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Abstract

In parametric regression problems� estimation of the parameter of interest is typically achieved

via the solution of a set of unbiased estimating equations� We are interested in problems where in

addition to this parameter� the estimating equations consist of an unknown nuisance function which

does not depend on the parameter� We study the e�ects of using a plug�in nonparametric estimator

of the nuisance function �for example� a local�linear regression estimator� on the estimability of the

parameter� In particular� we specify conditions on the functional estimator which ensure that the

parametric rate of consistency for estimating the parameter of interest is preserved� and we give a

general asymptotic covariance formula� We apply this theory to three examples�

Some Key Words� Generalized Linear Models� Local Linear Regression� Logistic Regression� Miss�

ing Data� Nonparametric Regression� Partially Linear Models� Semiparametric Regression�



�� INTRODUCTION

In many estimation problems a nuisance function is present� For example� consider the linear

regression setting where observations on some regressors are sometimes missing� In this particular

case� the estimating scheme of Horvitz and Thompson �
���� estimates the regression parameters

by using weighted least squares with weights set equal to the inverse of the missingness probability�

In situations where the data are not missing by design� this probability of missingness would have

to be estimated as well�

One solution would be to also specify a parametric model for the missingness probability� This

brings up the issue of lack of �t� in that misspeci�cation of such a model could result in inconsistent

estimates of the regression parameters� An alternative strategy would be to model the missingness

process using a more �exible semiparametric model� or to estimate the missingness probabilities

using nonparametric regression� Under such a strategy� estimation of the regression parameters

becomes a semiparametric scheme� consisting of a parametric part �the regression parameters�� and

a nonparametric or semiparametric part �the missingness process��

Semiparametric problems arise in numerous other settings� such as measurement�error models�

partial spline models� and partially linear models� In this paper� particular attention is given to

the parametric part of the problem� and the semiparametric or nonparametric part is considered

to be a nuisance quantity for which a plug�in estimator is used� Once this plug�in estimator is

in place� estimation of the parametric portion may be done using conventional techniques such as

maximum likelihood� maximum quasilikelihood� etc�

Because of the relaxation of model assumption� estimates of the semiparametric part of the

estimation scheme converge at a rate slower than the n����rate� and thus may have an e�ect in

terms of bias and variance on the estimates of the parametric part� It is the focus of this paper to

study such e�ects in a general setting�

In Section � we formulate the plug�in semiparametrics setting in general terms� In Section 	

we outline a general asymptotic theory for parameter estimation in terms of the plug�in estimators

of the semiparametric part of the estimation scheme� In Section � we apply the theory to three

examples motivated by missing data and give some conluding remarks in Section ��

�� GENERAL FORMULATION

Parametric regression problems which consist of using independent and identically distributed

data Yi �i � 
� ���� n� to estimate the parameter �� vary to the extent of what is assumed about






the probability distribution of Y � Given such an assumption� an estimate b� of �� is obtained by

solving a set of estimating equations

� �
nX
i��

��Yi��� ���
�

in �� For example when the probability distribution of Y is fully speci�ed up to ��� � will

correspond to a loglikelihood score function� In the case where Y consists of a response and a

set of regressors� one could specify the mean and variance of the response as functions in �� of

the regressors� In such a case � will correspond to a quasilikelihood score function �McCullagh 


Nelder� 
�����

In this paper� we generalize ���
� to allow for the presence of an unknown nuisance function

which does not depend on �� and in doing so we allow for two additional nuisance parameters�

Consider the case where �nding b� requires solving in �

� �
nX
i��

�fYi��� ���U
t
i���� ��g� �����

where � is a vector of the same dimension of �� U is some component of Y � ����� is an unknown

function� U t�� is a linear projection of U �often called a �single�index��� and �� is a parameter of

secondary interest which arises from the inclusion of ������

Semiparametric estimating schemes commonly occur in problems involving missing data� In

this context� ����� is widely applicable� and in this paper we consider three missing data examples

which �t the framework of it� see Section ��

We wish to ascertain the e�ect of using plug�in estimators of the unknown nuisance quantities

in ����� on the estimation of ��� We are interested in the properties of b� which solves

