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Abstract

The regularization of ill�posed systems of equations is carried out by cor�

rections of the data or the operator� It is shown how the e�ciency of regula�

rizations can be calculated by statistical decision principles� The e�ciency of

nonlinear regularizations depends on the distribution of the admitted distur�

bances of the data� For the class of linear regularizations optimal corrections

are given�
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� Introduction

If it is not possible to measure certain properties of an object directly and one
has to draw conclusions about these properties from indirect observations instead�
then this is called an inverse problem or problem of identi�cation� Denoting the
measurable observation by g and the parameters describing the desired properties
by � we model the problem mathematically by a mapping A and write

A��� � g� ���

Let the data g be a deterministic quantity or the realization of a random variable�
We require X and Y to be topological spaces with � � X and g � Y� Further we
assume the operator A to be Frech�et di�erentiable and compact�
Our problem now is to determine � in equation ���� Hadamard introduced the
following terminology�

De�nition ���� The problem ��� is said to be well�posed if

� ��� has a solution � � X for each g � Y�
� this solution is unique� and

� this solution depends on g continuously�

If at least one of these conditions is violated� ��� is termed ill�posed�

Di�erent kinds of equations can be treated by problem ���� Having X � IIRk and Y �
IIRn then A��� is a n	vector of components that are functions of the k	dimensional
parameter �� If A��� � A� is a linear function of �� then A is a n�k	matrix and ���
is a linaer system of equations� X or Y can be function spaces so that parametric or
nonparametric problems are included� too� Mostly problem ��� occurs in the setting
of di�erential or integral equations� Also in linear and nonlinear statistic we 
nd
such equations�
Many inverse problems turn out to be ill	posed and the �true� solution is objective	
ly not determinable� Then it is necessary to 
nd approximative equations to ���
that are well	posed with calculable solutions� This need arises from deriving stable
methods of identi
cation and calculation of the solution of ���� Such regularizations
of ��� lead to well	posed equations� These often can be reduced to data corrections
as

A��� � F �g� � ���

It is the objective of this work to describe the goodness of regularizations and to
determine optimal regularizations� We consider an F optimal if disturbances of g
lead to as small as possible changes in the solution of equation ����
We describe the admitted disturbances by a random variable Y with mean g� For
the solution �F of A��� � F �Y � the calculation of the resulting mean squared error
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MSE �F enables us to value regularizations F � So we 
nd in linear models optimal
linear regularizations �F with a minimal MSE � �F � It turns out that optimal regula	
rizations depend essentially on the distribution of Y � Thus the type of disturbance
of the data has an in�uence on the right choice of the regularization� In the special
case of linear operators A and F the optimal regularizations depend on the distri	
bution of Y only via the 
rst two moments� From calculations of the e�ciency of
nonlinear regularizations by using medians one obtains that their goodness di�ers
considerably for normal and double	exponential distributions� So here the chosen
family of distributions of Y is substantial� too�
With the exposition in this work it is not intended to describe the regularization
of ill	posed problems in general� but to reveal the possibility of an optimal choice
of the regularization� Therefore the chosen statistical access is appealing� A si	
milar background for the determination of optimal regularizations is found in the
works of Chow�Khasminski ������ and Khasminski ������� where the optimal ra	
te of convergence is taken as the basis for the regularization of dynamical inverse
problems�
There are many analogies between the regularization of ill	posed problems and de	
scriptive statistical methods� In both 
elds methods of solution and description are
sought that remain insensitive to random distractions� Of the statistical literature
especially the papers of Tukey ������� Mallows �����a�b�� Wahba ������� Utreras
������� L�auter�Pincus ������ and H�ardle ������ are to be mentioned� Here linear
methods of smoothing are examined for their optimality and goodness� Some of
these results are extended in this paper�

Notations� For an operator A we denote its domain by D�A�� the range by R�A� �
fA��� j� � Xg and the null space by N �A�� Let R�A� be the topological closure of
R�A��

If A is a linear operator� we write A� for the adjoint and A� for the Moore	
Penrose inverse operator� PL stands for the orthogonal projection onto the closed
space L� We always require X and Y to be separable Hilbert spaces with inner
products � � � � � and norms k � k respectively�

� Methods of regularization

The starting point of the following considerations is the relation

A��� � g� � � X � g � Y ���

where a solution �g � X is sought for arbitrary g � Y� Ill	posedness in this setting
means that either

