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Abstract

We analyze the cross-national distribution of GDP per capita and its evolution
from 1970 to 2003. We argue that peaks are not a suitable measure for distinct
growth regimes, because the number of peaks is not invariant under strictly
monotonic transformations of the data (e.g. original vs. log scale). Instead,
we model the distribution as a finite mixture, and determine its number of
components (and hence of distinct growth regimes) from the data by rigorous
statistical testing. We find that the distribution appears to have only two
components in 1970-1975, but consists of three components from 1976 onwards.
The level of GDP per capita stagnated in the poorest component, and the
richest component grew much faster than the medium component. These
findings empirically confirm the predictions of the unified growth theory.
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1 Introduction

The notion of twin peaks in the cross-country income distribution was introduced by

Quah (1993, 1996, 1997). He interpreted the emergence of twin peaks as polarization

of the cross-country income distribution into a rich and a poor convergence club.

Bianchi (1997) confirmed Quah’s observation of twin peaks via rigorous statistical

testing. The contributions of Quah are part of a larger literature on convergence

(e.g. Barro, 1991; Barro and Sala-i-Martin, 1992; Mankiw, Romer and Weil, 1992;

Sala-i-Martin, 1996; Galor, 1996; Jones, 1997; Graham and Temple, 2006). It is

controversial whether the twin peaks represent locally stable equilibria/convergence

clubs (Quah, 1996) or whether they are only a temporary phenomenon due to a high

frequency of growth miracles (Jones, 1997).

In this paper we will challenge the twin peaks result. It turns out that the number

of peaks of a distribution is not preserved under strictly monotonic transformations of

the data. A simple log transformation will change the number of components in the

cross-country income distribution from two to three (as we will see later). Although

this result is not obvious at all, the intuition is rather straightforward: Compres-

sion/decompression of the data causes the different modes to merge/separate. This

property makes peaks practically useless for economic interpretations. It certainly

doesn’t make sense to assign countries to the middle-income group on the log scale

and to the low-income group on the original scale. It also doesn’t make sense to

interpret peaks as convergence clubs, since a simple log transformation can make

them go away or emerge.

We propose a method to identify different regimes within a distribution, which is
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not affected by the scale of the data. With this method we find that the cross-country

distribution of income consists of three statistically distinguishable regimes from the

mid 1970s onwards, in 1970 we can only identify two regimes. Pittau et al. (2010)

apply a similar methodology to the cross-country income distribution and analyze

and interpret their empirical results in great detail. However, they firstly do not make

the important point that modes are scale-dependent, and thus components are clearly

superior for economic interpretations. Secondly, we apply the new methodology of

modified likelihood ratio tests for homogeneity in finite mixtures to the problem,

rather than simply bootstrapping the likelihood ratio statistic without theoretical

support. Finally, our interpretation and framing of the results differ from Pittau et

al. (2010).

The unified growth theory (c.f. Galor, 2009 for an overview) provides another

explanation for multiple regimes which also uncovers the forces that have lead to the

emergence of these regimes. The theory suggests that growth segments economies

into three fundamental regimes: a malthusian regime with slow growing economies,

fast growing economies in a sustained growth regime, and a third group in the transi-

tion from one regime to the other. One important difference to models with multiple

equilibria is that this segmentation does not represent the long-run steady state of

these economies. Variations in the levels of income only reflect country-specific char-

acteristics and not the actual stage of development. Thus, there are no critical levels

that permit economies to switch from one regime to the other, but rather critical

rates of progress. We will see that our empirical findings support the predictions of

the unified growth theory.
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2 Peaks

We use GDP per capita data (PPP, chain series with base year 2000) from the

Penn World Tables 6.2 (Summer, Heston & Aten, 2006). In order to compare our

observations over time, we restrict ourselves to those countries, of which complete

income data for the whole time period are available.1 This leaves 124 countries for

the period from 1970 to 2003 in the sample.
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Figure 1: Kernel density estimate for GDP per capita (left) and log GDP per capita
(right) in 2003. For conveniently interpreting the figure, we here use the logarithm
to the base 10

Figure 1 shows simple kernel density estimates for our data in 2003 on the original

scale ($1000) and on a log scale. From visual inspection alone we can see that the

density of the original data has two peaks while it has three peaks on the log scale. We

1 Further we exclude countries with less than half a million inhabitants. The GDP per capita of
these countries is very sensitive towards economic shocks (e.g. oil) and doesn’t necessary reflect
their fundamental economic development. This restriction doesn’t affect our main point on
peaks versus regimes, but it should help provide a clearer picture of the world’s cross-country
distribution of income.
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have chosen the year 2003 because the difference between the original scale and the

log scale is very pronounced. One reason why Quah and others might have overseen

this problem could be that the third peak in the log density wasn’t as pronounced

in the 1970s and 1980s.

