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Non-technical summary 
 

One of the biggest problems in applied economic and social research is causality. We 
often find very strong empirical associations in survey data, but it is rarely possible to 
show conclusively that these associations represent cause-and-effect. A good example 
of this is in illicit drug use: nearly all heroin and cocaine users report having taken 
cannabis at an earlier stage of their drug ‘careers’, but it is very hard to determine 
whether cannabis use causes subsequent use of hard drugs. A particular problem is 
that there may be underlying personal factors – psychological characteristics, beliefs, 
access to health information, parental and peer group influence, etc – which we 
cannot observe in surveys and which act as ‘confounding variables’. For example, 
someone may have a particular psychological inclination towards self-gratification, 
which makes him or her more likely to use cannabis and also more likely to use 
heroin. It may be the underlying psychological weakness that causes the empirical 
association between cannabis and heroin, rather than cannabis-taking causing an 
increased risk of initiation into heroin use. 
 
In areas like illicit drug use where long-term human experiments are infeasible and 
unethical, researchers have to rely on observational studies which collect information 
on large numbers of individuals over time. Statistical analysis then takes account of 
underlying unobserved confounding variables by assuming that they remain constant 
over time. This makes it possible to infer the nature of an individual’s latent 
characteristics from his or her past history and then ‘purge’ their current behaviour of 
the influence of these confounding variables, to reveal the true causal relationship. 
 
These statistical methods are often regarded as best practice, but they rest on the 
strong assumption that unobserved personal characteristics are constant over time. 
This assumption is particularly strong in the context of the behaviour of young people, 
who are undergoing complex developmental and socialisation processes, and it 
conflicts with many of the ideas of developmental psychology and sociology. 
 
The aim of this paper is to question the assumption of time-invariant latent personal 
characteristics and explore the consequences for research findings if those 
characteristics change over time, while the researcher wrongly assumes them 
constant. Using a statistical model of crime and drug-taking behaviour by people aged 
10-19 observed over a four-year period 2003-6 we show that, even if cannabis has no 
causal impact on the risk of initiation into other drugs, conventional statistical 
methods tend to show a spurious positive effect of cannabis. Our conclusion is that 
many research studies suggesting a significant causal “gateway” from early cannabis 
use into later drug problems are inherently unreliable because they rest on a 
questionable assumption which is rarely tested.  
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1 Introduction

Standard models for panel data analysis, such as fixed effects and random effects regression,

include a time-invariant unobservable factor which serves as the primary link between suc-

cessive observations on the same individual. This class of models has become so standard

in applied economics as to be almost a fetish, going unchallenged despite the very strong

time-invariance restriction it embodies. The panel data literature has focused heavily on the

random versus fixed effects question which centres on the possibility of correlation between

unobserved effects and the observed covariates, but much less attention has been paid to the

time-invariance assumption. Despite this lack of concern, there is good reason to question

the latter assumption. Evidence from psychology, sociology and economics suggests that

many of the psychological characteristics and cognitive and non-cognitive capacities which

these unobservables purport to represent are not fixed for all time, particularly for young

people undergoing the complex and dynamic processes of development and socialisation.

One reason for the near-universal reliance on time-invariant individual effects is that,

in the single-equation context of conventional panel data econometrics, it is impossible to

identify completely general time-varying individual effects separately from other sources of

unobserved variation in the dependent variable, such as measurement error, and it can be

difficult to generalise the model in practice. For example, although the property of equi-

correlated residuals implied by the time-invariance assumption can be relaxed by allowing

for an additional autoregressive error component, it is often difficult to achieve good identi-

fication in practice (Calzolari and Magazzini 2009).

This single-equation approach to modeling can be contrasted with a multi-indicator ap-

proach where, with multiple dependent variables acting as indicators of a common set of

unobservables, it is possible to identify the time-series structure of those unobservables much

more clearly. The multi-indicator dynamic factor approach also matches more closely a view
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of behavioural processes which is common throughout the social sciences. We envisage per-

sonal and family background, circumstances and events shaping the development of a set

of individual preferences and capacities, which in turn influence the complex patterns of

behaviour that we observe as outcomes. These underlying circumstances and events might

include parental social class and parenting norms, neighbourhood characteristics, school

quality and resources and events like dissolution of the parental partnership and possible

repartnering. The personal attributes that develop in response to the changing environ-

ment might include cognitive and noncognitive capacities, preference attributes such as risk

aversion and time preference, other psychological characteristics such as self-control and

independence, and information or perceptions about opportunities and constraints on be-

haviour. For research involving analysis of conventional questionnaire-based survey data,

these personal characteristics are often largely unobserved and must be treated as latent

factors, detectable indirectly by their influence on behavioural outcomes. Recent examples

of this approach in economics include Heckman et al (2006) and Cunha and Heckman (2007).

The approach can be seen as generalising work on developmental trajectories by Nagin and

Tremblay (1999, 2001), which used discrete latent class mixture models and by Pudney

(2003) on crime and drug use, which used common time-invariant effects in a multi-indicator

analysis. It also generalises a vast body of work using static common factor models (see

Bollen 1989 for an exposition). The idea of analysing a fundamental developmental process

rather than investigating a simple causal impact of one variable on another is very much in

the spirit of an important strand of research in criminology (Sampson and Laub 2003, 2005).

Time-varying unobserved effects are a possibility in virtually all panel data applications,

but we focus on a case where latent dynamics is particularly likely to be a concern: the in-

volvement of young people in illicit activity. Negative outcomes like crime and drug abuse are

often seen as pathological aspects of development of secondary interest to ‘normal’ economic

and social functioning of individuals. However, for many people these negative outcomes
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are as real and important as positive outcomes like education and employment. For exam-

ple, in England at the time our panel data commenced, the net rate of enrolment in higher

education was around 35% for 20 year olds (HESA 2003) whereas the proportions of 19-21

year-olds reporting some past involvement in crime or illicit drug use were each just over

50%.1 Illicit and anti-social behaviour has frequently been studied econometrically, using

the assumption of time-invariant individual effects to identify and control for the confound-

ing effect of persistent unobservable heterogeneity and, following concerns raised by Pudney

(2010), we use this particular application of panel data methods to examine the dangers of

the time-invariance assumption.