Y �� R�A�

holds or
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Y � R�A� and there exists a �g � Y such that the map g �	 �g is not
continuous at �g�

The second case includes the possibility that the solution is not unique�
Sometimes an ill	posed problem may be transformed into a well	posed one by choo	
sing an extention X � 
 X and a restriction Y � � Y such that the problem

A��� � g� � � X �� g � Y �

is well	posed� This is often possible� but there are more general constructions that
in the following will be called regularizations by correction of the data or of the
operator�

��� Regularization by data correction

If one wants to transform an ill	posed relation ��� by approximation of the equation
into a well	posed problem� then the choice of a map F � Y 	 R�A� and the solution
of the equation

A��� � F �g�� � � X � g � Y ���

must be considered�

De�nition ���� Let F � Y 	 R�A� be a continuous operator such that

A��� � F �g�� � � X � g � Y ���

is well	posed� Then ��� is called a regularization by data correction�

Such regularizations are often used according to suitable interpretations� So one
thinks of smoothing or projection when changing from g to F �g�� For characteriza	
tion of the admitted transformations let SR and SE be subsets of Y such that for
positive constants c�� c� with c� � c� it holds

F �SR� � SR and kF �g�k � c�kgk for all g � SR � ���

kF �g�k � c�kgk for all g � SE � ���

Here SR describes a subset of Y that is mapped into itself by F � or in other words�
that is reproduced� The case F �g� � g for all g � SR has a special meaning here�
The elements of SE are functions that are almost eliminated by F � For example
one can think of SR as a set of low	frequency or monotone functions and of SE as
high	frequency signals� Now we consider some special cases�
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����� Projection of the data

Let A be a linear operator and SR � R�A�� With F � PR�A� equation ��� then
becomes

A� � PR�A�g� ���

Theorem ���� Problem ��� is well�posed if X � R�A��� and if the generalized
inverse A� is bounded in Y� i�e� if there exists a constant c � � with

kA�gk � c kgk for all g � Y ���

Proof� A solution of ��� in R�A�� is a solution of the equivalent equation

A�A� � A�g

and this is �g � A�g� It follows from ��� that g lies in the domain of A�� Also from
��� one deduces the continuous dependence of �g on g�

The main assumption in this theorem is ���� which amounts to a serious restriction
on Y if A� is an unbounded operator� Herefore� let �j be the eigenvalues of AA�

with eigenvectors uj respectively� Further denote by ej the eigenvectors of A�A

belonging to �j� then we can write

�g �
X
�j��

�
� �

�
j ej�uj� g� �

From this follows

k�gk� �
X
�j��

���j �uj� g�
�

and this norm is 
nite if ��� holds� that is if
X
�j��

���j �uj� g�
� � c�kgk�� ����

This means that for �j 	 � the Fourier coe�cients �uj� g� must converge to zero
fast enough� that is g has to be necessarily smooth compared to the operator A� If
f���j g is bounded� then ���� is no restriction� In Louis ������� as an example for
the linear equation A� � g� one 
nds the integral equation of the 
rst kind

A��x� �

Z x

�

���� d� ����

for X � Y � L���� ��� The problemZ x

�

���� d� � g�x�� x � ��� �� ����
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is ill	posed� Here we have �j � ��j� �
�
�	��� and uj�x� �

p
� sin��j� �

�
�	x� and thus

���� becomes

X
j

���j

�Z �

�

uj���g��� d�

��

� c�
Z �

�

g���� d� �

This inequality holds if the Fourier coe�cients
R �

�
uj���g��� d� are su�ciently small�

As a remark� note that equation ��� will be solved when a least squares solution of
��� is calculated� or equivalently� if a � minimizing kA� gk� is determined�

����� Linear smoothing of the data

Often the regularization consists in smoothing the data� Here the regularization F

is de
ned by

�Fg��x� �

Z
K�x� t�g�t� dt ����

with a suitably chosen kernel K�x� t�� The properties of the chosen kernel K have
an in�uence on the properties of the smoothed data Fg� For the integral equation
���� the kernel must satisfy

Z �

�

K��� t�g�t� dt � �

such that Z �

�

K�x� t�g�t� dt is absolutely continuous�

A large class of linear smoothers is described by �����
The choice of K�x� t� determines the sets SR and SE� According to the preceeding
remarks SR and SE can be chosen as the spaces spanned by the eigenfunctions of F
belonging to the largest or smallest eigenvalues respectively� On the other hand� for
given sets SR and SE a kernel K can be found such that ��� and ��� are ful
lled�

����� Nonlinear smoothing of the data

Linear smoothing is not appropriate for the elimination of rough errors in the data�
For this a well suited class of nonlinear smoothers is given by the median smoothers�
Let ��� be given by

a�ti� �� � g�ti�� i � �� �� � � � ����

for real	valued g�ti� and ti � ti�� for all i� We now say that �g emerges from g by
median smoothing if

�g�tj� � med� g�tj���� g�tj�� g�tj����� j � �� � � � ����
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and �g�t�� � g�t�� is de
ned� If i � �� � � � � J is only taken from a 
nite index set� we
set �g�tJ� � g�tJ �� More generally we speak of k	median smoothing if instead of ����

�g�tj� � med� g�tj�k�� � � � � g�tj�k��� j � k � �� � � �

is de
ned� Again the smoothing in the beginning and the end of the index set must
be de
ned additionally�
Tightly connected with this is the median smoothing of the 
	closest neighbors� If
���� is given and the ti are not necessarily ordered� then any closed sphere U��tj�
around tj with radius 
 shall contain at most 
nitely many of the other points ti�
Under this condition �g is called median smoothing of the 
�closest neighbors if

�g�tj� � medfg�ti� j ti � U��tj�g�
If now A��� � �g is a well	posed problem� this regularized equation will be solved� If
not� another transformation F� of the data �g must be de
ned such that A��� � F �g�
with F �g� � F���g� is well	posed� In any case F is now nonlinear since the median
smoothing is so� The sets SR and SE depend on the median smoothing and on F��
For this nonlinear k	median smoothing monotone functions g are invariant since
then �g�ti� � g�ti� always holds�

��� Regularization by operator correction

Another possibility for the regularization of ��� consists in a substitution of the
operator A by �A�

De�nition ���� Let �A � X 	 Y be an operator such that

�A��� � g ����

is a well	posed problem� Such an approximation of equation ��� is called regulariza�
tion by operator correction�

An �A can be constructed in di�erent manners�

Lemma ���� Let �A � X 	 Y be an operator with the Frech	et derivative �H� in
� � X � If � �H�

�
�H���� is for every � � X a bounded operator� and if �
�� has for every

g exactly one solution� then the solution of �A��� � g depends on g continuously�

Proof� By assumption we have in a neighborhood of an arbitrary but 
xed �� � X
�A��� �A���� � �H���� ��� � o�k� ��k� � ����

Hence

k �A��� �A����k� �
�
� ��� �H

�
��

�H���� ���
�
� o�k� ��k� �

Since �H�
��

�H�� has a bounded inverse and is linear and self	adjoint the statement
follows�
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With the help of this lemma a Tichonov operator correction can be constructed the
following way� Let �A be an operator whose Frech�et derivative �H� is a linear operator
satisfying

H�
�H� � �H�

�
�H� and

�
�H�
�
�H�

���
is bounded

for all � � X � where H� denotes the Frech�et derivative of the original operator A�
By the lemma the solutions of ���� depend continuously on g� The transfer from
A��� � g to �A��� � g is a Tichonov regularization� A frequently used construction
of �H� proceeds by

�H�
�
�H� � H�

�H� � �I� � � ��

for the identity I�

��� Regularization by data and operator correction

Both proceeding methods of regularization can be combined in a straightforward
manner�

De�nition ���� Let �A � X 	 Y be an operator and F � Y 	 Y a continuous
mapping such that

�A��� � F �g� ����

is a well	posed problem� Such an approximation of equation ��� is called regulariza�
tion by data and operator correction�

Since �A and F can be chosen in various ways this regularization� too� is only reaso	
nable with concrete requirements on the solution and the special model� The best
known example for such a regularization in a linear model� that is A linear� is the
Tichonov regularization� The equation A��� � g leads to

A�A� � A�g �

If here A�A is ill	conditioned� then one uses the regularized equation

�A�A�B�� � A�g ����

with a self	adjoint linear operator B such that �A�A � B��� is bounded� If �A is a
linear operator with �A� �A � A�A�B� then ���� is of the form �����
In regression one meets this type of formula in connection with the Ridge regression�
The Tichonov regularization can be viewed as a regularization by data and operator
correction� But easily one sees that ���� can be interpreted as a regularization by
data correction only� since it is equivalent to

A� � A�A�A�B���A�g �

For any regularization the question arises how good it works and if an optimal
regularization exists�
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��� Ill�posed and numerically stable problems