� �
nX
i��

�fYi��� b��U t
i b�� b�� b��� b�g� ���	�

where �b�� b�� estimates ���� ��� and b���� is a nonparametric regression estimate of the univariate

function ����� evaluated at U tb� and allowed to depend on �b�� b��� It is assumed that � is of dimension

p� � is of dimension q� and � is of dimension d� whereupon it follows that ���	� represents a system

of p equations to solve in �� The critical distinction here is that estimation of the nuisance

quantities takes place independently of the estimation of �� and thus we can estimate � using

regular parametric techniques once the plug�in estimators are in place�

To clarify the ideas introduced above� consider again the example given in Section 
 where we

now introduce some notation� Consider a linear regression of Y on �X�W �� so that E�Y jX�W � �

�



���X t���W t��� and � � ���� �
t
�� �

t
��
t� Suppose that �Y�W � are observable for all sample units� but

that X is missing at random �Little 
 Rubin� 
���� and observable only with probability ��Yi�Wi�

for i � 
� ���� n� If �i � 
 when Xi is observed and �i � � otherwise� the Horvitz and Thompson

�
���� estimator is obtained by solving

� �
nX
i��

�i

��Yi�Wi�

�
Yi � �� �X t

i�� �W t
i ��
��B� 


Xi

Wi

�CA �

This is a weighted least squares estimate based on the �complete� data with �Y�X�W � all observed�

and weighted inversely to the sample probabilities� Assuming that the sampling probabilities

��Yi�Wi� are known� this estimator �ts into the framework ���
� with Y � �Y�X�W����

Now suppose though that this is observational data and the sampling weights are unknown� in

which case one would be forced to estimate them� One could use logistic regression with higher

order polynomial terms to insure model robustness �Robins� Rotnitzky 
 Zhao� 
����� or one could

estimate the sampling probabilities by nonparametric regression of � on �Y�W �� this latter approach

is taken by Wang� Wang� Zhao 
 Ou �
����� The di�culty with the nonparametric approach is

that if W is multivariate� the nonparametric regression may su�er from the curse of dimensionality�

this shows up in the Wang et al� theory in the need for progressively higher order kernels� Instead�

one might propose a compromise between linear logistic regression and nonparametric regression�

For example� if Y were the primary determiner of missingness� a natural model is

Pr�� � 
jY�W � � Logistic
n
���Y � � W t��

o
� �����

while an alternative is

Pr�� � 
jY�W � � Logistic
n
���W

t��� � ��Y
o
� �����

Model ����� is called a partially linear model �Severini 
 Staniswalis� 
���� and is a special

case of generalized additive models �Hastie 
 Tibshirani� 
����� while model ����� with �� � � is a

single�index model �H�ardle� Hall 
 Ichimura� 
��	�� model ����� itself is a partially linear� single�

index model �Carroll� Fan� Gijbels 
 Wand� 
����� If H��� is the logistic distribution function and

����� is used� then the resulting estimator �ts into the framework ����� with U � W and

��Y ��� ���U
t���� ��� �

�

Hf���U t��� � ��Y g
�Y � �� �X t�� �W t���

�B� 

X
W

�CA �

We develop a general asymptotic theory for b� which solves ���	�� The theory will consist of

two parts� The �rst part will outline a set of su�cient conditions on the estimating function ����

	



and the plug�in estimators �b����� b�� b�� which ensure that the parametric rate of consistency for b�
is retained� The second part will give a general formula for the asymptotic covariance of b��

Newey �
���� refers to the estimating scheme given by ���	� as a two�step estimator� where the

�rst step is the estimation of the plug�in quantities and the second is the estimation of ��� Newey

considers the situation where b���� is a series estimator� such as a spline or polynomial regression�

and where �� is known� We consider the case where b���� is a kernel regression estimator such as that

of Nadaraya �
���� and Watson �
���� or a local polynomial regression with kernel weights� and

thus our results are presented in terms of smoothing parameters associated with these smoothing

methods� We also consider the e�ects of estimating �� and ���

�� ASYMPTOTIC THEORY

���� Asymptotic Expansions of the Plug�in Quantities

The large sample bias and variance properties of b� will depend mainly on the properties of b��

b� and b����� The nonparametric estimator b���� used here is of a kernel regression form �ordinary