The language of genetics is frequently used to interpret unobservable factors (“genetic

endowments”) and, implicitly, to justify the assumption of time-invariance. Recent research

in neuroscience does give some basis for this idea (Mayer and Höllt 2005, Erickson 2007). For

example, inherited vulnerability to alcohol dependency is well-established empirically and

may be linked to specific genes (Dick and Bierut 2006); it has been suggested (Anthony et al

1994) that perhaps as many as 9% of people may have some predisposition to cannabis de-

pendency, possibly stemming from dysregulation of cannabinoid receptors in the mesolimbic

dopamine system, which might conceivably have some genetic origin. However, the contri-

bution of genetic factors to dysfunctional and anti-social behaviour remains largely unknown

scientific territory and it is highly likely that the genetic influences that do exist interact in

complex ways with the social and physical environment in determining behaviour and may

themselves be modified by the environment through epigenetic processes. Whatever role

genetics may have, it is surely too naive to represent that role by an additive time-invariant

‘effect’.

The paper has three main objectives: first, in section 2, we use simple theoretical ar-

guments to show the possibility of serious bias, giving rise to distorted inferences about

1Author’s calculation from the 2003 Offending, Crime and Justice Survey. Proportions reporting involve-
ment within the last year are lower but still substantial: 24% (crime) and 33% (drugs).
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the causal pathways that lead to serious illicit behaviour, when an invalid assumption of

time-invariant individual effects is imposed on the analysis. Second, in sections 3 and 4, we

develop an estimation procedure for a class of multi-indicator dynamic models and apply the

method to panel data reflecting a wide range of problem behaviours among the 10-19 age

group. We also explore the implications of the model for the impact of individuals’ personal

characteristics and circumstances on their trajectories of illicit behaviour. Third, in section

5, we use this estimated dynamic factor model as the basis for a Monte Carlo simulation

to confirm empirically the poor performance of some common regression and GMM estima-

tors when the time-invariance assumption is invalid. We conclude in section 6, arguing that

the traditional econometric approach embedding time-invariant individual effects in single-

equation models should be questioned much more than it is at present and, in the specific

field of illicit drugs research, that much of the applied research literature on causal ‘gateway’

effects linking cannabis use to more serious problems later in life is open to criticism on these

grounds.

2 Spurious association in models with individual ef-

fects

If latent factors evolve over time but are wrongly assumed to be time-invariant, the result is

likely to be misspecification bias. Individual effects models work by ‘controlling for’ unob-

servables assumed to be constant over time. Loosely speaking, this means that, in analysing

outcomes at time t, observations from other periods are used to infer the level of the unob-

servable individual effect which can then be ‘stripped out’ of the relationship generating the

period t outcome. Time-invariance of the individual effect is clearly necessary if this proce-

dure is to succeed in removing the unobserved confounder, and we would generally expect

there to be some degree of spurious association if the estimation procedure fails to account

for the whole of the common unobserved effect.
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A simple model of the consumption of illicit drugs will make this clear. The gateway

hypothesis (MacCoun and Reuter 2001, Kandel 2002) asserts that consumption of cannabis

causes an increase in the future risk of hard drug consumption. A wide range of statistical

methods has been used in attempts to estimate a causal gateway effect, including duration

analysis (Van Ours 2003), discrete-time transition models (Pudney 2003), and instrumental

variable estimation of static (Beenstock and Rahav 2002) and dynamic (DeSimone 1998,

Kenkel et al 2001) regression models. We focus on dynamic regression methods, but the

general point being made here is likely to apply also to other dynamic modeling techniques.

2.1 A spurious gateway effect

Let Cit and Hit be individual i’s consumption of cannabis and hard drugs respectively in

period t = 1...T . Consider a one-factor dynamic model, specified as follows.

Cit = βXit +Qit + εit (1)

Hit = γXit + λQit + ηit (2)

where Xit is a vector of exogenous covariates, Qit is the individual’s latent state of personal

development and socialisation, and εit and ηit are classical random disturbances, assumed

to be mutually independent. Thus, there is no causal gateway effect here, only a correlation

generated by the common influences Xit and Qit.2

Assume Qit is generated by a dynamic regression structure:

Qit = ρQit−1 + δZit + ui + νit (3)

Equation (1) can be lagged one period and re-expressed as Qit−1 = Cit−1 − βXit−1 − εit−1.

Now substitute this for the term Qit−1 in (3) and substitute the result into (2) to give the

2The dynamic latent factor models used by Heckman and others do not generally involve lagged indicators
in the measurement equations. Each of the equations (1)-(2) can be extended by including the lagged
dependent variable to represent substance-specific habit effects, which would imply the inclusion of second-
order lags of Cit and Hit in (4). This is not generally done in regression models of the gateway effect; it
would greatly complicate the analysis without materially affecting the basic argument we make here.
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following dynamic regression relationship for hard drug use:

Hit = λρCit−1 + λδZit + γXit − λρβXit−1 − λρεit−1 + λui + λνit + ηit (4)

Estimation of a single-equation model with Cit−1 used as an explanatory covariate is some-

times used to model a causal gateway linking past use of cannabis to the risk of current

use of hard drugs. After ‘controlling for’ the individual effect ui, the coefficient of Cit−1 is

typically interpreted as a direct measure of the causal gateway effect. In this case, such an

interpretation would suggest that there exists a positive gateway effect λρ, despite the fact

that the true causal gateway effect is precisely zero in this case.

However, the situation is more complicated, since a conventional regression of Hit on

Cit−1, Zit,Xit will not give a consistent estimate of the spurious effect λρ either. There

are three sources of deviance: (i) the lagged covariates Xit−1 are not usually included in

the estimated model; (ii) there is a positive correlation between the residual component ui

and the lagged variable Cit−1; and (iii) there is a negative correlation between the residual

component −εit−1 and Cit−1.

