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LOCAL LINEAR REGRESSION FOR

GENERALIZED LINEAR MODELS WITH MISSING

DATA

C� Y� WANG�� Suojin WANG� R� J� CARROLL� and Roberto G� GUTIERREZ

Fred Hutchinson Cancer Research Center� Texas A�M University� Texas A�M University and
Southern Methodist University

January ��� ����

Abstract

Fan� Heckman andWand ����	
 proposed locally weighted kernel polynomial regression methods for

generalized linear models and quasilikelihood functions� When the covariate variables are missing

at random� we propose a weighted estimator based on the inverse selection probability weights�

Distribution theory is derived when the selection probabilities are estimated nonparametrically� We

show that the asymptotic variance of the resulting nonparametric estimator of the mean function

in the main regression model is the same as that when the selection probabilities are known� while

the biases are generally di�erent� This is di�erent from results in parametric problems� where it is

known that estimating weights actually decreases asymptotic variance� To reconcile the di�erence

between the parametric and nonparametric problems� we obtain a second�order variance result for

the nonparametric case� We generalize this result to local estimating equations� Finite sample

performance is examined via simulation studies� The proposed method is demonstrated via an

analysis of data from a casecontrol study�

Short title� Local regression with missing data
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� INTRODUCTION

This paper is concerned with nonparametric function estimation via quasilikelihood when the pre

dictor variable may be missing� and the missingness depends upon the response� We use local poly

nomials with kernel weights� generalizing the work of Staniswalis �����
� Severini and Staniswalis

�����
 and Fan� Heckman and Wand ����	
 to the missing data problem�

In practice� covariates may be missing due to reasons such as loss to follow up� For example�

in a study of acute graft versus host disease of bone marrow transplants of �� female subjects

conducted at the Fred Hutchinson Cancer Research Center� the outcome is the acute graft host

disease and one covariate of interest is the donor�s previous pregnancy status which was missing for

�� patients because of the incompleteness of the donors� medical history� In this paper� we consider

the missing covariate data problem in nonparametric generalized linear models� We assume that

covariates are missing at random �MAR
 and the missingness is ignorable �Rubin� ����
�

In parametric problems� two approaches are common� Likelihood methods assume a joint para

metric distribution for covariates and response� and under our assumptions ignore the missing data

mechanism �Little and Rubin� ����
� Complete�case analysis assumes nothing about the distribu

tion of covariates� and is in this sense semiparametric� Estimation is based on the �complete�cases��

i�e�� those with no missing data� with weighting inversely proportional to the probability that the

covariate is observed given the response �Horvitz and Thompson� ��	�
� We call these selection

probabilities� We use the second approach� Our methods apply as well to other semiparametric

schemes� e�g�� that of Robins� Rotnitzky and Zhao �����
� We estimate the missing data probabil

ities by nonparametric regression�

In parametric problems� the Horvitz�Thompson weighting scheme has a curious and important

property� Consider two estimators� �a
 the one with known selection probabilities and weights� and

�b
 one where the selection probabilities are estimated by a properly speci�ed parametric model�

The two methods yield consistent estimates� but that with estimated weights generally has a smaller

asymptotic variance �Robins� et al�� ����
�

One might expect the same sort of result to hold in the nonparametric regression case with

nonparametrically estimated selection probabilities� However� this is not the case� and we show

�Theorem �
 that whether weights are estimated or not has no e�ect on asymptotic variance� while

it does have an e�ect on the bias in general�

�



In simulations however� we observed repeatedly that estimating weights was bene�cial in small

samples� To understand whether this numerical evidence was at all general� we developed a second�

order variance result �Theorem �
 showing that the estimator with estimated weights can be ex

pected to have smaller �nte�sample variance than if the weights are known� This second�order

variance result provides a reconciliation between the di�erent �rst�order results in the parametric

and nonparametric cases�

The statistical models are described in Section �� In Section �� we propose the methodology

and the asymptotic result for the weighted method with both known and estimated selection prob

abilities� The method is demonstrated in Section � by analyzing the data from a casecontrol

study of bladder cancer� In Section 	 we investigate the �nite sample performance by conducting a

simulation study� We note that estimating the selection probabilities has a �nite sample e�ect on

the estimation of the mean function of our primary interest� We explain the possible �nite sample

e�ciency gain by a second�order variance approximation in Section ��

The major result of Section � can be described as follows�

� An unknown function ���
 is estimated nonparametrically� by b���
�
� If ���
 were known� one would use it to estimate nonparametrically a second function ���
�
by b���� �
�

� The estimates b���� �
 and b���� b�
 have the same asymptotic variance�
In Section �� we sketch a result showing that this phenomenon is quite general� and not restricted

to our particular context� All detailed proofs are given in the Appendix�

� THE MODELS

��� Full Data Models

We let �Y�� X�
� � � � � �Yn� Xn
 be a set of independent random variables� where Yi is a scalar response

variable� and Xi is a scalar covariate variable� In a classical generalized linear model �Nelder and

Wedderburn� ����� McCullagh and Nelder� ����
� the conditional density of Y given X belongs

to a canonical exponential family fY jX�yjx
 � C�y
exp�y��x
 � Bf��x
g� for known functions B
and C� where the function � is called the canonical or natural parameter� The unknown function

��x
 � E�Y jX � x
 is modeled in X by a link function g by gf��x
g � ��x
� In a parametric

�



generalized linear model� ��x
 � c� � c�x for some unknown parameter c�� c�� The link function g

is assumed to be known� For example� in logistic regression g�u
 � logfu���� u
g� and in linear
regression g�u
 � u� In our nonparametric setting� there is no model assumption about ��x
�

Fan� et al� ����	
 considered quasilikelihood models� where only the relationship between the

mean and the variance is speci�ed� If the conditional variance is modeled as var�Y jX � x
 �

V f��x
g� for some known positive function V then the corresponding quasilikelihood function

Q�w� y
 satis�es ����w
Q�w� y
 � �y � w
�V �w
 �Wedderburn� ����
� The primary interest is to

estimate ��x
� or equivalently ��x
� nonparametrically�

��� Missing Data Models

In a missing covariate data problem� some covariates may be missing and we let 	i � � if Xi is

observed� 	i � � otherwise� Furthermore� let

�i � pr�	i � �jYi� Xi
 � pr�	i � �jYi
 � ��Yi
 ��


be the selection probability which does not depend on Xi� i�e�� Xi is MAR� In a twostage design

�White� ����
� often the selection probabilities are known� In many missing data problems� however�

the selection probabilities are unknown and need to be estimated� To model the selection probabil

ities� we assume that given Y there is a known link function g� such that g�f��y
g � ���y
� where

���y
 is a smooth function� Let the conditional variance be modeled by var�	jY � y
 � V �f��y
g
for some known positive function V �� The corresponding quasilikelihood function Q��w� 	
 satis�es

����w
Q��w� 	
 � �	 � w
�V ��w
� We say that two�stage data models occur when the selection

probabilities are known� and missing data models occur when the selection probabilities are un

known� In the missing data models� ��y
� or ���y
� is a nuisance component which needs to be

estimated�

� METHODOLOGY

��� The Weighted Method

When �Yi� Xi
 are fully observable� Fan� et al� ����	
 proposed the local linear kernel estimator of

��x
 as b��x� h
 � b
�� where h is the bandwidth of a kernel function K and b
 � �b
�� b
�
t maximizes
nX
i��

Q�g��f
� � 
��Xi � x
g� Yi�Kh�Xi � x
� ��


�



where Kh��
 � K���h
� We assume that the maximizer exists� and this can be veri�ed for standard
choices of Q� The mean function ��x
 is estimated by b��x
 � g���b
�
� When data are missing�
a naive method is to apply ��
 by using the completecase �CC
 analysis� i�e�� solving ��
 by

restricting to pairs in which both Y and X are observed� However� completecase analysis may

cause considerable bias when the missingness probabilities ��
 depend on the response �Little and