or local linear�� We will state our conditions in general form� but Carroll et al� �
���� have

shown that they hold for the class of partially linear single�index models using either back�tting

as commonly employed �see Weisberg 
 Welsh� 
��� for a recent example� or for nonparametric

likelihood �Severini 
 Wong� 
����� As a technical matter the sums in ���	� must be constrained to

a compact subset of the support of the U  s� Our assumption is that uniformly over u in a compact

set interior to the support of U �

b��utb�� b�� b��� ���u
t��� � h�	��u� � at��u��b� � ��� � at��u��b�� ���

�n��
nX
j��

Kh�U t
j�� � ut���
��Yj � u

t��� � Op�h
�� � op�n

������
�	�
�

for some functions 	��u�� a��u�� a��u�� and 
����� In �	�
� K is a symmetric probability density

function and h is the bandwidth� with rescaling Kh�t� � K�t�h��h� It is also assumed that

Ef
��Y � u
t���jU

t��g � �� for all u in the compact set described above�

We also suppose that the following expansions exist!

b�� �� � h�b� � n��
nX
j��

Vj� � Op�h
�� � op�n

������

b� � �� � h�b� � n��
nX
j��

Vj� � Op�h
�� � op�n

������

�	���

for some constants b� and b� and random variables Vj� and Vj� �j � 
� ���� n� which are independent

and identically distributed observations on the random vectors V� and V� respectively� having mean

�



zero and �nite covariance matrix� It should be noted that the above expansions allow for estimation

���� ��� at a rate of convergence slower than that of the parametric rate� which in some cases may

be a direct result of their estimation occurring in conjunction with that of ������ When in fact we

can �for example� estimate �� at the n����rate� the expansion reduces accordingly and b� � �� For

example� in partially linear single�index models� in back�tting it is typical that b� �� � and b� �� ��

while for nonparametric likelihood b� � b� � ��

���� Statement of the Main Result

De�ne the following!

S��Y � ut������ ��� �
�

��t
��Y ��� v� ���

Sv�Y � u
t������ ��� �

�

�v
��Y ��� v� ��� �	�	�

S��Y � ut������ ��� �
�

��t
��Y ��� v� ���

each evaluated at � � ��� v � ���u
t���� and � � ��� noting that S���� is a �p x p� matrix� Sv��� is

�p x 
�� and S���� is �p x q�� Let R � U t�� and fR�r� be the density function of R evaluated at r�

Also de�ne C � EfS��Y � R���� ���g and � � E""t� where

G�Y � ut��� � fR�ut���EfSv�Y � u
t������ ���jR � ut��g
��Y � u

t����

" � �fY ���� ���R�� ��g� G�Y � R� � EfS��Y � R���� ���gV�

�EfSv�Y � R���� ���a
t
��U�gV� � EfSv�Y � R���� ���a

t
��U�gV��

�	���

THEOREM �� Suppose that b� solves ���	� and the expansions �	�
� and �	��� hold� Given the

assumptions listed in Section ��
� suppose also that as n��� h� �� nh� ��� and either of the

following two conditions holds!

Condition �� nh� � ��

Condition ��

nh� � ��

EfSv�Y � R���� ���	��U�g � �� EfSv�Y � R���� ���a
t
��U�gb� � ��

EfSv�Y � R���� ���a
t
��U�gb� � �� EfS��Y � R���� ���gb� � ��

Then�

n����b�� ���
D
�� Normal���C���C�t�� �	���

�



Some comments on this main result are appropriate here!

�a� Conditions 
 and � are provided as a tool to determine what sort of bandwidths h may

be used in the nonparametric estimate of ����� while preserving the n����consistency ofb�� Nominally� optimal bandwidths in kernel regression are of order O�n���	�� In general

cases where a kernel regression estimate is used in the context of a parametric problem�

one requires an undersmoothed version of the nonparametric regression� and bandwidths of

the optimal order are speci�cally excluded �Condition 
�� However� if the structure of �����

and speci�cally the context in which b���� is used within ����� possesses certain properties