Thus, the results of a dynamic analysis of the relationship between current hard drug use

and previous cannabis use will depend on the magnitude of the spurious gateway coefficient

λρ, the extent to which the omitted Xit−1 can be proxied by the included covariates Zit

and Xit, and the relative sizes of the variances of the hard drug-specific unobservable η and

the common persistent factor u. Note that conventional strategies using transformation to

eliminate ui or instrumental variables to deal with endogeneity of Cit−1 will not, in general,

deliver consistent estimates of the true (zero) causal gateway coefficient.
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2.2 A special case: fixed-effects regression with an AR(1) factor

To demonstrate the nature of the bias in a more concrete way, suppose Qit is generated by

the following special case of the autoregressive process (3):

Qit = ρQit−1 + ui + νit (5)

where ui represents an unobserved fixed endowment with mean 0 and variance σ2
u. For

simplicity, assume the process {Q} is stationary, so the initial condition Qi0 is randomly

distributed according to the following relation.

Qi0 =
ui

1 − ρ
+

0

∑
j=−∞

ρ−jνij (6)

An analyst mistakenly assumes that persistent unobservable effects are time-invariant, and

attempts to estimate a causal cannabis-hard drug gateway effect by regressing Hit on Xit

and Cit−1, after removing the ‘fixed effects’ by subtracting individual-specific means. He or

she will find significant evidence of a gateway effect if there is a positive correlation between

Hit − H̄i and Cit−1 − C̄ l
i , where H̄i is person i’s mean heroin consumption over the sample

period 1...T and C̄ l
i = T

−1∑T−1t=0 Cit−1 is mean lagged cannabis consumption. If Qit is truly

time-invariant, Hit−H̄i and Cit−1− C̄ l
i are independent conditional on the Xit, so fixed effects

regression gives a consistent estimate of the (zero) gateway effect, as n → ∞ with T fixed.

On the other hand, if Q is time-varying:

Cit − C̄
l
i = β(Xit − X̄i) +Qit − Q̄i + εit − ε̄i (7)

Hit − H̄i = γ(Xit − X̄
l
i) + λ(Qit − Q̄

l
i) + ηit − η̄

l
i (8)

Consequently, if Qit − Q̄i and Qit−1 − Q̄l
i are positively correlated, there will be a spurious

estimated gateway effect.

For any period t ∈ {2..T}, the covariance Cov (Qit − Q̄i , Qit−1 − Q̄l
i) can be written:

Cov (Qit − Q̄i , Qit−1 − Q̄l
i) = Cov (Qit,Qit−1) − T −1

T−1
∑
s=0

Cov (Qit,Qis) − T
−1

T

∑
s=1
Cov (Qit−1,Qis)

+T −2
T

∑
s=1

T−1
∑
j=0

Cov (Qis,Qij) (9)
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The model (5) implies:

Cov (Qis,Qit) =
σ2
u

(1 − ρ)2
+
ρ∣t−s∣σ2

ν

1 − ρ2
(10)

and therefore Qit − Q̄i and Qit−1 − Q̄l
i have covariance:

Cov (Qit − Q̄i , Qit−1 − Q̄l
i) =

σ2
ν

1 − ρ2
{ρ − T −1

T

∑
s=1
ρ∣t−1−s∣ − T −1

T−1
∑
s=0

ρ∣t−s∣ + T −2
T

∑
s=1

T−1
∑
j=0

ρ∣s−j∣} (11)

Figure 1 plots the quantity T −1∑Tt=1Cov (Qit − Q̄i , Qit−1 − Q̄l
i) /σν against ρ for various panel

lengths T . As one might expect, the longer is the observation window, the more serious is the

potential bias from misspecifying the time-varying latent factor as invariant. For the moder-

ately large positive values of the autoregressive parameter ρ which are empirically plausible,

there is a positive covariance between the residual term in the within-group transformed

equation for Hit and the lagged term Qit−1 − Q̄l
i. In this simple illustrative model, only for

the T = 2 case is there is no possibility of a spurious positive gateway effect – indeed, in very

short panels there is a real possibility of an equally spurious negative gateway effect.

Figure 1 Autocovariance of the within-group transformed latent factor
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3 A dynamic factor model

The model of the previous section serves to illustrate the source and likely nature of bias but

it is too simple for application, so we now develop and apply a more general dynamic factor

model. For any given individual, time t is measured as years of age from a fixed origin of

t = 0. The latent factors presumed to underlie behaviour are arranged in a vector qt, which

evolves over time according to a linear stochastic process:

qt =Aqt−1 +Bzt +u + εt , t = 1,2, ... (12)

where zt is a vector of observed variables representing the individual’s changing social and

economic environment, u is a vector of unobserved factors which are completely persistent

over time, εt is a vector of transient unobserved factors andA andB are coefficient matrices.

The vectors qt, u and εt are R-dimensional and zt is kz × 1.

The initial condition of this latent development process relates to period 0 (defined as

age 10 for each individual in our application), and is specified as:

q0 =Gz0 + η (13)

where the covariate vector z0 explaining the initial state may contain a different collection

of variables than z1,z2, .... The vector η is the unobservable component of q0.

The M -dimensional vector of developmental outcomes at time t is yt = (y1t ...y
M
t ). These

might take various forms: continuous variables, binary and categorical variables, event

counts, etc. For the sake of specificity, we assume that they are ordinal indicators and

that an ordered probit structure is adequate to capture the conversion of the underlying

continuous development process into discrete observed outcomes. Moreover, to avoid unim-

portant complications relating to normalisation of latent indicators, we assume that each

ordinal indicator has at least three possible levels, thus excluding binary variables. The

dimension M is likely to exceed greatly the number of latent factors, R. We allow for three
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types of influence on the outcomes yt: the individual’s general state of development and

social attunement (represented by qt); observable factors xt specific to particular outcome

types (such as local enforcement provision or drug availability and price); and unobservable

transient factors ζt (such as randomly-arising opportunities for illicit gain). The linear index

which drives the ordered probit model is:

y∗t =Cqt +Dxt + ζt (14)

ymt = j iff Γmj−1 ≤ y
∗m
t < Γmj , j = 1...Jm , m = 1...M (15)

where {Γmj } is a set of threshold parameters normalised with Γm0 = −∞ and ΓmJm = ∞ for

each m, where Jm is the number of response categories for the mth variable in the vector y.

