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Abstract

We introduce a dynamic treatment to the mixed proportional hazard competing risks
model and allow for selection on unobservables. Our model may for example be used to
simultaneously evaluate the effect of a benefit sanction on different competing exit risks
such as ’finding work’ vs. ’exiting the labor force’. We account for the endogeneity of
the timing at which the individual enters into treatment by adding the hazard rate of
the duration to treatment as an additional equation to the competing risks model. We
present a new identification result of this model for single-spell duration data.
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1 Introduction

The mixed proportional hazard competing risks model is a widely applied model in numerous

empirical studies with duration data. In this note we introduce a dynamic treatment effect

to this model and allow for selection on unobservables. The model allows to distinguish

between different effects of a treatment on mutually exclusive exits. One example is the

effect of a benefit sanction on the transition rate out of unemployment. The main idea of

imposing sanctions is to put additional pressure on job searchers to increase their search

effort. Empirical work is usually focused on measuring this effect on the transition rate into

employment. However, imposing a sanction can also have an adverse effect. If unemployed

individuals face too high pressure on the labor market, they are more likely to exit the labor

force. In order to evaluate the full effect of benefit sanctions, the effects on both transition

rates to ’finding work’ and ’exit the labor force’ have to be taken into account. However,

the latter effect of the sanction is often ignored in empirical work due to the methodological

difficulties and thus the statistical inference is generally incorrect. Another application of

the proposed model can be found in mortality studies. In particular, it is often useful to

distinguish between different effects of a medical treatment or health-related activity (e.g.

abortion, birth) at some point in life on different causes of death. Identification of treatment

effects in these cases usually has to be derived from single-spell mortality data since multiple-

spell data are rarely available, and therefore the existing multivariation models cannot be

employed for addressing such important questions.

Most of the studies, which make use of the competing risks model, consider only the exit

of interest and right-censor the corresponding duration in case the first exit occurs due to

one of the other risks. This approach relies on the rather strong assumption that conditional

on observable characteristics, all competing exits are independent of each other. In labor

economcs, for instance, researchers right-censor the unemployment spell if an individual has

a different destination state (see Van den Berg, 2004) other than employment. If however

the two competing exit risks of ’finding work’ and ’exit for a different reason’ are dependent
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of each other due to unobservable characteristics, this will generaly lead to wrong statistical

results1. Our model deals with this issue by allowing for a flexible dependence structure

between the different competing exit risks and the duration to treatment. In the field of

treatment evaluation, the decision when to be assigned to a treatment (e.g. the assignment

of a benefit sanction by a caseworker) is often driven by unobservable characteristics of the job

seeker such as ability, motivation and preferences. These characteristics can simultaneously

affect the different exit hazards leading to an endogeneity problem. We include the hazard

rate of the duration to treatment as an additional equation in our model and account for

the influence of unobservable characteristics in each equation while allowing for a flexible

dependence structure. This way we control for selection on unobservables.

We present a new identification result for this model. Intuitively, the result relies on the

assumption that the unobservable influences which simultaneously affect the competing exit

hazards of interest and the transition hazard into treatment are time-invariant. Conditional

on the realization of the unobservable influences, the exogenous variation in the timing of

the treatment can be exploited to identify the causal effect of the treatment. This allows

to distinguish between the two effects of selection on unobservable characteristics and the

causal treatment effect. Following a main strand in the literature, our result makes use of a

mixed proportional hazard type structure.

The identification strategy builds on results which have been developed by Abbring and

Van den Berg (2003a, 2003b) on the identification of the timing-of-events model. Our model

incorporates this original model as a special case with only one risk (no competing risks).

Our contribution is to extend this model to the case of several competing exit durations

which are allowed to be dependent due to unobservable characteristics and we allow for

different effects of the treatment on different competing exit risks.

The competing risks model with a dynamic endogenous treatment is used by Arni et al.

(2009) with multiple-spell data. They evaluate the effect of unemployment benefit sanctions

1Similar assumptions are used in mortality studies focusing on a specific death cause.
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on the hazard to find a new job and on the hazard to leave the labor force. Identification

of their model relies on the result on multiple-spell mixed proportional hazard competing

risks models (see Abbring and Van den Berg, 2003b). This approach however imposes strong

assumptions on the available dataset. Multiple spells have to be observed for most of the units

(strata) in the sample and the treatment has to vary sufficiently across spells. Furthermore, in

many applications like in models of unemployment spells unobservable characteristics such as

skill level, motivation and preferences are often not constant across repeated unemployment

spells. In this note we show that the mixed proportional hazard competing risks model with

an endogenous dynamic treatment effect can be identified from single-spell data.

