of martingales in Wiener processes which then lead to strong
approximations by partial sum processes of i�i�d� random variables�

 � Alternative bootstrap methods
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Even if the e�ect of the dependence vanishes asymptotically it is still present in
higher order terms� Instead of neglecting it one could also try to mimic the
dependence structure by the bootstrap� One standard tool is the blockwise bootstrap
introduced by K�unsch ������� B�uhlmann ������ showed that the blockwise bootstrap
consistently estimates the distribution of a multivariate empirical process based on
��mixing observations and applied this result to a nonlinear estimator of a �nite�
dimensional parameter� On the other hand the blockwise bootstrap requires the
estimation of much more features of the data�generating process which in turn leads
to new !uctuations of the resulting estimates� It seems to be an important and
challenging task to explore by how much such an approach can improve the rate of
approximation�

�� Existing results for nonparametric estimation in the supremum norm
There already exists some literature on density estimation under weak dependence
where the error is measured in the uniform norm� Under appropriate �� or ��
mixing conditions it has been shown that appropriate kernel estimators can attain
the same rate of uniform convergence that is optimal in the i�i�d� case� see Yu
������ Tran ������ Ango Nze and Doukhan ������ and Ango Nze and Rios �������
The proofs of these results are based on blocking techniques which allow one to
replace dependent blocks of observations by independent ones� For our purpose
of constructing con�dence bands and supremum�type tests we need more exact
approximations of the distribution of the supremum deviation which requires a
di�erent method of proof�

�� Other nonparametric estimators
The whitening by windowing principle even in its global version described in this
article is closely connected with the occurence of rare events� It is quite obvious
that it also applies to a variety of other nonparametric estimators such as histogram
estimators smoothed histogram estimators or linear wavelet estimators provided
the corresponding analogue to the bandwidth in kernel estimation tends to zero�
Moreover although �rst�order asymptotics of empirical versions of the Fourier
coe�cients does depend on the dependence structure one can show that certain
Fourier series estimators also obey the whitening by windowing principle� To be
speci�c suppose it is known that supp�f� � �
� ��  which gives rise to the following
Fourier series estimator�

bfn�x� � � �
�X
k��

rk �bck cos���kx� � bsk sin���kx�� �
where bck � n��P � cos���kXi� and bsk � n��P � sin���kXi� � Assume further that

� � r� � r� � � � � and
P

k rk � O�cn� � It is easy to see that bfn can be rewritten as

bfn�x� � � � n��
nX
i��

�X
k��

rk� cos���k�x�Xi���

The kernel Kn�x� z� � � �
P
rk� cos���k�x � z�� does not have a shrinking

support however by using the well�known fact
PN

k�� cos���ku� � cos���N �
��u� sin��Nu�� sin��u� it can be shown thatX

s �����cn	�s����cn	�

sup
�s����cn�x�z�s�cn

fjKn�x� z�jg � O �cn log�cn�� �
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Hence we obtain analogously to the proof of Theorem ��� a strong approximation ofbfn by its analogue efn in the i�i�d� model�

sup
x�	���


n��� bfn�x� � efn�x����o � eO ��n���� � n��cn� log�n� log�cn�� n
��
	
�

�� Proofs

Proof of Lemma ���� De�ne

Ti � �Uji � �
�i���
Vji

��fXijF
i��
�

�Vji��

We split up

� �n�v �
nX
i��

TifXijF
i��
�

�v� � nf�v� � R� � R�������

where

R� �
nX
i��

Ti

�
fXijF

i��
�

�v� � fXijF
i��
i��n

�v�
�
�

R� �
nX
i��

�
TifXijF

i��
i��n

�v� � f�v�
�

and 
n is chosen such that 
n � maxflog�n����C��� � log�n��C�g  
n � O�log�n� 
where C� and C� are given by Assumption �� According to this assumption we have
that

sup
v


����fXijF
i��
�

�v� � fXijF
i��
i��n

�v�
���� � eO�n����� n���������

It is easy to see that the vector �T�� � � � � Tn� is independent of �X�� � � � �Xn� and that
Ti 
 Exp��� are i�i�d�
�To see this consider for a moment the situation where we start with independent

vectors � eT�� � � � � eTn� and �fX�� � � � � fXn� where eTi 
 Exp��� are i�i�d� and L�fXi jfXi�� � xi��� � � � � fX� � x�� � L�Xi j Xi�� � xi��� � � � �X� � x��� Now we easily
see that the conditional distributions L��Ti�Xi� j �Ti���Xi���� � � � � �T��X��� and