�Condition ��� then bandwidths of the nominally optimal order are permitted�

�b� Equation �	��� gives a general asymptotic covariance calculation� Recalling that � � E""t�

the matrix " de�ned in �	��� consists of �ve terms� the latter four of which correspond to the

asymptotic cost in e�ciency due to using the plug�in estimates of the nuisance quantities�

Again� in certain cases ���� may be structured so that one or more of these terms will equal

zero�

�c� It is worth noting that none of the terms in �	��� depend on the kernel or the bandwidth�

This does not mean� however� that the type of smoothing one does to estimate ���� ��� ��� is

immaterial� because the type of smoother determines �
�� a�� a�� in �	�
� and �Vj�� Vj�� in

�	���� Carroll et al� �
���� exhibit di�erent estimation methods in which these terms di�er

in partially linear and single�index models�

�� EXAMPLES

In this section we consider three examples where we apply the semiparametric methods discussed

in this paper� Each example arises from a parametric regression problem in which one of the

regressors is sometimes missing� We thus have the common notation Y � �Y�X�W���� where Y is

a univariate response� X is a univariate regressor which is missing on a subset of the data� W is

a possibly multivariate set of regressors which are always observed� and � is an indicator variable

equal to 
 when X is observed and � otherwise� In the absence of missing data� we would estimate

the crucial parameter �� by solving in �

� �
nX
i��

�c�Yi� Xi�Wi����

where �c��� is the complete�data estimating function� De�ne L � �Y�W � and ��L� � Pr�� � 
jL��

the probability that X is observed given L� We assume missingness at random� so that ��L� �

Pr�� � 
jL�X�� and any parameters in semiparametric models do not involve ��

�



���� Adaptive E�cient Semiparametric Regression

Suppose that E�Y jX�W � � m�X�W����� For �c�Y�X�W���� � a�X�W �fY �m�X�W����g�

Robins et al� �
���� consider estimating �� via solving the equation

� �
nX
i��

�
�i

��Li�
�c�Yi� Xi�Wi����

�i � ��Li�

��Li�
Ef�c�Y�X�W���jL� Lig

�
� ���
�

where the expectation in the second term is dependent upon the distribution of X given L� Gutierrez

�
���� proposed �tting this conditional distribution using a generalized partially linear single�index

model� In such a model it is supposed that for a speci�ed partition L � �L�� L��� the conditional

density of X given L is of the form fXjLfx� ���L
t
���� �Lt���g� where ������ ��� and �� are estimated

using an iterative back�tting routine based upon local linear regression� Carroll et al� �
���� show

that for these estimates �b���� b�� b��� b�� and b�� the asymptotic expansions of �	�
� and �	��� do exist�

yet we will not require their explicit forms in order to apply Theorem 
�

For 
 � �y� w� with partition 
 � �
�� 
�� corresponding to the above� de�ne g�
� a��� �R
�c�y� x� w���fXjL�x� a�dx� It follows that b� solves

� �
nX
i��

�fYi��� b��Lt�ib�� b�� b��� b�g�
where

��Y ��� v� �� �
�

��L�
�c�Y�X�W����

�� ��L�

��L�
g�L� v � Lt������

Note that in this context L� plays the role of U in the statement of Theorem 
 and let R � Lt����

Since E��jY� � ��L�� it is easily seen that

EfSv�Y � R���� ���jL�g � E#EfSv�Y � R���� ��jYg$ � � and

EfS��Y � R���� ���g � E#EfS��Y � R���� ���jYg$ � ��

Thus� we only require nh� � � to ensure that Condition � is satis�ed�

Furthermore� the above arguments con�rm that G�Y � r� � � for each choice of r� and thus

the last four terms of " are equal to �� Hence by Theorem 
� the asymptotic covariance of b� is

C���E""t�C�t� where " � �fY ���� ���R�� ��g and

C � EfS��Y � R���� ���g � E#EfS��Y � R���� ���gjL$ � E

	
�

��t
�c�Y�X�W���j����



�

In particular two things should be noted� First� since the n����consistency of b� follows from

Condition �� optimal bandwidths h of order O�n���	� are allowed and thus may be obtained via any

number of standard data�driven bandwidth selection routines� Second� the asymptotic covariance

of b� is the same to that as if Ef�c�Y�X�W���jLg were known�

�



���� Estimation of Weights in E�cient Semiparametric Regression

Again considering the estimating scheme of Robins et al� �
����� we estimate �� via ���
�� For