In the next Section we introduce the model under consideration. Section 3 presents the

identification result and Section 4 provides some short discussion. We conclude in Section

5. Finally, the Appendix contains a Lemma which is employed to derive the identification

result.
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2 The mixed proportional hazard competing risks model

with an endogenous treatment

In the following we will describe the mixed proportional hazard competing risks model for

the case of two competing exit risks (see Abbring and Van den Berg, 2003b) and introduce

an endogenous treatment to this model. The extension to more than two exit risks and/or

multiple endogenous treatment effects is straightforward and will not be discussed here.

At time t0 = 0, the unit of interest enters into some state (e.g. a worker enters into

unemployment). In this state, for all t ∈ R+ the unit faces two competing exit risks (e.g.

’finding work’ vs. ’exiting the labor force’). The non-negative random variables Y1 and Y2

denote the durations until the unit exits to destination 1 or 2. Once the first exit takes

place, the other duration is censored at that point. Consequently, the full joint distribution

of (Y1, Y2) is not identifiable in case the duration variables Y1 and Y2 are not independent of

each other. Instead, one observes (Y, I), with Y = minj∈{1,2}(Yj) and I = arg minj∈{1,2}(Yj).

The dependence between the two durations Y1 and Y2 is modeled via a bivariate mixed

proportional hazard model. This models specifies that Y1 and Y2 are independent conditional

on x, which denotes the realization of the vector of the observed characteristics X, and also

unobservable influences V . Here, V = (V1 V2)
′
is a vector of unobserved non-negative random

variables jointly drawn from the bivariate distribution function G with P(V1 > 0, V2 > 0) > 0.

The hazard rates of Y1|(X = x, V1) and Y2|(X = x, V2) are given by

θ1(t|x, V1) = λ1(t)φ1(x)V1,

θ2(t|x, V2) = λ2(t)φ2(x)V2.

(1)

Here, the functions λj(t) and φj(x) capture the dependence of the exit hazard j on duration

t and on observable characteristics x, respectively, for j ∈ {1, 2}.

In the following we introduce an additional source of dependence between Y1 and Y2 to

the competing risk model (1). Let S denote the duration until the unit enters into treatment
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(e.g. time spent in unemployment before the case worker imposes a benefit sanction). Once

the unit enters into treatment, the two subsequent exit hazards are affected. A crucial fea-

ture of our model is that we allow for different effects of the treatment on the two competing

exit hazards. Furthermore, the timing of the treatment can be influenced by unobservable

characteristics (e.g. skills, motivation, preferences) which also can affect the two exit haz-

ards. We account for this endogeneity by including the hazard rate of S as an additional

equation in model (1) and allow for flexible dependence between the unobservable influences

across the three equations. This leads to

Model: The hazard rates of Y1|(S,X = x, V1) and Y2|(S,X = x, V2) are given by

θ1(t|S, x, V1) = λ1(t)φ1(x)δ1(t|S, x)I(t>S)V1

θ2(t|S, x, V2) = λ2(t)φ2(x)δ2(t|S, x)I(t>S)V2,

where I is the indicator function. The hazard rate of S|(X = x, VS) is given by

θS(t|x, VS) = λS(t)φS(x)VS.

The random vector (V1 V2 VS)
′

is jointly drawn from the trivariate cumulative density func-

tion G.

Here, the effects of the treatment on the subsequent hazard rates of the two competing

exit risks is captured by the functions δ1(t|s, x) and δ2(t|s, x). The two effects can vary over

time t, depend on the time of the realization s of the treatment S and on covariates x.
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3 Main result

Before stating the main identification result we present the following technical conditions

regarding the underlying model.

Assumption 1 We assume that φ1 : X→(0,∞), φ2 : X→(0,∞), φS(x) : X→(0,∞)

are continuous functions with φ1(x
∗) = φ2(x

∗) = φS(x∗) = 1 for some x∗ ∈ X. Further,

(φ1(x), φ2(x), φS(x);x ∈ X) contains a nonempty open subset of R3
+.

Assumption 2 The functions λ1 : R+→(0,∞), λ2 : R+→(0,∞), and λS : R+→(0,∞) are

measurable. The integrated baseline hazard rates Λ1(t) :=
∫ t
0
λ1(ω)dω, Λ2(t) :=

∫ t
0
λ2(ω)dω,

and ΛS(t) :=
∫ t
0
λS(ω)dω exist and are finite for all t > 0 with Λ1(t

∗) = Λ2(t
∗) = ΛS(t∗) = 1

for some particular t∗ > 0,.