L�� eTi� fXi� j � eTi��� fXi���� � � � � � eT�� fX��� coincide which implies that �T�� � � � � Tn� and
�X�� � � � �Xn� are actually independent��
R� is a weighted sum of the Ti"s where �T�� � � � � Tn� is independent of the weights
��fXijF

i��
�

�v��fXijF
i��
i��n

�v��� i � �� � � � � n�� Hence we obtain by Theorem � of Amosova

������ that

P
�
jR�j � �

rX
�fXijF

i��
�

�v�� fXijF
i��
i��n

�v���
q
log�n�

����X�� � � � �Xn

�
� eO�n�


���� n���

holds for arbitrary � �� and uniformly in X�� � � � �Xn� This implies that

R� � eO �n���
q
log�n�� n��
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To estimate R� we consider blocks of observations fXj � j � Jig where Ji �
f�i � ���n � 
n � �� � � � � i�ng and �n � �� � �� log�n��C� � 
n � � �n � O�log�n���
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Without loss of generality we consider the blocks with odd numbers� Note that we
have

� ���fXj� j � Jig�� ��fXj� j � Jkg� k � i� �� i� �� � � � �� � C exp��C���n� 
n�����

By Proposition � of Doukhan Massart and Rio ����� page �
�� there exists a

sequence of independent blocks ffXj � j � Jig i odd where the fXj"s are independent

of the Tj"s L��fXj � j � Ji�� � L��Xj � j � Ji�� and
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Now we have
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which implies again by Theorem � of Amosova ������ that
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An analogous result can be shown for the blocks with even numbers which implies
in conjunction with ����� that

R� � eO �n��� log�n�� n��
	
������

The proof of the assertion about e� �n�v is analogous which completes the proof�

Proof of Lemma ���� We prove the assertion only for supv�	a�b
fj� �n�v � nf�v�jg�
Let Nn � fv�� � � � � v�ng be an n�����net for the hyperrectangle �a� b� of cardinality
�Nn � 
n � O�nd���� It is clear from Lemma ��� that

sup
��j��n

n���� �n�vj
� nf�vj�

���o � eO �n��� log�n�� n��
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holds� Let v � �a� b� be arbitrary� Then there exists a j�v� � f�� � � � � 
ng such that
kv � vj�v�k � O�n������ Since the Ti are i�i�d� we have according to Amosova �����
Theorem �� that

nX
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Because of supi supvfjfXijF
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�vj�v��jg � O�n����� we have that
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which yields in conjunction with jf�v�� f�vj�v��j � O�n����� the assertion�

Proof of Proposition ���� �i� Proof of the assertion for �xed �a� b�
Let �n� � fX�� � � � �Xng�fZ�� � � � � Z�g � According to Lemma ��� we have that

�n� � �a� b� �
n
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���nf�v�� C�n
��� log�n� � Uj � nf�v� � C�n

��� log�n�
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holds with a probability exceeding ��O�n��� where C� is an appropriate constant�
To get an estimate for the cardinality of the latter set we apply an exponential
inequality to the restriction ND of the Poisson process N to
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��� log�n�� v � �a� b�
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It is clear that ND is a Poisson process with intensity ��D� � O�n��� log�n�
Q
�bi�ai���

If ��D� � ������ log�n� then we obtain by Inequality ������ on page � � and
Proposition ��������
� on page ��� in Shorack and Wellner ���� � that
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If ��D� � ������ log�n� then we obtain again by Inequality ������ and
Proposition ��������
� of Shorack and Wellner ���� � that
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�ii� Uniformity over the set of all �a� b� with maxifbi � aig � CnC

Let Fk be the cumulative distribution function of the kth component of X�� We
consider the hyperrectangles