��L��� � Ef�c�Y�X�W���jLg� we showed in the previous section that in certain cases �� may

be be estimated as well as if ��L��� were known� We now assume that ��L��� is indeed known

and that the probability of observing X given L� ��L�� is unknown�

In order to estimate ��L� nonparametrically� it is convenient to reduce the dimension of L and

thus assume that ��L� � ��Lt��� for some unknown �direction� ��� We assign to ��L� a logistic

single�index model �Carroll et al�� 
����� so that ��Lt��� � Hf���L
t���g� where H�t� � �
�e�t���

and ����� is an unknown link function� Simultaneous estimation of �� and ����� is achieved using

nonparametric likelihood �Carroll et al�� 
����� whereupon it follows that �	��� holds with b� � ��

and

b��
tb�� b��� ���

t��� �




�
h����


��
� �
t��� � �


��
� �
t���f
�E�LjLT�� � 
t���g

t�b�� ��� �

n��
nX
j��

Kh�Ltj�� � 
t���
�j �Hf���L

t
j���g

fLt���

t��� %H�
t���

� Op�h
�� � op�n

������ �����

where fLt����� is the density of Lt��� �� �
R
u�K�u�du� �


k�
� ��� is the kth derivative of ������ and

%H��� � H���f
�H���g�

Simple calculations show that

Sv�Y � r���� � � %H�r�

	
�

H��r�
�c�Y�X�W�����

�

H��r�
��L����



�

Since EfSv�Y � L
t������jLg � E#EfSv�Y � L

t������jL��g$ � �� by de�nition of ����� we only

require nh� � � to ensure that Condition � of Theorem 
 is satis�ed� Further calculations show

that the last four terms of " are all equal to zero and therefore as in the previous section� the

asymptotic covariance of b� is the same to that as if ��L� were a known function�

���� Estimation of Weights in a Complete Data Scheme

For purposes of computational simplicity� it is sometimes preferable to estimate �� using only

those data for which X is observed� Consider the complete data scheme of Horvitz and Thompson

�
���� where b� solves the weighted estimating equation

� �
nX
i��

�i

��Li�
�c�Yi� Xi�Wi����

In cases where ��L� is unknown� a fully parametric model for ��L� can be problematic because

misspeci�cation would result in a b� which is inconsistent�

�



Wang et al� �
���� consider using a Nadaraya �
���� and Watson �
���� nonparametric re�

gression estimate of ��L�� Because we use dimension reduction� our models coincide with theirs

only in the case that ��L� depends only on a single component of L� say R� Routine calculations

show that our general theory yields the result of Wang et al� in this case� The only detail worth

mentioning here is that they estimate ��R� by ordinary kernel regression� If K��� is the kernel and

Kh�t� � K�t�h��h� we use the standard kernel expansion

b��r�� ��r� �



�
h���s


���r� � n��
nX
j��

Kh�Rj � r�
�j � ��Rj�

fR�r�
� Op�h

�� � op�n
������

where fR��� is the probability density of R� and s�r� � ��r�fR�r��

Suppose now that ��L� depends on more than one known component of L� In this case Wang

et al� �
���� propose the use of high dimensional kernel regression with higher order kernels to

control the bias� We propose instead �tting ��L� using a logistic partially linear model with

��L� � Pr�� � 
jL� � Hf���L�� � Lt���g�

where H��� is the logistic function de�ned in Section ���� L� is a single component of L� and �����

and �� are unknown� Using nonparametric likelihood estimation� letting R � U � L� and de�ning

