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Abstract

Determining good parameter estimates in ESTAR models is known to be difficult. We show

that the phenomena of getting strongly biased estimators is a consequence of the so-called

identification problem, the problem of properly distinguishing the transition function in relation

to extreme parameter combinations. This happens in particular for either very small or very

large values of the error term variance. Furthermore, we introduce a new alternative model -the

TSTAR model- which has similar properties as the ESTAR model but reduces the effects of the

identification problem. We also derive a linearity and a unit root test for this model.

JEL-Numbers: C12, C22, C52

Keywords: Nonlinearities · Smooth transition · Linearity testing · Unit root testing · Real exchange

rates

1 Introduction

Nonlinear time series models have become more and more popular over the last decade. In partic-

ular, Exponential Smooth Transition Autoregressive (ESTAR) models have been found attractive

for modeling real exchange rates. These models contain of two autoregressive regimes which are

connected by a smooth transition function of an exponential type. Under certain regularity condi-

tions they are globally stationary even if one regime is assumed to be a random walk. Moreover,

the U-shape of the transition function is a desired property in the context of real exchange rates.

Contrary to linear models where parameter estimates are independent of the size of the error

variable, we face an identification problem in ESTAR models due to the influence of the error term

variance. Small or large error variances no longer allow to identify the ESTAR model in the sense

that the variance of parameter estimates tends to infinity. This happens intuitively because the
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process stays only in one of the two regimes and does not switch between the regimes any more.

This problem was first observed in Luukkonen et al. (1988) who mention it in a short remark.

However, to the best of our knowledge it has not been further considered in the literature since.

The size of the error variance leads to an artificial linearization of the process and thus causes

troubles in linearity and nonlinear unit root tests. Linearity tests against ESTAR have been de-

veloped by for example Teräsvirta (1994) and unit root tests against an ESTAR alternative can be

found among others in Kapetanios et al. (2003). Both of these tests have the nonintuitive property

of a low power when the error term variance is either very small or very large. For the linearity

test this was stated in Luukkonen et al. (1988) and for the unit root test see Kruse et al. (2008).

This effect is less surprising for a large error term variance as in this case the noise dominates the

signal. However, it is rather surprising in the opposite case of a small error variance as in this

case the signal dominates the noise. Therefore, an increase of the power would be expected. As

real exchange rates have extremely small error variances (see for example Taylor et al., 2001) this

problem is of a high practical relevance and can lead to false non-rejections of the null and therefore

rejecting a nonlinear adjustment process for real exchange rates.

This effect is independent of the well known estimation problem of the transition parameter in

ESTAR models. In order to circumvent this problem various ideas have been proposed (see e.g.

Haggan and Ozaki (1981), Teräsvirta (2004)) to guarantee a better performance of the estimators.

Here a high though finite variance of the parameter estimate is obtained whereas in our situation the

variance becomes unbounded. Therefore, no general estimation procedure will produce reasonable

estimators, making some modification to the optimization procedure necessary. This has of course

its limits as there is no theory saying that these methods work in general.

We introduce an alternative of the ESTAR model by using a different transition function, leading to

the TSTAR model. This transition function possess the same desired properties as the exponential

function and can therefore be applied to the same situations. The new transition function has

however fatter tails which turns out to reduce the identification problem. We can improve the

estimation procedure for extreme error term variances. In particular, standard optimization tools

can be used. Moreover, we develop a linearity and a unit root test for this new model and study

their performances in extensive simulations.

The rest of the paper is organized as follows. In the next section we define ESTAR models in

more detail and analyze the identification problem, in particular with respect to small error term

variances. In order to do so we derive results about the moment behavior of ESTAR models which

might be of some interest also in another context. The new TSTAR model is examined in Section

3. After describing the model (see Section 3.1) we derive the linearity as well as the unit root

test in Sections 3.2 and 3.3, respectively. The simulation studies we performed are summarized in

Section 3.4. A comparison of the ESTAR and TSTAR model is presented in Section 4, discussing

real exchange data. Section 5 concludes whereas all proofs are collected in the Appendix, together

with certain technical lemmas.

2 Exponential Smooth Transition Autoregressive Models

In this section we introduce the Exponential Smooth Transition Autogressive (ESTAR) model and

study its basic properties. Subsequently, the identification problem is described and analyzed in

Section 2.2.
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2.1 The ESTAR(p) Model

One speaks of a Smooth Transition Autoregressive (STAR) model, if two autoregressive regimes

are connected by a transition function which satisfies certain smoothness conditions. In general, a

univariate stochastic process {yt}t∈Z is called STAR(p), p ≥ 1, if

yt = [Ψwt] · [1−G(yt−d; γ, c)] + [Θwt] ·G(yt−d; γ, c) + εt. (1)

The parameter vectors Ψ and Θ as well as wt are given by Ψ = (ψ0, ψ1, . . . , ψp), Θ = (ϑ0, ϑ1, . . . , ϑp),

and wt = (1, yt−1, . . . , yt−p)
′. The transition function G( · ; γ, c) : IR→ [ 0, 1 ] governs the transition

between the two autoregressive regimes Ψwt and Θwt in a smooth way. Alternatively, a STAR

model can also be interpreted as a continuum of regimes which is passed through by the process.

However, note that (1) can alternatively be written in somewhat less intuitive representations

yt = [Ψwt] + [Φwt] ·G(yt−d; γ, c) + εt (2)

= [Ξwt] · [1−G(yt−d; γ, c)] + [Θwt] + εt (3)

with Φ = Θ−Ψ and Ξ = Ψ−Θ.

Different choices of the transition function G lead to different STAR models. Common choices

are the exponential function, leading to the Exponential STAR (ESTAR) model, or the logistic

function, depending on the nature of the studied transition. The parameter γ is always the transi-

tion parameter that governs the speed of the regime changes. A recent overview of STAR models,

estimation techniques and model building procedures can be found in Franses and van Dijk (2000).

However, general STAR models have not yet been studied systematically, if possible at all.

In this paper we will consider functions G that are symmetrically U-shaped around the location

parameter c ∈ IR with

lim
γ→+∞

G(·; γ, c) ≡ 1− 1lc, lim
γ→0

G(·; γ, c) ≡ 0 and lim
z→±∞

G(z; γ, c) ≡ 1 (4)

where 1lc denotes the indicator function being one only at the value c. The ESTAR model, for

instance, is defined by taking G as

G(z; γ, c) = 1− exp(−γ(z − c)2), z ∈ IR. (5)

As one often chooses p = 1 in practical applications, we restrict ourselves in this text to the case

p = d = 1. Moreover, we assume according to (3) ξ0 = ϑ0 = 0, c = 0, ξ = ξ1 and ϑ = ϑ1 and obtain

the process

yt =
[
ξ exp

(
−γy2t−1

)
+ ϑ

]
yt−1 + εt, t ∈ Z. (6)

Example 2.1.

Figures 1 and 2 show two realizations of the ESTAR(1) process (6) of length T = 500, both generated

with ϑ = 1 and ξ = −0.45. The variances are chosen as σ2 = 4 and σ2 = 0.04, respectively.
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Figure 1: σ = 2, ϑ = 1 and ξ = −0.45.
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Figure 2: σ = 0.2, ϑ = 1 and ξ = −0.45.

In order to prove statements about the ESTAR(1) model, the random error terms {εt}t∈Z are

assumed to satisfy the following conditions.

Assumption 2.2.

(i) The innovations {εt}t∈Z are assumed to have a symmetric density around zero with full support

IR and with IE[ ε2kt ] = cε,k σ
2k for k ∈ IN0 and constants cε,k.

(ii) For some p > β > 2, {εt} is a strong mixing sequence with mixing coefficients αm of size

−pβ/(p−β) and supi≤1 ‖εi‖p = C <∞. In addition, (1/T )E
[
(
∑T

i=1 εi)
2
]
λ2 > 0 for T →∞.

The first assumption is of technical nature to derive properties of yt. It is in particular satisfied if

εt ∼ N(0, σ2). Assumption (ii) makes sure that the error term has a flexible structure allowing for

various forms of temporal dependence and heteroscedasticity.

In order to verify basic properties of the ESTAR(1) model, we interpret the process {yt}t∈Z as a

functional coefficient autoregressive model (see Chen and Tsay (1993)) and hence as a homogeneous

Markov chain with state space IR equipped with the Borel σ−algebra. Then geometric ergodicity

guarantees the existence and uniqueness of s stationary distribution F of yt. Sufficient conditions

for ergodicity (see also Tjøstheim (1990), Tweedie (1975)) and some properties of the moments of

{yt}t∈Z that will play an important role in the following section are summarized in the following

Lemma, proven in the Appendix.

Lemma 2.3 (Moment properties of yt).

Let {yt}t∈Z be as in (6) with |ξ|+ |ϑ| < 1 and with innovations {εt}t∈Z that satisfy Assumption 2.2.

(i) Then {yt}t∈Z is geometrically ergodic, and in particular strictly stationary.

(ii) The density of yt is symmetric for all t ∈ Z, and in particular the stationary distribution has

a symmetric density,

(iii) For n, k ∈ IN0 and all t ∈ Z,

IE
[
exp(−nγy2t )y2k+1

t

]
= 0. (7)

(iv) For n ∈ IN0, k ∈ IN and all t ∈ Z, there exists a constant ck such that

lim
σ↓0

∣∣∣∣∣ IE
[
exp(−nγy2t ) y2kt

]
σ2k

− ck

∣∣∣∣∣ = 0 (8)
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and, for J = {j = 0, . . . , 2k : j mod 2 = 0},

ck =
1

1− (ϑ+ ξ)2k

∑
j∈J\{0}

(
2k

j

)
ck−j/2 cε,j (ϑ+ ξ)2k−j , k ∈ IN,

with c0 = 1.

Remarks.

• Symmetry of the stationary distribution is in line with Jones (1978) who approximated the

stationary distribution by Taylor approximations and derives a picture of the approximated

stationary density for an ESTAR(1) process (see Figure 3c), p.93).

• Formula (7) implies that all odd moments of yt vanish for all t ≥ 0 by choosing n = 0. The

even moments behave like (8) again for n = 0.

2.2 The Identification Problem of the ESTAR model

If transition functions G1 and G2, resulting from different parameter combinations in the ESTAR

setting, cannot be distinguished, it is obviously nearly impossible to fit a ‘good’ model to given

data. Whenever changes of the parameters do not result in significant changes of the transition

function, we speak of the so-called identification problem. Due to (6) this happens in the ESTAR

setting for extreme values (i.e. large values or values close to zero) of γy2t−1, caused either by γ or

by y2t−1. The latter turns out to occur for very small or very large values of the error term variance

σ2. This observation is clearly in contrast to linear models and was mentioned by Luukkonen et al.

(1988) but has not been studied further in the literature since.

We are aware that this problem is different from other settings of non-identification such as non-

identified parameters under a null or alternative hypothesis as it occurs when testing STAR models.

The problem we consider leads to the impossibility of estimating the transition parameter in the

sense that its variance tends to infinity. Our problem is in line with findings by Nelson and Startza

(2007) who show that parameter identification problems can occur in nonlinear models when a

model parameter tends to a specific limit. However, our situation goes beyond the findings of

Nelson and Startza (2007) as they consider only the case of explicitly used model parameters

whereas in this paper we consider the effect of a scaling parameter of the error variance which has

only implicit effects on the model.

Before giving more profound results, we want to describe the intuition behind the identification

problem. With respect to γ, it is obvious that for different large values (say roughly γ > 1), the

corresponding transition functions hardly change any more. As for y2t , one can already see from

Figures 1 and 2, which show realizations of ESTAR processes with different values of σ2, that -while

only appearing implicitly in the definition (6)- the error term variance influences the behavior of

the process. Large values for σ2 allow the error term to dominate the process, resulting in large

values for yt and causing the identification problem, independent of the choice of γ. On the other

hand, very small values for σ2 result in small values of yt.

As a consequence of the identification problem, the transition function G in the ESTAR model is

either close to zero or close to one. This means that one of the two regimes is no longer present. The

transition parameter γ as well as one of the autoregressive parameters are therefore unidentified

and can not be estimated consistently. To illustrate this behavior, we estimate the parameter
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vector (ψ,ϕ, γ) by means of the conditional Maximum Likelihood method for the model yt =

0.3yt−1 + 0.65yt−1G( · ) + εt. The resulting highly biased estimators for γ using different choices of

σ are summarized in Table 1. Note also, that ψ as well as ϕ are estimated quite well showing that

it is indeed G( · ) that cannot be determined in a good way.

HH
HHHHγ

σ
0.1 0.5

Mean SD Mean SD

0.5

ψ̂ 0.315 0.117 0.311 0.358

ϕ̂ 0.646 0.102 0.372 0.391

γ̂ 2.850 75.09 78.736 1065.299

0.8

ψ̂ 0.312 0.121 0.294 0.354

ϕ̂ 0.649 0.101 0.370 0.397

γ̂ 1.694 12.288 64.777 717.136

1.5

ψ̂ 0.311 0.129 0.286 0.334

ϕ̂ 0.646 0.109 0.357 0.404

γ̂ 2.953 27.719 98.055 1498.332

Table 1: Estimation results for ESTAR: yt = 0.3yt−1 + 0.65yt−1G( · ) + εt

It is definitely worth studying this phenomena as it is in particular counter intuitive that tiny error

term variances do not allow for good estimators as one would expect to observe (and estimate)

the process well. Moreover, although not called identification problem, people are aware of the

problems (e.g. Teräsvirta et al., 2010, p.381) and a lot of subjective ‘tricks’ have been proposed and

used to circumvent them, allowing for a broader range for γ and σ without experiencing unidentified

parameters. The common idea is to exclude γ from the estimation process and use an alternative

way to fit the model. Haggan and Ozaki (1981) propose, for instance, to define a grid for γ and

estimate only the remaining parameters, followed by a search for the best γ. By doing so, they

do not estimate the transition variable γ. In order to reduce the influence of σ, Teräsvirta (2004,

p.229) standardize the exponent present in G by writing

G(yt; γ, c) = 1− exp(−γy2t ) = 1− exp

(
−γσ̂2 ·

(
y2t
σ̂2

))
,

where σ̂ is the standard deviation, in oder to obtain a scale free γ. However, this is not the case as

the resulting Volterra series (see Priestley, 1988, p.25) is not bounded.

Although these modifications seem to help in certain situations they are not quite satisfying as it is

hard to reproduce the parameter estimates and as they have not been studied well mathematically.

However, it would indeed be desirable to have a mathematical unified approach for the estimation

problem, in particular for very small σ2, as one does find tiny estimated values σ̂ in practical

applications. See for example Gatti et al. (1998, p.56) or Öcal (2000, p.129), where small values

for σ2 together with huge estimates for γ are computed.

We close this section by proving that for small σ2 one indeed will never find a good estimator for

the unidentified γ. Tjøstheim (1986) derives in Theorem 3.2 asymptotic normality for a conditional

Maximum Likelihood estimator β̂ of β = (ϑ, ξ, γ) of a more general model than studied in this text.

Specifying that result for the ESTAR model stated in (6) we obtain the following theorem, proved

in the Appendix.
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Theorem 2.4 (Asymptotic Variance of β̂).

Let yt be as in (6) where γ > 0 and |ξ|+ |ϑ| < 1. Let β̂ = (ϑ̂, ξ̂, γ̂) be the conditional ML estimator

of β = (ϑ, ξ, γ). Assume that εt satisfies Assumption 2.2. Then

lim
σ↓0

Var(γ̂) → ∞. (9)

Remarks.

• We are aware that the limiting situation in (9) never occurs in practical applications. However,

the result should be read that the transition parameter γ can hardly be identified for very

small sizes of the error variance, which results in biased estimators if no other correction is

included in the optimization routine for deducing β̂.

• We restrict the parameter vector in Theorem 2.4 to the three dimensional β not contain-

ing σ2 only for technical reasons. In Tjøstheim (1986, Theorem 5.2) one can also find a

general limiting result for β̃ = (ϑ, ξ, γ, σ). That however neither yields any new information

about the behavior of γ̂, nor any substantial information about the remaining parameters and

has therefore not been included in order to keep the proof of the above theorem somewhat

readable.

• Theorem 2.4 only covers the case σ → 0. As mentioned earlier, σ → ∞ causes the identi-

fication problem, too. This is not just intuitive but has also been supported by simulation

studies. Details are not included here as small values for σ2 are the more interesting case in

practical applications.

3 The TSTAR Model

In the ESTAR model, unidentified parameters occur for values (γ, σ) in a certain region, say RE
γ,σ.

In particular estimating γ in the presence of a small σ ∈ RE
γ,σ becomes impossible while on the

other hand those values for σ2 are used in the literature.

We now propose a new model within the STAR-framework, the so-called TSTAR model. The re-

gion RT
κ,σ for which the identification of the parameters is not possible is smaller than RE

γ,σ, making

the TSTAR model superior to the ESTAR-model.

In Section 3.1 the TSTAR model is defined. A linearity and a unit root test are derived in Sec-

tions 3.2 and 3.3, respectively. Section 3.4 then gives an overview of the performed Monte Carlo

Simulations.

3.1 The Model and Estimators

The TSTAR(p) is defined by (1) using the transition function

G(z;κ, c) =
[
1−

(
1 + (z − c)2

)−κ]
, z ∈ IR, (10)

with κ > 0, 1 ≤ d ≤ p and c ∈ IR. The parameters κ and c can be interpreted as the transition and

the location variable, respectively, just like in the ESTAR model. However, we denote the transition

parameter differently as in the ESTAR setting to keep in mind that the mechanism with which

κ affects the shape of the transition function is differently and thus the numerical values of γ for
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ESTAR and κ for TSTAR are not directly comparable. Nevertheless, properties like boundedness,

the limit behavior for z → ±∞ and κ→ ±∞ (see (4)) as well as the shape of G remain unchanged

compared to the ESTAR transition function. The TSTAR model can therefore been seen as an

alternative model to the ESTAR model, applicable to the same situations.

We are aware that definition (10) is just one possible alternative to the ESTAR model. Formula

(10) is motivated by the density of Student’s t-distribution while the transition function (5) can

be related to the normal density function. Moreover the chosen G has a series expansion which

allows to prove linearity tests (see below) similar as to the well known tests in the ESTAR setting.

However, more general forms of G are left for further research. The TSTAR model satisfies the

analogous properties that are stated in Lemma 2.3 (i)-(iii), which follows directly from the proof

of this Lemma which is stated in more general form for the ESTAR as well as the TSTAR setting.

As properties of the transition function G were mainly used to derive the results of Section 2 it is

not surprising that we also encounter an identification problem in the TSTAR model. However, the

identification problem causes less problems as different functions G are clearly distinct for a larger

range of values for κ than in the ESTAR model. This is also visible in Figure 3 which illustrates for

different values of κ the resulting transition functions in comparison to the ESTAR setting shown

in Figure 4 (note the different scale on the x-axis).

−10 −5 0 5 10

0.0
0.2

0.4
0.6

0.8
1.0

κ = 0.5
κ = 0.8

κ = 1
κ = 2

Figure 3: TSTAR: Transition function for dif-

ferent κ.
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0.
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6

0.
8

1.
0

γγ == 0.5
γγ == 0.8
γγ == 1
γγ == 2

Figure 4: ESTAR: Transition function for dif-

ferent γ.

As κ and y2t no longer appear as a product in the transition function (10), the interplay between

these two parameters is reduced. For different values of κ the transition functions still differ even

for small values of σ2. This however implies that better estimates for β = (ϑ, ξ, κ, σ2) are obtained

even for parameter combinations of κ and σ2 that cause problems in the ESTAR setting. This is

also visible in Figure 5 which illustrated the quotient of the standard deviations of κ̂ of the TSTAR

model and the standard deviation of γ̂ of the ESTAR model, each computed from 5000 repetitions.

Note that all values stay below one pointing to the better performance of the TSTAR model.
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Figure 5: Comparison of the estimators in ESTAR and TSTAR settings.

3.2 Linearity testing

The procedure we derive in this section for testing linearity against non-linear TSTAR dynamics is

related to the test against non-linearity proposed by Luukkonen et al. (1988). First, the transition

function G is approximated by a suitable linear function; a common practice in non-linear time

series analysis (see also Teräsvirta, 1994). Afterwards, a simple F−test is performed.

For constructing the test it is convenient to use representation (2) of the TSTAR(p) model, i.e.

yt = [Ψwt] + [Φwt] · G(yt−d;κ, c) + εt. (11)

Linearity then holds if the middle term on the right hand side vanishes, caused by either Φ or

G( · ) being equal to zero. In the first case the autoregressive parameters are then identical for both

regimes (see also (1) with Θ = Φ + Ψ = Ψ). As we do not have to allow for switching between

identical regimes a more parsimonious model is achieved by using a linear AR(p) model. In the

latter case switching between different regimes it not performed as only one regime is considered.

Hence, the pair of hypothesis we are interested in can be expressed either as

H0 : Φ = 0(1×p) vs. H1 : at least one ϕi 6= 0; i = 1, . . . , p

or

H0 : κ = 0 vs. H1 : κ > 0 .

In both cases the TSTAR model (11) reduces to a linear autoregressive model of order p. However,

our test procedure employs the former pair of hypothesis.
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Under H0 the alternative is not identified, given that the vector Φ and c can take on any value

without changing the value of the likelihood function when κ = 0 and vice versa. This can be

circumvented by replacing G with a linear approximation. Based on the Binomial series, i.e.

(1 + x)−m = 1 +
∞∑
n=1

(−1)n
m(m+ 1)(m+ 2) . . . (m+ n− 1)

n!
xn, m > 0, (12)

the transition function G in (11) can be approximated arbitrarily well by

Gk( · ) =
k∑

n=1

(−1)n
κ(κ+ 1) . . . (κ+ n− 1)(yt−d − c)2n

n!
(13)

choosing x = (yt−d − c)2 and m = κ in (12) as well as a sufficiently large k. We then obtain the

auxiliary regression model for a fixed d ≤ p and k

yt =

p∑
i=1

ψiyt−i +

p∑
j=1

δj,0 yt−j +

p∑
j=1

δj,1 yt−jyt−d + . . .+

p∑
j=1

δj,2k yt−jy
2k
t−d + ut (14)

where the error terms are now denoted by ut rather than εt as they are the sum of the original

error terms and the approximation error caused by replacing G with Gk.

A test against non-linearity can then be carried out using a simple F -test for a subvector of param-

eters. Under the null the actual model is linear and hence the approximation error is zero leading

to ut = εt. Consequently the properties of the error term under the null and thus the asymptotic

distribution of the F -test remain unaffected.

Example 3.1.

As an example consider the simple TSTAR(1) model,

yt = ψ1yt−1 + ϕ1yt−1

[
1−

(
1 + (yt−d − c)2

)−κ]
+ εt, t ≥ 1 ,

with nonzero location parameter c. Approximating G by G3 results in the regression model

yt = ψ1yt−1

+ϕ1yt−1

[
κ(yt−1 − c)2 −

1

2
κ(κ+ 1)(yt−1 − c)4 +

1

6
κ(κ+ 1)(κ+ 2)(yt−1 − c)6

]
+ ut

= ψ1yt−1 + δ1,0 yt−1 + δ1,1 y
2
t−1 + δ1,2 y

3
t−1 + δ1,3 y

4
t−1 + δ1,4 y

5
t−1 + δ1,5 y

6
t−1 + δ1,6 y

7
t−1 + ut

where

δ1,0 = ϕ1κc
2 +

1

6
ϕκ(κ+ 1)(κ+ 2)c6,

δ1,1 = −2cϕ1κ+ 2ϕ1κ(κ+ 1)− ϕ1κ(κ+ 1)(κ+ 2)c5,

δ1,2 = ϕ1κ− 3ϕ1κ(κ+ 1)c2 +
5

2
ϕ1κ(κ+ 1)(κ+ 2)c4,

δ1,3 = 2ϕ1κ(κ+ 1)c− 1

2
ϕ1κ(κ+ 1)c4 − 10

3
ϕ1κ(κ+ 1)(κ+ 2)c3,

δ1,4 = −1

2
ϕ1κ(κ+ 1) +

5

2
ϕ1κ(κ+ 1)(κ+ 2)c2,

δ1,5 = −ϕ1κ(κ+ 1)(κ+ 2)c,

δ1,6 =
1

6
ϕ1κ(κ+ 1)(κ+ 2) .
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The hypothesis of linearity against TSTAR can now be tested via an F -test for the null

H0 : δ1,0 = . . . = δ1,6 = 0 vs. H1 : at least one δ1,i 6= 0; i = 1, . . . , 6

for which extensive Monte Carlo simulations are summarized in Section 3.4.

3.3 Unit Root Testing

Kapetanios et al. (2003) develop a unit root test in the ESTAR framework and compute a Dickey-

Fuller type t-test in this set-up based on a first order Taylor expansion. Our test is of the same

type and thus we test the null of a linear unit root process against a globally stationary TSTAR

process containing a partial unit root in one regime.

Based on parametrization (2) the TSTAR(1) model can be written in first differences as

∆yt = ρyt−1 + ϕ1yt−1

[
1−

(
1 + y2t−1

)−κ]
+ εt (15)

where ρ = ψ1−1. Setting the location parameter c equal to zero is motivated by simulation results

in Kruse (2009) that show convincing power results even if the location parameter c is set to zero

ex-ante. This is also consistent with Kapetanios et al. (2003). Hence, for the sake of simplicity we

constrain ourselves to this case and further impose d = 1 which is in line with empirical applications

of non-linear time series models (see e.g. Taylor et al. (2001) or Rapach and Wohar (2006)).

Setting ρ = 0 yields a unit root in the first regime and we have to distinguish between two cases:

(i) ρ = 0 and κ > 0: In this case we have a globally stationary TSTAR process that contains a

partial unit root in the first regime, provided that −2 < ϕ1 < 0 as we will assume henceforth.

(ii) ρ = 0 and κ = 0: In this case the model reduces to a linear random walk.

Thus we will test case (ii) against case (i) and formulate the pair of hypotheses as

H0 : κ = 0 vs. H1 : κ > 0 . (16)

We now proceed in the same way as in the previous section and approximate the nonlinearity with

a Binomial expansion as in (13) setting the number of summands to k = 3. This yields the auxiliary

regression (see also (14))

∆yt = δ1,2 y
3
t−1 + δ1,4 y

5
t−1 + δ1,6 y

7
t−1 + ut (17)

leading to the hypothesis

H0 : δ1,2 = δ1,4 = δ1,6 = 0 vs. H1 : at least one δ1,i 6= 0; i = 2, 4, 6

which can also be expressed as

H0 : I3 β = r vs. H1 : at least one δ1,i 6= 0; i = 2, 4, 6

with β = (δ1,2, δ1,4, δ1,6)
′, r = (0, 0, 0)′ and

I3 =

1 0 0

0 1 0

0 0 1

 .
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Due to the three parameter restrictions an F -statistic for the significance of the whole parameter

vector β needs to be computed. Using r̂ = Rβ̂, where β̂ denotes the LS-estimator of β, we can

write the F -statistic as

F ∗ =
1

3
(r̂ − r)′

[
σ̂2R(X ′X)−1R′

]−1
(r̂ − r) =

1

3
(Rβ̂)′

[
σ̂2R(X ′X)−1R′

]−1
(Rβ̂)

=
1

3
β̂′σ̂2(X ′X)β̂ (18)

where X is a (T × 3)−design matrix with its t-th row given by xt = (y3t−1, y
5
t−1, y

7
t−1) and

σ̂2 = 1
T−4

T∑
t=1

(
∆yt − δ̂1,2y3t−1 − δ̂1,4y5t−1 − δ̂1,6y7t−1

)2
. The limit distribution of F ∗ under H0 is

computed in the next theorem and proven in the Appendix.

Theorem 3.2.

Consider the TSTAR(1) model (15) and let εt satisfy Assumption 2.2. Then the test statistic F ∗

as given in (18) converges weakly under the null of a random walk as follows

F ∗ ⇒ 1

3σ2
v′Q−1v, T →∞,

where the matrices Q and v are given by

Q =



σ6
1∫
0

B6(r) dr σ8
1∫
0

B8(r) dr σ10
1∫
0

B10(r) dr

σ8
1∫
0

B8(r) dr σ10
1∫
0

B10(r) dr σ12
1∫
0

B12(r) dr

σ10
1∫
0

B10(r) dr σ12
1∫
0

B12(r) dr σ14
1∫
0

B14(r) dr


and

v′ =



σ4
{

1
4

1∫
0

B(1)4 − 3
2

1∫
0

B(r) dr

}
σ6
{

1
6

1∫
0

B(1)6 − 5
2

1∫
0

B(r) dr

}
σ8
{

1
8

1∫
0

B(1)8 − 7
2

1∫
0

B(r) dr

}


with B denoting the standard Brownian motion.

Under the alternative the test is consistent.

In order to deal with deterministic components such as non-zero intercept terms or linear trends

one can use a two-step approach and de-mean or de-trend the data prior to computing the test

statistic F ∗. In this case the true data generating process is given by

yt = ω′zt + xt

where xt = yt−1 + εt and ω′ is a parameter vector of suitable dimensions and zt = 1 for all t for

the de-meaned case and zt = [ 1, t ] for the de-trended case. The test can then be based on the
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OLS residuals x̂t, where the asymptotic distribution now depends on functionals of de-meaned and

de-trended Brownian motion, respectively. These are given by

B(r)−
1∫

0

B(r) dr

for the de-meaned Brownian motion and by

B(r) + (6r − 4)

1∫
0

B(r)dr + (12r − 6)

1∫
0

rB(r)dr

for the de-trended Brownian motion.

Considering the case of serially correlated errors and assuming that the dependence enters in a

linear fashion we can generalize our results by augmenting the auxiliary regression with lagged

differences as in Dickey and Fuller (1979) and Said and Dickey (1984). The test regression then

reads

∆yt = δ1,2y
3
t−1 + δ1,4y

5
t−1 + δ1,6y

7
t−1 +

p∑
i=1

πi∆yt−i + ut . (19)

The pair of hypotheses as well as the test statistic in this more general set up do not change with

respect to the auxiliary regression in (17).

Theorem 3.3.

Consider the test statistic F ∗ as in Theorem 3.2 but computed from (19). Under the null of a unit

root the test statistic maintains the same asymptotic distribution as in Theorem 3.2. Under the

alternative the test statistic is consistent.

Theorem 3.3 holds also true for the case of including deterministic terms as in auxiliary regression

(19). The asymptotic distribution in this case is such as in Theorem 3.2 when deterministic terms are

included, i.e. replacing the standard Brownian motion with the de-meaned or de-trended Brownian

motion, respectively.

The large exponents in the auxiliary regressions necessarily lead to rather strong moment conditions.

This could potentially be circumvented by using a different testing approach such as a sup-LM test.

This is, however, beyond the scope of this paper as we only want to provide a simple test based on

a well know procedure as a first approach.

Setting the approximation of the infinite sum from the Binomial series expansion to k = 1 it is

readily seen that
√
F ∗ has the same asymptotic distribution as the unit root test against ESTAR

developed by Kapetanios et al. (2003) and thus the statistic F ∗ contains their test as a special

case. It is also noteworthy that the F -test version of the ESTAR unit root test of Kapetanios et al.

(2003) that would result if the location parameter c is not set equal to zero a priori is also a special

case of our test. Setting the series expansion again to k = 1 and also letting the location parameter

c 6= 0 the resulting limiting distribution of the test statistic from the related auxiliary regression is

the same as for the respective ESTAR unit root test and thus we also contain this test version as

a special case.

Containing these tests as special cases we expect a satisfying performance also against ESTAR

processes but higher power against globally stationary alternatives than the Kapetanios et al.

(2003) test as indicated by a faster rate of convergence in Theorem 3.2.
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3.4 Monte Carlo Simulations

In this section we study the finite sample performance of the two tests developed above for the

TSTAR(1) model given in (11). Two different data generating processes are investigated: c = 0 in

the first scenario and c = 1 in the second one. If not stated differently, M = 50000 replications were

performed combined with different sample sizes T . For all power simulations reported we consider

a type 1 error of α = 0.05 to save space.1

Linearity Testing:

In order to keep the experiment simple we conduct the simulations under the null of linearity using

a simple AR(1) model and compute the auxiliary regression using the location parameter c = 0 for

the first scenario and c = 1 for the second scenario. The empirical size results for the linearity test

introduced in Section 3.2 are stated in Tables 2 and 3 for scenario one and scenario two, respectively.

The test shows only minor deviations from its nominal level and it tends to under-reject somewhat.

However, the test -although conservative- seems to be properly sized for reasonable sample sizes

encountered in monthly or daily data.

ψ1 = 0.3 ψ1 = 0.5 ψ1 = 0.8

T α = 1% α = 5% α = 10% α = 1% α = 5% α = 10% α = 1% α = 5% α = 10%

100 0.826 4.258 8.752 0.738 4.152 8.440 0.856 4.194 8.606

200 0.872 4.442 9.038 0.786 4.200 8.664 0.820 4.206 8.504

500 0.910 4.546 9.404 0.876 4.470 8.986 0.744 4.248 8.680

1000 0.858 4.594 9.554 0.840 4.360 9.008 0.878 4.152 8.578

5000 0.886 4.766 9.906 0.856 4.536 9.354 0.888 4.498 8.986

Table 2: Size results (linearity test) for scenario one.

ψ1 = 0.3 ψ1 = 0.5 ψ1 = 0.8

T α = 1% α = 5% α = 10% α = 1% α = 5% α = 10% α = 1% α = 5% α = 10%

100 0.912 4.298 8.608 0.818 4.256 8.594 0.838 4.402 8.744

200 0.776 4.200 8.764 0.802 3.986 8.268 0.796 4.150 8.504

500 0.818 4.266 8.866 0.776 4.184 8.434 0.892 4.270 8.530

1000 0.882 4.626 9.276 0.868 4.318 8.708 0.848 4.218 8.528

5000 0.968 4.584 9.372 0.882 4.450 8.892 0.792 4.260 8.764

Table 3: Size results (linearity test) for scenario two.

In order to study the power of the test, TSTAR(1) models with several values for ψ1, ϕ1 and κ

were used in the experiments. The results are shown in Table 4 for scenario one and in Table 5 for

scenario two. The results suggest that the linearity test is a useful device to detect non-linearity

in the data. As expected the rejection frequency becomes closer to 100% the more pronounced the

difference between the regimes is and/or the larger the sample size is. Overall we obtain very similar

power results against TSTAR compared to Luukkonen et al. (1988) for their linearity test against

ESTAR. Unreported experiments confirmed that the proposed linearity test has also similar high

power against the other non-linear alternatives ESTAR, LSTAR and Double LSTAR (see Jansen

1The results for the cases α = 0.01 and α = 0.1 as well as all other unreported results are available from the

authors upon request.
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and Teräsvirta, 1996). Reasonable power results were also obtained against the Markov switching

model proposed by Hamilton (1989).

T = 200 T = 500 T = 1000
PPPPPPPPPψ1 ϕ1

κ
0.5 0.8 1.0 0.5 0.8 1.0 0.5 0.8 1.0

0.3 0.5 5.452 5.468 5.650 7.502 8.628 8.708 11.796 14.488 15.014

0.3 0.6 6.638 7.414 7.686 12.534 16.060 16.154 24.166 32.020 31.766

0.3 0.7 9.434 11.456 11.570 22.000 29.264 29.014 44.362 57.616 58.062

0.3 0.8 13.642 17.872 18.238 36.348 49.194 48.964 69.112 83.718 83.360

0.3 0.9 21.276 29.262 28.098 56.726 74.030 71.142 89.640 97.252 96.482

Table 4: Power results (linearity test) for scenario one.

T = 200 T = 500 T = 1000
PPPPPPPPPψ1 ϕ1

κ
0.5 0.8 1.0 0.5 0.8 1.0 0.5 0.8 1.0

0.3 0.5 5.964 6.970 7.070 10.302 13.826 14.790 19.392 27.412 30.088

0.3 0.6 9.228 11.804 12.514 21.240 31.126 34.288 45.714 63.610 68.202

0.3 0.7 14.444 20.502 22.364 40.652 58.280 62.524 77.352 91.816 94.004

0.3 0.8 24.126 34.482 36.886 66.438 84.038 86.562 95.732 99.448 99.634

0.3 0.9 38.434 53.024 53.978 87.566 97.006 96.840 99.692 99.998 99.986

Table 5: Power results (linearity test) for scenario two.

Unit Root Testing:

We first report the asymptotic critical values for the unit root test in Table 6. Case 1 denotes raw

data, i.e. no deterministic components, Case 2 denotes the case of de-meaned data and Case 3

denotes the case of de-trended data. Here, the sample size is set to T = 10000 and the number of

replications to M = 1000000.

α Case 1 Case 2 Case 3

1% 4.730 5.477 6.595

2.5% 3.124 4.722 5.783

5% 3.458 4.137 5.136

7.5% 3.124 3.778 4.739

10% 2.884 3.515 4.450

Table 6: Asymptotic critical values for unit root testing.

The results from the size experiments are summarized in Table 7. For larger sample sizes (T > 500)

the test is correctly sized and as the sample size increases it reaches its nominal level. For smaller

sample sizes some minor size distortions are visible but the overall impression is that the test

maintains good size properties also for smaller sample sizes.
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Case 1 Case 2 Case 3

T α = 1% α = 5% α = 10% α = 1% α = 5% α = 10% α = 1% α = 5% α = 10%

100 0.826 3.898 7.628 0.786 3.484 6.916 0.954 3.830 7.484

200 0.882 4.106 8.246 0.748 3.648 7.436 0.758 3.594 7.218

500 0.912 4.504 9.168 0.864 4.174 8.602 0.828 3.998 8.146

1000 0.932 4.920 9.528 0.904 4.370 9.076 0.862 4.324 8.868

5000 0.952 4.958 10.060 0.916 4.734 9.692 1.048 4.952 9.766

10000 0.984 5.036 10.006 1.004 4.982 9.990 0.966 4.918 9.886

50000 0.974 4.968 10.054 1.000 4.978 10.062 0.998 5.012 9.882

Table 7: Size for unit root testing using asymptotic critical values [in %].

For the power experiment for the unit root test we exemplarily show our results for T = 200 and

various values for κ, ψ and ϕ (see Table 8). For increasing sample size, the results improve which

was seen from the same simulations for T = 500. The results indicate a good overall performance

of the unit root test in all sample sizes considered. The ability to distinguish between a unit

root process and a globally stationary TSTAR model increases if either the difference between the

regimes becomes larger or even faster if the sample size increases.

T = 200 Case 1 Case 2 Case 3
PPPPPPPPPψ1 ϕ1

κ
0.5 0.8 1.0 0.5 0.8 1.0 0.5 0.8 1.0

1.0 0.3 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

1.0 0.4 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

1.0 0.5 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

1.0 0.6 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

1.0 0.7 99.95 99.97 99.97 99.95 10.00 100.00 99.97 10.00 100.00

1.0 0.8 95.52 98.86 99.36 96.58 99.30 99.59 97.65 99.46 99.71

1.0 0.9 45.95 58.63 62.44 55.04 67.01 70.45 65.79 75.30 77.97

1.0 0.95 14.90 18.44 19.47 23.68 27.84 28.76 36.00 39.77 41.77

Table 8: Power results for unit root testing using asymptotic critical values [in %]

As empirical studies using smooth transition models such as ESTAR frequently find very small

variances of the innovation term we examine the behavior of the newly developed unit root test

against TSTAR in such a framework. Studying this behavior is critical since Kruse et al. (2008)

show via Monte Carlo simulation that under small error term variances the power of unit root tests

developed for non-linear models rapidly deteriorates. We report simulation results for small sample

sizes of T = 100 (Table 9) and T = 500 (Table 10) and consider error term standard deviations of

σε = 0.1. The results show satisfying power results even for such small sample sizes. Low power

results are only found for cases in which the difference between the regimes is only very small or the

transition is so slow that only little observations are in the stationary regime. In these cases it is

notoriously hard to distinguish between the two regimes and as a consequences the power decreases.

However, the power is still high enough to deliver reliable test results and is in particular higher

than found by Kruse et al. (2008) for extant test. In the case T = 500 no decline in power is visible

and the test works under small error variances just as well as under white noise disturbances.
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T = 100 Case 1 Case 2 Case 3
PPPPPPPPPψ1 ϕ1

κ
0.5 0.8 1.0 0.5 0.8 1.0 0.5 0.8 1.0

1.0 0.3 77.108 95.104 98.174 79.610 95.388 98.378 84.538 96.526 98.716

1.0 0.4 66.452 88.956 95.106 69.914 90.042 95.444 77.190 92.464 96.662

1.0 0.5 52.768 77.878 87.560 58.408 80.730 88.988 67.572 85.324 91.724

1.0 0.6 38.304 60.896 72.470 44.878 66.622 76.096 56.658 73.874 81.682

1.0 0.7 24.404 40.558 49.668 33.204 48.180 57.018 45.100 59.096 65.972

1.0 0.8 13.952 21.662 26.456 22.466 30.732 35.064 34.442 42.484 47.878

1.0 0.9 6.714 8.604 9.888 13.770 16.748 17.924 24.864 28.176 29.830

1.0 0.95 4.608 5.062 5.298 10.360 11.518 12.048 21.382 21.926 22.620

Table 9: Power results for unit root testing [in %] with σε = 0.1

T = 500 Case 1 Case 2 Case 3
PPPPPPPPPψ1 ϕ1

κ
0.5 0.8 1.0 0.5 0.8 1.0 0.5 0.8 1.0

1.0 0.3 100.00 100.00 100.00 100.00 100.00 100.00 100.000 100.00 100.00

1.0 0.4 100.00 100.00 100.00 100.00 100.00 100.00 100.000 100.00 100.00

1.0 0.5 100.00 100.00 100.00 100.00 100.00 100.00 100.000 100.00 100.0

1.0 0.6 100.00 100.00 100.00 100.00 100.00 100.00 100.000 100.00 100.00

1.0 0.7 100.00 100.00 100.00 100.00 100.00 100.00 100.000 100.00 100.00

1.0 0.8 100.00 100.00 100.00 100.00 100.00 100.00 99.99 100.00 100.00

1.0 0.9 93.25 99.09 99.70 94.01 99.19 99.74 95.57 99.38 99.77

1.0 0.95 44.70 63.54 70.72 53.48 70.29 76.52 64.24 77.55 82.39

Table 10: Power results for unit root testing [in %] with σε = 0.1

The newly developed test in particular shows better power properties as the test developed by

Kapetanios et al. (2003) and therefore yields more reliable results in empirical applications as

indicated by Kruse (2009).

With regards to the linearity test we find the power only slightly reduced under small error variances

compared to the white noise assumption. These results however are unreported to save space.

Varying Error Term Variances:

Having described the behavior of the two test extensively, we now consider two fixed parameter

combinations and illustrate how the power of the two test changes as we let the error term variance

σε become smaller and smaller in accordance with the main statement of this text.

Figures 6 and 7 are based on the unit root test for the parameters ψ1 = 0.3, ϕ1 = 0.6, κ = 1 and

ψ1 = 0.7, ϕ1 = 0.2, κ = 1, respectively, while σε varies from an almost vanishing value up to 1.5.

One clearly sees that except for very small values of σε we obtain a very high power, independent

of the chosen α where α ∈ {0.01, 0.05, 0.1} is considered.
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Figure 6: Power curve of the unit root test:

ψ1 = 0.3, ϕ1 = 0.6 and κ = 1.
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Figure 7: Power curve of the unit root test:

ψ1 = 0.7, ϕ1 = 0.2 and κ = 1.

Using the same parameter combinations as mentioned above but now for the linearity test we obtain

the curves for the power as shown in Figures 8 and 9. Although the range of σε where the power

lies below 100% is bigger than for the unit root test, the overall behavior is still identical.
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Figure 8: Power curve of the linearity test:

ψ1 = 0.3, ϕ1 = 0.6 and κ = 1.
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Figure 9: Power curve of the linearity test:

ψ1 = 0.7, ϕ1 = 0.2 and κ = 1.

4 Empirical Illustration

To illustrate the application of the newly introduced TSTAR model with empirical data we in-

vestigate one of the most highly debated theories in international finance: the purchasing power

parity (PPP). The initial finding of a unit root in real exchange rates by Meese and Rogoff (1988)

subsequently shifted the interest in modeling real exchange rates to non-linear models (see e.g.

Taylor et al., 2001). Technically spoken the real exchange rate should be non-linear but globally

stationary (i.e. mean-reverting) and not behave like a unit root process to support PPP.
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To ensure comparability we use the same data that has been analyzed by Taylor et al. (2001) and by

Rapach and Wohar (2006). Namely, we analyze monthly real exchange data for Germany against

the US from 1973:02 - 1996:12.2 The series is depicted in Figure 10.
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Figure 10: Monthly log real exchange rate for Germany

We choose the lag length to be used subsequently with the Bayesian information criterion (BIC)

which yields a lag length of p = 1. Applying the linearity test against TSTAR described in Section

3.2 we obtain a test statistic of 3.69 which is significant on the α = 5% level of significance and

thus we reject the null of linearity.

Validity of the PPP suggests that the real exchange rate should be a globally stationary process

albeit non-linear. Applying the ESTAR unit root test developed by Kapetanios et al. (2003) as well

as the unit root test against TSTAR developed in Section 3.3 yields support for the PPP. Both test

are able to reject the null of a random walk on the α = 5% level of significance. These test results

support the theory that transaction costs in financial markets lead to a non-linear convergence to

a long-run equilibrium and thus support the validity of the PPP as a long run concept.

Since the data has already been under study by Taylor et al. (2001) we adopt the parameter

estimates they found and which have also been confirmed by estimations undertaken by Rapach

and Wohar (2006). It should be noted that Taylor et al. (2001) and Rapach and Wohar (2006)

also estimated the location parameter c. However, as their estimate is very close to zero, namely

c = −0.007, we restrict c = 0 in our estimation to keep it simple. Furthermore the authors fix the

parameter of the second regime to be -1 which yields one unit root regime and one white noise

regime. As this seems to be rather restrictive we only fix the unit root regime and estimate the

autoregressive parameter of the second regime.

Table 11 shows the estimation results for the parameter γ for the model under the null for the

ESTAR and the TSTAR model respectively.

2The data set is available from David Rapach’s website at: http://pages.slu.edu/faculty/rapachde/Nlfit.zip.

http://pages.slu.edu/faculty/rapachde/Nlfit.zip
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ESTAR TSTAR

ϕ̂= -1 ϕ̂= -0.023

γ̂ = 0.264 κ̂ = 275.284

σ̂ε = 0.035 σ̂ε = 0.032

Table 11: Estimation of the transition parameter under the null.

At a first glance the estimation result for ESTAR looks reasonable. But if we plot the estimated

transition function against the transition variable yt−1 and against time (see Figure 11) we get to

the conclusion that the ESTAR model basically reduces to a random walk model as the transition

function is always close or equal to zero effectively switching off the stationary regime.
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Figure 11: Left panel: One minus transition function against transition variable. Right panel: One

minus transition function against time.

The figure supports the results that, albeit the parameter estimate for γ leads to a reasonable

looking transition function (note the range of the y-axis) plotting it against time, γ̂ = 0.264 actually

produces a random walk model and by this contradicts PPP caused by a degenerated transition

function. To further investigate whether an ESTAR specification seems appropriate we also estimate

a STAR model using a double logistic form for the transition function

G(·; γ, c1, c2) = {1 + exp(−γ(yt−1 − c1)(yt−1 − c2))}−1 .

The estimation led to ĉ1 = ĉ2 = −0.0069 and γ̂ = 0.1719. These parameters are very similar to the

ESTAR results suggesting that the ESTAR model might be inappropriate.

Producing the same plots for TSTAR as for ESTAR in Figure 11 we obtain Figure 12.
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Figure 12: Left panel: One minus transition function against transition variable. Right panel: One

minus transition function against time.

The estimation of a large κ̂ = 275.284 still produces a transition function that is by no means

close to the limit for κ → ∞ (see the properties in Section 2). In addition we see from the left

panel that the estimated process is far more often in the stationary regime and becomes a random

walk only on few occasions. This finding is in line with theoretical work on PPP. Deviations from

the law of one price may stem from transaction costs between different markets (see e.g. Sercu

et al. (1995)). This notion has subsequently been more refined by Coleman (1995) in whose model

transaction costs create a band of no arbitrage for the real exchange rate. Once the real exchange

rate, as a measure of deviation from PPP, hits the upper or lower threshold the process becomes

mean-reverting to the equilibrium. Once within the transaction cost band, no trade takes place

and the process diverges away from PPP. As a result the real exchange rate spends most of the

time away from the equilibrium (see also the discussion in Taylor et al. (2001, p.1018) and Taylor

(2003, p.444)).
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Figure 13: Rescaled real exchange rate with TSTAR transition function.
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Figure 13 shows the real exchange rate from Figure 10 rescaled to be in [ 0,1 ] and the transition

function from the right panel of Figure 12. The gray shaded area shows the periods in which the

process behaves like a random walk, i.e. PPP holds exactly. At the very beginning of the data,

when the Bretton Woods system of fixed exchange rates was abandoned in favor of a free floating

exchange rate regime, PPP holds exactly. It then starts to deviate from PPP until the upper

threshold is reached and starts to revert back to the mean. Whenever the real exchange rate hits

the equilibrium it quickly deviates away from exact PPP and we observe that the real exchange

rate behaves like a nonlinear mean reverting process most of the time and like a random walk when

deviation from PPP is near zero (note that the dotted line at 0.5 is the zero line of the unscaled

series).

It is noteworthy that the plot in Figure 11 is not unique for this particular data set but a common

finding in empirically estimated ESTAR models. Kruse et al. (2008) for example support these

findings for other real exchange rates (see their Figure 1).

The panels in Figure 11 and Figure 12 also support the theoretical results that the estimation

of the transition parameter heavily depends on the error term variance σε derived in Section 2.

Looking at the estimated values for γ and κ in Table 11 and the left panels in Figures 11 and 12 we

obtain a reasonable form of the transition function from a mathematical point of view. However

plotting the transition function against time we see that the estimated function does not support

the hypothesis that the data comes from the assumed data generating process. This supports that

the estimation of γ is heavily influenced by the small error standard deviation. The estimated κ

for the TSTAR model might look awkward at first. However, looking at the plots in Figure 12 this

yields a transition function that is not degenerated in the sense that the actual range exploits its

whole domain and it does not behave as in the limiting case (see Section 2). This supports the

assumed data generating process, i.e. a globally stationary TSTAR model. The estimation of κ in

the TSTAR case is by far not so heavily influenced from the small error standard deviation and

thus we can extend the range of possible values for the transition parameter for which we obtain a

non-degenerated transition function. This also supports the conclusion that we can largely reduce

the influence of σε on the transition parameter by reformulating the transition function G with

respect to the ESTAR setting.

5 Conclusions

We have studied the ESTAR and TSTAR model, two competing models of the STAR family sharing

the same characteristic properties of their transition functions. Due to their nonlinear structure,

unidentified parameters occur for certain combinations of γ and σ2, the transition parameter and

the error term variance, respectively. This phenomena has not been studied systematically before

although it is of importance in applications.

In the ESTAR setting, very small values of σ2, among others, yield in particular an unidentified γ,

making a consistent estimation of γ nearly impossible. In Theorem 2.4 we verified this by showing

that the variance of the conditional Maximum Likelihood estimator γ̂ tends to infinity as σ2 van-

ishes. Hence, in order to estimate γ, somewhat unpleasant modifications need to be incorporate

into the optimization routine.

In order to avoid this, we define the TSTAR model where the transition parameter becomes uniden-

tified much later as σ2 → 0 compared to the ESTAR model. As a consequence, the parameter can

be included in the parameter vector that is to be estimated. By deriving a linearity and a unit root
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test for the TSTAR model we support our opinion that this new model is indeed a worthy alterna-

tive, applicable to the same situations and should therefore be preferred to the ESTAR model.

This conclusion is illustrated by fitting both models to the same data set containing real exchange

rates. The estimators one obtains in the ESTAR setting do not allow for a meaningful interpreta-

tion of the fitted model as one regime is basically switched off. One can clearly see that this is the

result of the identification problem caused by a small error term variance. Contrary to that, the

fitted TSTAR models allows for switching between the two regimes, leading to a better fit, although

the estimators for γ and σ2 look not very promising without interpreting them in the right context.

As this text deals with a topic that is not well studied yet, there are many possible open questions

and possibilities how to go from here. The most interesting question at the moment is whether it

is possible to quantify and compare the regions for which (γ, σ) cause the identification problem in

both regimes. A more theoretical, in depth study of the TSTAR model would be needed for this.

Also, a general theory about a whole class of transition functions G sharing some characteristic

properties would be very helpful to fully understand STAR models.

A Appendix: Proofs and Technical Lemmas

Lemma 2.3 is stated in terms of the ESTAR model. However, properties (i)-(iii) hold more generally.

Therefore in the proof below we consider the models

yt =
[
ϑ+ ξ exp(−γη(y2t−1))

]
yt−1 + εt, t ∈ Z,

for η ∈ {η1 : [ 0,∞) → IR, η1(z) = z; η2 : [ 0,∞) → IR, η2(z) = log(1 + z) }. Note that η1
corresponds to the ESTAR model and η2 to the TSTAR model. The proof of property (iv) depends

heavily on η1 and can therefore not be generalized although we believe that (iv) also holds for η2.

Proof of Lemma 2.3.

Ad (i): Geometric ergodicity follows from general conditions for ergodicity of nonlinear time series

which are satisfied due to | ξ | + | ϑ |< 1 (see in particular Example 8.2 in Yao and Fan (2005)).

Ad (ii): In order to prove that the density of yt is symmetric around zero for all t we use an inductive

argument. Let y0 = ε0 which then has a symmetric density by choice. Now, let t ≥ 1 and assume

that yt−1 has a symmetric density and recall from (6) that

yt =
[
ϑ+ ξ(1−G(ηi(y

2
t−1)))

]
yt−1 + εt =

[
ϑ+ ξ exp(−γηi(y2t−1))

]
yt−1 + εt, t ≥ 1, i = 1, 2.

We know from Lemma A.1 that
[
ϑ+ ξ exp(−γηi(y2t−1))

]
yt−1, i = 1, 2, has a symmetric density

around zero. As the same holds for εt by assumption, it follows from Lemma A.2 that also the

denisty of yt is symmetric around zero due to yt−1 and εt being independent.

The above argument requires the stationary distribution Fs of yt to have a symmetric density.

Ad (iii): Let n, k ∈ IN0 and t ∈ Z. Then the density of exp(−nγηi(y2t ))y2k+1
t , i = 1, 2, is symmetric

around zero by combining (ii) with an application of Lemma A.1 choosing a = 0, b = 1 and

c = nγ > 0. Hence, IE
[
exp(−nγy2t )y2k+1

t

]
= 0.

Ad (iv): Let n ∈ IN0, k ∈ IN. In order to show that IE
[
exp(−nγy2t )y2kt

]
behaves asymptotically like

σ2k as σ goes to zero we use an inductive argument and determine two sequences {lk(σ)}σ>0 and
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{uk(σ)}σ>0 such that for all t

lk(σ) ≤
IE
[
exp(−nγy2t ) y2kt

]
σ2k

≤ uk(σ)

with limσ↓0 lk(σ) = limσ↓0 uk(σ) = ck for some constants ck.

The sequences {lk(σ)}σ>0 and {uk(σ)}σ>0 are determined by the even moments of the process yt
due to

IE
[
exp(−nγy2t ) y2kt

]
σ2k

≤
IE
[
y2kt
]

σ2k
(20)

and

IE
[
exp(−nγy2t ) y2kt

]
σ2k

≥
IE
[
(1− nγy2t ) y2kt

]
σ2k

≥
IE
[
y2kt
]

σ2k
− nγ

IE
[
y2k+2
t

]
σ2k+2

σ2 (21)

using exp(x) ≥ 1 + x, x ∈ IR. Note that we have for k ∈ IN0, t ∈ Z,

IE
[
y2kt

]
= IE

[[[
ϑ+ ξ exp(−γy2t−1)

]
yt−1 + εt

]2k]
=

∑
j∈J

(
2k

j

)
IE
[[
ϑ+ ξ exp

(
−γy2y−1

)]2k−j
y2k−jt−1

]
IE
[
εjt

]

=
∑
j∈J

(
2k

j

) 2k−j∑
ν=0

(
2k − j
ν

)
ϑ2k−j−νξν IE

[
exp

(
−νγy2t−1

)
y2k−jt−1

]
cε,j σ

j (22)

where J = {j = 0, . . . , 2k : j mod 2 = 0} as the expected value of any product of yt−1 and εt with

odd powers vanishes and where IE[ εjt ] = cε,j σ
j with constants cε,j due to Assumption 2.2.

Let t = 1 and assume y0 ∼ N(0, σ2). Then, for m!! being the product of every odd number from 1

to m with (−1)!! = 0!! = 1,

IE
[
y2k1
]

σ2k
→

∑
j∈J

(
2k

j

)
(ϑ+ ξ)2k−j cε,j (2k − j − 1)!! as σ ↓ 0

due to the following argument. Formula (22) implies

IE
[
y2k1

]
=

∑
j∈J

(
2k

j

) 2k−j∑
ν=0

(
2k − j
ν

)
ϑ2k−j−νξν cε,j σ

j

∫
IR
y2k−j

1√
2πσ

exp

(
−νγy2 − 1

2

y2

σ2

)
dy.

As the exponent of the exponential term can be written as

−νγy2 − 1

2

y2

σ2
= −1

2

[
y2(1 + 2σ2νγ)

σ2

]
= y2

(
σ√

1 + 2σ2νγ

)−2
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we obtain with f being the density of a N(0, σ2/(1 + 2σ2νγ)) distribution

IE
[
y2k1

]
=
∑
j∈J

(
2k

j

) 2k−j∑
ν=0

(
2k − j
ν

)
ϑ2k−j−νξν cε,j σ

j 1√
1 + 2σ2νγ

∫
IR
y2k−jf(y) dy

=
∑
j∈J

(
2k

j

) 2k−j∑
ν=0

(
2k − j
ν

)
ϑ2k−j−νξν cε,j σ

j 1√
1 + 2σ2νγ

σ2k−j(√
1 + 2σ2νγ

)2k−j (2k − j − 1)!!

=
∑
j∈J

(
2k

j

) 2k−j∑
ν=0

(
2k − j
ν

)
ϑ2k−j−νξν cε,j σ

2k (2k − j − 1)!!
1

(1 + 2σ2νγ)(2k−j+1)/2
.

As the last factor in the previous display converges to one as σ goes to zero, we obtain

lim
σ↓0

IE
[
y2k1
]

σ2k
=
∑
j∈J

(
2k

j

) 2k−j∑
ν=0

(
2k − j
ν

)
ϑ2k−j−νξν cε,j (2k − j − 1)!!

=
∑
j∈J

(
2k

j

)
(ϑ+ ξ)2k−j cε,j (2k − j − 1)!! .

This proves (8) for t = 1 by combining the previous display with (20) and (21).

Now assume that (8) holds for t− 1, t ≥ 2. Then, due to stationarity IE
[
y2kt
]

= m2k, independent

of t. Formula (22) then implies

m2k = ϑ2kIE
[
y2kt−1

]
+

2k∑
ν=1

(
2k

ν

)
ϑ2k−νξνIE

[
exp

(
−νγy2t−1

)
y2kt−1

]

+
∑

j∈J\{0}

(
2k

j

) 2k−j∑
ν=0

(
2k − j
ν

)
ϑ2k−j−νξνIE

[
exp

(
−νγy2t−1

)
y2k−jt−1

]
cε,j σ

j

and eventually

m2k

σ2k
=

1

1− ϑ2k

[
2k∑
ν=1

(
2k

ν

)
ϑ2k−νξν

IE
[
exp

(
−νγy2t−1

)
y2kt−1

]
σ2k

+
∑

j∈J\{0}

(
2k

j

) 2k−j∑
ν=0

(
2k − j
ν

)
ϑ2k−j−νξν

IE
[
exp

(
−νγy2t−1

)
y2k−jt−1

]
σ2k−j

cε,j

 =: uk(σ)

with

lk(σ) =
m2k

σ2k
− nγ m2k+2

σ2k+2
σ2 = uk(σ)− nγm2k+2

σ2k+2
σ2

and

lim
σ↓0

lk(σ) = lim
σ↓0

uk(σ)

=
1

1− ϑ2k

 2k∑
ν=1

(
2k

ν

)
ϑ2k−νξνck +

∑
j∈J\{0}

(
2k

j

) 2k−j∑
ν=0

(
2k − j
ν

)
ϑ2k−j−νξν ck−j/2 cε,j
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by assumption so that the constants ck, k ∈ IN, can be determined recursively by

ck =
1

1− 1
1−ϑ2 [(ϑ+ ξ)2k − ϑ2k]

1

1− ϑ2k
∑

j∈J\{0}

(
2k

j

) 2k−j∑
ν=0

(
2k − j
ν

)
ϑ2k−j−νξν ck−j/2 cε,j

=
1

1− (ϑ+ ξ)2k

∑
j∈J\{0}

(
2k

j

)
ck−j/2 cε,j (ϑ+ ξ)2k−j

with c0 = 1.

According to statement (i) the effect of the initially chosen distribution for y0 dies out as t increases

due to the ergodicity. Hence, condition (8) holds for the underlying stationary distribution Fs of

yt and hence for all t ∈ Z regardless the chosen distribution for y0.

Lemma A.1.

Let X be a real valued random variable with symmetric density around zero. Then also the density

of [a+ b exp(−c η(X2))]X2k+1 for some k ∈ IN0 and a, b, c ∈ IR, |a|+ |b| > 0, c ≥ 0, with η ∈ {η1 :

[ 0,∞)→ IR, η1(z) = z; η2 : [ 0,∞)→ IR, η2(z) = log(1 + z) } is symmetric around zero.

Proof.

The result is obtained by applying theorems deriving the density of a transformed random variable

(see e.g. Theorems 22.2 and 22.3 in Behnen and Neuhaus (1995)).

First note, that the condition |a| + |b| > 0 simply guarantees that a and b do not vanish at the

same time making the statement of the lemma redundant. Wlog we restrict ourselves to the case

c > 0 as c = 0 is incorporated in the computations for b = 0.

First let b = 0. For a ∈ IR\{0} and c > 0 define gk : IR→ IR, gk(x) = ax2k+1 for some fixed k ∈ IN0

as well as Yk = gk(X). Since g′k(x) = (2k + 1)ax2k, x ∈ IR, and g−1k (x) = (x/a)1/(2k+1), x ∈ IR, we

obtain

fYk(y) =


0 for y = 0,

fX(g−1
k (y))

|g′k(g−1
k )(y)| =

fX

(
y

1
2k+1 a

− 1
2k+1

)
(2k+1)

(
y

1
2k+1 a

− 1
2k+1

)2k for y 6= 0,

where fX and fYk denote the densities of X and Yk, respectively. Note that (−y/a)1/(2k+1) =

(−1)1/(2k+1)(y/a)1/(2k+1) = −(y/a)1/(2k+1) which implies, for y 6= 0,

fYk(−y) =
fX

(
−y

1
2k+1a−

1
2k+1

)
(2k + 1)

(
−y

1
2k+1a−

1
2k+1

)2k =
fX

(
y

1
2k+1a−

1
2k+1

)
(2k + 1)

(
y

1
2k+1a−

1
2k+1

)2k = fYk(y), (23)

where the second last equality is due to the symmetry of fX .

Now consider the case b 6= 0 which is incomparable more complex. Let a ∈ IR and c > 0 with

gk,i : IR → IR, gk,i(x) = (a + b exp(−c ηi(x2)))x2k+1 for i = 1, 2 and some fixed k ∈ IN0 and

Yk,i = gk,i(X). Contrary to the case b = 0, gk,i can now change its monotonic behavior and might

therefore be only piecewise invertible.

We can verify the following properties (see below) for all k ∈ IN0:

(i) gk,i is continuous on IR with gk,i(0) = 0, i = 1, 2,
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(ii) gk,i is point symmetric around zero, i = 1, 2,

(iii) the limit behavior for x→∞ can be described by

lim
x→∞

gk,i(x) = lim
x→∞

(
ax2k+1 + b

x2k+1

ecηi(x2)

)
= lim

x→∞
ax2k+1 =


−∞ for a < 0,

κi for a = 0,

∞ for a > 0

(24)

with

κi =



0 for i = 1,

0 for i = 2, c > k + 1/2,

1 for i = 2, b > 0, c = k + 1/2,

−1 for i = 2, b < 0, c = k + 1/2,

∞ for i = 2, b > 0, c < k + 1/2,

−∞ for i = 2, b < 0, c < k + 1/2.

(iv) the monotonic behavior of gk,1, k ∈ IN0, (corresponding to the ESTAR model) can be sum-

marized in the following table, where ξk,1 = 2
2k+1e

− 2k+3
2 :

b > 0 a > ξk,1 b > 0 gk,1 is strictly monotone increasing

b > 0 a < −b < 0 gk,1 is strictly monotone decreasing

b > 0 a ∈ [−b, ξk,1b ]

= [−b, 0 ] gk,1 changes its monotone behavior twice, starting

with being strictly decreasing

∪ (0, ξk,1b ] gk,1 changes its monotone behavior four times, starting

with being strictly increasing

b < 0 a > −b > 0 gk,1 is strictly monotone increasing

b < 0 a < ξk,1 b < 0 gk,1 is strictly monotone decreasing

b < 0 a ∈ [ ξk,1b,−b ]

= [ ξk,1 b, 0) gk,1 changes its monotone behavior four times, starting

with being strictly decreasing

∪ [ 0,−b ] gk,1 changes its monotone behavior twice, starting

with being strictly increasing

If gk,1 changes its monotonic behavior twice, it always happens at

w1,2 = ±

√√√√−W0

(
−a
b
2k+1
2 e

2k+1
2

)
+ 2k+1

2

c

no matter which parameter combination for a and b we consider. Here, W0 denotes the prin-

cipal branch of the Lambertsche W-function with domain [− exp(−1),∞), i.e. the function



Two competitive models: the ESTAR and TSTAR model 28

that satisfies x = W0(x) exp(W0(x)). If gk,1 changes its behavior four times, it additionally

happens at

w3,4 = ±

√√√√−W−1 (−a
b
2k+1
2 e

2k+1
2

)
+ 2k+1

2

c

where W−1 is the second real branch of the W-function defined on [ exp(−1), 0).

Figures 14 and 15 illustrate the function g0,1 for different parameters a and b with c = 1.

While we choose b = 1, a = −1.2 < −b in Figure 14, the latter corresponds to b = 1, a =

0.2 ∈ (0,−ξ0,1b ] = (0, 0.4463 ].
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Figure 14: g0,1 with a = −1.2 and b = 1.
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Figure 15: g0,1 with a = 0.2 and b = 1.

(v) the monotonic behavior of gk,2, k ∈ IN0, (corresponding to the TSTAR model) could be

summarized in a similar explicit table as in (iv) using ξk,c,2 = 1(2c−2k−1)
(2k+1)(2c+2) depending on

different ranges for the parameter c. Later on it is only important that gk,2 is piecewise

strictly monotone so that the details are skipped due to space. However the proof is exactly

the same as for (iv).

Properties (i)-(iii) are easily verified. We prove property (iv) by writing, for x ∈ IR,

g′k,i(x) = (2k + 1)bx2k
[
a

b
+ exp(−c ηi(x2))

(
1− 2

2k + 1
cx2η′i(x

2)

)]
= (2k + 1)bx2k

[a
b
− hk,i(x)

]
,

with

hk,i : IR→ IR, hk,i(x) = − 2

2k + 1
exp(−c ηi(x2))

(
2k + 1

2
− cx2η′i(x2)

)
and

h′k,i : IR→ IR, h′k,i(x) = − 2

2k + 1
cx exp(−c ηi(x2)) ·(
−2η′(x2)− 2x2η′′(x2)− 2k + 1

2
2η′(x2) + 2cx2η′(x2)2

)
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Consider i = 1. Let k ≥ 0 and assume b > 0.

Then (2k + 1) bx2k > 0 for x ∈ IR \ {0}. Hence, g′k,1(x) > 0, x ∈ IR \ {0}, (i.e. strictly monotone

increasing) if a/b > hk,1(x) for all x ∈ IR \ {0}. As

max
x∈IR

hk,1(x) = max

{
hk,1(0), hk,1

(
±
√

2k + 3

2c

)}
=

2

2k + 1
exp

(
−2k + 3

2

)
=: ξk,1,

we obtain a strictly increasing gk,1 for a/b > ξk,1 and by a similar argument a strictly decreasing

gk,1 as long as a/b < −1 since

min
x∈IR

hk,1(x) = hk,1(0) = −1.

For a/b ∈ [−1, ξk,1 ] the monotone behavior changes, driven by the sign of the parameter a (see

(24)). Note that g′k,1(x) = 0 whenever x = 0 (k ≥ 1) or

a

b
+

(
2k + 1

2
− cx2

)
2

2k + 1
exp(−cx2) = 0

which is equivalent to(
2k + 1

2
− cx2

)
exp

(
2k + 1

2
− cx2

)
= −a

b

2k + 1

2
exp

(
2k + 1

2

)
. (25)

For solving (25) we need to consider two different cases. Note that for a ∈ (0, ξk,1 b ], the right

hand side of (25) is contained in [− exp(−1), 0), hence in the range where W has two real-values

branches, denoted by W0 and W−1. Therefore, from (25), for j = 0,−1,

2k+1
2 − cx2 = Wj

(
−a
b
2k+1
2 exp

(
2k+1
2

))
(26)

⇔ w1,2,3,4 = ±
√
−Wj(−a

b
2k+1

2
exp( 2k+1

2 ))+ 2k+1
2

c

which are well defined as

−W0

(
−a
b

2k + 1

2
exp

(
2k + 1

2

))
≥ −W0

(
2k + 1

2
exp

(
2k + 1

2

))
≥ −2k + 1

2

and

−W−1
(
−a
b

2k + 1

2
exp

(
2k + 1

2

))
≥ −W−1 (− exp(−1)) = 1.

For a ∈ [−1, 0 ] the argument of Wj in (26) is in the domain of only one real branch, namely W0,

so that (25) has only two solution leading to two monotone changes of gk,1.

An analogue argument shows the behavior of gk if b < 0.

For i = 2 one could work out the details in the same way as for i = 1.

For those combinations of a, b and c where gk,i, i = 1, 2, is strictly monotone on IR, symmetry of

the denisty of fYk,i can be derived in the same way as in (23). Note that g′k,i, i = 1, 2, is symmetric

around zero and that g−1k,i , i = 1, 2, is point symmetric around zero as an inverse function shares

this property with gk,i, i = 1, 2. Thus, for y ∈ IR, i = 1, 2,

fYk,i(−y) =
fX

(
g−1k,i (−y)

)
∣∣∣g′k,i (g−1k,i (−y)

)∣∣∣ =
fX

(
−g−1k,i (−y)

)
∣∣∣g′k,i (−g−1k,i (−y)

)∣∣∣ =
fX

(
g−1k,i (y)

)
∣∣∣g′k,i (g−1k,i (y)

)∣∣∣ = fYk,i(y).
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For the remaining parameter combinations of a, b and c we divide the real line in disjunct open

intervals on which gk,i possesses a strictly monotone behavior. As an example we present the

argument for the situation i = 1, b > 0 and a ∈ (0, ξk,1 b ] where the open intervals can be determined

explicitly. All other cases can be done in an analogous way and are omitted due to space. Define

G(1) = (−∞,−z2) ∪ (z2,∞), G(2) = (−z2,−z1) ∪ (z1, z2) and G(3) = (−z1, z1)

where z1 = w1 and z2 = w3. On the open sets G(j), j = 1, . . . , 3, g
(j)
k,1 := gk,11lG(j) , j = 1, . . . , 3,

is strictly monotone with derivatives and inverse functions g
(j)′

k,1 and (g
(j)
k,1)
−1, respectively. Hence,

from Theorem 22.3 of Behnen and Neuhaus (1995), k ∈ IN0,

fYk,1(y) =

3∑
j=1

fX

((
g
(j)
k,1

)−1
(y)

)
∣∣∣∣g(j)′k,1

((
g
(j)
k,1

)−1
(y)

)∣∣∣∣ 1ly∈Hk,i
, y ∈ IR,

for Hk,i = gk,1(G
(i)). As Hk,1 ∪Hk,2 ∪Hk,3 = IR, as g

(j)′

k,1 , j = 1, . . . , 3, are symmetric around zero

and as (g
(j)
k,1)
−1, i = 1, . . . , 3, are point symmetric around zero, we obtain fYk,1(−y) = fYk,1(y) for

all y ∈ IR.

Lemma A.2.

Let X and Y be independent real valued random variables with densities fX and fY , respectively.

Symmetries of fX around c ∈ IR (fX(x + c) = fX(−x + c), x ∈ IR) and fY around d ∈ IR then

imply that the convolution density fZ of Z = X + Y is symmetric around c+ d.

Proof.

The density fZ of Z is given by

fZ(z) =

∫
IR
fX(z − x)fY (x) dx, z ∈ IR.

Hence, for all x ∈ IR,

fZ(−x+ c+ d) =

∫
IR
fX(−x+ c+ d− y)fY (y) dy =

∫
IR
fX(−(x− d+ y) + c)fy(y) dy

=

∫
IR
fX(x− d+ y + c)fy(y) dy =

∫
IR
fX(x+ c+ d+ y − 2d)fY (y) dy

=

∫
IR
fX(x+ c+ d− z)fY (−z + 2d) dz =

∫
IR
fX(x+ c+ d− z)fY (−(z − d) + d) dz

=

∫
IR
fX(x+ c+ d− z)fY (z − d+ d) dz = fZ(x+ c+ d).

Proof of Theorem 2.4.

Let β̂n be the conditional Maximum Likelihood estimator of β = (ϑ, ξ, γ). Then by Theorem 3.2

of Tjøstheim (1986)

n1/2(β̂n − β)
d→ N(0, σ2U−1)
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and where the matrix U = (uij)i,j=1,...,3 is given by

U =


IE[y2t−1] IE[y2t−1 exp(−γy2t−1)] −IE[ξy4t−1 exp(−γy2t−1)]

IE[y2t−1 exp(−γy2t−1)] IE[y2t−1 exp(−2γy2t−1)] −IE[ξy4t−1 exp(−2γy2t−1)]

−IE[ξy4t−1 exp(−γy2t−1)] −IE[ξy4t−1 exp(−2γy2t−1)] IE[ξ2y6t−1 exp(−2γy2t−1)]

 .

In order to obtain the limiting behavior of Var(γ̂) we therefore study

σ2
(
U−1

)
33

=
σ2

det(U)
det

(
u11 u12

u21 u22

)
. (27)

The last factor of (27) behaves like O(σ4) for σ → 0 as

lim
σ↓0

σ−4det

(
u11 u12

u21 u22

)
= lim

σ↓0
σ−4

(
IE[y2t−1] IE[y2t−1 exp(−2γy2t−1)]−

[
IE[y2t−1 exp(−γy2t−1)]

]2)
= c4

due to Lemma 2.3 (iv) for some constant c4. By a similar argument we obtain det(U) = O(σ10).

Hence

lim
σ↓0

σ2

det(U)
det

(
u11 u12

u21 u22

)
= lim

σ↓0

σ6 σ−4 det

(
u11 u12

u21 u22

)
σ10 σ−10det(U)

= 0

which finishes the proof.

Proof of Theorem 3.2.

In order to derive the asymptotic distribution of F ∗ we first study the asymptotic behavior of

β̂ = (δ̂1,2, δ̂1,4, δ̂1,6). Under the null ∆yt = ut, β̂ can be written as

β̂ =

(
T∑
t=1

x′txt

)−1 T∑
t=1

x′tut (28)

with

T∑
t=1

x′txt =



T∑
t=1

y6t−1
T∑
t=1

y8t−1
T∑
t=1

y10t−1

T∑
t=1

y8t−1
T∑
t=1

y10t−1
T∑
t=1

y12t−1

T∑
t=1

y10t−1
T∑
t=1

y12t−1
T∑
t=1

y14t−1


and

T∑
t=1

x′tut =

[
T∑
t=1

y3t−1ut
T∑
t=1

y5t−1ut
T∑
t=1

y7t−1ut

]
.
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In order to determine the asymptotic behavior we have to scale the estimator β̂ properly. We thus

multiply β̂ with the scaling matrix Γ = diag(T 2, T 3, T 4) and obtain[
Γ−1

T∑
t=1

x′txtΓ
−1

]−1 [
Γ−1

T∑
t=1

x′tut

]
= Γβ̂ .

Now the asymptotic behavior of the first part of Γβ̂ follows directly from Hamilton (1989) (p. 479

ff.) and the behavior of the second part follows from the convergence to stochastic integrals for

products of I(1) variables (Theorem 4.2 from Hansen (1992), Sandberg (2009), the CMT and Itô’s

Lemma). This yields the following general result for i ∈ IN>0 and T →∞

1

T (i+1)/2

T∑
t=1

yit−1ut ⇒
1∫

0

Bi(r) dB(r) = σ(i+1)

 1

(i+ 1)
B(1)(i+1) − i

2

1∫
0

B(r)dr

 .

Given these results the OLS estimator converges as T →∞ as follows

Γβ̂ =

[
Γ−1

T∑
t=1

x′txtΓ
−1

]−1 [
Γ−1

T∑
t=1

x′tut

]
⇒ Q−1v

where

Q =



σ6
1∫
0

B6(r) dr σ8
1∫
0

B8(r) dr σ10
1∫
0

B10(r) dr

σ8
1∫
0

B8(r) dr σ10
1∫
0

B10(r) dr σ12
1∫
0

B12(r) dr

σ10
1∫
0

B10(r) dr σ12
1∫
0

B12(r) dr σ14
1∫
0

B14(r) dr


and

v =



σ4
{

1
4

1∫
0

B(1)4 − 3
2

1∫
0

B(r) dr

}
σ6
{

1
6

1∫
0

B(1)6 − 5
2

1∫
0

B(r) dr

}
σ8
{

1
8

1∫
0

B(1)8 − 7
2

1∫
0

B(r) dr

}


.

The scaled F -statistic we are concerned with reads

F ∗ =
1

3
Γβ̂′

[
σ̂2Γ(X ′X)−1Γ

]−1
Γβ̂ .

By the law of large numbers it is easy to show that under the null as T →∞

σ̂2 =
1

T − 4

T∑
t=1

(
∆yt − δ̂0 y3t−1 − δ̂1 y5t−1 − δ̂2 y7t−1

)2 P→ σ2

and hence

F ∗ ⇒ 1

3σ2
(Q−1v)′(Q−1)−1(Q−1v) =

1

3σ2
v′Q−1v.
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Under the alternative ∆yt and yit−1,∀i ∈ IN>0 are I(0) and thus it is readily seen that

1

T

T∑
t=1

∆yt = OP (1) and
1

T

T∑
t=1

yit−1 = OP (1)

are bounded in probability. Furthermore the innovation process ut is by assumption I(0) and thus

1

T

T∑
t=1

ut = OP (1)

as well. As

T
1

T

T∑
t=1

x′txt = T OP (1) = OP (T ) .

and

T∑
t=1

x′tut =
T∑
t=1

x′t

T∑
t=1

ut = T
1

T

(
T∑
t=1

x′t

T∑
t=1

ut

)
= T

1

T

T∑
t=1

x′t︸ ︷︷ ︸
OP (1)

T
1

T

T∑
t=1

ut︸ ︷︷ ︸
OP (1)

= T 2OP (1) = OP (T 2)

we get for the OLS estimator β̂, according to (28),

β̂ = (OP (T ))−1OP (T 2) = (TOP (1))−1 T 2OP (1) =
1

T
T 2OP (1) = TOP (1) = OP (T ) .

Analogously for the test statistic F ∗ it follows that

F ∗ =
1

3σ̂2
β̂′(X ′X)β̂ =

1

3σ̂2
OP (T )OP (T )OP (T ) =

1

3σ̂2
OP (T 3) .

Hence as T →∞ the test statistic F ∗ diverges to infinity.

Proof of Theorem 3.3.

We have to show that the inner product of the regressor matrix including the additional regressors

is asymptotically block diagonal (see e.g. Hamilton (1994) or Hatanaka (1996)). The inner product

(X ′X) of the regressor matrix from (19) reads

T∑
t=1

y6t−1
T∑
t=1

y8t−1
T∑
t=1

y10t−1
T∑
t=1

y3t−1∆yt−1 . . .
T∑
t=1

y3t−1∆yt−p

T∑
t=1

y8t−1
T∑
t=1

y10t−1
T∑
t=1

y12t−1
T∑
t=1

y5t−1∆yt−1 . . .
T∑
t=1

y5t−1∆yt−p

T∑
t=1

y10t−1
T∑
t=1

y12t−1
T∑
t=1

y14t−1
T∑
t=1

y7t−1∆yt−1 . . .
T∑
t=1

y7t−1∆yt−p

T∑
t=1

∆yt−1y
3
t−1

T∑
t=1

∆yt−1y
5
t−1

T∑
t=1

∆yt−1y
7
t−1

T∑
t=1

∆y2t−1 . . .
T∑
t=1

∆yt−1∆yt−p

...
...

...
... . . .

...
T∑
t=1

∆yt−py
3
t−1

T∑
t=1

∆yt−py
5
t−1

T∑
t=1

∆yt−py
7
t−1

T∑
t=1

∆yt−p∆yt−1 . . .
T∑
t=1

∆y2t−p



.
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Remember (see e.g Hamilton, 1994, p.517) that an AR(p) process

(1− φ1L− φ2L2 − . . .− φpLp)yt = εt

can be written equivalently as

{(1− ρL)− (ζ1L+ ζ2L
2 + . . .+ ζp−1L

p−1)(1− L)}yt = εt

where ρ = φ1 + φ2 + · · ·+ φp and ζj = −[φj+1 + φj+2 + . . .+ φp] for j = 1, 2, . . . , p− 1. Under the

assumption of a unit root, i.e. ρ = 1, the process can be written as

(ζ1L− ζ2L2 − . . .− ζp−1Lp−1)∆yt = εt

or

∆yt = et

where et = (ζ1L− ζ2L2 − . . .− ζp−1Lp−1)−1. The behavior of the process yt is such that it fulfills

proposition 17.3 in Hamilton (1994, p.505).

First, letting et = yt − yt−1 we obtain

T∑
t=1

y6t−1
T∑
t=1

y8t−1
T∑
t=1

y10t−1
T∑
t=1

y3t−1et−1 . . .
T∑
t=1

y3t−1et−p

T∑
t=1

y8t−1
T∑
t=1

y10t−1
T∑
t=1

y12t−1
T∑
t=1

y5t−1et−1 . . .
T∑
t=1

y5t−1et−p

T∑
t=1

y10t−1
T∑
t=1

y12t−1
T∑
t=1

y14t−1
T∑
t=1

y7t−1et−1 . . .
T∑
t=1

y7t−1et−p

T∑
t=1

et−1y
3
t−1

T∑
t=1

et−1y
5
t−1

T∑
t=1

et−1y
7
t−1

T∑
t=1

e2t−1 . . .
T∑
t=1

et−1et−p

...
...

...
... . . .

...
T∑
t=1

et−py
3
t−1

T∑
t=1

et−py
5
t−1

T∑
t=1

et−py
7
t−1

T∑
t=1

et−pet−1 . . .
T∑
t=1

e2t−p



.

Using the results (c) and (e) stated in proposition 17.3 in Hamilton (1994, p.505) combined with

the CMT and the results from theorem 3.2 we have

(X ′X)⇒

[
Q 0

0 W

]
where

W =


γ0 γ1 . . . γp−2
γ1 γ0 . . . γp−3
...

... . . .
...

γp−2 γp−3 . . . γ0

 , γj = E[(∆yt)(∆yt−j)]

and where Q is as given in Theorem 3.2 but with σk replaced by its long-run counterpart given

by λ = σ/(1 − ζ1 − . . . − ζp−1). Thus the inner product of the regressor matrix is asymptotically

block diagonal and therefore the distribution of the coefficients δ21 , δ
4
1 and δ61 is independent of the

distribution of the additional regressors.

Using similar arguments as in Theorem 3.2 it is straightforward to show that the test is consistent

under (19).
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