The different numbers of peaks in the plots could be a simple artifact of the

nonparametric curev etimates, e.g. from inaccurate choice of the tuning parameter. It

is therefore necessary to validate the statistical significance of the peaks via rigorous

statistical testing. To this end we utilize Silverman’s test. Formally, a peak of a

density f (and similarly of the kernel estimator f̂) is a local maximum of f (or

f̂). Silverman (1981) showed that the number of modes of f̂ is a right-continuous,

monotonically decreasing function of the bandwidth h if the normal kernel K(x) =

(2π)−1 exp(−x2/2) is employed. This allowed him to define the k-critical bandwidth

hc(k) as the minimal bandwidth h for which f̂ still just has k modes and not yet k+1

modes. Based on the notion of the k-critical bandwidth, Silverman (1981) proposed

a bootstrap test for the hypothesis

H̃k : f has at most k modes against K̃k : f has more than k modes.

We apply this test to the GDP per capita and log-GDP per capita data for the

year 2003. We can clearly reject the hypothesis H̃2 of two peaks in favor of the

alternative of more than two peaks for the log data (p-value< 0.001). For the data

on the original scale we can reject the hypothesis H̃1 with a p-value of < 0.001, but

we cannot reject the hypothesis H̃2 with a p-value of about 0.45. We thus conclude

that the number of peaks which is visible in the plots (two on the original scale and
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three on the log scale) is indeed statistically significant. With this simple exercise

we have shown that the number of peaks of a density depends on the scaling of the

data. Thus, it should not be used for any interpretations on convergence clubs.

3 Components

Let f denote the density of the cross-country distribution of GDP per capita for a

given year. We model f as a finite mixture

f(x) = α1g(x;φ1) + . . .+ αmg(x;φm), x > 0, (1)

where g(x;φ) is a parametric family of densities and the weights αi ≥ 0 sum up to

one. There is no general simple connection between the number of modes of f and

the number of components m. Typically, for unimodal g, the number of modes of

f will be at most m, but often will be less than m. The number of components

is preserved if the data are transformed via a strictly monotonic transformation (if

candidate densities are correspondingly transformed).

Paap and Dijk (1998) also used a mixture to model the cross-country distribution

of GDP per capita. However, their model resembles the fit of a histogram, thus,

the ”stylized fact” of a distinction between poor and rich countries is already built

into their model. We believe that the data itself should determine the number

of components via statistical inference. To this end a finite mixture with normal

components of the log-income distribution is the appropriate tool.2

2 We restrict the model class of finite normal mixtures to have equal variances. There are
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Testing in parametric models is often accomplished by using the likelihood ratio

test (LRT). However, the standard theory of the LRT does not apply for the number

of components in finite mixture models (Dacunha-Castelle and Gassiat, 1999). Re-

cently, Chen et al. (2001, 2004) and Chen and Kalbfleisch (2005) suggested modified

LRTs, which retain a comparatively simple limit theory as well as the good power

properties of the LRT. We shall apply these tests to our problem concerning the

number of components in the distribution. At this point, we want to mention that

the LRT and also the modified LRT are invariant under strictly monotonic transfor-

mation of the data. Thus, we could test on the original scale and on the log scale, the

results are (in contrast to Silverman’s test) perfectly consistent. For convenience, we

shall use the log-data. Apart from testing the number of components, we also com-

pare the mixture models via two popular model selection criteria, namely the Akaike

information criterion (AIC, c.f. Akaike, 1978) and the Bayesian information criterion

(BIC, Schwarz, 1978), given by −2l + 2k and −2l + k log n, respectively, where l is

the log-likelihood, k the number of parameters and n the number of observations.

We first consider testing one against two components in a mixture. Suppose that

φ(y;µ, σ) is the normal distribution with mean µ and standard deviation σ, and

two main reasons for this restriction: First, the likelihood function is unbounded in mixtures
of normal distributions with distinct variances. Second, if distinct variances are allowed, the
posterior analysis is no longer consistent. For example, the parameter estimate of the standard
deviation of the richest component is about twenty times smaller than the standard deviation
of the other components in a model with unequal variances for 2003. The U.S. would not be
assigned to the richest component in this case. Our model can describe the data as good as the
model with distinct variances, but it is not affected by these shortcomings of the more general
model. Moreover, we would like to note that the use of the model with distinct variances would
not change anything about the conclusion on how many components are required.
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consider the two-component mixture

f(y;α, µ1, µ2, σ) = αφ(y;µ1, σ) + (1− α)φ(y;µ2, σ) (2)

with equal standard deviation σ. The testing problem is

H1 : f is normally distributed against K1 : f is of the form (2).

Chen, Chen and Kalbfleisch (2001) show that for known σ, the likelihood-ratio statis-

tic asymptotically follows the distribution 1/2χ2
0+1/2χ2

1, where χ
2
0 is the point mass

at zero.