Rubin� ����
�

To accommodate the missingness in the observed data� we propose a HorvitzThompson inverse

selection weighted method� so that the estimator of 
 maximizes

nX
i��

Q�g��f
� � 
��Xi � x
g� Yi� 	i
��Yi


Kh�Xi � x
� ��


Note that here ��Yi
 is assumed to be known and strictly positive in the support of Y � For notational

purposes� we denote the solution to ��
 by b
��
�
We now de�ne some notation for the presentation of the asymptotic properties of b
� � b��x� �
�

Suppose that K is supported on ������ For any set A � R� and i � �� �� �� �� let �i�A
 �R
A z

iK�z
dz� �i�A
 �
R
A z

iK��z
dz� De�ne

Nh
x � fz � x� hz � supp�fX
g � ���� ���

bx �
�

�
�����x
�g�f��x
g����

�
��N

h
x 
� ���N

h
x 
���N

h
x 


���Nh
x 
���N

h
x 
� ����N

h
x 

�

�x � f��X �x
L�x
�
�
��N

h
x 
���N

h
x 
� ����Nh

x 
���N
h
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���N
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f���Nh
x 
���N
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x 
� ����N

h
x 
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�

where fX�x
 is the density of X and

L�x
 � E

�
fY� � ��x
g�

��Y�


���X� � x

�
� ��


As we will see later� �x is the asymptotic variance of b��x� �
� For a bandwidth h� x is an interior

point of supp�fX
 if and only if N
h
x � Nx�h � ���� ��� To estimate ��x
 � g��f��x
g� we let

b��x� �
 � g��fb��x� �
g � g���b
�
� The limit distribution of b��x� �
 presented in Theorem � below

can be obtained by calculations similar to that in Fan� et al� ����	
�

��� Main Theorem

We now investigate the case with unknown selection probabilities� To estimate the selection prob

abilities� we again apply the local linear smoother of Fan� et al� ����	
� For a �xed point y� we

estimate ��y
 by

b��y
 � g����b��
� �	


�



where b� � �b��� b��
 maximizes Pn
i��Q

��g���f������Yi� y
� 	ig�K��Yi� y
� where we use � as the

smoothing parameter to distinguish it from the other smoothing parameter h used in estimating 


for estimating the primary mean function �� Note that if the outcome Y is categorical such as the

situation in Section 	�� or the data analysis in Section �� then as �� � the estimate of � is equal

to the empirical averages�

Let b
�b�
 maximize
nX
i��

Q�g��f
� � 
��Xi � x
g� Yi� 	ib��Yi
Kh�Xi � x
� ��


where b��y
 is given in �	
� Similar to the de�nition of b��x� �
� we de�ne b��x� b�
 � g��fb��x� b�
g
where b��x� b�
 � b
��b�
� We now present our main result�
Theorem �� Suppose that Conditions �A�
�A�
� �B�
�B�
 in the Appendix� are satis�ed� Then if

h � hn � �� nh� ��� and � � �n � c�h for a constant c� � �� we have that for any x � supp�fX
�
there exist bnj�x
 � bxf� � o��
g� j � �� �� such that both �nh
���fb��x� �
� ��x
� h�bn��x
g and
�nh
���fb��x� b�
 � ��x
 � h�bn��x
 � ��fX�x
S��x
g converge in distribution to a normal random
variable with mean � and variance �x� where S��x
 is given in ���
 in the Appendix� and S��x
 � �

if either Y is a lattice random variable or � is a constant�

One important implication of this result is that the asymptotic e�ect on the asymptotic variance

due to estimating selection probabilities� which is nonnegligible in the parametric or semiparametric

models �Robins� et al�� ����� Wang� Wang� Zhao and Ou� ����
� disappears in the corresponding

fully nonparametric problems� The di�erence appears in the bias term� but it vanishes if either Y

is a lattice random variable or � is a constant� The proof of Theorem � is in the Appendix�

� DATA ANALYSIS

In this section we consider an example of a casecontrol study of bladder cancer conducted at

the Fred Hutchinson Cancer Research Center� Eligible subjects were residents of � counties of

western Washington state who were diagnosed between January ���� and June ���� with invasive

or noninvasive bladder cancer� This population based casecontrol study was designed to address

the association between bladder cancer and some nutrients� We use the data here for illustrative

purposes� Some detailed results can be found in Bruemmer� White� Vaughan and Cheney ����	
�

In our demonstration� the response variable is the bladder cancer history and the covariate X

is the smoking package year� The smoking package year of a participant is de�ned as the average

	



number of cigarette packages smoked per day multiplied by the years one has been smoking� There

are a total of ��� cases and ��	 controls� However� the smoking package year information of � case

and ��	 controls were missing� In addition� we treated past smokers as in the nonvalidation set

since we are primarily interested in the smoking e�ect of current smokers� One case with X � ���

has high leverage �X has mean �� and standard deviation ��
 and was not included in the validation

set� As a result� there were ��� cases and ��� controls in the validation set�

To analyze the data� one may consider the completecase logistic regression of Y on X � with

and without adjustment by estimated inverse selection weights� The estimates of the slope �s�e�


are ����� ������
 and ����� ������
� respectively� The resulting estimates of E�Y jX
� called global
estimates� are given in Figure �� We note that a parametric estimator is based on global estimation�

Based on this logistic regression analysis� one would argue that the risk of developing bladder cancer

increases monotonically as a function of the average smoking year�

Alternatively� we may employ the weighted local estimation method� We used the Epanechnikov

kernel function that K�u
 � ��	���u�
 on ������ The unweighted estimates of E�Y jX
� denoted by
b�CC��
� and the weighted estimator� b���� b�
� are given in Figure �� Based on the bandwidth selection
criteria given in the Appendix� we used ���� as the bandwidth for the weighted local smoother and

���� for the unweighted one� We notice that the CC analysis has basically captured the e�ect

of the average package year� as it is somewhat parallel to b���� b�
� Based on this nonparametric
analysis� the argument is somewhat di�erent from the previous parametric one� For example� the

curves between X � �� and X � �	 do not increase as much as the other two segments �X � ��

or X � �	
� Although it is true that the average package year has a signi�cant e�ect on bladder

cancer� our analysis suggests that piecewise logistic regression is more proper if parametric inference

is to be made�

One small point concerns the interpretation of Figure �� Prentice and Pyke �����
 showed that

in a case�control study with an ordinary parametric logistic regression model� the logits of the

observed case�control data di�er from that of the population only in the intercept term� The same

is true in our problem� This means that the basic monotonicities and �atness observed in Figure �

are not a�ected by the case�control sampling� although the levels of estimated disease probability

of course would di�er�

�



� SIMULATION STUDIES

We conducted simulations to better understand the �nite sample performance of the weighted

estimator and the �nite sample e�ect due to estimating the selection probabilities� Recall that b�CC
is the unweighted method which applies the local linear smoother of Fan� et al� ����	
 directly to

the validation set only� We compare the biases and variances of b�CC � b���� �
 and b���� b�
�
��� Continuous Response

In this subsection we consider the case of continuous response Y � First we generated n � ��� X �s

from a uniform ����� distribution and the response variable Y �s follow the linear link such that

Yi � ��Xi
 � ���i� where ��xi
 � x�i � �i �i � �� � � � � n
 is a random sample from normal ����


distribution and are independent of Xi� The selection probability given Y is from the logistic

model with intercept ��� and slope ���� Approximately ��� of the data are missing under the

above selection probabilities� We ran ����� independent replicates in this simulation experiment�

and we applied the linear link and logit link to estimate ���
 and ���
� respectively� In each replicate�
b�CC��
� b���� �
 and b���� b�
 were obtained using the Epanechnikov kernel function K�u
 � ��	���u�

on ����� and the datadriven bandwidth selection criteria as described in the Appendix�

The empirical biases of the estimators are shown in Figure � for x � ���� �
 � The curves are
the averages of the bias estimates over ����� runs� Note that the CC analysis has considerable bias

and that b���� �
 and b���� b�
 are very close in most points� Figure � shows the sample variances of
b��x� �
 and b��x� b�
� It appears that the weighted estimator using estimated selection probabilities
is at least as e�cient as the one using the true ���
� There is considerable gain using estimated
� for a range of X values� especially when X is around zero� The relative e�ciency of b��x� b�
 to
b��x� �
 at x � � is ���� when n � ���� If we increase the sample size to n � �� ���� then the

corresponding relative e�ciency is ����� In Section �� we explain the �nite sample e�ciency gain

from estimating the selection probabilities by a second�order variance approximation�

��� Binary Response

We now study an important case when the response is binary� We generated n � ��� X �s from

uniform ����� distribution and the binary response Y was generated by

pr�Yi � �jXi � x
 � ��x
 � f� � exp��� x� x�
g���

�



The selection probabilities depend on Y and are from a logistic model with intercept ��� and slope

���� leading to approximately ��� of the X �s being missing�

We now consider the nonparametric estimates� We applied the logit link for the estimation

of both ���
 and ���
� Because Y is binary� ��Y 
 was estimated by the empirical average at the

corresponding Y value� The empirical biases of the resulting estimates b���� �
 and b���� b�
 from �����
runs are again almost identical but the empirical variance of the latter is smaller� For n � ��� the

relative e�ciency of b��x� b�
 to b��x� �
 at x � �	� is ����� When the sample size is increased to

n � �� ���� the corresponding relative e�ciency is ����� These �ndings are similar to the previous

case with continuous response�

� SECOND�ORDER VARIANCE APPROXIMATION

The simulations in the previous section show that there is �nite sample gain from estimating

the selection probabilities� Recall that the �rst�order asymptotic result of Theorem � shows no

asymptotic e�ciency gain from estimating the selection probabilities� To explain this� we now

present the second�order variance approximation� The proof is given in the Appendix�

Theorem �� Under the same conditions as in Theorem � and for any x � supp�fX
 with

varfb��x� �
g ��� there exists b���x
 � b��x� b�
 � op�h���n����
� such that

varfb���x
g � varfb��x� �
g� n��v�x
f� � o��
g�

for some v�x
 � ��

Theorem � shows that using the estimated selection probabilities gains the e�ciency at the rate

of n��� Note that the second�order e�ciency gain is valid even when Y is a lattice random variable�

For a �xed point x� let the relative e�ciency gain by using the estimated selection probabilities

be de�ned by �varfb��x� �
g � varfb���x
g��varfb���x
g� It is easy to see from Theorem � that the

relative e�ciency gain is of order O�h
� which goes to zero slowly� This supports the results of our

simulations�

� GENERALIZATIONS

Theorem � is a special case of a general phenomenon� which we outline here� Suppose that one has

interest in a function ���
� If a nuisance function ���
 were known� one would estimate ���
 at x by

�



solving a local estimating equation of the form

� � n��
nX
i��

Kh�Xi � x
 f !Yi� ��Zi
� 
� � 
��Xi � x
gf�� �Xi� x
gt� ��


where  is an estimating function� Z is the covariate variable for ���
 and !Y represents a vector

which may or may not include Z� In our problem� both !Y and Z equal the response Y �

Now suppose that ��z
 is also estimated by a local estimating equation but with bandwidth ��

so that

� � n��
nX
i��

K��Zi � z
"f !Yi� Xi� �� � ���Zi � z
gf�� �Zi� z
gt�

The estimating functions  and " are assumed to satisfy

� � E
h
 f !Y � ��Z
� ��X
g

i
� � � E

h
"f !Y �X� ��Z
gjZ

i
�

Under this setup� in Appendix A�� we sketch a result showing that

� The bias of b��x
 is of order h�� is independent of the design densities of �Z�X
� but is generally
a�ected by the estimation of ���
�

� The variance of b��x
 is asymptotically the same as if ���
 were known�
Both these conclusions are re�ected in our Theorem ��
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APPENDIX� TECHNICAL PROOFS

A�� Proof of Theorem �

Firstly� we present a brief proof of the limit distribution of b���� �
� The readers are referred
to Fan� et al� ����	
 for some related calculations� Recall that we use known � now� De�ne

��x
 � ��g�f��x
g��V f��x
g
��� and let qi�x� y
 � ��i
��xi
Qfg���x
� yg� Fan� et al� ����	
 noted
that qi is linear in y for a �xed x and that q�f��x
� ��x
g� � and q�f��x
� ��x
g� ���x
�

Conditions�

�A�
 The function q��x� y
 � � for x � R and y in the range of the response variable�

�A�
 The function f �X � �
���� var�Y jX � �
� V ��� and g��� are continuous�

�A�
 For each x � supp�fX
� ��x
� var�Y jX � x
� and g�f��x
g are nonzero�

�A�
 The kernel function K is a symmetric probability density with support ������

��



�A	
 For each point x� on boundary of supp�fX
 there exists a nontrivial interval C containing x�
such that infx�CfX�x
 � ��

�A�
 The selection probability ��y
 � � for all y � supp�fY 
�

�A�
 E�q�f��X�
� Y�g�	����
���� �� for some � � ��

Proof of the Asymptotic Distribution of b���� �
� We study the asymptotic properties ofb
� � �nh
����b
� � ��x
� hfb
�� ���x
g�t� Let ��x� u
 � ��x
 � ���x
�u� x
� X�
i � f�� �Xi � x
�hgt
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� � �nh
����
� � ��x
� hf
�� ���x
g�t� Since 
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��Xi � x
 � ��x�Xi
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�tX�

i � if

�b
�� b
�
 maximizes ��
� then b
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as a function of 
�� where �i � ��Yi
� We consider the normalized function
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Then b
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Similar to Fan� et al� ����	
� we have that
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By the Quadratic Approximation Lemma of Fan� et al� ����	
 and under the bandwidth condition

that nh� ��� we have that
b
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where L�x
 is given in ��
�
It can be shown by checking the Lyapounov�s condition and using the Cram'erWold device thatb
� is asymptotically normally distributed� From ���
� we get the approximations
E�b
�
 � $��x n���h	��Bx �Of�nh

���g� o�h
� var�b
�
 � $��x &x$��x � o�h
�

The proof of the �rst part of Theorem � thus follows since we are only concerned with the �rst

component of b
�� and ��x
 � g��f��x
g�
We now present some additional conditions for dealing with the asymptotic distribution ofb���� b�
� De�ne ���y
 � �fg�������y

g�V �f��y
g���� and let q�i �y� z
 � ��i
��yi
Q��g����y
� z
�

Again� we have that

q��f���y
� ��y
g� � and q��f���y
� ��y
g� ����y
� ��	


In addition to Condition �A�
�A�
� we need the following conditions�

Conditions�

�B�
 The function q���y� 	
 � � for y � R and 	 � �� ��

�B�
 The function f �Y � �
����� var�	jY � �
� V ����� g���� and ���� are continuous�

�B�
 For each y � supp�fY 
� ���x
� V ��y
 and g�f��y
g are nonzero�

�B�
 For each point y� on boundary of suppfY there exists a nontrivial interval C containing y�

such that infy�CfY �y
 � ��

�B	
 inff��y
 � y � supp�fY 
g � ��

�B�
 The conditional density of X given Y is bounded a�e�

Before proving the main part of Theorem �� we present some lemmas which will be used in the

proof� Recall that b� was de�ned in �	
�
Lemma �� Under the same conditions as those of Theorem �� Gn � op�h
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Lemma �� Under the same conditions as those of Theorem �� let
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The proofs of Lemmas �� will be postponed until after the proof of the limit distribution of b���� b�
�
Proof of the Asymptotic Distribution of b���� b�
� Recall that b
 � b
�b�
 maximizes ��
� and
we de�ned ln�
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 in ��
� The main step here is to derive the asymptotic expression of ln�
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By Lemma �� we have An�b�
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� Using similar calculations as in the proof of the
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For simplicity in this proof we continue to use b
� � b
��b�
 as the maximizer of ��
 with estimatedb�� By the Quadratic Approximation Lemma of Fan� et al� ����	
� we have that
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We now �nd the limit distribution of Wn�b�
� where Wn��
 was de�ned in ���
� By a linearization
technique as in Wang� et al� �����
� we have
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Denote the second term of the above equation by Rn� Then it can be shown to have mean

O�n���h���
 and variance o�h
� Therefore� we have that
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n that has mean o�n
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� Let fX jY denote the conditional density
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The last equation holds by Conditions �B	
 and �B�
�

Proof of Lemma �� Firstly� we note that Ef�b�� � ��
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f� � op��
g and varf�b�� �
��
jY�g � �n�
��c��Y�
f�� op��
g� for some functions c� and c�� Let b�i�j� denote b�i without using
subject j� Then

E�Gn
 � E�q�f��x�X�
� Y�g �
h
Kh�X� � x
X�

�X
�t
�
	�
���
�b�� � ��
�

� E

�
E�q�f��x�X�
� Y�g �

h
Kh�X� � x
X�

�X
�t
�
	�
���
�b������ ��
jX�� Y��

�
�O�

�

n�



� E�q�f��x�X�
� Y�g �
h
Kh�X� � x
X�

�X
�t
�
�

��
Ef�b��� ��
jY�g� � O�

�

n�



� ��E�q�f��x�X�
� Y�g �
h
Kh�X� � x
X�

�X
�t
�
�

��
c��Y�
f� � op��
g� � O�

�

n�

 � o�h
�
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The last equation holds since � � c�h and nh� � �� Similar calculations lead to var�fGng��� �
o�h�
 and var�fGng��� � o�h�
� completing the proof of Lemma ��

Proof of Lemma �� We assume that Y is a continuous random variable� a similar approach

can be easily applied to discrete Y � Using calculations similar to Fan� et al� ����	
 and under
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By some standard calculations� we have that E�D�n
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A�� Proof of Theorem ��
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The D�Y 
 in the above calculations was de�ned in the proof of Theorem �� The covariances due to
covfWn��
� Cng and covfWn��
� Rng can be shown to be smaller than the rate of covfWn��
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A�� Sketch of the Proof of Generalizations in Section �

Here we sketch the arguments of Section �� We renormalize so that �� � �� � �� �� � �� � ��

Carroll� Ruppert and Welsh �����
 showed that there is a function g��z
 which does not depend

on the density fZ��
 of Z� and a function (��
 such that

b��z
� ��z
 � �h���
g��z
 � �n�

��

nX
i��

K��Zi � z
(� !Yi� Xi� Zi
 � op�h
�
 � op�n

����
� ���


Ef(�!Y �X� Z
jZg� �� ���


��



By a Taylor series expansion of ��
� it is easily seen that

�fX�x
$��x
fb��x
� ��x
g � Bn� �Bn� �Bn��

where if  � �
�

�v
 �!Y � v� �
�  � �

�

�v
 �!Y � �� v
� Then

Bn� � �nh
��
nX
i��

Kh�Xi � x
 f !Yi� ��Zi
� ��Xi
g�

Bn� � �nh
��
nX
i��

Kh�Xi � x

h
 f !Yi� ��Zi
� ��Xi
g � f !Yi� ��Zi
� ��x
 � ���x
�Xi � x
g

i
�

Bn� � �nh
��
nX
i��

Kh�Xi � x
 �f !Yi� ��Zi
� ��Xi
gfb��Zi
� ��Zi
g�

$��x
 � E� �f !Y � ��Z
� ��x
gjX � x��

It is easily seen that Bn� � �h���
fX�x
$��x
�
����x
f� � op��
g� Writing  �i

�  �f !Yi� ��Zi
�
��Xi
g� and writing (i similarly� we note that Bn� � Bn�� �Bn��� where using ���
�

Bn�� � �h
���
�nh
��

nX
i��

Kh�Xi � x
 �i
g��Zi
 � �h

���
fX�x
Ef ���
g���
jX � xgf� � op��
g

and

Bn�� � n���h�
��
nX
i��

nX
j��

Kh�Xi � x
 �i
K��Zj � Zi
(j �

Thus� we have shown that

b��x
� ��x
 � �h���

h
�����x
�Ef �g���
jX � xg�$��x


i
� ffX�x
$��x
g���Bn� � Bn��
�

��	


The �rst term in ��	
 is the bias� which is independent of the design density but a�ected by

estimation of ���
� as claimed� To complete the argument� we merely need to show that Bn�� �

opf�nh
����g� Recalling that K��
 is symmetric� rewrite

Bn�� � n��
nX
i��

(ifn��
nX

j��

h��Kh�Xj � x
���K��Zj � Zi
 �j
g� ���


Using Chebychev�s inequality� detailed algebra gives the designed result� In the interests of space we

forego the calculations� but note that the term in brackets in ���
 is a bivariate kernel regression of

 �f !Yi� ��Zi
� ��Xi
g on �X�Z
 evaluated at X � x� Z � Zi� and hence converges to r�x� Zi
� where

r�x� Zi
 � E� �f !Y � ��Z
� ��X
gjX � x� Z � Zi�� Therefore� Bn�� � n��
Pn

i�� (f !Yi� ��Zi
� ��Xi
g
r�x� Zi
 which is Op�n����
 from ���
�

A�� Bandwidth Selection

��



Bandwidth for the Selection Probability Estimation

Fan� et al� ����	
 suggested a bandwidth selector based on �pluggingin� estimates of unknown

quantities� For the rest of the paper� the notation ��k���
 denotes the kth derivative of a func
tion ���
� Because we consider the local linear smoother for �� an approximate asymptotic mean
integrated square error for b����
 is

AMISEfb����
g � �����
�

Z
f������y
g�fY �y
dy � �n�
����

Z
V �f��y
g�g��f��y
g��dy�

where �� � ������� ��
 and �� � ������� ��
 are given in Section � and fY �y
 denotes the density of
Y � With respect to this criteria� the optimal bandwidth for the estimate of � is then

�AMISE �

�
��
R
V f��y
g�g��f��y
g��dy

n���
R f������y
g�fY �y
dy

���	
�

Note that ��y
 and fY �y
 are unknown� An �adhoc� plugin bandwidth selection is to estimate

���y
 by a �rd �or higher
 degree polynomial parametric �t to the selection probabilities and to

estimate fY �y
 by a usual kernel estimate� We also note that this criteria is an approximation

which does not consider the �� and �� as a function of � on the boundary points� In practice this

selector is reasonable well for a wide range of functions�

Bandwidth for the Primary Estimation

Now we study the bandwidth selection for our primary estimation� An approximate asymptotic

mean integrated square error for b� is
AMISEfb��h
g � h����

�

Z
f�����x
g�fX�x
dy � �nh
����

Z
L�x
�g�f��x
g��dx�

With respect to this criterion� the optimal bandwidth for the estimate of � is then

hAMISE �

�
��
R L�x
�g�f��x
g��dx

n���
R f�����x
g�fX�x
dx

���	
�

Similar to the argument of the selection of �� we may estimate ��x
 by a third �or higher
 degree

polynomial� In addition� we may estimate L�x
 � E
�fY� � ��X�
g����Y�
jX� � x

�
and fX�x
 by

nonparametric estimation based on validation data with inverse selection weights� This gives a

global bandwidth selection� Alternatively� Schucany ����	
 proposed an adaptive local bandwidth

estimator for the NadarayaWatson estimator� and found that it has improvements over a global

bandwidth estimator� It maybe a worthwhile future project to study the local bandwidth selector

in the problem of generalized linear missing data models�

��
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