For simplicity, we have assumed that the same set of outcome variables is observed at every

wave, so that the coefficient matrices C and D are not time-subscripted.

We assume that the unobservables (η,u,ε1...εT ,ζ1...ζT ) are jointly normally distributed,

independently of all observed covariates, with a zero mean vector. Each pair of unobservables

is independent, except for η and u, which have covariance Σηu. In addition, we assume that

the variance matrix Σζζ is diagonal, implying that all contemporaneous dependence between

outcomes at time t is due to the effect of qt and xt which, in combination, are responsible

for all serial dependence in the process {yt}. Write this underlying combination of factors

as ỹt = Cqt +Dxt. The conditional period-t outcome probability is then Pr (yt∣qt,xt) =

pt (yt ∣ ỹt;Γ), where pt(.) is the multiple ordered probit probability function, known up to a

set of parameters Γ. Under the conditional independence assumption:

pt (yt ∣ ỹt;Γ) =
M

∏
m=1

[Φ (Γmymt −1 − ỹ
m
t ) −Φ (Γmymt − ỹmt )] (16)

In Appendix 1, we examine this model in detail and demonstrate identification.
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3.1 The simulated likelihood function

Assume initially that all the explanatory covariates are observed (or can be constructed) at

each time period t = 0,1,2, ... for every individual and let q0 be the initial state of the latent

development process. We then observe yt for a sequence of periods τ...τ + k, where τ ≥ 0

and k ≤ 3, since OCJS observations begins at age 10 or later and lasts for a maximum of

four waves. In Appendix 1 we derive the covariance matrix V ∗ of the observation-period

realisation y∗ = (y∗τ ...y∗τ+k). Then y∗ can be decomposed as y∗t = µ + (I ⊗C)Hλ where

λ ∼ N(0,I), H is a matrix satisfying Ṽ =HH ′ and µt and Ṽ (defined by equations (22)-

(26) of Appendix 1) are the conditional mean vector and covariance matrix of the sequence

y∗τ ...y∗τ+k. The likelihood for a given sample individual observed over t = τ...τ + k is:

L = Eλ {
τ+k
∏
t=τ
pt(yt∣µt + (I ⊗C)Hλ;Γ)} (17)

where Eλ denotes the expectation with respect to the N(0,I) density of λ.

The dimension of the integral defining this distribution is (k+1)R, which is independent of

the number of outcome variables that are used. Nevertheless, the dimensionality is too high

for conventional quadrature algorithms to be used and we instead replace the expectation

in (17) by the mean over a set of S pseudo-random draws λ(1)...λ(S). The results presented

below are based on S = 200 replications, with antithetic variance reduction used to improve

simulation precision. Numerical optimisation is performed using the simulated annealing

global optimisation algorithm (Goffe et al 1994) as implemented in Gauss by E.G.Tsionas to

produce a starting point for a quasi-Newton algorithm implemented in the Gauss MAXLIK

routine.
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4 Estimates of the factor model

4.1 Data: the Offending, Crime and Justice Survey

The Offending, Crime and Justice Survey (OCJS) was commissioned by the Home Office

with the objective of providing a base for measuring prevalence of offending behaviour and

drug use in the general population. Specifically, the survey covers the general public aged

between 10 and 65, living in private households in England and Wales. The initial core

sample of the 2003 survey consists of 10,085 respondents, interviewed in the period January-

July. A subset of these respondents were then re-interviewed in three further waves over

2004-6 to generate a four-wave panel. Some of these panel respondents dropped out of the

survey and some new respondents were added after the 2003 wave, so that the sample is

unbalanced, both in terms of entry into and exit from the panel. The survey is mainly

carried out with computer-assisted personal interviewing (CAPI), but a computer-assisted

self-administered questionnaire (CASI) is used for sensitive areas like illicit activity. Relevant

questions establish the frequency of criminal activity, anti-social behaviour and drug use

within the last 12 months. See Murphy and Roe (2007) for a full description of OCJS

methods and questionnaire content.

Our chronology takes period 0 to be age 10 for each individual. This has the practical

advantage that it coincides with the lower age limit for inclusion in the OCJS sample that we

use in the empirical application and it also corresponds to the age of criminal responsibility in

England and Wales, from which the OCJS sample is drawn. The sample used for estimation

consists of the set of OCJS respondents who were: (i) aged 16 or under for at least one wave

of interviewing; (ii) gave valid responses to all questions relating to the nine forms of illicit

behaviour; (iii) gave no mutually inconsistent answers to the sequence of repeated questions

on age, gender and ethnicity; (iv) did not ever claim to have used the fictitious drug ‘semeron’

(included in the questionnaire as a check on data quality). In a small number of cases, there
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was non-monotonic attrition involving unit non-response at a wave within the individual’s

period of participation in the panel; in such cases, observations following re-entry to the

panel were discarded to ensure that a continuous set of observations was available for all

sample members. The resulting estimation sample contains 3,026 individuals, appearing in

an average of 2.7 waves per individual and spanning the age range 10-19.

We use nine trinary indicators of illicit activity, reflecting the frequency of criminal ac-

tivity, drug use, anti-social behaviour and truancy during the 12 months preceding the inter-

view, For the two categories (violence/damage and harder drugs) constructed from multiple

survey questions, frequency is defined as the maximum of the reported frequencies for each

constituent. Table 1 gives the distribution of each indicator in the sample used for estima-

tion. Although each separate form of illicit activity is relatively rare in the sample, when

viewed as a group they are highly prevalent: in only 59% of interviews do respondents re-

port no illicit activity of any kind, and only 39% of the 3,026 individuals appearing in the

panel reported no illicit activity at any interview. This sparse pattern of activity shows

clearly the importance of taking a broad view of behaviour using multiple indicators, rather

than focusing analysis on one or two specific forms of activity as is usual in the econometric

literature.