If an equation A��� � g is uniquely soluble but the solution �g does not depend
on g continuously� then the problem is ill	posed� The discontinuity can be viewed
as a limiting case of a numerical instability in A��� � g� Here we call A��� � g

numerically instable of size � if g and �g� g �� �g exist with

k�g  ��gk � � kg  �gk �

Problems with � � ��� are often di�cult to solve numerically� The discontinuity
would belong to � ���

Example� Growth curves
Let � � �� ��� and

a�t� �� �


� � �e���t
� � � t � ��� �

Setting �� � ������ ������������ �� � �������� ���������������� it results for
� � t � ��� �

j��  ��j
ja�t� ��� a�t� ���j � ��� � ��	 �

In this case � � ��� ���	 so that these growth curves must be considered numerically
instable� �

We recognize numerical instability if �
��
a�t� ��	 � for k�k 	 �� With A�n���� ��

a�t�� ��� � � � � a�tn� ��
��

and if G�n���� �� �
��
A�n���� exists� the ill	conditionedness of

G�n�����G�n���� is the reason for the instability�
The numerical instability discussed here is� as a qualitative property� similar to the
discontinuity of the solution� so that the regularization of ill	posed problems causes
a higher numerical stability as well�

� Optimal regularization

Two types of models for ��� are considered now that are not completely disjoint
from each other but include di�erent features� We admit deviations in the right
hand side� which we describe by a probability law� We assume that g is disturbed
additively by the errors� so that instead of A��� � g the equation

A��� � g � 
 ����

is to solve� The solutions �g�� then should lie as close as possible to �g�

�



Model I In ��� let g � Y and A be an operator mapping into the Hilbert space Y�
Let g be disturbed additively by the random variable 
� whose realizations lie
in Y� It is

E�
� � � and Var 
 � ��W

for a known positive de
nite linear operator W � The admitted deviations of
the right hand side are described by 
�

Model II Equation ��� can be written equivalently as

a�ti� �� � gi� i � �� �� � � � ����

for design points t�� t�� � � � � The given admitted deviations in the data are
described by additive disturbances 
i� We assume that the 
i are random
variables with E�
i� � � and equation ���� now corresponds to

a�ti� �� � gi � 
i� i � �� �� � � � � ����

We write the 
rst n equations in ���� using the n	dimensional vector notation
as

A�n���� � Y �n� �� g�n� � 
�n� �

The models I and II show many analogies� But while in modell II the 
i can be in	
dependent and identically distributed� for example� and so have a covariance matrix
��In� in model I the covariance of 
 always di�ers from ��In� since we assumed the
realizations of 
 to lie in the Hilbert space Y� It is essential in both models that
the admitted deviations in the data� with respect to which the solutions should be
stable� are described by 
 and 
i respectively�

��� Optimal regularizations in model I

Regularizations by data correction of equation ���� have the form

A��� � F �Y � ����

for a continuous operator F on fg � 
��� j g � Y� � � �g� Since Y is random the
solution of ���� becomes a random variable denoted by �F � The aim now is to
determine an operator F such that �F comes as close as possible to �g in the mean�
The mean squared deviation of �F from �g is that linear operator MSE �F satisfying

�
�� �MSE �F � ��

�
� E

�
��� �F  �g�� ��� �F  �g�

	
����

for any �� �� � X � Let Q be a nonnegative functional that is de
ned on the set of
operators MSE �F � F � F � for a set of admitted regularizations F �

��



De�nition ���� a� �F � F is called an optimal regularization if

Q�MSE � �F � � inf
f�F

Q�MSE �F � �

b� The relative e�ciency of F with respect to F� � F is

e��F�F�� �
Q�MSE �F��

Q�MSE �F �
�

It will turn out that an optimal regularization is determined by the operator A� the
distribution of Y � the operator F and by Q� In general the whole distribution of the
distraction 
 is important here� In linear models 	 that is a linear operator A and
a linear regularization F 	 from the distribution of Y only the 
rst two moments
determine the e�ciency of F �

����� Linear models and linear regularizations

We consider equation ���� for linear bounded operators A and F � that is

A� � FY � ����

and assume that F is chosen such that ���� is well	posed� Let VarY � ��W be the
covariance operator of Y with a known Hilbert	Schmidt operatorW and an unknown
factor ��� Assuming A�FW �	� to be bounded it follows that �F � �A�A���A�FY

is a solution of ����� If A�FA�g � X then

E� �F � � �A�A���A�FA�g �

Var �F � ���A�A���A�FWF �A�A�A���

and thus

MSE �F � �A�A���A�


��FWF �� �F  I�A�g�

�
gA

��F �  I�
�
A�A�A��� � ����

This representation makes clear that an optimal regularization depends on the dis	
tribution of Y only via the 
rst two moments�
Let B be a self	adjoint linear operator on X � �� a given constant and � a measure
on X with

�f� j��B� � �����g � � and

Z
��B��
���

�

����� d�� � ����C ����

for a 
xed linear self	adjoint operator C �
With ���� we calculate for the averaged riskZ

��B��
���
�

MSE �F�� d�g� �

� �A�A���A�


��FWF �� �����F  I�ACA��F �  I�

�
A�A�A��� �

��



De
ning Q�MSE �F � �
R
��gB�g�


���
�

MSE �F�� d�g� one obtains

Q�MSE �F � � ��
h
�A�A���A�



FWF � � ���F  I�ACA��F �  I�

�
A�A�A���

i
�

����

Let SR and SE be given linear spaces in R�W �	���N �W �� We denote the set of all
linear operators F with

A�FW �	� is bounded� A�Fg � X for g � R�W �	���N �W ��

F g � g for all g � SR and Fg � � for all g � SE
by F � Further we write PR and PE for the orthogonal projections onto SR and SE
respectively�
For describing an optimal regularization� we denote D �W � ��ACA��
L � �SR � SE�� and K � R�D

�
�PL��

The next theorem shows how an optimal regularization can be constructed from a
given regularization F � F �

Theorem ���� The operator

�F � F  PR�A�

�
FD  ��ACA�

�
D� �

�PKD
� �

� ����

for any F � F is an optimal regularization within F �

Proof� With F � F we have �F � F for �F in ���� because PKD
� �

�PR � ��

PKD
� �

�PE � �� We get for any H with �F �H � F
Q�MSE �F�H� � Q�MSE �F � � ��A�HDH�A�� � ����

� ��A�H


D �F �  ��ACA�

�
A�� � ��A�



�FD  ��ACA�

�
H�A���

Using D� �
�PKD

� �
�DPL � PL we compute

PR�A��
�FD  ��ACA��PL � �� ����

From �F� �F �H � F follow HPR � � and HPE � � which means that H� � PLH
�

holds� So we get from ���� A�


�FD  ��ACA�

�
H� � � and we obtain from ����

Q�MSE �F�H� � Q�MSE �F � � ��A�HDH�A��

for any H with �F �H � F � Any G � F can be repesented in this form G � �F �H

and so the assertion is proved�

Conclusion ���� If especially SE � f�g and I � F � then

�F � I  PR�A�D
� �

�PKD
� �

� ����

is an optimal regularization�

Proof� This follows from theorem ��� with the possible choice F � I � F �

��



����� Nonlinear regularizations

We already mentioned that linear regularizations are not well suited for the elimina	
tion of rough errors in the data� But it turns out that for nonlinear regularizations no
explicit expressions for the optimal regularizations are obtainable� In the following
example we consider median smoothing and show how the e�ciency of regularizati	
ons in simple models of the estimation of the mean is calculated�

Example� In the model �X � IIR��Y � IIRn�� Y � �Y  �� � � � � Yn�� and

Yi � �� 
i� i � �� � � � � n ����

� is to be estimated� Here A � � � ��� � � � � ��� is an n	vector� 
�� � � � � 
n are
independent and identically distributed� Equation ���� has the form

� � � � F �Y � � ����

the solution �F is one	dimensional� and

MSE �F � E� �F  ��� �

Let Q�a� � a for all a � ��

a� Let 
 � N��� ���� Then � �  Y � �
n

Pn
i
� Yi is the maximum likelihood

estimation which is asymptotically optimal and a best unbiased estimation
for �� Also � is a solution of ���� for F �Y � � F��Y � �  Y � � and thus the
regularization belonging to � is the arithmetic average�

b� Let Yi � 
i be distributed by the double exponential law with the density

h�yi� � e�jyi��j �

Then �� � med�Y�� � � � � Yn� is the asymptotically optimal maximum likelihood
estimation� Also �� is a solution of ���� for F �Y � � F��Y � � med�Y�� � � � � Yn���
and thus the regularization belonging to �� is the median�

�
In the next example we show which loss or gain in e�ciency the median causes as
a method of regularization� Here we use results from L�auter�Pincus �������

Example� We consider the model ���� and as a regularization we take the median
smoothing �

F��Y � �
�

n

nX
i
�

Ui � � for Ui � med�Yi��� Yi� Yi���� i � �� � � � � n � �

U� � Un �
�

n �

n��X
i
�

Ui �

��



If G is the distribution of the Yi� then the U�� � � � � Un�� are distributed identically
and have the distribution H�u� � �G��u�� �G��u��� Whereas Y�� � � � � Yn are
independent from each other this is not valid anymore for U�� � � � � Un��� The setting
of the initial and 
nal values U� and Un assures �

n

Pn
i
� Ui �

�
n��

Pn��
i
� Ui to hold so

that by the regularization a reduction to a �n��	dimensional model has happened�
We obtain �F� �

�
n��

Pn��
i
� Ui� If Yi � N��� ���� we get

E �F� � �� Var �F� �
�����n  ����

�n  ���
�� �

If the Yi are distributed double exponentially� we have

E �F� � �� Var �F� �
�����n  ����

�n  ���
�� �

Since for the least squares estimation � in ���� it holds E � � � and Var � � �
n
�� in

both cases� we obtain for the relative e�ciency of F� with respect to F� the following
values �

e�
N �n� ��

�n ���

n������n  �����
�normal distribution�

e�
DE�n� ��

�n ���

n������n  �����
�double exponential distribution�

Table �� E�ciency of median smoothing for normal and double exponential distri	
butions

n � �� �� �� ��� �
e�

N ���� ���� ���� ���� ���� ����

e�
DE ���� ���� ���� ���� ���� ����

Consequently� under normal distribution � performs always better than �F�� and
vice versa under double exponential distribution� �
This example stands as a pattern for the questions that arise about regularizations�
For being able to chose a proper regularization one has to know the model and�
especially� the distribution of the variables�

��� Optimal regularizations in model II

Starting from model ����

a�ti� �� � gi � 
i� i � �� �� � � � �

��



or equivalently in n	dimensional vector notation as

A�n���� � Y �n� � ����

the regularizations by data correction have the form

A�n���� � F �n�
�
Y �n�

�
� ����

Here we consider X � IIRk only� For 
xed n we can use the concepts of section ���
without change� Hence here we are interested mainly in statements on the solutions
for n	�� One of the properties of interest is the consistency of regularizations�

De�nition ���� A sequence of regularizations fF �n�g is called consistent if the so	
lutions of ���� converge weakly to the solution �g of �����

It comes out that the consistency of regularizations is determined by the model and
the design t�� t�� � � � �compare Auert�L�auter ��������

Theorem ���� Let the linear equation

A�n�� � g�n�

be soluble for all n and assume
�
A�n��A�n�

��� 	 �k�k � Assuming E Y �n� � g�n��

VarY �n� � ��In� If the solutions of A�n�� � F �n�Y �n� are asymptotically unbiased�
and if F �n�F �n�� � m � In for a constant m� then fF �n�g is consistent�

Proof� The solution �F �n� of A�n�� � F �n�Y �n� has the form

�F �n� �
�
A�n��A�n�

���
A�n��F �n�Y �n�

and thus

E �F �n� �
�
A�n��A�n�

���
A�n��F �n�A�n���n�

g �

Var �F �n� � ��
�
A�n��A�n�

���
A�n��F �n�F �n��A�n�

�
A�n��A�n�

���
�

Because of F �n�F �n�� � m � In one obtains

Var �F �n� � m��
�
A�n��A�n�

���
�

Together with E �F �n�
p	 � the statement follows from this�

A necessary condition for F �n�F �n�� � m � In is given in Auert�L�auter �������

Theorem ���� If F �n� �
�
f
�n�
ij

�
and

Pn
j
� jf �n�ij j � � for all i and n� and if for

ji jj � m� � � the inequality

jf �n�ij j �
c

ji jj��� �  � �� c � �

is ful�lled� then there exists a constant m with

F �n�F �n�� � m � In �

��



In Auert�L�auter ������ general conditions for the asymptotic unbiasedness of the
solutions of A�n�� � F �n�Y �n� were formulated� These conditions a�ect the model�
the design and the operator of regularization F �n�� It turns out that� for example�
polynomial smoothers and spline smoothers on tightening design points satisfy the
conditions posed there�
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