Is�t � �u���s�
� u

���
t� �� � � � � �u�d�sd

� u
�d�
td ��

where 
 � sk � tk � n  u�k�s � F��
k �s�n�  F��

k �
� � �� and F��
k ��� � � �

�W�l�o�g� we prove the assertion for the case that the Fk are continuous� The result
in the general case follows by simple modi�cations of the arguments��
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Since the number of these hyperrectangles is of an algebraic order we obtain from
����
� that
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holds for all s� t with maxkfu�k�tk � u�k�sk
g � CnC �

Now we consider the slices

I
�k�
j � ������k�� � �F��

k �u
�k�
j���� F

��
k �u

�k�
j ��� ������n�k�

Since they are of unbounded size we cannot use ����
� to estimate the cardinality of

the sets �n�� I�k�j � However since P �X� � I
�k�
j � � O�n���  we can �nd su�ciently

small upper estimates via exponential inequalities�
For i�i�d� random variables W�� � � � �Wn with EW� � 
 and jW�j � Kn we obtain
by Bernstein"s inequality �see e�g� Shorack and Wellner ����  p� �����X

Wi � eO �qn var�W��
q
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Using this in conjunction with the same blocking technique as in the proof of
Lemma ��� we obtain
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Further we obtain from ����� and ����� that
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According to ������ ������ and ������ there exists a set of events such that %n with
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are simultaneously ful�lled�
Let now �a� b� be arbitrary with maxkfbk � akg � CnC � Then there exist s� t such
that
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which implies for � � %n

� ��n� � �a� b�� � ���n� � Is�t� �
dX

k��

�
�
�n� � �I�k�sk

� I
�k�
tk���

	

� C

�
n���

�
dY

k��

�bk � ak�

�
� �

�
log�n��������

�iii� Uniformity over all hyperrectangles
Under the additional condition P �X� � �a� b�� � C

Qd
i����bi � ai� � �� we have that
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In this case ������ is trivially ful�lled� Otherwise the assertion follows from �ii��
Finally since independence is a special case of weak dependence the second part of
the assertion concerning fY�� � � � � Yng�fZ�� � � � � Z�g is also proven�

Proof of Theorem ���� It is easy to show that
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We show in this proof that there exists a pairing of the random variables Y�� � � � � Yn
and X��g
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The assertion of the theorem follows then in conjunction with Theorem ����
Since Yi � X��g
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� efh�x�� E efh�x�� � � bf��gh �x�� E bf��gh �x��������

�
�

nhd
X
i

�
I�Bi � 
��K�

x� Yi
h

� � K�
x�X��g

i

h
�� �

Z
K�

x� z

h
��f�z�� bfg�z�� dz

�
�

To estimate the right�hand side of ������ we distinguish between two sets of
hypercubes Ik � ��k� � ��h� k�h�� � � � � ��kd � ��h� kdh� �

K� �


k

����Z
Ik
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where � 	 ���� Since both bfg and f integrate to � the cardinality K� is O�nh�d��
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First we investigate the case of x � X �
S
k�K�

S
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we obtain by ������ that
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Let x � X be arbitrary� Then there exists a j�x� � f�� � � � � cng such that
kx� xj�x�k � O�n���� Since
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Concerning the set K� we show analogously to the corresponding part of the proof
of Proposition ��� that
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����
� and ������ imply ������ which yields the assertion in conjunction with
Theorem ����

Proof of Theorem ���� As already mentioned we cannot use the idea of the proof
of Theorem ��� because the probability measures P and Pn are orthogonal� However
we may exploit the pairing of X�� � � � �Xn and X��g

� � � � � �X��g
n used for proving

Theorems ��� and ��� as an intermediate step to show the closeness of � bfh�x��E bfh�x��
and � bf���h �x��E bf���h �x��� In addition to this paring we pair the X���

i "s with the X��g
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holds with probability �� Since then
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we obtain by an approximation on a su�ciently �ne grid that
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This yields in conjunction with Theorem ��� that
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Proof of Proposition ���� �i� Upper estimates for Poisson probabilities
Before we turn directly to the proof of the assertion we �rst derive some technical
results to be applied in the main part of this proof�

Let Ps�fkg� � e�ssk�k& be a Poisson probability� Let k � s � s���
q
rs log�s� be an

integer� Then we obtain by formula ������� in Shorack and Wellner ����  page �� �
that
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where �����k � �� � a�k� � �����k�� Using the estimate for ���� given in
Proposition ��������
� in Shorack and Wellner ����  page ���� we get for an
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Analogously we get for k 	 s � s���
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for all k �Z�
�ii� Some preparatory considerations

We consider instead of bfh the arti�cial quantity
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where fZ�� � � � � Z�g were de�ned by ������
The crucial point is that 'fh is based on a Poisson process instead of an empirical
process� Therefore 'fh�x�� and 'fh�x�� are independent if the supports of the
corresponding kernels are disjoint�
We decompose the Rd into nonoverlapping hypercubes of sidelength �h that is

Ik � ���k� � ��h� �k�h�� � � �� ���kd � ��h� �kdh��

Further we divide the set Zd into �d subsets
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Similarly to the considerations in the proof of Proposition ��� we can show that
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for some '� su�ciently small� Hence with a probability exceeding � � O�n��� the
supremum Zl will be attained on one of the intervals Ik with �k � '�� Let
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�iii� Decomposition of 'fh�x�� E bfh�x�
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The main purpose of this decomposition was to split 'fh�x��E bfh�x� into a term Tk�
proportional to the Poisson variable b�k 
 P�k  a term fTk��x�gx�Ik independent of
Tk� and two asymptotically negligible terms Rk��x� and Rk��x��
�iv� Proof of the assertion
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Next we show that
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� O�n���

� O
�
�d � c��nhd����

q
log�n� � n��

�
�������

Integrating over all realizations of Tk���� � � � � Tk�l �� we get �������
Since f is Lipschitz we easily obtain that

sup
x�Ik

fjRk��x�jg � eO ��nhd�����h
q
log�n�� n��

�
�������

Because of b�k � ��k� � eO��nhd�����log�n������ n��� we can readily show that

sup
x�Ik

fjRk��x�jg � eO ��nhd������log�n����� � �nhd��� log�n�� n��
	
�

������

By ������ ������ ������ and ������ we obtain with �n � C��nhd�����h�log�n����� �
�nhd������log�n����� � �nhd��� log�n�� that

P �Zl � �c� d��

� P

�
sup
k�Kl

fTk� � Tk�g � �c� �n� d � �n�

�
� O�n���

� O
�
�d � c��nhd�����log�n����� � h log�n� � �nhd������log�n����� � �nhd������log�n�����

	
�

���� �



��

By analogous considerations where we only have to use ������ instead of ���� � we
obtain

P
�
inf
k�Kl

inf
x�Ik

n
'fh�x� � E bfh�x�o � ��d��c�

�
� O

�
�d� c��nhd�����log�n����� � h log�n� � �nhd������log�n����� � �nhd������log�n�����

	
�

������

This implies

P

�
sup
x�Rd

fj 'fh�x� � E bfh�x�jg � �c� d�

�

� X
l�f���gd

P

�
sup
k�Kl

sup
x�Ik

fj 'fh�x� � E bfh�x�jg � �c� d�

�
� O�n���

� O
�
�d � c��nhd�����log�n����� � h log�n� � �nhd������log�n����� � �nhd������log�n�����

	
�

������

Using

sup
x�Rd

fj 'fh�x� � bfh�x�jg � eO ��n���� � �nhd���� log�n�� n��
	
�

we obtain the assertion�

Theorems ��� ��� and ��� are straightforward implications of Theorem ��� and
Proposition ���� We omit these proofs�
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Figure �� Realization of the Poisson process�
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Figure �� Process of determining �Uj�� Vj���



��

*
*

+

+

+ +

+

+

+
+

+

+

+

+

+

+

+

+

+
+

+

++

+

+

+

+
+

+

+

oo
-3.0 -2.0 -1.0 0.0 1.0 2.0 3.0

X

0
.
0

0
.
3

0
.
6

0
.
9

1
.
2

1
.
5

1
.
8

T
I
M
E
 
 
(
*
1
0
)
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