Chen, Chen and Kalbfleisch (2004) also consider the problem of testing for two

against more components of a mixture distribution. More precisely, the problem is

to test

H2 : f is of the form (2) against K2 : f has more than two components.

They show that given a known σ, the modified likelihood-ratio statistic is asymptot-

ically distributed as qχ2
0 +

1
2
χ2
1 + (1 − q)χ2

2, where the proportion q depends on the

mixing distributions.

Table 1 displays the results of the modified likelihood ratio test for one vs. two

components and two vs. three components as well as the AIC and BIC model

selection criteria for the respective fitted models. First of all, we note that two

components are always preferable to one. In 1970 we cannot reject the hypothesis of
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One Component 1 vs. 2 Two Components 2 vs. 3 Three Components Four Components

Year AIC BIC p-value AIC BIC p-value AIC BIC AIC BIC

1970 152.5 158.1 < 0.01 142.6 153.9 0.87 145.9 162.8 145.3 167.8

1974 159.3 164.9 < 0.01 149.6 160.9 0.24 149.5 166.4 149.5 172.0

1975 157.5 163.1 < 0.01 147.5 158.8 0.17 146.5 163.4 146.4 169.0

1976 159.7 165.4 < 0.01 149.7 161.0 0.05 145.8 162.7 145.4 168.0

1980 167.2 172.8 < 0.01 155.7 167.00 0.04 151.2 168.1 155.2 177.8

1985 173.1 178.7 < 0.01 162.5 173.8 0.02 156.9 173.9 157.4 180.0

1990 183.2 188.8 < 0.01 172.4 183.7 < 0.01 163.8 180.8 164.5 187.0

1995 200.2 205.7 < 0.01 189.2 200.5 < 0.01 179.8 196.8 183.8 206.4

2000 204.6 210.2 < 0.01 192.4 203.7 < 0.01 173.0 190.0 173.2 195.8

2003 206.5 212.1 < 0.01 191.6 202.9 < 0.01 173.6 190.5 174.5 197.1

Table 1: Testing for the Number of Components, 1970-2003

two vs. three components. However, the p-values of this test are decreasing in the

early 1970s and by 1976 the modified likelihood ratio test rejects a two component

model at a level of 5%. In all subsequent years the hypothesis of two components is

clearly rejected in favor of three components. This is also supported by the values

of the model selection criteria AIC and BIC, which initially are in favor of a two

component model, but over time switch toward the three component mixture model.

In Figure 2 we compare the fitted three-component density for 1976 and 2003

with a nonparametric density estimate with bandwidth hc(3). Such a comparison

could also be used for a formal goodness of fit test for our mixture model, cf. e.g.

Fan (1994). The nonparametric and our parametric estimate are quite close, thus,

our model of the data seems appropriate. We furthermore give a Quantile-Quantile

(QQ) plot of the data against the fitted mixture. Both plots clearly show that the

three component mixture with equal variances adequately describes the data.

Mixture models are routinely used for discriminant analysis, see e.g. Fraley and

Raftery (2002). In our analysis each observation can be assigned posterior probabili-

ties which give the probability of the observation to belong to each of the components
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Figure 2: Up/left: Three-component mixture density with equal variances (solid line)
and kernel density estimate based on hc(3) (dashed line) for the log-data (logarithm
to the base 10) for 1976. Up/right: QQ-Plot of the log-data for 1976 against the
quantiles of the normal mixture (three components, equal variances) together with
least squares fit (dashed line). Down/left: Three-component mixture density with
equal variances (solid line) and kernel density estimate based on hc(3) (dashed line)
for the log-data (logarithm to the base 10) for 2003. Down/right: QQ-Plot of the
log-data for 2003 against the quantiles of the normal mixture (three components,
equal variances) together with least squares fit (dashed line).
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in the mixture model. This yields three levels of income which we label poor, middle

and rich, with indices 1, 2, 3. The posterior probability of an observation y to belong

to group j, j = 1, 2, is equal to

pj(y) =
α̂jφ(y; µ̂j, σ̂)

f(y; α̂1, α̂2, µ̂1, µ̂2, µ̂3, σ̂)
,

and p3(y) = 1 − p1(y) − p2(y). Therefore, we do not merely assign an income

level to each country, but rather a probability distribution, which makes transitions

from one group to the other much more transparent. One may then assign and

observation y to one of the components by using the maximum a-posterior estimate

(MPE), which assigns the j ∈ {1, 2, 3} to country i for which pj(y) is maximal.

The posterior mean (PM) is the weighted average of the posterior probabilities, e.g.

PM(y) = p1(y) + 2p2(y) + 3p3(y). One can also determine the thresholds tj,j+1,

j = 1, 2, for the values of log-GDP per capita at which the MPE changes between

the state j and j + 1, by solving the equations pj(tj,j+1) = pj+1(tj,j+1), j = 1, 2,

yielding the unique solutions

tj,j+1 =
µ̂j + µ̂j+1

2
+ σ̂2 log(α̂j/α̂j+1)

µ̂j+1 − µ̂j

, j = 1, 2.

The percentage of countries ascribed to the first component dropped slightly over

time from initially 37.9 percent in 1976 to 35.7 percent in 2003. In comparison,

the second component slightly gained from 33.8 percent to 35.3 percent, leaving the

third component weight more or less unaltered (28.4 percent in 1970 and 29 percent

in 2003). We can observe in Figure 3 that the average GDP per capita of the first
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component stagnated at a level slightly above $1100. The average GDP per capita

of the second component increased from $3998 to $5504 which corresponds to a

37 percent increase between 1976 and 2003. The third component experienced an

increase of average GDP per capita from $12335 to $21938 (increase of 77 percent).

One should mention that up- and downward movements of countries affect these

growth rates. The growth of the third component is slowed down by countries moving

up from the second component. Regarding the second component there are positive

and negative effects, in which the negative effects outweigh the positive effects, since

only a few countries move from the third to the second component. In the first

component there should be positive effects from countries coming from the second

group, which however are counterbalanced by the poor overall growth record within

this component.

With respect to movements between the three components, we find that seven coun-

tries move up from the first to the second component (China, Sri Lanka, India,

Indonesia, Pakistan, Cameroon) and seven countries move up from the second to the

third component (Korea, Taiwan, Equatorial Guinea, Cyprus, Malaysia, Mauritius,

Chile). The speed of movement from one component to the other is quite rapid as

one can see for selected countries in Figure 4.3

There are also some downward movements, five countries fall back from the second to

the first component (Honduras, Cote d’Ivoire, Solomon Islands, Afghanistan, Iraq)

and six countries fall back from the third to the second component (South Africa,

Uruguay, Nicaragua, Argentina, Iran, Venezuela). However, their development from

3 The picture is quite similar for the other movers.
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Figure 3: Means of the distinct groups (solid lines). Income levels where the maxi-
mum a-posterior estimates switch from one group to the other (dashed lines).

1976 to 2003 seems to be heavily affected by external economic and political shocks

and not so much by their long-run growth path.

The country specific posterior means help to explain the development of the cross-

country distribution of GDP per capita from 1976 to 2003. The following general

picture emerges: First, Sub-Saharan Africa accounts mostly for the first component

which remains stagnant. Second, the emergence of the ”transition”’ component is

mostly due to the growth ”take off” in Asia and also to a relative decline of Latin

America. Most Western countries belong firmly to the 3rd component displaying

hardly any change in their posterior mean.

13



1975 1980 1985 1990 1995 2000

1.
0

1.
5

2.
0

2.
5

3.
0

Asia

Figure 4: Posterior means of selected Asian countries: China (black), Republic of
Korea (red), India (green), Malaysia (blue) and Indonesia (pink).

4 Discussion

In this paper we challenge the long standing twin peaks finding in the cross-country

distribution of GPD per capita. We show that the number of peaks of a distribution

depends on the scale (e.g. original or logarithmic) and argue that this makes the

feature of twin peaks useless for economic interpretations. Instead we use finite

mixtures to investigate the cross-country distribution of GDP per capita, since a. its

number of components does not depend on the scale, b. components in the mixture

arguably correspond better to income clubs in the distribution than its peaks, and

c. finite mixtures allow for an accurate analysis of the intra-distributional dynamics

by using posterior probability estimates.
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We argue that components should take the place of twin-peaks in the economic

growth literature. In contrast to twin-peaks, we find evidence for an emerging in-

termediate ”transitional” component in the 1970s, resulting in a three-component

distribution from 1976 onwards. The development of the three components con-

firms the theoretical predictions of the unified growth theory. The average GDP per

capita of the first component does not change over the whole observation period and

represents a regime of malthusian stagnation. The third component had by far the

highest growth rates and represents a sustained growth regime. The second compo-

nent represents countries on the move from one regime to the other, with constantly

new countries taking off from the malthusian regime and others arriving at the sus-

tained growth regime. Also the remarkable speed of the take off and the geographical

clustering of the movers is consistent with the predictions of the theory.

In addition, our method might be a useful tool to classify countries into ”poor”,

”medium” and ”rich” groups. Due to its statistical nature, the approach would be

less policy dependent than current approaches. The boundary points of income,

separating the three groups, from our point of view currently somewhat arbitrarily

obtained by the World Bank, could be replaced by the incomes where the maxi-

mum a-posterior estimate switches. For the year 2003 these are $2405 and $10859,

respectively (PPP, base year 2000).
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