Assumption 3 The trivariate cumulative density function G does not depend on x and

E(V1) <∞, E(V2) <∞, E(VS) <∞.

Assumption 4 The functions δ1 : {(t, τ) ∈ R2
+ : t > τ} × X → (0,∞) and δ2 : {(t, τ) ∈

R2
+ : t > τ} × X→ (0,∞) are measurable. Moreover, the quantities

Υ1(t|s, x) :=

∫ t

s

λ1(ω)δ1(ω|s, x)dω,

Υ2(t|s, x) :=

∫ t

s

λ2(ω)δ2(ω|s, x)dω,

∆1(t|s, x) :=

∫ t

0

δ1(ω|s, x)dω,

∆2(t|s, x) :=

∫ t

0

δ2(ω|s, x)dω

exist, are finite, and are either cadlag or caglad in s.

Assumption 1 ensures that there is sufficient variation of the covariate effects across the

two competing exit durations and the duration to treatment. For a detailed discussion of
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this assumption for two durations see Abbring and Van den Berg (2003b). Assumption

2 concerns the functional form of the baseline hazard. We restrict the function space to

integrable functions which is not very restrictive in applied work. Assumption 2 includes, for

example, the case of piecewise constant, Weibull, Gombertz baseline hazard specifications

which are widely used in empirical studies. Assumption 3 is a common assumption in single-

spell mixed proportional hazard type models (e.g. Elbers and Ridder, 1982). Assumption 4

deals with measurability and finiteness conditions of the treatment effect functions. These

conditions are not restrictive in the sense that they allow for several parametrc families.

Recall that, if the realization of the treatment occurs before the first exit, i.e. Y > S,

we observe (S, Y, I) and if Y < S, we only observe (Y, I). In a large dataset the following

subsurvival functions are observable

QY1,S(y, s|x) := P(Y1 > y, Y2 > Y1, S > s, Y > S|x), (2)

QY2,S(y, s|x) := P(Y2 > y, Y1 > Y2, S > s, Y > S|x), (3)

QY1(y|x) := P(Y1 > y, Y2 > Y1, S > Y |x), (4)

QY2(y|x) := P(Y2 > y, Y1 > Y2, S > Y |x) (5)

for all (y, s, x) ∈ R2
+ × X. Define, QS(y, s|x) := P(Y > y, S > s, Y > S|x) = QY1,S(y, s|x) +

QY2,S(y, s|x). and let Q0
S(s|x) = QS(0, s|x). Note that the distribution of (S, Y, I) for Y > S,

and (Y, I) for Y < S is fully characterized by (2)-(5).

The identifiability of the model under study requires that the mapping from the model

determinants to the subsurvival functions (2) - (5) is invertible. Put differently, from the

information given by the observable data, the model determinants have to be uniquely de-

termined. This leads to the following
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Proposition 1: Let the Assumptions 1-4 hold. Then, the functions Λ1, φ1, Λ2, φ2, ΛS,

φS, G, ∆1, and ∆2 are identified from the observable functions {QY1 , QY2 , QY1,S, QY2,S}.

Proof. The joint distribution of the identified minimum of (Y1, Y2, S) and the identity of

this smallest duration is fully characterized by {QY1 , QY2 , Q
0
S} (Tsiatis, 1975). From this

it follows that under the Assumptions 1-3 the functions Λ1, φ1,Λ2, φ2,ΛS, φS, and G are

identified from {QY1 , QY2 , Q
0
S} (see Abbring and Van den Berg, 2003b).

In the sequel we focus on the identification of ∆1 and ∆2. Let LG express the trivariate

Laplace transform of the random vector (V1 V2 VS)
′
. For almost all y ∈ R+ and all x ∈ X

we have

∂QYj(y|x)

∂y
= LjG(φ1(x)Λ1(y), φ2(x)Λ2(y), φS(x)ΛS(y))λj(y)φj(x), (6)

where the notation LjG represents the corresponding partial derivative for j ∈ {1, 2} . Addi-

tionally, for almost all (s, y) ∈ R2
+ with y > s and all x ∈ X we have

∂2QYj ,S(y, s|x)

∂s∂y
= Lj,3G (φ1(x)(Λ1(y) + Υ1(y|s, x)), φ2(x)(Λ2(y) + Υ2(y|s, x)), φS(x)ΛS(s))

× λS(s)φS(x)φj(x)λj(y)δj(y|s, x), (7)

where Lj,3G denotes the corresponding mixed partial derivative for j ∈ {1, 2}.

The above equations imply that for any y ∈ R+ and all x ∈ X we have

λj(y) =
[
L(j)
G (φ1(x)Λ1(y), φ2(x)Λ2(y), φS(x)ΛS(y))φj(x)

]−1 ∂QYj(y|x)

∂y
. (8)

Similarly, we obtain for each (s, y) ∈ R2
+ with y > s and all x ∈ X

λj(y)δj(y|s, x) =
[
L(1j)
G (φ1(x)(Λ1(y) + Υ1(y|s, x)), φ2(x) (Λ2(y) + Υ2(y|s, x)) ,

φs(x)ΛS(s))λS(s)φS(x)φj(x)]−1
∂2QYj ,S(y, s|x)

∂s∂y
. (9)
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For the remainder of the proof we fix s, x. Define Hj(y) := Λj(y) and Qj(y) :=
∂QYj (y|x)

∂t

for 0 ≤ y ≤ s, and Hj(y) := Λj(s) + Υj(y|s, x) and Qj(y) :=
∂2QYj,S(y,s|x)

∂s∂y
for y > s.

Finally, we define gj:=λS(s)φS(x)φj(x) and supress the dependence of φj and ΛS on x and

s, respectively.

Hence, for almost all y ∈ (0,∞) we have a system of two differential equations in the

sense of Carathéodory (1918), i.e.,

d

dy
H(y) = f (y,H(y)) ,

H(τ) = γτ ∈ R2
+, for some specific τ ∈ (0, s) (initial conditions), (10)

where H := (H1 H2)
′

and f := (f1 f2)
′
, with

fj (y,H) =


[
L(j)
G (φ1H1, φ2H2, φ3ΛS(y))φj

]−1
Qj(t)[

L(j3)
G (φ1H1, φ2H2, φ3ΛS) gj

]−1
Qj(t)

if 0 < y ≤ s,

if y > s.

Note that for given (s, x) ∈ R+ × X we can choose a τ ∈ (0, s) which yields the initial

conditions H(τ) = (H1(τ) H2(τ))
′

= (Λ1(τ) Λ2(τ))
′

= γτ as the functions Λ1 and Λ2 have

been already identifed (see the first paragraph) . Also, the rest quantities on the right hand

side of the above equation are identified by the first step of the current proof (see the fist

paragraph). Furthermoer, the quantity Qj is observed from the data. By making use of

Lemma 1, the above system of difefrential equations has a unique solution for each x ∈ X

and almost all s ∈ R+. Recall that Υ1(y|s, x) and Υ2(y|s, x) are either cadlag or caglad

with respect to y. The above discussion imlpies that the quantities Υ1 and Υ2 are uniquely

identified. By definition, the latter yields identification of ∆1 and ∆2. The proof is complete.
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4 Discussion

The identification strategy is characterized by two main steps. More precisely, the first step

exploits the fact that the three durations up to the first exit are characterized by a mixed

proportional hazard competing risks model (see Abbring and Van den Berg, 2003b). This

argument is also used in Abbring and Van den Berg (2003a).

On the other hand, the second step, which is concerned with the identification of ∆1

and ∆2, is different and actually more complicated than the respective step in the proof of

Abbring and Van den Berg (2003a) who derive an identification result for the case with a

single risk. Their identification result regarding the single treatment effect function directly

follows by considering the quantity ∂
∂s
P(Y > y, S > s, Y > S|x), where Y in their model

denotes the time to the occurence of the exit due to this single risk. In particular, the

above partial derivative is expressed as a strictly decreasing function of a quantity which has

one-to-one correspondence with the treatement effect function.

However, in the more general case with two risks that we consider here it is not possible

to employ a similar argument. More precisely, our model implies that for all y ∈ R+, almost

every s ∈ R+ such that s < y, and all x ∈ X,

∂

∂s
QS(y, s|x) :=

∂

∂s
P(Y1 > y, Y2 > y, S > s, Y1 > S, Y2 > S|x)

= L3
G (φ1(x)(Λ1(y) + Υ1(y|s, x)), φ2(x)(Λ2(y) + Υ2(y|s, x)), φS(x)ΛS(s))

× λS(s)φS(x), (11)

where L3
G denotes the partial derivative with rerspect to the third argument of the trivariate

Laplace Transform of the random vector (V1 V2 VS)
′
. The quantity on the left hand side is

nonparametrically observed from the data. But, in contrast to the setup of Abbring and Van

den Berg (2003a) there are two unknowns on the right hand side and therefore we cannot

adopt their identification strategy. To overcome this difficulty, we consider i) the partial

derivatives
∂QYj (y|x)

∂y
, and ii) the mixed derivatives

∂2QYj,S(y,s|x)
∂s∂y

such that s < y. The latter
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derivatives yield a system of two differential equations of first order which can be solved

with the help of Lemma 1. Finally, note that our model deals with two competing risks.

Obviously, the proof can be easily modified such that to study any mixed proportional hazard

competing risks model with more than two risks.

5 Conclusion

The contribution of this note is to show the identifiability of the mixed proportional hazard

competing risks model with a dynamic treatment effect in the presence of selection on unob-

servables. A crucial feature of our model is that it allows to identify different effects of the

treatment on different competing exit risks. In applied work, this model could be used, for

instance, to evaluate the effects of labor market programs on different competing exit risks

such as ’finding a part-time job’ vs. ’finding full-time employment’ vs. ’exiting the labor

force. In this paper we show that the different effects of an endogenous dynamic treatment

in the mixed proportional hazard competing risks model can be identified from single-spell

data.
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Appendix

The appendix presents a technical result which is employed for the proof of the main result.

Let Hρ : R+ → R+ be a continuous as well as almost everywhere differentiable function

for ρ = A,B, and define H := (HA HB)
′
. Consider also the functions Qρ(t) : R+ → R+,

rρ : R+ ×R2
+ → R+, and let fρ(t,H) := Qρ(t) rρ(t,H) for ρ = A,B. We study the following

system of first order differential equations

d

dt
H(t) = f (t,H(t)) ,

H(τ) = γτ , for some specific τ ∈ (0,∞) (initial conditions). (A.1)

Note that a similar problem has been studied by Abbring and Van den Berg (2003a);

however, our problem is different as the function rρ depends also on the variable t. The next

Lemma establishes existence and uniqueness of a solution for the (A.1).

Lemma 1 Consider the initial value problem (A.1). Suppose that i) Qρ(t) is measurable

and integrable function for any t ∈ R+, ii) rρ (t,H) is continuously differentiable in H for

any t > 0, and iii) ∂rj (t,H) /∂H is continuous for all H ∈R2
+. Then, there exists a unique

solution to the (A.1).

Proof. Let S = T×H with T = [τ, τ+a] for some a > 0 and K ⊂ (0,∞)2 to be a closed ball.

By the imposed conditions of the Lemma, we know that QA(t) and QB(t) are measurable

and integrable functions for any t ∈ R+. Hence, we can claim that f (t,H) is continuous as

a function of H in H for fixed t, and integrable as well as measurable as a function of t over

T for fixed H (i.e., f satisfies the Carathéodory conditions). Our goal is to prove that f

satisfies the following generalized Lipschitz condition for (t,H), (t,H∗) ∈ S

‖f(t,H)− f(t,H∗)‖ ≤ l(t) ‖H −H∗‖ , (A.2)

where the function l(t) is measurable and integrable over T. Here, we use ‖.‖ to denote the
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Frobenius norm for a matrix.

Define r := (rA rB)
′
. By employing the Frobenius norm inequality and the fact that the

sign of QA (t) and QB (t) is the same for each t ∈ T, we obtain by simple algebra

‖f(t,H)− f(t,H∗)‖ =
√
|Q2

A (t) +Q2
B (t)| ‖r (t,H)− r (t,H∗)‖ . (A.3)

Given that rρ(t,H) (ρ = A,B) is continuously differentiable in H for any t ∈ T and ∂rρ(t,H)

∂H

is continuous in t for all H ∈ H, it will hold for some particular positive constant C1 <∞

sup
(t,H)∈S

∣∣∣∣∂rρ(t,H)

∂Hρ

∣∣∣∣ < C1. (A.4)

This implies for t ∈ T

sup
H∈H

∣∣∣∣∂rρ(t,H)

∂Hρ

∣∣∣∣ < C1. (A.5)

Hence, by the mean value theorem, we get for (t,H), (t,H∗) ∈ S and some positive constant

C2 <∞

‖r(t,H)− r(t,H∗)‖ ≤ C2 ‖H −H∗‖ . (A.6)

Therefore, combining the inequalities (A.3) and (A.6), we get (A.2) with l(t) = C3
√
|Q2

A (t) +Q2
B (t)|

for a positive constant C3 < ∞. Note that measurability and integrability of the functions

Q1 (t) and Q2 (t) over T, imply measurability and integrability of l(t) over T, too.

The above discussion shows that the conditions of theorem §10.XX of Walter (1998)

are satisfied and as a consequence the (A.1) is uniquely solved with respect to Hj(t) for

t ∈ (0,∞) and j = A,B.
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