� � ���R� � Lt���� Carroll et al� �
���� show that

b� � �� � h�b� � n��
nX
j��

f�j �H��j�gB
��
�

�
L�j �

EfL�
%H���jRjg

Ef %H���jRjg

�
� Op�h

�� � op�n
������

and

b��r� b��� ���r� �



�
h����


��
� �r��

EfLt� %H���jR � rg

Ef %H���jR � rg
�b� � ��� �

n��
nX
j��

Kh�Rj � r�
�j �H��j�

fR�r�Ef %H���jR � rg
� Op�h

�� � op�n
������ ���	�

where

B� � EfL�L
t
�

%H���g � E

�
EfL�

%H���jRgEfLt� %H���jRg

Ef %H���g

�
�

De�ne b��b�� to be the estimate which solves � �
Pn

i�� �fYi��� b��Ri� b��� b�g where

��Y ��� v� �� �
�

H�v � Lt���
�c�Y�X�W����

It follows then that

Sv�Y � r���� ��� � �
�#
�Hf���r� � Lt���g$

Hf���r� � Lt���g
�c�Y�X�W�����

S��Y � r���� ��� � �
�#
�Hf���r� � Lt���g$

Hf���r� � Lt���g
�c�Y�X�W����L

t
��

�



Since for example EfSv�Y � R���� ���	��R�g is not necessarily zero� we must assume nh� � � to

satisfy Condition 
�

Calculating the asymptotic covariance of n���fb��b�����g� we �rst obtain

a��r� � �EfL�
%H���jR � rg

h
Ef %H���jR � rg

i��
�

from the expansion given by ���	�� It is easily seen that

G�Y � R� � �f��H���gE#f
�H���g�cjR$
h
Ef %H���jRg

i��
�

where we have suppressed the arguments of �c���� Also� conditioning on Y will show that

EfSv�Y � R���� ���a
t
��R�g � E

�
f
�H���g�c

EfLt�
%H���jR � rg

Ef %H���jR � rg

�
�

and

EfS��Y � R���� ���g � �E
h
f
�H���g�cL

t
�

i
�

De�ning

B� � E



f
�H���g�c

�
Lt� �

EfLt� %H���jR � rg

Ef %H���jR � rg

��
�

and calculating " from Theorem 
 will yield " � "� � "� � "�� where "� � �fH���g���c�

"� � G�Y�R�� and

"� � �f��H���gB�B
��
�

�
L� �

EfL�
%H���jRg

Ef %H���jRg

�
�

A fairly lengthy covariance calculation which is sketched in Section ��� shows that for

C � EfS��Y � R���� ���g�

n���f��b��� ��g
D
�� Normalf��C����� ��� ����C

�tg� �����

where �� � E#fH���g���c�t
c$� �� � B�B

��
� Bt

�� and

�� � E

�
E#f
�H���g�cjR$E#f
�H���g�t

cjR$

Ef %H���jRg

�
�

Since �� is positive de�nite� the term C����C
�t actually represents a gain in asymptotic e�ciency

due to the data adjustment of ��L�� This phenomenum is quite common� and occurs in a related

context in the theory of Wang et al� �
����� Likewise� the term C����C
�t represents the gain in

e�ciency due to data adjustment of ��� Both gains diminish as H��� tends to 
 and hence when X

is observed on a larger proportion of the data�


�



	� DISCUSSION

The purpose of this paper was to introduce a class of semiparametric estimating functions which

are general enough to be widely applicable� giving a simple and direct method of ensuring n����

consistent estimates of crucial parameters and a covariance form which is easily administered� The

methods introduced were applied to three examples�

In estimating ����� for a given �b�� b��� most kernel local averages and local linear regressions

envision bandwidths of order h � n���	� These bandwidths have been considered global in our cal�

culations� but the same results apply for local bandwidths� When estimating �� using bandwidths

of the usual order� when Condition � fails we have assumed Condition 
� namely that nh� � �� a

contradiction� What is happening here is that while the variance of n����b����� is of order O�
��

the bias is of order Of�nh�����g� The natural question is what one should do if Condition � does

not apply� We suggest here four possible approaches�

The �rst approach is to ignore the issue of bias� This is in fact a typical approach� In generalized

additive models� it is known that back�tting has the same di�culty with bias �Hastie 
 Tibshirani�


���� pp� 
���
���� but this fact is often ignored�

There are three ad hoc methods to eliminate bias� The �rst is to multiply one s favorite

bandwidth so that condition 
 is satis�ed� i�e�� use hn����	� The second� suggested by Weisberg