Table 1 Distribution of outcomes: sample proportions, pooled sample

Frequency in previous year (%)

Outcome None Occasional1 Frequent2

Cannabis 91.3 3.4 5.3
Minor property crime 88.6 8.2 3.2
Noisy/rude behaviour 82.9 11.1 6.0
Other illicit drugs3 98.0 1.0 1.1
Serious property crime 98.4 1.2 0.4
Property damage or violence 81.9 12.2 5.9
Nuisance to neighbours 88.9 8.3 2.8
Graffiti 94.9 3.2 1.9
Truancy4 90.4 7.1 2.5
1 drugs: < once a month last year; crime: once/twice last year; anti-social behaviour/truancy: 1-4 times last year.
2 drugs: once a month or more; crime: more than twice last year; anti-social behaviour/truancy: > 4 times last year;
3 poppers, amphetamines, ecstasy, LSD, cocaine, crack, heroin. 4 mean for those aged 16 or under
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The OCJS questionnaire allows us to construct covariates representing parental social

class and attitudes, family disruption, history of family trouble with the law and school

discipline. These covariates, appearing in the vector zt which drives the latent development

process, are defined in detail in Table A1 of Appendix 2. The OCJS does not interview

parents or teachers, so these covariates are based on the young person’s perception and

recall.

Although driven by the same latent development process, different outcomes may have

different age profiles, for several possible reasons. There may be age differences in access: for

example, truancy is only possible below the minimum school leaving age, and age limits on

entry to bars and purchase of alcohol restrict binge drinking and associated crimes of violence

and damage among under-18s. Such restrictions also make hard drugs more difficult to obtain

by the young. Relative drug prices may also matter, since younger people are perhaps less

able to afford the more expensive drugs like heroin and cocaine. To take account of these

differences in access, we enter age as an outcome-specific covariate in xt. Note that any age

effect in the latent development process cannot be separately identified and we resolve this

by excluding age from zt. Consequently, the estimated age effects represent both the effect

of ageing on the development process and its influence on the availability of different forms

of illicit activity.

A practical difficulty is that the covariate process {zt} is only partially observed since,

with the exception of gender, we do not have observations on any of the covariates in zt prior

to the year of entry into the panel, τ . To deal with this, we impute the missing values for

past zt by setting each of them equal to the earliest observed value for the relevant covariate.

4.2 Parameter estimates

In models like (12)-(14), selection of the appropriate number of factors is not straightforward.

Our main purpose in this paper is to investigate the issue of potential bias in conventional
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panel data models involving a single individual effect, so a 1-factor specification is both

parsimonious and natural. In fact, attempts to add a second factor to the structure were not

successful, with no improvement in fit by the AIC or BIC likelihood criteria. MSL estimation

was implemented using 200 pseudo-random replications with antithetic variance reduction.

The estimates are presented in Tables 2 and 3 below. The final empirical specification is

the result of simplifying a less parsimonious model on the basis of coefficient significance tests.

The initial specification involved additional variables including religious affiliation, various

neighbourhood characteristics and more detailed versions of some of covariates appearing

as simple dummy variables in the final specification. Given the long computational run

times for this model, we have not pursued the process of testing down to its conclusion and,

consequently, there remain several insignificant coefficients in the final specification. Table

2 shows the coefficients A and B in the dynamic model and G in the initial conditions

model for the unobserved factor, together with the intra-class correlation, σ2
u/(σ

2
u +σ

2
ε). The

dynamic factor process shows a high degree of autocorrelation, indicating the existence of

slowly-decaying deviations from the time-invariance that is assumed in conventional panel

data methods.
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Table 2 Parameter estimates: latent process

Covariate Current qt Initial q0

Lagged q 0.653***
(0.034)

Family trouble with law 0.454***
(0.081)

Female -0.159*** -1.173***
(0.051) (0.413)

Not two parents 0.278*** 0.9879**
(0.066) (0.466)

Stepfather 0.068 2.098***
(0.080) (0.635)

Parental interest -0.339*** 0.018
(0.043) (0.450)

School discipline weak 0.357***
(0.042)

Parental social class 1-3 -0.222
(0.338)

Intra-class correlation 0.238***
(0.055)

Table 3 shows the estimated factor loadings (C) relating the behavioural indicators to the

latent developmental state, and also the age coefficients (D) which determine the baseline

profile of behavioural risk. There are two important features of the estimates in Table 3.

First, there are significant loadings for all indicators, underlining the potential advantages

of a multi-indicator approach over a single-equation econometric analysis. A second striking

feature is the diversity in the age coefficients, which suggests that there are large differences

in the life stage at which different problem behaviours become salient. This is a complicating

issue for causal analysis, since some behaviours may tend to be observed earlier than others

simply because of differences in the ease of access to, of cost of, the behaviour in question:

precedence in time does not necessarily imply causal ordering.
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Table 3 Parameter estimates: outcomes

Covariate Latent qt Age
Cannabis 1 2.997***

(-) (0.982)
Minor property crime 0.444*** -2.336***

(0.035) (0.452)
Noisy/rude behaviour 0.492*** -2.902***

(0.037) (0.494)
Other illicit drugs 1.117*** 5.592***

(0.150) (1.395)
Serious property crime 0.612*** -2.006***

(0.079) (0.759)
Property damage or violence 0.401*** -2.683***

(0.030) (0.409)
Nuisance to neighbours 0.321*** -2.389***

(0.027) (0.354)
Graffiti 0.697*** -4.435***

(0.065) (0.783)
Truancy 0.330*** 0.894**

(0.029) (0.393)

4.3 Dynamic properties

The dynamic properties of the model cannot easily be deduced directly from the parameter

estimates, so we use dynamic simulation to illustrate the implications of these estimates. The

implied developmental trajectories are calculated in the form of a sequence of probabilities of

illicit activity for two hypothetical individuals with unfavourable and favourable observable

characteristics. The former is male, from a non-professional/managerial social class, has

a family history of trouble with the police, has divorced or separated natural parents and

a step-father, and perceives little parental or school discipline. The latter is female, from

a high-social class family with no history of trouble with the police, and perceives strong

parental and school discipline. We hold all characteristics constant through time, set unob-

served random errors at their mean values of 0, and calculate at each age from 10 to 20 the

probability of (i) any occurrence of each specific type of illicit behaviour and (ii) occurrence

at high frequency.
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The risk profiles are plotted in Figures 2 and 3 for the unfavourable and favourable cases

respectively. Despite the fact that all outcome indicators are strongly reflective of the latent

factor, there is a clear difference between the age profiles for drug use and most other types

of illicit behaviour: drug use tends to develop later and to rise strongly with a leveling-

off around age 20. In contrast, crime and anti-social behaviour are characteristic of younger

people, with peak incidence around age 14 and a steady decline after that age. The exception

is truancy, which rises steadily to age 16, when compulsory schooling comes to an end.
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(i) any occurrence

(ii) frequent occurrence

Figure 2 Age-specific probabilities of illicit or antisocial behaviour
for individuals with unfavourable characteristics
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(i) any occurrence

(ii) frequent occurrence

Figure 3 Age-specific probabilities of illicit or antisocial behaviour
for individuals with favourable characteristics
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5 Misspecification of the latent factor: the gateway

effect

We now treat the dynamic factor model of the previous section as the true data generation

process and use it to investigate the consequences of estimating a model broadly represen-

tative of the single-equation approach that is typical of econometric panel data analysis

involving time-invariant individual effects. This representative misspecified model is:

Hit = αHit−1 + βCit−1 + γwit + ui + εit (18)

where Cit and Hit are the cannabis and ‘other drugs’ outcome variables, wit = (xit,zit) is

the full vector of covariates used in the ‘true’ dynamic factor model and ui and εit are the

time-invariant and time-varying residual terms.

The Monte Carlo simulation model works as follows. For each of a series of replications

indexed by r = 1...R, generate (ηr0, u
r
i , ε

r
it,ζ

r
it) as a pseudo-random draw from the appropriate

multivariate normal distribution and then:

Step 1 Generate the initial value qri0 =Gz0 + η
r
0 for each i = 1...n.

Step 2 Generate developmental sequences of length Ti as qrit = Aq
r
it−1+Bzt+u

r
i +ε

r
it, where Ti

is the age (measured from an origin at 10 years) when individual i was last observed

in the panel.

Step 3 Construct the latent behavioural indicators y∗rit =Cq
r
it +Dxit + ζ

r
it

Step 4 Construct the observable ordinal indicators yrit from the latent y∗rit using the relevant

threshold values.

Step 5 Apply standard panel data estimators of the model (18) to the continuous latent data

y∗rit and the ordinal data yrit
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In this way, we examine the performance of the following four standard estimation meth-

ods, of which two are known to give inconsistent estimates in dynamic models fitted to

short panels and two, based on the generalised method of moments (GMM) were specifically

developed for dynamic modeling. All four of these methods are designed for analysis of

continuous rather than discrete variables, but are quite commonly used for discrete variables

in the applied research literature. To abstract from the possible biases induced by using

regression-type methods on ordinal variables, we apply them in two variants of the experi-

ment: first using the simulated ordinal data on Cit and Hit; and second using the continuous

latent variables which underlie Cit and Hit.

(i) Fixed effects regression involves least-squares regression applied to (18) after transfor-

mation to deviations from individual means. This within-group transform eliminates the

persistent effect ui but also transforms the time-varying residual to the form εit − ε̄i and

thus introduces between-period residual correlation. Consequently, even in a well-specified

model, there is correlation between the transformed residual and lagged dependent variable,

causing inconsistency as n→∞ in a short panel. (Nickell 1981).

(ii) Random effects regression uses a weighted combination of within- and between-individual

variation, by applying least-squares regression to a transformed version of (18) where each

variable is converted to a quasi-mean difference of the form yit − θiȳi, where θi is a constant

(depending on panel length Ti and estimates of var(ui) and var(εit)), chosen to achieve

efficiency in the classical panel data regression model. Since the quasi-difference transform

does not eliminate ui from the residual nor preserve the assumed serial independence of

{ε}, there are two sources of inconsistency when the method is used to estimate a dynamic

regression, even when the regression is well-specified.

(iii) GMM estimation in differences (Arellano and Bond 1991) uses time differencing of

(18) to eliminate ui. The differenced equation has a moving average residual process εit −

εit−1 which, for a correctly-specified model of the form (18), would be uncorrelated with
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the instruments {Hit−2,Hit−3, ....;Cit−2,Cit−3, ....;wit}. The Arellano-Bond estimator then

minimises a GMM criterion function embodying these moment conditions. We also use a

collapsed version of the instrument set, eschewing the period-specific use of lagged H and

C to avoid excessive numbers of instruments. We use a two-stage robust version of GMM

that incorporates a finite-sample correction due to Windmeijer (2005), as implemented in

the Stata procedure XTABOND2 (Roodman 2009).

(iv) GMM estimation in differences and levels (Arellano and Bover 1995) extends the sim-

ple Arellano-Bond differenced model by including moment conditions relating to the levels

version of equation (18) as well as its differenced form. The additional moment condition

is of the form E (∆Hit−1[ui + εit]), which adds valuable information otherwise ignored by

the GMM estimator, but which is valid in the context of model (18) only under the strong

additional assumption that the deviation of the initial observation on H from the long-run

equilibrium value is uncorrelated with ui and that Cit−1 is also uncorrelated with ui (Rood-

man 2009).

Table 4 summarises the results of these simulations, carried out using 500 replications.

The first panel is based on direct analysis of the continuous latent indicators, rather than the

discrete responses observed in actual survey data, and reveals clear positive biases for all of

the six estimators. As might be expected, random effects regression performs worst, having

the largest mean bias and a 100% rejection rate for the asymptotic t-test of the hypothesis of

a zero gateway coefficient against the alternative of a positive effect. Fixed effects regression

produces a smaller positive mean bias, but still rejects the zero gateway effect in 95% of

replications. The four variants of the GMM estimator, although designed to avoid dynamic

biases in panel data models, display a positive mean bias similar to that of crude fixed effects

regression, and the t-test for the zero gateway effect has rejection rates ranging from 69%

to 96%. The Arellano-Bond differences-only version of GMM is more affected by sampling
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error than the Arellano-Bover level+differences variant, and this contributes to its slightly

lower probability of rejecting the zero gateway hypothesis.

Table 4 Simulation results for the gateway parameter β

Fixed Random GMM
effects effects differences only levels+differences

regression regression fulla collapsedb fullc collapsedd

Continuous data

Mean β̂ 0.096 0.309 0.088 0.102 0.111 0.108

Standard deviation β̂ 0.023 0.017 0.038 0.040 0.033 0.033
Proportion significant∗ 0.994 1.000 0.694 0.800 0.962 0.944

Discrete data

Mean β̂ 0.063 0.156 -0.076 -0.099 0.047 0.051

Standard deviation β̂ 0.023 0.018 0.056 0.060 0.032 0.034
Proportion significant∗ 0.950 1.000 0.000 0.000 0.428 0.474

No. of instruments: a 27; b 15; c 37; d 19; ∗ Significantly greater than zero, using a 1-tailed 95%-level Wald test

The second panel of Table 4 is based on application of the estimators to simulated data

in the discrete form observed in the OCJS. Although the regression and GMM estimators

are all designed for analysis of continuous data, it has become common practice to apply

these methods to discrete panel data, since this avoids the complexity of nonlinear modeling

and retains the possibility of using fixed effects and differencing to eliminate unobservables.

It is often argued that ignoring discreteness in this way makes little difference to the results

obtained. Our simulations clearly contradict this. Note that, because of differences in

scale between the discrete indicators and their latent counterparts, mean biases cannot be

compared across the two panels of Table 4, but estimation precision, as measured by the

coefficients of variation of the simulated coefficients, definitely declines as a consequence of

the lower information content of the discrete indicators. The difference-only version of the

GMM estimator now behaves quite perversely, with a negative mean bias and a zero rejection

rate for the null hypothesis of a zero gateway coefficient.3 In contrast, the Arellano and Bover

version of GMM again has a positive mean bias only slightly smaller than that of fixed effects

3However, there would be rejection rates of 38% and 33% for the collapsed and full instrument sets
respectively, if we were to use a two-sided 95%-level test.
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regression and continues to reject the zero gateway hypothesis in an uncomfortably large

proportion (43-47%) of cases. The reduction in the rejection rate relative to fixed-effects

regression is due to the greater extent of sampling variation so, if a spuriously significant

gateway effect were avoided in practice, it would mainly be due to statistical imprecision

rather than lack of bias – hardly a triumph for econometric modeling.

6 Conclusions

Panel data are valuable because they give us more scope for establishing causal relationships

than do simple cross-sections. They also allow us to deal with persistent unobservable factors

that might otherwise generate spurious associations. In this study, we have examined the

issue of causal association in the presence of persistent unobservables, focusing specifically

on the important case of the gateway hypothesis, which holds that involvement in low-level

drug abuse (such as smoking cannabis) causes a rise in the risk of subsequent more serious

drug abuse. The standard method of estimating gateway effects is to use panel data to

allow observation of current cannabis use and subsequent use of other drugs and control for

unobservable factors which are assumed constant over time.

In this paper we have done three things. First, we have argued that, rather than inves-

tigating a simple impact of one behavioural outcome (cannabis use) on another (subsequent

hard drug use), we should allow the possibility that both outcomes are expressions of the

same underlying developmental process which governs the way that behavioural decisions

are made. This is line with much of the literature on human development in psychology,

sociology and, more recently, in economics.

Second, we have estimated a dynamic latent variable model of nine forms of illicit and

antisocial behaviour, using OCJS panel data for 10-19 year-olds in England and Wales in

2003-6. The estimated model displays a coherent pattern of dynamics underlying this wide
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range of behaviours, with a common unobservable factor that displays a high degree of

persistence – but not complete invariance – over time.

Third, we have demonstrated theoretically that, if the latent factors which underlie be-

haviour are evolving, rather than constant, over time, then standard methods based on

random or fixed effects analysis are likely to give a biased picture of the pattern of causa-

tion, typically resulting in spurious empirical ‘gateway’ effects which have little connection

with true causal mechanisms. Using the estimated dynamic factor model as a ‘true’ data

generating process in a Monte Carlo study, we have confirmed empirically the theoretical

prediction of bias causing standard panel data methods which incorporate time-invariant un-

observables to indicate a completely spurious ‘causal’ gateway between cannabis and harder

drugs.

A true causal gateway may or may not exist in reality but, in our view, standard econo-

metric methods of panel data analysis are not adequate to identify it reliably.
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Appendix 1: Identification

The latent process (12) implies that, for any period t ≥ 1, qt can be expressed as:

qt =A
tq0 +Stu +

t

∑
s=1
At−s

(Bzs + εs) (19)

where St is the t-element sum I +A + ... +At−1.

This implies the following set of linear indexes underlying the observed sequence of out-
comes:

y∗0 =CGz0 +Dx0 +Cη + ζ0 (20)

y∗t =CA
tGz0 +

t

∑
s=1
CAt−sBzs +Dxt +CStu +CA

tη +
t

∑
s=1
CAt−sεs + ζt , t ≥ 1 (21)

The joint distribution of y∗τ ...y∗τ+k conditional on the whole realisation of observed co-
variates is multivariate normal with mean vector containing elements of the form µt =

E (y∗t ∣Z,X):

µt =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

CGz0 +Dx0 t = τ = 0

CAtGz0 +∑
t
s=1CA

t−sBzs +Dxt t > τ = 0 or t ≥ τ > 0
(22)

Let Ṽ be the conditional covariance matrix of the sequence ỹt...ỹt+k, constructed from
the following terms:

Ṽ 00 = Σηη (23)

Ṽ tt =A
tΣηηA

t′
+StΣuuS

′
t +

t

∑
s=1
At−sΣεεA

t−s′
+AtΣηuS

′
t +StΣuηA

t′ for t > 0 (24)

Ṽ 0t = ΣηηA
t′
+ΣηuSt for t > 0 (25)

Ṽ t,t+s =A
tΣηηA

t+s′
+StΣuuS

′
t+s +

t

∑
j=1
At−jΣεεA

t+s−j ′
+AtΣηuSt+s +StΣuηA

t+s′

for t, s > 0 (26)

The residual autocovariances of the latent regressions for y∗t are:

V ∗
tt =CṼ ttC

′
+Σζζ for t ≥ 0 (27)

V ∗
t,t+s =CṼ t,t+sC

′ for t ≥ 0, s > 0 (28)

Make the following assumptions, which are sufficient to permit a simple constructive demon-
stration of identification but considerably stronger than necessary.
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A1 Scale normalisation For any indictor ym (with Jm > 2), set Γm1 = 0 and Γm2 = 1 with
the corresponding diagonal element of Σζζ left unrestricted. This is not the normalisation
conventionally used for the ordered probit model, but it is observationally equivalent to it
and has the advantage that the variance parameters can be left unrestricted.

A2 Non-collinearity The vector {Gz0,z1} and each of the vectors {zt,xt} (for any
period t ≥ 0) has a positive definite covariance matrix.

A3 Coefficient rank The coefficient matrices C and G are of rank R. Note that if both
C and G were of lower rank, the model could be reconstituted as a full rank system with a
smaller number of factors, constructed as linear combinations of the original ones.

A4 Normalisation of factor loadings The number of outcome indicators exceeds the
number of latent factors (M > R) and the M × R matrix of factor loadings is normalised

to be of the form C = (
IR
C2

) for a suitable ordering of the outcome variables. The ‘basis’

indicators are all non-binary, so that Jm > 2 for m = 1...R.

A5 Serial dependence of latent factors Every element of qt−1 feeds forward into at
least one element of qt, implying that all columns of A have at least one non-zero element.

We state without proof the following proposition:

Proposition Consider any system of “seemingly unrelated” ordered probit equations:

y∗ −w = Ψξ + υ (29)

ymt = j iff Γmj−1 ≤ y
∗m
t < Γmj , j = 1...Jm , m = 1...M (30)

where the displacement vector w is observed. The coefficient matrix Ψ and residual covari-
ance matrix Συυ can be estimated consistently in a randomly-sampled cross-section if the
covariates ξ are strictly exogenous and have a positive definite variance matrix. The residual
autocovariances V ∗

s,t can also be estimated consistently, by estimating the set of cross-section
ordered probits simultaneously, allowing for cross-equation residual correlation.

To establish identification in the most straightforward way, consider individuals who are
first observed at t = 0 and for at least two further periods. In period 0 we can estimate a
system of cross section ordered probit regressions of y0 on (z0,x0). The proposition, together
with inspection of (20) reveals that this identifies the coefficient matrices CG and D and
the covariance matrix V ∗

00, given the non-collinearity assumption A1. By assumption A4,
the first R rows of CG are equal to G, which is therefore identified. The second block of
M −R rows are equal to C2G and, since G has rank R, these can be solved uniquely for C2,
which is therefore identified. In period 1, a system of cross section ordered probit regressions
of y1 on (Gz0,z1) with displacement vector w =Dx1 identifies the coefficient matrices CA
and CB. The first R rows of these are A and B, which are therefore also identified.

With A,B,C and D identified from two waves of data, it remains to establish the iden-
tifiability of the covariance structure Σηη,Σuu,Σuη,Σεε,Σζζ from the residual covariances
of these cross-section multi-equation ordered probit models. Let (V )

+
denote the R × R

principal submatrix of any matrix V . Then:

(V ∗
00)

+
= Σηη + (Σζζ)

+
(31)
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and, since (Σζζ)
+

is diagonal, the off-diagonal elements of Σηη are identified directly from
(V ∗

00)
+
. Now consider the sub-diagonal elements of the whole of V ∗

00 written in vectorised
form:

Svec ((V ∗
00)

+
) = S [C ⊗C]vec (Σηη) (32)

where vec(Σηη) is the operator that stacks the rows of Σηη into a column vector and S
is the M(M − 1)/2 ×M2 matrix of 1s and 0s that selects the sub-diagonal elements from
vec (V 00). Note that Svec (Σζζ) = 0. Now write vec (Σηη) = T 1d + T 2s, where d is the
vector of diagonal elements of Σζζ , s is the vector of subdiagonal elements and T 1 and T 2

are corresponding matrices of 1s and 0s. Then:

S [C ⊗C]T 1d = S {vec ((V ∗
00)

+
) − [C ⊗C]T 2s} (33)

It follows that d can be recovered uniquely if rank (S [C ⊗C]T 1) ≥ R. Since S, [C ⊗C]

and T 1 are of rank M(M − 1)/2,R2 and R respectively, the diagonal elements of Σηη are
identified provided M(M − 1)/2 ≥ R, which is satisfied whenever M > R or M = R > 2.

Then observe from (27) and (28) that the following identity holds:

Σ+
ζζA

′
= V +

02 −V
+
01(I −A)′ +V +

00A
′ (34)

Since Σ+
ζζ is diagonal and every row of A′ has at least one non-zero element, the first R

variance parameters on the diagonal of Σζζ are identified by (34).

With Σηη and Σ+
ζζ determined, the remaining covariance parameters can be identified as

follows:
Σηu = V

+
01 −ΣηηA

′ (35)

Σuu = V
+
12 −V

+
11A

′
−AΣηu (36)

Σεε = V
+
11 −AΣηηA

′
−Σuu −AΣηu −Σ′

ηuA
′
−Σ+

ζζ (37)

Σ++
ζζ = V

+
00 −C2ΣηηC

′
2 (38)

where Σ++ denotes the submatrix consisting of the last M −R rows and columns of Σ.
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Appendix 2: Construction of covariates

Table A1 Definitions and sample properties of covariates

Covariate Construction of variable Mean

Age (current age - 10 )/10 0.403

Female dummy: reference category = male 0.488

Family trouble with law dummy: reference category = no sibling has been in 0.066
trouble with the police

Not two parents (age < 17 only) dummy: reference category = 0.230
currently brought up by natural mother + natural father

Stepfather (age < 17 only) dummy: reference category = 0.102
currently brought up by natural mother + step-father

Parental interest number of items from following list that parents would 3.27
mind about: fighting, graffiti, truancy, cannabis smoking

School discipline weak (age < 17 only) number of items from following list: no clear 0.378
rules on behaviour; easy to truant; violence against teachers

Parental social class 1-3 dummy: household reference person has NS-SEC social 0.430
class 1-3
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