 Welsh �
����� is to use a standard bandwidth �local or global� but at the �nal estimate of �����

use a third order kernel� i�e�� one for which
R
K�v�dv � 
�

R
v�K�v�dv �� �� and

R
vjK�v�dv � �

for j � 
� �� Finally� and somethat similar in spirit to the previous suggestion� one can use local

polynomial �ts of order 	 � applied with the candidate bandwidth�

Estimating the asymptotic covariance matrix of b� can be done in one of two ways� First� one

can estimate each of the terms in �	��� directly� To implement this� the form of �	��� requires that

one estimate additionally a number of conditional regressions� such as Ef %H���jRg� which is easily

accomplished�

An alternative covariance matrix estimate can be obtained by use of the so�called �m out of

n� bootstrap studied by Politis 
 Romano �
����� Their remarkably general work shows that if a

statistic is asymptotically normally distributed� then the m out of n bootstrap provides asymptot�

ically valid standard error estimates and inferences�
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� PROOFS AND CALCULATIONS


��� Proof of Theorem �

De�nitions

�i� U is a �xed compact set interior to the range of U � and C is the set generated as the product

space of the set U and the range of the remaining components of Y �

�ii� R � fut�� ! u 
 Ug�

�iii� The notation �k� used as a superscript such as A�k� denotes the kth row of A�

�iv� &k�Y ���� v�� ��� is the matrix of second order partial derivatives of ��k��Y � �� v� �� with

respect to ��t� v� �t�t evaluated at �Y ���� v�� ����

Assumptions

�i� The asymptotic expansions in �	��� hold� and the expansion in �	�
� holds uniformly over U �

�ii� b�� �� � op�
� and kb����k
� � op�n

������

�iii� &k�Y ��� v� �� is uniformly bounded in Y 
 C and v in a neighborhood of ���U
t�� for U 
 U

and ����� �� in a neighborhood of ������� ����

�iv� EfS��Y � R���� ���S
t
��Y � R���� ���g is positive de�nite�

�v� �fY ���� ���R�� ��g has mean zero and positive de�nite covariance matrix�

�vi� The random matrices Sv�Y � R���� ���	��U�� Sv�Y � R���� ���at��U��

Sv�Y � R���� ���at��U�� and S��Y � R���� ��� are such that for each of these matrices M �

EMM t is positive de�nite�

�vii� The random variables V� and V� each have mean � and positive de�nite covariance matrix�

�viii� Ef
��Y � r�jRg� � for each r 
 R�


	



�ix� The function G�Y � r� has �rst two derivatives with respect to r which are uniformly bounded�

for all Y 
 C�

�x� K is a second order kernel function symmetric at � with compact support�

�xi� fR�r� is positive and continuous for all r 
 R�

Letting b� be a one�step Newton�Raphson solution to ���	� and the presence of a n����consistent

starting value for b� will ensure that Assumption �ii� is satis�ed�

Proof

By ���	� and a Taylor expansion�

� � n����
nX
i��

��k�fYi��� b��U t
i b�� b�� b��� b�g

� n����
nX
i��

��k�fYi���� ���Ri�� ��g� n����
nX
i��

S�k�� �Yi� Ri���� ����b�� ��� � ���
�

n����
nX
i��

S�k�v �Yi� Ri���� ���fb��U t
i b�� b�� b��� ���Ri�g� n����

nX
i��

S�k�� �Yi� Ri��b� � ��� �

n����
nX
i��




�

��� b� ���b��U t
i b�� b�� b��� ���Ri�b� � ��

���
t

&k�Yi��
�� v�� ���

��� b�� ��b��U t
i b�� b�� b��� ���Ri�b� � ��

��� �
for �� in between b� and ��� v

� in between b��U t
i b�� b�� b�� and ���Ri�� and �� in between b� and ���

Given assumptions �i� � �iii� it is easily seen that the last term in ���
� is op�
� for k � 
� ���� p�

Combining all the components of ���� we have that

� � n����
nX
i��

�fYi���� ���Ri�� ��g� n����
nX
i��

Sv�Yi� Ri���� ���fb��U t
i b�� b�� b��� ���Ri�g�

n����
nX
i��

S��Yi� Ri���� ����b����� � n����
nX
i��

S��Yi� Ri���� ����b� � ��� � op�
��

By Assumption �iv� and the law of large numbers� n��
Pn

i�� S��Yi� Ri���� ��� � C � Op�n
������

Making this substitution and applying Assumption �ii� we �nd that

�Cn����b� ���� � n����
nX
i��

�fYi���� ���Ri�� ��g� n����
nX
i��

S��Yi� Ri���� ����b� � ��� �

n����
nX
i��

Sv�Yi� Ri���� ���fb��U t
i b�� b�� b��� ���Ri�g� op�
��


�



We now make the substitution given by the uniform expansion in �	�
�� Noting that for both

Condition 
 and Condition � nh� � �� it follows that

�Cn����b�� ��� � n����
nX
i��

�fYi���� ���Ri�� ��g� n����
nX
i��

S��Yi� Ri���� ����b� � ���

n����
nX
i��

Sv�Yi� Ri���� ���

���h�	��Ui� � at��Ui��b� � ����

at��Ui��b�� ��� �n��
nX
j��

Kh�Rj � Ri�
��Yj � Ri�

���� op�
��

Next we make the substitutions given by the expansions in �	��� and �nd that

�Cn����b����� � n����
nX
i��

�fYi���� ���Ri�� ��g� n����h�
nX
i��

Sv�Yi� Ri���� ���	��Ui� �

n����h�
nX
i��

Sv�Yi� Ri���� ���a
t
��Ui�b� � n����h�

nX
i��

Sv�Yi� Ri���� ���a
t
��Ui�b� �

n����h�
nX
i��

S��Yi� Ri���� ���b� � n����
nX
i��

nX
j��

Sv�Yi� Ri���� ���a
t
��Ui�Vj� �

n����
nX
i��

nX
j��

Sv�Yi� Ri���� ���a
t
��Ui�Vj� � n����

nX
i��

nX
j��

S��Yi� Ri���� ���Vj� �

n����
nX
i��

nX
j��

Sv�Yi� Ri���� ���
��Yj � Ri�Kh�Rj � Ri� � op�
�

� T� � T� � T� � T� � T	 � T� � T� � T
 � T� � op�
��

The second term T� � n���h�fn��
Pn

i�� Sv�Yi� Ri���� ���	��Ui�g� If Condition 
 holds then

nh� � �� If Condition � holds then n��
Pn

i�� Sv�Yi� Ri���� ���	��Ui� � Op�n
����� given Assump�

tion �vi�� In either case� T� � op�
�� Similarly� it can be shown that T� � op�
�� T� � op�
�� and

T	 � op�
��

The sixth term

T� � n����
nX
i��

nX
j��

Sv�Yi� Ri���� ���a
t
��Ui�Vj� �

�
n��

nX
i��

Sv�Yi� Ri���� ���a
t
��Ui�

�
n����

nX
j��

Vj�

� n����
nX
j��

EfSv�Y � R���� ���a
t
��U�gVj� � op�
��

since n����
Pn

j�� Vj� � Op�
�� Similarly� it can be shown that

T� � n����
nX
j��

EfSv�Y � R���� ���a
t
��U�gVj� � op�
��

T
 � n����
nX
j��

EfS��Y � R���� ���gVj� � op�
��


�



This leaves T�� We show T� � n����
Pn

i��G�Yi� Ri� � op�
� by showing that the �rst two

moments of T �
� � T� � n����

Pn
i��G�Yi� Ri� are o�
�� Details are available from the �rst author�


��� Calculations leading to ����


We start by suppressing the dependence of H and %H on �� We must show that E""t �

�� � �� � ��� Since " � "� � "� � "�� we have nine terms to consider� The �rst� E"�"
t
� �

Ef���H���c�
t
cg � E#Ef���H���c�

t
cgjY $ � E�H���c�

t
c� � ��� We next note that ��� �

E"�"
t
� � E"�"

t
� � E"�"

t
�� since it is easily seen that E"�"

t
� � ��� � E"�"

t
�� Further� direct

calculations show that E"�"t
� � �� and it follows that E"�"t

� �E"�"t
� �E"�"t

� � ���� ��� �

���� Studying the other terms in E""t we see that E"�"t
� � E"�"t

� � � and E"�"t
� � ����

Finally� E"�"
t
� � ��� Combining all terms it then follows that E""t � �� ��� ���� Complete

details are available from the �rst author�


�


