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Collusive Communication Schemes in a
First-Price Auction

Helmuts Āzacis� and Péter Vida��

May 2012

Abstract

We study optimal bidder collusion at �rst-price auctions when the
collusive mechanism only relies on signals about bidders�valuations.
We build on Fang and Morris (2006) when two bidders have low or
high private valuation of a single object and additionally each receives
a private noisy signal from an incentiveless center about the oppo-
nent�s valuation. We derive the unique symmetric equilibrium of the
�rst price auction for any symmetric, possibly correlated, distribution
of signals, when these can only take two values. Next, we �nd the
distribution of 2-valued signals, which maximizes the joint payo¤s of
bidders. We prove that allowing signals to take more than two val-
ues will not increase bidders�payo¤s if the signals are restricted to be
public. We also investigate the case when the signals are chosen con-
ditionally independently and identically out of n � 2 possible values.
We demonstrate that bidders are strictly better o¤ as signals can take
on more and more possible values. Finally, we look at another spe-
cial case of the correlated signals, namely, when these are independent
of the bidders�valuations. We show that in any symmetric 2-valued
strategy correlated equilibrium, the bidders bid as if there were no
signals at all and, hence, are not able to collude.

Keywords: Bidder-optimal signal structure; Collusion; (Bayes) cor-
related equilibrium; First price auction; Public and private signals.

JEL Classi�cation Numbers: D44; D82.
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1 Introduction

In a standard independent private value (IPV) �rst price auction it is as-
sumed that each bidder observes her own valuation but has no information
about her opponents�valuations except for the distribution from which they
are drawn. However, in real life auctions, bidders may hold or may have in-
centives to gather additional information about their opponents�valuations.
For example, in procurement auctions while a �rm�s actual cost is private in-
formation, other �rms may observe its investment in new technologies which
serves as a noisy signal about the �rm�s actual cost. Fang and Morris (2006),
Bergemann and Vällimäki (2006) and Kim and Che (2004) are examples of
setups where bidders can bene�t from such noisy signals and the seller ex-
pects less revenue in �rst price auctions compared to second price auctions.1

Bidders can improve their position against the seller by acquiring informa-
tion about each other�s private information through various institutions as
well. It has been recognized that trade associations, through gathering and
sharing �ltered (aggregated) industry speci�c information, can serve as collu-
sion facilitating devices.2 For example, Genesove and Mullin (1997) provide
an interesting case study of the workings of the Sugar Institute, the trade
association uniting the U.S. domestic sugar re�ners from 1928 to 1936. They
describe how the Sugar Institute collected, aggregated and disseminated the
data about the industry among its members. One of their �ndings is that
�the Sugar Institute revealed less information to its members than it knew�
(Genesove and Mullin, 1997, p. 20). Indeed, theory also suggests that bidders
are better o¤ if the signals observed about the opponents�valuations contain
some noise instead of being perfect signals in which case bidders would bid in
a complete information environment. Hence, for collusive purposes, bidders
may agree and commit to mechanisms which provide them with such noisy
information about each other�s valuations.
Our goal is to examine the extent to which bidders can improve their

payo¤s in a one-shot IPV �rst price auction when they have access to such
mechanisms. In particular, we assume that the bidders have access to a
center, an incentiveless third party, which facilitates collusion between them.
For the collusion to be successful, the center must be able to learn the private
valuations of bidders and then, conditional on this information, coordinate

1Information about the opponents�valuations has no impact on the equilibrium bidding
strategies in the second price private value auctions, hence on the revenue of the seller.

2See, for example, Vives (1990) and the references in his Section 2.
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the bids that the bidders submit in the auction. In this paper, we abstract
away from the process how the center collects information about bidders�
valuations.3 Instead, we assume that the center already knows the realized
valuation pro�le. Before bidding in the auction, the center, depending on the
realized valuation pro�le, sends random (noisy) private signals to the bidders
about each other�s valuations. Of course, as in a standard IPV setup, each
bidder also knows her own valuation. We emphasize that a signal does not
alter bidder�s valuation of the object, but it changes the bidder�s beliefs about
the opponent�s valuation. Since the signals can be correlated, a signal can also
convey information about the signal received by the opponent. After learning
their valuations and the signals sent by the center, bidders are allowed to bid
as they want. However, by altering bidders�beliefs about the opponents�
valuations, the center a¤ects equilibrium strategies of bidders in the �rst
price auction. Therefore, we are interested in the following question: what is
the signal structure that the center should use to maximize bidders�payo¤s? 4

As in Fang and Morris (2006), we consider the simplest IPV setup with
only two bidders, whose valuations can either take low or high value. Fang
and Morris (2006) show that the seller expects less revenue in the �rst price
auction than in the second price auction when signals are drawn indepen-
dently (that is, a signal only depends on the valuation of the opponent), the
signal received by a bidder is her private information, and the signals can
take one of two values. We generalize the signal structure in several direc-
tions and address the following questions. Can the center increase bidders�
payo¤s by using correlated signals? Should the signals be distributed pub-
licly or privately? Are the bidders better o¤ if the center uses richer language
instead of 2-valued signals?

3In Section 6.1, we provide an example, which shows how the center can elicit this
information from the bidders in a (weakly) incentive compatible manner. We assume that
if a bidder reports some valuation to the center then she is not allowed to bid above it in
the auction. Requiring full incentive compatibility leads to the analysis of communication
equilibria of the �rst price auction; see, for example, Pavlov (2009) for partial results.

4Di¤erent correlated equilibrium concepts when applied to games with incomplete
information are extensively studied in Forges (1993, 2006) and Bergemann and Morris
(2011). According to the equilibrium classi�cation of Forges (1993, 2006), we look for
the best (from the bidders point of view) Bayesian solution of a standard IPV �rst-price
auction, where bidders can make use of an omniscient mediator. According to Bergemann
and Morris (2011), we look for the best Bayes correlated equilibrium of the standard IPV
�rst-price auction. The two concepts coincide in the current setup; see the discussion in
Section 4.1 of Bergemann and Morris (2011).
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We analyze and compare four classes of signal structures. First, we keep
the 2-valued signals as in Fang and Morris (2006), but allow them to be
correlated. We characterize the unique symmetric equilibrium for any 2-
valued symmetric signal structure and then �nd the signal structure that
maximizes the bidders� joint payo¤. Under the optimal symmetric signal
structure, the signals received by the bidders are neither independent, nor
perfectly correlated. Roughly speaking, a high valuation bidder, depending
on the signal she receives, either learns her opponent�s valuation or the signal
that the opponent has received, but not both. Therefore, it is possible that
both bidders have high valuation, and both know that the opponent has high
valuation, but still each is unsure what the opponent knows. As a result, the
bidders bid less aggressively.
An important subclass of the 2-valued symmetric signal structures con-

tains those, in which the randomness does not depend on the bidders�re-
alized valuation pro�le. In order to produce such signals, the center does
not have to know the pro�le of bidders� valuations. Hence, the question:
can the center induce collusive bidding without knowing the bidders� val-
uations, and just distribute correlated signals? We �nd that the answer
is negative. To be more precise, the equilibrium when the bidders receive
valuation-independent correlated signals and peg their bidding strategies to
them, is known as a strategy-correlated equilibrium of the underlying �rst
price auction.5 We �nd the following as a by-product of the analysis of the
optimal 2-valued (valuation-dependent) symmetric signal structures. No col-
lusive equilibrium in symmetric correlated strategies exists if the center uses
only 2-valued valuation-independent correlated signals. More precisely, in
any symmetric strategy-correlated equilibrium, the bidders bid exactly as in
the non-cooperative equilibrium, independently of the signals received. This
result suggests that for the collusion to be pro�table, the center must possess
some information about the valuations.
We were unable to extend the general correlated signal structure to the

case when the signals are allowed to take more than two values.6 Instead, we
next consider two extreme cases when the signals are either independent or

5We refer here to Aumann�s (1974) strategic form correlated equilibrium, which has
been applied to games with incomplete information by Cotter (1991) and Forges (1993).
See also the references in Footnote 4.

6Though, we conjecture that introducing more signal values does not increase the
bidders�payo¤s, that is, the optimal 2-valued correlated signal structure gives the overall
optimum.
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perfectly correlated, and in each case we allow the signals to take more than
two values. When the signals are perfectly correlated, the center, depending
on the valuation pro�le of the bidders, e¤ectively chooses a single signal out
of n possible values and announces it publicly. We establish that within the
class of public signals, the bidders can achieve their best payo¤s with a 2-
valued signal and allowing richer n�valued public signal does not improve
bidders�payo¤s. Even more, we show that there is no gain in having an
asymmetric public signal structure since the optimum can be implemented
with a symmetric one. This implies that, in terms of payo¤s, any public signal
structure is dominated by the optimal 2-valued correlated signal structure
discussed previously. However, the optimal public signal structure has an
attractive property that, unlike the case of the optimal 2-valued correlated
signal structure, it is independent of the prior beliefs of bidders. Therefore,
the center might prefer to use the optimal public signal if he is unsure what
are the prior beliefs of bidders. In Section 6.2, we also provide an example
of sequential auction, in which a public signal structure arises at the start
of the second round as the seller publicly announces the winning bid of the
�rst round. This example demonstrates how the seller might (unwillingly)
enhance collusion between the bidders.
The structure of the optimal 2-valued public signal is as follows. When

the signal takes one of the two values, bidder 1 knows that bidder 2 has
high valuation, while bidder 2 is unsure whether bidder 1 has low or high
valuation. When the signal takes the other value, the roles of the bidders
are reversed. Thus, after observing the signal, the bidders are asymmetric.
Let us call a bidder weak if she learns that the opponent has high valuation,
and otherwise call her strong. To gain intuition for the optimal public signal
structure, let us �rst consider what would be the expected payo¤ of high
valuation bidder in the second price auction where bidding one�s valuation is
a dominant strategy. If the bidder was weak, she would expect zero payo¤,
that is, less than in the absence of signal. And opposite, if the bidder was
strong, she would expect more than in the absence of signal. In the �rst price
auction, on the contrary, both weak and strong bidder (with high valuation)
expect as much as the strong bidder would expect in the second price auction,
that is, both types expect more than in the absence of signal. This suggests
that the public signal is optimal when the asymmetry between weak and
strong types is maximal.
The result that a 2-valued public signal maximizes bidders�payo¤s within

the class of public signals is in sharp contrast with our �ndings for the class
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of signal structures where the signals are drawn independently and identi-
cally. We show that for any n�valued independent signal structure we can
always construct an (n+ 1)�valued independent signal structure that results
in strictly higher payo¤s for the bidders. Compared to the bidders�payo¤s
under the optimal public signal structure, we �nd that the optimal 2-valued
independent signal structure gives higher payo¤s only when the prior proba-
bility of a bidder having low valuation is low. Otherwise, the optimal public
signal structure leads to higher payo¤s. Numerical results suggest that the
same conclusions also hold for n > 2. Additionally, the numerical results
indicate that the bidders�payo¤s under the optimal 2-valued correlated sig-
nal structure always exceed those that result from any independent signal
structure for any n and any prior beliefs.
We should emphasize that, except for the public signal case, we have

restricted attention to symmetric signal structures. Apart from tractability
issues that arise when dealing with asymmetric signal structures, this deci-
sion was motivated by a result in Fang and Morris (2006). They show in their
Proposition 5 that even in 2-valued independent signal case, neither symmet-
ric nor asymmetric equilibrium exists for generic values of parameters once
we consider asymmetric signal structures. For all symmetric signal structures
that we study we �nd a unique symmetric Nash equilibrium, therefore the
existence of equilibrium is not an issue in our model. However, we do not
show whether or not there also exist asymmetric equilibria.
In a seminal paper, McAfee and McMillan (1992) characterize the optimal

collusive mechanisms when the center needs to elicit bidders�private valua-
tions. However, they assume the center can enforce the bids. Marshall and
Marx (2007) and Lopomo, Marx, and Sun (2011) extend the model of McAfee
and McMillan (1992) by assuming the center cannot control the bids that
the bidders submit at the auction but he can enforce side-payments between
the bidders. In particular, Lopomo, Marx, and Sun (2011) show that in this
case there is no collusive mechanism that improves bidders�payo¤s relative
to non-cooperative bidding even if the side-payments, which only depend on
the reported valuations, are allowed. Despite this negative result, we believe
it is interesting to study how the center should share his knowledge about
bidders�valuations if he possessed such information and he could not control
the bids directly or indirectly through monetary transfers.
There exists extensive literature that studies a similar question but from

the seller�s perspective. Namely, how should the seller disclose information
about bidders�valuations in order to maximize his revenue. This question has
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been addressed both when the auction rules are �xed and in the mechanism
design context. Among the former, closest to our setup is the one by Ka-
plan and Zamir (2000) who also consider the �rst-price private value auction.
They �nd that the seller can increase his revenue through public announce-
ments about bidders�valuations. We show that the opposite result holds in
our model (see Remark 2). These di¤erences can be reconciled with the help
of Maskin and Riley (2000a) who compare seller�s revenues in �rst-price and
second-price auctions in the presence of asymmetries: the setup in Kaplan
and Zamir (2000) is closer to the one considered in Proposition 4.3 (and Ex-
ample 1) of Maskin and Riley (2000a), while our setup is closer to the one in
Proposition 4.5 (and Example 3). In the context of mechanism design, when
the seller additionally decides on the auction format, Skreta (2011) consid-
ers a model, in which similar to our model, bidder�s type is multidimensional
consisting of valuation and belief components. Skreta (2011) �nds that in the
IPV setup, the maximal revenue is obtained with full information disclosure
but the optimal mechanism is di¤erent from the �rst-price auction.
The rest of the paper is organized as follows. In Section 2, we set up the

model. Next, we study the four classes of signal structures in the same order
as discussed above. The general 2-valued signal structures, including the
correlated signals that do not depend on the bidders�valuations, are studied
in Section 3, the public signal structures in Section 4, and the independent
signal structures in Section 5. In Section 6, we provide two examples that
illustrate how bidders can collude even if they have no access to an omniscient
center. We conclude in Section 7. All major proofs are relegated to the
Appendix.

2 The Model

Two bidders, 1 and 2, compete for an object. When we refer to a generic
bidder, we use she and we do not index the notation if it does not cause
confusion. Bidders�valuations of the object are independently drawn from
identical distributions. We assume that bidder�s valuation of the object takes
one of two possible values fVL; VHg, where we set VL = 0 and VH = 1.7 The
ex ante probability that a bidder�s valuation v takes value VL is denoted by
p 2 (0; 1). Of course, the probability of VH is 1� p.

7All results extend in the obvious way for any 0 � VL < VH .
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As in standard private value auction models, each bidder privately ob-
serves her own valuation v. Fang and Morris (2006) assume that each bidder
also privately observes a noisy signal s about her opponent�s valuation. For
tractability, they assume that the noisy signal can only take two possible
qualitative categories, s 2 fL;Hg.8 Further, in Fang and Morris (2006),
the signals are drawn, conditional on realized valuations, independently and
identically from a given distribution function, implying that bidder�s signal
conveys no information about the signal received by the opponent. We gen-
eralize their setup by allowing the signals to be correlated and/or to take on
values from a larger set, namely, from the set N = f1; 2; : : : ; ng.
In contrast to Fang and Morris (2006), we also assume that the bidders

have access to an incentiveless center who knows the realized valuations of
bidders and, depending on these, sends to the bidders private signals. We
assume that prior to the auction, the bidders can choose and instruct the
center, which distribution function to use for each realized pro�le of valua-
tions. The goal is to identify the distribution that maximizes the joint payo¤
of bidders.
Since the bidders observe their signals privately, bidder l�s type is a 2-

tuple (vl; sl) where sl 2 N denotes bidder l�s (l = 1; 2) signal about bidder
m�s (m = 1; 2, m 6= l) type (vm; sm). The signals are generated as follows.
For all (i; j) 2 N �N ,

Pr ((s1; s2) = (i; j) j (v1; v2) = (VL; VL)) = r0:ij;

Pr ((s1; s2) = (i; j) j (v1; v2) = (VH ; VL)) = r1:ij;

Pr ((s1; s2) = (i; j) j (v1; v2) = (VL; VH)) = r2:ij;

Pr ((s1; s2) = (i; j) j (v1; v2) = (VH ; VH)) = rij:

We refer to (r0:ij; r1:ij; r2:ij; rij)i2N;j2N as a signal structure. Of course,

nX
i=1

nX
j=1

r0:ij =
nX
i=1

nX
j=1

r1:ij =
nX
i=1

nX
j=1

r2:ij =
nX
i=1

nX
j=1

rij = 1;

0 � r0:ij � 1, 0 � r1:ij � 1, 0 � r2:ij � 1, and 0 � rij � 1 for all
(i; j) 2 N�N . The joint distribution of types is summarized in the following
table.

8In their set up, bidders�valuations are sometimes allowed to take one of 3 possible
values. In this case, dealing with 3-valued signals already becomes intractable.
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(0; 1) � � � (0; n) (1; 1) � � � (1; n)
(0; 1) p2r0:11 � � � p2r0:1n p (1� p) r2:11 � � � p (1� p) r2:1n
...

...
...

...
...

(0; n) p2r0:n1 � � � p2r0:nn p (1� p) r2:n1 � � � p (1� p) r2:nn
(1; 1) p (1� p) r1:11 � � � p (1� p) r1:1n (1� p)2 r11 � � � (1� p)2 r1n
...

...
...

...
...

(1; n) p (1� p) r1:n1 � � � p (1� p) r1:nn (1� p)2 rn1 � � � (1� p)2 rnn

Remark 1 When signals are generated independently of realized valuation
pro�le, r0:ij = r1:ij = r2:ij = rij for all (i; j) 2 N �N . We will refer to such
signal structures as correlating devices. The Bayesian Nash equilibria cor-
responding to a correlating device are known as strategy-correlated equilibria
(Cotter, 1991; Forges, 1993).

The bidders participate in a �rst price auction with zero reserve price,9

where bidders simultaneously submit bids b depending on the realizations of
v and s. The highest bidder gets the object and pays her bid to the seller.
In the event of a tie, the bidder with higher valuation gets the object10 and
the tie-breaking can be arbitrary if bidders�valuations are the same. Next
we present an immediate result about the equilibrium behavior of types with
valuation VL.

Lemma 1 In any Bayesian Nash equilibrium of the �rst price auction, types
(0; i) for all i 2 N bid 0.

The proof is analogous to that in Lemma A.1 of Fang and Morris (2006)
and therefore is omitted.11 Given the result of Lemma 1, in the continuation,
we will only need to consider the strategies of high valuation types. Further,
since in equilibrium types (0; i) bid 0, we suppress i and refer to them collec-
tively as type v = 0, and we refer to type (1; i) for each i 2 N as type s = i.
Consequently, the joint distribution of types becomes:

9The assumption of zero reserve price is made purely for simplicity, and all subsequent
results extend in the natural way if a binding reserve price is introduced.

10On the use of this tie-breaking rule see Maskin and Riley (2000b), Kim and Che
(2004), and Fang and Morris (2006). One way to justify it is to assume that in case of
a tie, an auxiliary second price auction is held and the highest bid from the �rst price
auction serves as the starting price.

11The proof on page 151 in Maskin and Riley (1985) can also be modi�ed and adopted
to prove Lemma 1.
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0 1 � � � n
0 p2 p (1� p)x2:1 � � � p (1� p)x2:n
1 p (1� p)x1:1 (1� p)2 r11 � � � (1� p)2 r1n
...

...
...

...
n p (1� p)x1:n (1� p)2 rn1 � � � (1� p)2 rnn

where

x1:i =
nX
j=1

r1:ij and x2:i =

nX
j=1

r2:ji

for all i 2 N . It follows that, without loss of generality, we could have
assumed that only high valuation bidders receive a signal from the center in
the model.

Remark 2 If instead of maximizing the joint payo¤ of bidders, we were
interested in maximizing seller�s revenue, then in the optimum, the center
must send either completely uninformative signals or, on the contrary, reveal
fully the information about bidders� valuations. In both cases, the ex ante
payo¤ of a bidder is p (1� p). To see that the seller cannot extract more
surplus from the bidders, note that a bidder can always guarantee an ex ante
payo¤ of p (1� p) by bidding 0, according to Lemma 1.

3 The Optimal 2-Valued Signal Structure

We start by considering 2-valued symmetric signal structures: n = 2, x1:i =
x2:i for i = 1; 2, which we now write as xi, and r12 = r21. We also assume
that r12 > 0. If r12 = 0, then given the equilibrium behavior of type 0 in
Lemma 1, the equilibrium strategies of types 1 and 2 can be determined
independently. In this case, the derivation of equilibrium follows Maskin and
Riley (1985), and one can verify that the ex ante payo¤ of bidder is p (1� p),
that is, the same as in the absence of collusive communication. Similarly, we
rule out the case when

x1
x2
=
r11
r21

=
r12
r22
:

This case is equivalent to a single uninformative signal, which would again
result in the payo¤ of p (1� p) for each bidder.
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Case 1:

( ) ( )
( )
( )

( )
( )2|1Pr

1|1Pr
2|0Pr
1|0Pr

2|1Pr1|1Pr

≥

≥

Case 2:

( ) ( )
( )
( )

( )
( )2|1Pr

1|1Pr
2|0Pr
1|0Pr

2|1Pr1|1Pr

<

>

Case 3:

( ) ( )
( ) ( )2|2Pr1|2Pr

2|1Pr1|1Pr
≤
<

Case 4:

( ) ( )
( ) ( )2|2Pr1|2Pr

2|1Pr1|1Pr
>
<

Figure 1: Cases in Proposition 1

In order to �nd the optimal symmetric signal structure, we �rst char-
acterize the equilibrium strategies. In particular, we restrict attention to
symmetric equilibria.

Proposition 1 For each 2-valued symmetric signal structure, there exists a
unique symmetric equilibrium in the �rst price auction.

The full version of proposition, containing the equilibrium strategies, is
stated in the Appendix. Here we highlight the main properties of the equi-
librium.
Let Pr (jji) denote the conditional probability that a bidder of type i,

i = 1; 2, assigns to the opponent being of type j, j = 0; 1; 2. Since we
can always rename the signals, without loss of generality, we assume that
Pr (0j1) � Pr (0j2) holds. Obviously, the equilibrium strategies depend on
the signal structure and, consequently, on the conditional probabilities. In
particular, when deriving the symmetric equilibrium in Proposition 1, we
distinguish four cases which are summarized in Figure 1.12 These cases are
mutually exclusive and cover all possibilities.
In the proof to Proposition 1, we show that high valuation types use

mixed strategies in the equilibrium, and the supports of these strategies are
intervals. Let bi and bi denote the lower and upper endpoints of the interval

12If Pr (0j2) = 0 in Case 1, then we set Pr (0j1) =Pr (0j2) =1.
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for the mixed strategy of type i, i = 1; 2. We show that types 1 and 2 bid on
adjacent intervals in Cases 1 and 3: 0 = b1 � b2 = b1 < b2. In Case 2, the
support of type 1 is a subset of the support of type 2 and both supports have
a common lower endpoint: 0 = b1 = b2 < b1 < b2. In Case 4, the support of
type 2 is a subset of the support of type 1 and both supports have a common
upper endpoint: 0 = b1 � b2 < b1 = b2.
Before we identify the optimal 2-valued signal structure, we �rst discuss

a special case when the signal distribution is constant over the realized valu-
ation pro�le. That is, we want to know if there exists a symmetric strategy-
correlated equilibrium that improves on the non-cooperative payo¤s. When
the center uses a correlating device, the probabilities must satisfy the follow-
ing additional restrictions: x1 = r11+r12 and x2 = r12+r22. They imply that
Pr (0j1) = Pr (0j2) = p. Figure 1 then tells us that any strategy-correlated
equilibrium falls under Case 2 or 4. One can verify from Proposition 1 that
the equilibrium strategies of high valuation types corresponding to these cases
reduce to

Fi (b) =
p

1� p
b

1� b
for b 2 [0; 1� p], which are the equilibrium strategies of the standard �rst
price auction (Maskin and Riley, 1985).

Corollary 1 For any two-valued symmetric correlating device there exists
a unique symmetric strategy-correlated equilibrium, which coincides with the
unique Bayesian Nash equilibrium of the �rst price auction in the absence of
any signals.

This result motivates us in continuation to study signal structures that
depend on bidders�valuations.
Given the equilibrium strategies in Proposition 1, we are in a position to

�nd the symmetric signal structure that maximizes bidders�joint payo¤.

Theorem 1 Among symmetric 2-valued signal structures, (x1; x2; r11; r12; r22) =�
1; 0; 0;

p
p

1+
p
p
;
1�pp
1+
p
p

�
maximizes bidders�joint payo¤s. In the optimum, bid-

der�s ex ante payo¤ is (1� p)pp.

The distribution of types corresponding to the optimal signal structure is
shown in the following table.

12



0 1 2
0 p2 p (1� p) 0

1 p (1� p) 0 (1� p)2
p
p

1+
p
p

2 0 (1� p)2
p
p

1+
p
p
(1� p)2 1�

p
p

1+
p
p

The optimal signal structure falls under Case 3 in Proposition 1, where the
support of type 1�s strategy has collapsed in a single point.

Corollary 2 Given the optimal symmetric 2-valued signal structure, type 1
bids 0 with probability 1, while type 2 randomizes according to

F2 (b) =

p
p

1�pp
b

1� b

on the interval
�
0; 1�pp

�
in the equilibrium.

One can easily verify that type 1 is indeed indi¤erent between bidding 0
and anything in

�
0; 1�pp

�
. Further, in the optimum, both types expect the

same payo¤ of
p
p. Hence, the e¤ect of collusive signals is almost the same

as increasing the prior of the opponent having low valuation from p to
p
p.

Under the optimal signal structure, type 1 learns the signal that the
opponent observes but is unsure about the opponent�s valuation. On the
other hand, type 2 learns that the opponent has high valuation but is unsure
about the signal that the opponent observes. Consequently, type 1 knows
that if the opponent has high valuation, she will bid relatively aggressively.
Therefore, type 1 �nds it optimal only to compete against the low valuation
opponent. Although type 2 knows that she faces the high valuation bidder
and therefore needs to bid relatively aggressively, her bid is suppressed by
the possibility that the opponent bids very low.
Clearly, the payo¤ found in Theorem 1 is strictly higher than the payo¤

of p (1� p) that a bidder would expect in the absence of collusive signals.
For example, when p = 0:25, the former payo¤ is double the latter one. If
the bidders were able to capture the entire surplus, then the ex ante payo¤ of
bidder would be (1� p)

�
p+ 1

2
(1� p)

�
. Hence, there still exists a scope for

improvement upon the optimal 2-valued signal payo¤s, but we have not been
able to prove if allowing signals to take more values will strictly increase the
bidders�payo¤s. However, as the next section demonstrates, when the signals
are restricted to be public or, equivalently, perfectly correlated, adding more
values does not improve on the optimal 2-valued public signals.
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4 The Optimal Public Signal Structure

We now consider a situation when the signals are public. We allow signals
to take an arbitrary number of values, n � 2, and the signal structure to be
asymmetric. Consider the second table in Section 2. When the signals are
public, in each row i, the probabilities rij are strictly positive for at most one
j, and in each column j, the probabilities rij are strictly positive for at most
one i. Since we can reorder and rename rows and columns, we assume that
rij � 0 if i = j and rij = 0 otherwise. Given this assumption, we say that
both bidders observe one common signal, instead of a pair of signals.13

Proposition 2 Given a public signal i 2 N , if rii = 0, then both bidders
submit bids equal to 0. If x1:i = x2:i = 0 and rii > 0, then both bidders submit
bids equal to 1. If xl:i � xm:i, xl:i > 0, and rii > 0, then the equilibrium of
the �rst price auction is as follows:

1. Bidder l with vl = 1 randomizes according to

Fl:i (b) =
pxl:i

pxl:i + (1� p) rii
pxm:i + (1� p) rii

(1� p) rii
1

1� b �
pxm:i

(1� p) rii
(1)

on the interval
�
0;�bi

�
, and puts a mass Fl:i(0) > 0 on bid 0 if xl:i > xm:i;

2. Bidder m with vm = 1 randomizes according to

Fm:i (b) =
pxl:i

(1� p) rii
b

1� b (2)

on the interval
�
0;�bi

�
, where

�bi =
(1� p) rii

pxl:i + (1� p) rii
:

The equilibrium payo¤ of a bidder with valuation v = 1 is

pxl:i
pxl:i + (1� p) rii

: (3)

13More precisely, we should de�ne types (0; i) and (1; i) as in the �rst table in Section
2. Then, when a public signal i has occurred, it is common knowledge that each bidder is
of either type (0; i) or type (1; i). However, given that all types (0; i) will bid 0, they are
suppressed in type 0.

14



Given the equilibrium strategies, we now provide a signal structure that
maximizes bidders�joint payo¤. In particular, we prove that there exists a
2-valued public signal structure that achieves the maximal payo¤. In the
proof to the following theorem, we show that we can increase the joint payo¤
if we aggregate all signals for which x1:i � x2:i into one single signal and all
the remaining signals into the second signal.

Theorem 2 To achieve the maximal joint payo¤ with public signals, it is
enough that the signal takes two values, n = 2. The optimal 2-valued public
signal structure is (x1:1; x1:2; x2:1; x2:2; r11; r22) = (1; 0; 0; 1; 0:5; 0:5). In the
optimum, each bidder�s ex ante payo¤ is p (1� p) 2

1+p
.

The distribution of types corresponding to the optimal public signal struc-
ture is summarized in the following table:

0 1 2
0 p2 0 p (1� p)
1 p (1� p) (1�p)2

2
0

2 0 0 (1�p)2
2

The optimum can also be implemented with a symmetric public signal struc-
ture by exchanging columns corresponding to types 1 and 2 of bidder 2 in
the above table. Therefore, there is no gain in allowing asymmetric public
signal structures. Since the optimal public signal structure is a special case
of signal structures considered in the previous section, the ex ante payo¤ of
a bidder now is obviously lower than the one found in Theorem 1.
The structure of optimal public signals is similar to the one found in the

previous Section. One of the high valuation types, call her a weak bidder,
learns that the opponent has high valuation, while the other high valuation
type, call her a strong bidder, is unsure about the valuation of the opponent.
Furthermore, a weak bidder only bids against a strong bidder and vice versa.
As was suggested in the Introduction, it is optimal to create as high asymme-
try between both types as possible. As a result, both types bene�t. A strong
bidder believes that the opponent has low valuation with high probability,
and therefore does not bid aggressively, which in turn allows a weak bidder to
bid less aggressively even so she knows that the opponent has high valuation.
For the signal structure in Theorem 1, the strong bidder, that is, type 1 is
bidding zero in the equilibrium. It is sustained by the fact that the weak
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bidder, that is, type 2 is unsure about the signal that the opponent receives.
However, with public signals such uncertainty is absent and, as a result, the
strong bidder must now bid above zero with a positive probability. There-
fore, the optimal public signal structure leads to lower payo¤s for the bidders
compared to the one in Theorem 1. Nevertheless, this signal structure has
an attractive feature that it does not depend on the initial prior. Therefore,
if the center does not know p, he might prefer using the optimal public signal
structure to facilitate collusion.

5 Independent Private Signal Structures

For the rest of the paper we assume that the signals are independently and
identically distributed: x1:i = x2:i for all i 2 N , which we write as xi, and
rij = yiyj for all i; j 2 N . Of course,

P
i2N xi =

P
i2N yi = 1, 0 � xi � 1,

and 0 � yi � 1 for all i 2 N . We assume that there is no i 2 N such that
xi = yi = 0. That is, each signal i 2 N has ex ante positive probability to
appear, otherwise we are back to the case with less signals. Without loss of
generality we assume that

x1
y1
>
x2
y2
> ::: >

xn
yn
:

If this relationship is not satis�ed, we can always rename the signals. That
is, we can always name the signal with the highest ratio as 1, and so on.14

We prove later that if xi
yi
= xi+1

yi+1
for some i then signals i and i+ 1 can be

considered as one single signal with probabilities xi0 = xi+xi+1, yi0 = yi+yi+1
and the corresponding symmetric equilibria are the same in terms of the
payo¤s. Therefore, we will maintain these assumptions for the rest of the
paper. We will now denote a signal structure by (x; y)n = (xj; yj)j2N .
The main result of this section is that once the signals are restricted to be

independent, there is no �nite valued signal structure that would maximize
the bidders�payo¤s, meaning that it is always possible to increase the payo¤s
by allowing signals to take more values. First, however, we present the
symmetric equilibrium strategies. In the equilibrium, the bidder with the
lowest signal randomizes on an interval starting at VL and bidders with higher
and higher signals randomize on higher and higher adjacent intervals.

14If yi = 0 then we set xiyi =1.
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Proposition 3 The unique symmetric equilibrium of the �rst price auction
with independent private signal structure (x; y)n is as follows:

1. Bidder of type 1 bids 0 if y1 = 0, otherwise she randomizes over
�
�b0;�b1

�
according to the cumulative distribution function

F1 (b) =
px1

(1� p) y21
b

1� b;

where �b0 � 0 and
�b1 = 1�

px1
px1 + (1� p) y21

:

2. Bidder of type i, for i = 2; :::; n, randomizes over
�
�bi�1;�bi

�
according to

the cumulative distribution function

Fi (b) =
pxi + (1� p) yi

Pi�1
k=1 yk

(1� p) y2i
b� �bi�1
1� b ; (4)

where
�bi = 1�

pxi + (1� p) yi
Pi�1

t=1 yk

pxi + (1� p) yi
Pi

k=1 yk

�
1� �bi�1

�
: (5)

Remark 3 If for some i 2 N , xi
yi
= xi+1

yi+1
then i and i + 1 have the same

expected payo¤ for any bid in [�bi�1;�bi+1]. Moreover, it is easy to see that if
we replace signals i and i + 1 with i0 having probabilities xi0 = xi + xi+1,
yi0 = yi + yi+1 then in the corresponding equilibrium with n � 1 signals it
is true that �bi0 = �bi+1 and the strategies of types di¤erent from i0 do not
change. This shows that our original assumption with strict inequalities is
indeed without loss of generality.

The expected payo¤ of type i 2 N is

K(i; (x; y)) =
pxi + (1� p) yi

Pi�1
k=1 yk

pxi + (1� p) yi
�
1� �bi�1

�
; (6)

and each bidder�s ex ante expected payo¤ is

P (x; y) = (1� p)
X
i2N
(pxi + (1� p)yi)K(i; (x; y)): (7)
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Example 1 Let n = 2 and x1 = y2 = q and x2 = y1 = 1� q. That is, when
signal 1 is equally indicative of value VL as signal 2 is of value VH . Then the
equilibrium described in Proposition 3 is the same as in Proposition 1 of Fang
and Morris (2006). They show that among these special signal structures
there is an optimal q which minimizes the seller�s revenue. However, this
signal structure is not optimal for the bidders among all independent private
signals. Indeed, the expected payo¤ of bidder when there are 2 signals is

P (x; y) = (1� p)px1
�
1 +

px2 + (1� p) y2y1
px1 + (1� p) y21

�
= (1� p)px1

p+ (1� p) y1
px1 + (1� p) y21

:

The �rst order condition with respect to (w.r.t.) x1 is

p (1� p)2 y21 (p+ (1� p) y1)
(px1 + (1� p) y21)

2 ;

which is strictly positive if y1 > 0.15 Therefore, it is optimal to set x1 = 1.
The �rst order condition w.r.t. y1 is

(1� p) px1
� ((1� p) y1 + p)2 + p (p+ (1� p)x1)

(px1 + (1� p) y21)
2 ;

which when set equal to 0 and imposing x1 = 1 implies that

y1 =

p
p

1 +
p
p
:

The second derivative w.r.t. y1 is negative when evaluated at the optimal
value of y1. This indicates that, if signals can take on 2 di¤erent values,
x1 = y2 = q and x2 = y1 = 1�q does not hold under the optimal independent
signal structure.
Bidder�s payo¤, given the optimal 2-valued independent signal structure,

is

(1� p)
p
p
�
1 +

p
p
�

2
:

For example, when p = 0:25, bidder�s ex ante payo¤ is 0:2813. For compari-
son, Fang and Morris (2006) show that q that minimizes the seller�s revenue
is 0:7639, which results in the bidder�s payo¤ of 0:2628.

15If y1 = 0, then P (x; y) = p (1� p), that is, the same payo¤ as in the case when there
are no signals at all.
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The following theorem shows what happens with the ex ante payo¤ as we
increase the number of values that the signals can take.

Theorem 3 For any n-valued signal structure, (x; y)n there exists an (n+ 1)-
valued signal structure, (x0; y0)n+1 such that the following is true:

P ((x; y)n) < P ((x
0; y0)n+1):

To prove the theorem we take an arbitrary (x; y)n and we show that if
xn > 0 then it cannot be optimal. Hence, we assume that xn = 0 and show
that we can always introduce an additional signal value that strictly improves
the bidder�s payo¤.

Example 2 To illustrate the approach adopted in the proof of the theorem,
consider the optimal 2-valued independent signal structure found in Example
1. We construct the 3-valued signal structure by reassigning the probabilities
as follows:

x01 = (1� �)x1; y01 = (1� �) y1;
x02 = �x1; y02 = �y1 + �;
x03 = 0; y03 = 1� y1 � �;

Choosing � = 0:5 and � = 0:1, we �nd that bidder�s ex ante payo¤ is 0:2841
when p = 0:25. Hence, the bidder�s payo¤ is strictly higher than the one
obtained under the optimal 2-valued independent signal structure.
Further, the optimal 3-valued independent signal structure is16

x1 = 0:7295; y1 = 0:1941;
x2 = 0:2705; y2 = 0:1941;
x3 = 0; y3 = 0:6118;

which leads to the bidder�s payo¤ of 0:2884.

To �nd the optimal independent signal structures for n > 2 and the cor-
responding payo¤s, we needed to resort to numerical computations. Figure 2
illustrates that although the bidder�s payo¤ strictly increases in n, the gain
is small when comparing the optimal payo¤s for n = 2 and n = 500.17 (Note

16The optimum was calculated numerically.
17Our numerical calculations suggest that y1 = y2 = ::: = yn�1 holds in the optimum.

We imposed this constraint in our calculations when n was large.
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Figure 2: Bidder�s payo¤ for various signal structures

that n = 1 is equivalent to the case when there are no signals at all.) Fur-
ther, the independent signal structures dominate the optimal public signal
structure for low values of p, while the opposite result holds for high values
of p. However, it can be veri�ed that on average (that is, assuming that
the value of p is drawn from a uniform distribution) the optimal public sig-
nal structure outperforms the optimal 2-valued independent signal structure.
Furthermore, as can be seen from Example 1, the optimal 2-valued indepen-
dent signal structure depends on the knowledge of prior. Numerical results
suggest that the same conclusions hold for n > 2. These arguments speak
in favour of the use of optimal public signal structure to facilitate collusion.
Finally, we can see that the optimal 2-valued correlated signal structure out-
performs all other considered signal structures.

6 Collusion without an Omniscient Center

Our previous analysis hinges on the assumption that the bidders have access
to a center, which possesses knowledge about their valuations. In the �rst
example that follows, we show how the center can elicit this information from
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the bidders in a weakly incentive compatible manner by naturally restricting
the bids that the bidders can submit after reporting their valuation types to
the center. In the second example, the bidders can extract information about
each others�valuation from the �rst round of a sequential auction and bid
collusively in the second round. In both examples we stress that the �role�of
the omniscient center might be unwillingly played by a party, whose interests
di¤er from those of the bidders.

6.1 Eliciting Bidders�Valuations

To justify the assumption that the center possesses knowledge about the bid-
ders�valuations, here we provide a simple mechanism that allows the center
to elicit bidders�private valuations. For that, it is enough to assume that
no bidder is allowed to bid above the valuation that she has reported to the
center. To be more precise, the mechanism is as follows. First, the bidders
privately report their valuations to the center; then, conditional on the re-
ported valuations, the center sends private signals to the bidders; �nally, the
bidders bid weakly below their reported valuations in the �rst price auction.
We now argue that a bidder does not have incentives to misreport her

valuation if the other bidder reports her valuation truthfully. From Lemma
1 it follows that a type 0 bidder always expects a payo¤ of zero and has
no incentives to exaggerate her valuation. It is also easy to argue that in
equilibrium, a high valuation type irrespective of the signal that she receives
will never bid strictly below 0 (more generally, below VL). Suppose a high
valuation bidder reports to the center that her valuation is 0 and afterwards
she bids 0. She can expect a strictly positive payo¤ only if there is a tie.
We assume that the tie is broken according to the reported valuations and
not the true ones. Note that this is consistent with the interpretation in
Footnote 10 that ties are broken with the help of second price auction, and
our assumption that no bidder can bid above her reported valuation. It
follows that a high valuation bidder who has misreported her valuation can
only win against the low valuation opponent. But she can achieve the same
or even higher payo¤ by reporting her true valuation and then bidding 0.
Hence, there is an equilibrium, in which both bidders reveal their valuations
truthfully.
To justify the restriction on bids, we could think of a situation when a

regulator, before �rms set their prices in a Bertrand duopoly, collects infor-
mation about their marginal costs. Either during their dealings with the reg-
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ulator or through the regulator�s annual reports about the industry, the �rms
can obtain noisy information about rival�s cost. Hence, here the regulator
(unwillingly) plays the role of the center. Clearly, the �rms have incentives to
exaggerate about their costs and then set low prices. In this case, collusion
can not be maintained in equilibrium. Suppose, however, that the regulator
does not allow a �rm to set price below its reported cost. Such a restriction
can be reasonable as the regulator might have concerns about the quality of
the service that the �rms provide etc.. Therefore, after learning that a �rm
has set a lower price than its reported cost, the regulator can intervene for
the protection of consumers. Though, as our analysis implies, by doing this,
the regulator facilitates collusion between the �rms and harms consumers.
We conjecture that the result of this subsection also holds for more general

setups besides the one with binary valuations.

6.2 A Sequential Auction

Suppose two identical items are sold in a sequential �rst price auction. There
are only two bidders but each bidder demands both items. Furthermore, we
assume that each bidder has the same valuation for both items, which can
be either 0 or 1. The auction proceeds as follows. The bidders submit sealed
bids for the �rst item, and the auctioneer only announces the winning bid.
Next, bidders submit sealed bids for the second item, the winner of this item
is determined and the payments are made.
Now we present the equilibrium of this sequential auction. Let b1 and b2

denote the bids submitted by bidders 1 and 2 in the �rst round. A stylized
distribution of types before the second round is:

0 (1; b1) (1; b2)
0 p2 0 p (1� p) f (b2)

(1; b1) p (1� p) f (b1) (1� p)2 F (b1) f (b1) 0

(1; b2) 0 0 (1� p)2 F (b2) f (b2)

A bidder of type (1; bi) means that the bidder has high valuation and bidder i
has won the �rst round auction with a bid of bi. f (bi) denotes the probability
that bidder i submits the bid bi in the �rst round. The seller�s announcement
of the winning bid works as a public signal, which allows the bidders to
update their beliefs about the opponent�s valuation. Thus, bidder i of type
(1; bi) now believes that the opponent has low valuation with probability
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p
p+(1�p)F (bi) , while bidder i of type (1; bj), j 6= i believes that the opponent
has high valuation for sure. From Proposition 2 we know that both bidders of
type

�
1; b̂
�
, where b̂ = max fb1; b2g, expect the same payo¤ from the second

round, equal to
p

p+ (1� p)F
�
b̂
� ;

irrespective of who submitted the winning bid in the �rst round.
Expected payo¤ of bidder i with high valuation from both rounds is

(1� bi) (p+ (1� p)F (bi))
+ (p+ (1� p)F (bi))�

p

p+ (1� p)F (bi)

+ (1� p) (1� F (bi))
Z �b

bi

p

p+ (1� p)F (bj)
f (bj)

1� F (bj)
dbj;

which can be written as

(1� bi) (p+ (1� p)F (bi)) + p� p ln (p+ (1� p)F (bi)) :

At bi = 0, the expected payo¤ is

2p� p ln p:

Thus, the �rst stage equilibrium strategy is implicitly de�ned by

(1� bi) (p+ (1� p)F (bi))� p ln (p+ (1� p)F (bi)) = p (1� ln p)

over
�
0;�b
�
where

�b = 1� p+ p ln p:
We derive two conclusions from this example. First, the expected payo¤

of high valuation bidder, p (2� ln p) is higher than the one she would obtain
if the seller did not disclose any information after the �rst round of auction.
In the latter case, the expected payo¤ of high valuation bidder would be
2p. Thus, one can say that the seller is e¤ectively facilitating the collusion
between the bidders. Second, if the bidders behaved myopically and updated
their beliefs based only on the identity of the winner, but not on the winning
bid, then the distribution of types before the second round would exactly
correspond to the one derived from the optimal public signal structure in
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Theorem 2.18 In this case, the expected payo¤of bidder i with high valuation
is

(1� bi) (p+ (1� p)F (bi)) +
p

p+ (1� p) 1
2

:

It follows that in the �rst round, the bidder would bid exactly as in a standard
�rst price auction in the absence of any signals. The bidder�s equilibrium
payo¤ is equal to p + 2p

1+p
, which is less than p (2� ln p) but still higher

than 2p. Thus, even if the distribution of types before the second round is
di¤erent from the one that would be obtained from the optimal public signal
structure, the bidders bene�t from conditioning their second round beliefs on
the winning bid of the �rst round, since it allows them already to suppress
their bids in the �rst round.

7 Conclusions

We have considered the simplest IPV setup with only two bidders, whose
valuations can either take low or high value. After bidders have learnt their
own valuations but before submitting their bids in the �rst price auction,
bidders receive private random signals from a center where the randomness
depends on the bidders�realized valuation pro�le. Given the signals, bidders
update their beliefs about their opponent�s valuation, form beliefs about the
signal received by the opponent and submit their bids. We have characterized
the equilibrium bidding functions and compared bidders�equilibrium payo¤s
across di¤erent signal structures, and we have found the following. When the
signals can take on one of two possible values, we have calculated the optimal
symmetric (correlated) signal structure. We have shown that the center must
use the information about the valuations of bidders, or otherwise the bidders
cannot collude at all. That is, there exists no collusive symmetric strategy-
correlated equilibrium for 2-valued valuation-independent symmetric signal
structures. If we restrict our attention to perfectly correlated signals (that
is, public signals) the center can attain the optimal payo¤with only 2-valued
public signals. If two signals are chosen independently and identically, the
more values the signal can take on the better payo¤s bidders can achieve

18One can assume that each bidder submits a mixed bidding strategy to a computer,
and the computer randomizes accordingly and submits a bid. Hence, the bidder does not
know the bid submitted by her own computer. In this case it is enough if the seller only
announces the identity of the winner of the �rst item.
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in the symmetric equilibrium. Numerical results suggest that the optimum
achieved with 2-valued correlated signals is the overall optimum among the
signal structures that have been studied. However, the optimal signal struc-
ture depends on the bidders�prior beliefs. It is shown that the optimum
achieved with public signals is instead independent of the prior. Hence, a
center which does not know the bidders�prior might prefer to use public sig-
nals to enhance bidders�collusion. We have also provided an example how a
public signal structure emerges endogenously without the help of center after
the �rst round of a sequential auction, hence resulting in collusive bidding in
the second round of that auction.
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8 Appendix

Proposition 1 The unique symmetric equilibrium of the �rst price auction
is as follows:
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Case 1 If Pr (1j1) � Pr (1j2) > 0 and

Pr (0j1)
Pr (0j2) �

Pr (1j1)
Pr (1j2) ;

then

1. type 1 randomizes on
�
0; b1

�
according to

F1 (b) =
Pr (0j1)
Pr (1j1)

b

1� b (8)

where
�b1 =

Pr (1j1)
Pr (0j1) + Pr (1j1); (9)

2. type 2 randomizes on
�
b1; b2

�
according to

F2 (b) =
Pr (0j2) + Pr (1j2)

Pr (2j2)
b� b1
1� b (10)

where
�b2 = 1� (Pr (0j2) + Pr (1j2))

�
1� �b1

�
: (11)

Case 2 If Pr (1j1) > Pr (1j2) > 0 and

Pr (1j1)
Pr (1j2) >

Pr (0j1)
Pr (0j2) ;

then

1. type 1 randomizes on
�
0; b1

�
according to

F1 (b) =
Pr (2j2) Pr (0j1)� Pr (2j1) Pr (0j2)
Pr (2j2) Pr (1j1)� Pr (2j1) Pr (1j2)

b

1� b

where

b1 =
Pr (2j2) Pr (1j1)� Pr (2j1) Pr (1j2)

Pr (2j2)� Pr (2j1) ;
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2. type 2 randomizes on
�
0; b1

�
according to

F2 (b) =
Pr (1j1) Pr (0j2)� Pr (1j2) Pr (0j1)
Pr (2j2) Pr (1j1)� Pr (2j1) Pr (1j2)

b

1� b

and on
�
b1; b2

�
according to

F2 (b) =
Pr (0j2)
Pr (2j2)

b

1� b �
Pr (1j2)
Pr (2j2)

where b2 = 1� Pr (0j2).

Case 3 If Pr (1j1) < Pr (1j2) and 0 < Pr (2j1) � Pr (2j2), then the types bid
as in Case 1.

Case 4 If Pr (1j1) < Pr (1j2) and Pr (2j1) > Pr (2j2), then

1. type 1 randomizes on [0; b2] according to (8), where

b2 =
Pr (1j1) (Pr (0j1)� Pr (0j2))

Pr (1j2) Pr (0j1)� Pr (1j1) Pr (0j2) ;

and on
�
b2; b2

�
according to

F1 (b) =
Pr (0j1) (Pr (2j2)� Pr (2j1))

Pr (2j2) Pr (1j1)� Pr (2j1) Pr (1j2)
1

1� b

+
Pr (2j1) Pr (0j2)� Pr (2j2) Pr (0j1)
Pr (2j2) Pr (1j1)� Pr (2j1) Pr (1j2)

where b2 = 1� Pr (0j1);

2. type 2 randomizes on
�
b2; b2

�
according to

F2 (b) =
Pr (0j1) (Pr (1j1)� Pr (1j2))

Pr (2j2) Pr (1j1)� Pr (2j1) Pr (1j2)
1

1� b

+
Pr (1j2) Pr (0j1)� Pr (1j1) Pr (0j2)
Pr (2j2) Pr (1j1)� Pr (2j1) Pr (1j2) :
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Proof of Proposition 1. Without loss of generality, let Pr (0j1) � Pr (0j2).
We also assume that Pr (2j1) > 0, Pr (1j2) > 0 and Pr (kj1) 6= Pr (kj2) for
some k 2 f0; 1; 2g hold. As discussed in the main text, if these assumptions
are not satis�ed, the expected payo¤ of bidder is p (1� p).
It is easy to argue that the supremum of all submitted bids does not

exceed 1 in any equilibrium. Also, by bidding 1, a type i bidder, i = 1; 2,
expects a payo¤ of 0. To sustain it as a part of equilibrium, she must assign
zero probability to the opponent bidding anything less than 1. However,
given that x1 + x2 = 1 and r12 > 0 holds, there is a type of opponent who
will bid for sure strictly less than 1.19 It follows that the supremum of all
submitted bids is strictly less than 1, and each type i bidder, i = 1; 2, expects
a strictly positive payo¤ and wins with a strictly positive probability in any
equilibrium.
Suppose now that bidder 2 of a high valuation type bids 0 < ~b < 1 with a

strictly positive probability in an equilibrium. Then bidder 1 of either high
valuation type, instead of bidding in the interval

h
~b� �;~b

i
for some � > 0, is

better o¤ by bidding ~b+ � where � > 0 is su¢ ciently small. But then bidder
2 is better o¤ to bid ~b � � instead of ~b, which contradicts our assumption
that she bids 0 < ~b < 1 with a strictly positive probability. Thus, only
the bid of 0 can possibly occur with a strictly positive probability. Further,
the high valuation bidders cannot tie with a positive probability at 0 in
the equilibrium, as either bidder will instead prefer to bid just above 0. In
particular, it implies that if type i bids 0 with a positive probability then
rii = 0.
Let Fi (b) be the distribution function according to which type i, i = 1; 2,

randomizes in an equilibrium. Consider the union of supports of F1 (b) and
F2 (b). We claim that this union of supports is a connected set. Suppose to
the contrary that bidder 2 with high valuation bids ~b but does not bid in the
interval

h
~b� �;~b

�
. But then bidder 1 with high valuation prefers bidding

~b� � instead of ~b. In the same way we can argue that the lower limit of the
union of supports is 0.
Since there are no ties between high valuation bidders in equilibrium, the

expected payo¤ of type i bidder from submitting a bid b is given by

fPr (0ji) + Pr (iji)Fi (b) + Pr (jji)Fj (b)g (1� b) : (12)

19If, for example, x2 = r12 = 0, then type 2 would bid 1 with probability 1 in the
equilibrium.
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Let �i denote the expected payo¤ of type i, i = 1; 2. Equation (12) implies
that �i � Pr (0ji). We have already argued that there is a type i such
that bi = 0. Therefore, either �1 = Pr (0j1) or �2 = Pr (0j2) or both must
hold. If �i = Pr (0ji) for i = 1; 2, then the ex ante payo¤s are the same
as in the absence of collusive communication. If b1 = b2, then �1 = �2 =
max fPr (0j1) ;Pr (0j2)g = Pr (0j1). If bi > bj, then �j � �i = 1� bi.
Now we derive what are the restrictions on the conditional probabilities

for one or another equilibrium con�guration to exist, and next, using the
identi�ed restrictions, we determine what is the equilibrium con�guration
for each signal structure.
Suppose there is an equilibrium in which 0 = bi < bj holds. Then

Pr (iji) > 0, and the expected payo¤ of type i from bidding on the inter-
val
�
0; bj

�
is

fPr (0ji) + Pr (iji)Fi (b)g (1� b) = Pr (0ji) ;

which implies that

Fi (b) =
Pr (0ji)
Pr (iji)

b

1� b (13)

for 0 � b � bj. Consider now type j, who deviates and bids below bj. The
expected payo¤ is �

Pr (0jj) + Pr (ijj) Pr (0ji)
Pr (iji)

b

1� b

�
(1� b)

= Pr (0jj) +
�
Pr (ijj) Pr (0ji)

Pr (iji) � Pr (0jj)
�
b:

It must be that the term in curly brackets is positive or otherwise type j will
�nd it pro�table to deviate. Hence,

Pr (0ji)
Pr (0jj) �

Pr (iji)
Pr (ijj) (14)

must hold.
Suppose there is an equilibrium in which bi > bj holds. Then Pr (iji) > 0,

and the expected payo¤ of type i from bidding on the interval
�
bj; bi

�
is

fPr (0ji) + Pr (jji) + Pr (iji)Fi (b)g (1� b) = 1� bi;
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which implies that

Fi (b) =
1

Pr (iji)

�
1� bi
1� b � (Pr (0ji) + Pr (jji))

�
(15)

for b 2
�
bj; bi

�
. Consider now type j, who deviates and bids above bj. The

expected payo¤ is�
Pr (0jj) + Pr (jjj) + Pr (ijj)

Pr (iji)

�
1� bi
1� b � (Pr (0ji) + Pr (jji))

��
(1� b)

=
Pr (ijj)
Pr (iji)

�
1� bi

�
+

�
Pr (0jj) + Pr (jjj)� Pr (ijj)

Pr (iji) (Pr (0ji) + Pr (jji))
�
(1� b) :

It must be that the term in curly brackets is positive or otherwise type j will
�nd it pro�table to deviate. Hence,

Pr (0jj) + Pr (jjj)
Pr (ijj) � Pr (0ji) + Pr (jji)

Pr (iji)
or

Pr (iji) � Pr (ijj) (16)

must hold.
Suppose that 0 = bi � bj < bi � bj, that is, there exists an interval, in

which both types bid in an equilibrium. For the bids in this interval we can
set the expression in (12) equal to �i and multiply both sides with Pr (jjj).
Similarly, we multiply the analogous expression for type j with Pr (jji):

Pr (jjj)�i = Pr (jjj) fPr (0ji) + Pr (iji)Fi (b) + Pr (jji)Fj (b)g (1� b) ;
Pr (jji)�j = Pr (jji) fPr (0jj) + Pr (ijj)Fi (b) + Pr (jjj)Fj (b)g (1� b) :

Subtracting the second line from the �rst and re-arranging, we obtain the
expression for Fi (b) in the region where the supports intersect:

Fi (b) =
Pr (jjj)�i � Pr (jji)�j

Pr (2j2) Pr (1j1)� Pr (2j1) Pr (1j2)
1

1� b+
Pr (jji) Pr (0jj)� Pr (jjj) Pr (0ji)
Pr (2j2) Pr (1j1)� Pr (2j1) Pr (1j2) :

(17)
The conditional probabilities and payo¤s must be such that Fi (b) is a strictly
increasing function in this region. Also note that if Pr (2j2) Pr (1j1) = Pr (2j1) Pr (1j2),
then the supports of both types cannot overlap.
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We are now in the position to determine the equilibria for all possible
values of conditional probabilities. To simplify the analysis, we initially �nd
a symmetric equilibrium, in which the support of bids for each type is con-
nected. Afterwards, we will argue that it is the unique symmetric equilibrium
by showing that there are no symmetric equilibria, in which the support for
either type is disconnected.

Case 1. Pr (1j1) � Pr (1j2) > 0 and

Pr (0j1)
Pr (0j2) �

Pr (1j1)
Pr (1j2) (18)

imply that 0 < Pr (2j1) < Pr (2j2) and

Pr (0j2)
Pr (0j1) <

Pr (2j2)
Pr (2j1) (19)

also hold. According to (14), conditions (18) and (19), in turn, imply that
0 = b1 � b2 must hold. We argue by contradiction that b2 < b1 cannot
happen in the equilibrium. If �1 � Pr (0j1) and �2 = Pr (0j2), then F2 (b)
is a non-increasing function in (17) for (i; j) = (2; 1). Therefore, if b2 < b1,
then �1 = Pr (0j1) and �2 > Pr (0j2), which also implies that F2 (b2) = 0.
However, evaluating (17) for (i; j) = (2; 1) at b2, we �nd that

1� b2 =
Pr (1j1)�2 � Pr (1j2) Pr (0j1)

Pr (1j1) Pr (0j2)� Pr (1j2) Pr (0j1) > 1;

or b2 < 0. Thus, it follows that b1 = b2 must hold, that is, the types bid
on adjacent intervals. Thus, type 1 bids on

�
0; b1

�
according to (13) or (8),

where b1 is de�ned by F1
�
b1
�
= 1 and is given in (9). Type 2 bids on

�
b1; b2

�
according to (15). Since type 2 must be indi¤erent between bidding �b1 and
�b2, it follows that �b2 is given by (11). This allows to rewrite (15) into the
form given in (10).

Case 2. Pr (1j1) > Pr (1j2) > 0 and

Pr (1j1)
Pr (1j2) >

Pr (0j1)
Pr (0j2) (20)

imply that 0 < Pr (2j1) < Pr (2j2) and

Pr (0j2)
Pr (0j1) <

Pr (2j2)
Pr (2j1) (21)
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also hold. According to (14), conditions (20) and (21) imply that it must be
the case that b1 = b2 = 0. If 0 = bi < bj, then type j would have incentives
to bid below bj. Pr (1j1) > 0 and Pr (2j2) > 0 imply that there cannot
be a mass point at 0, and the payo¤s are �1 = Pr (0j1) and �2 = Pr (0j2),
which results in the same ex ante payo¤s as in the case without collusive
communication. Further, given the assumed conditions on probabilities, we
can verify that the distribution function in (17) is well-de�ned for i = 1; 2,
that is, it is positively sloped. Also, according to (17), the values of b at
which F1 (b) = 1 and F2 (b) = 1 hold, respectively, are

b =
Pr (2j2) Pr (1j1)� Pr (2j1) Pr (1j2)

Pr (2j2)� Pr (2j1) ;

b =
Pr (2j2) Pr (1j1)� Pr (2j1) Pr (1j2)

Pr (1j1)� Pr (1j2) :

Since the former value of b is smaller than the latter, it means that F1 (b)
reaches 1 earlier. Therefore,

b1 =
Pr (2j2) Pr (1j1)� Pr (2j1) Pr (1j2)

Pr (2j2)� Pr (2j1) > 0

and b2 = 1��2 = 1�Pr (0j2) � b1. Further, one can verify that distribution
functions (15) and (17) for (i; j) = (2; 1) evaluated at b1, give the same
answer:

F2
�
b1
�
=
Pr (0j2) Pr (1j1)� Pr (0j1) Pr (1j2)
Pr (2j2) Pr (0j1)� Pr (2j1) Pr (0j2) > 0:

To summarize, in the equilibrium, the types 1 and 2 bid according to (17),
where �1 = Pr (0j1) and �2 = Pr (0j2), on the interval

�
0; b1

�
, and type 2 also

bids on
�
b1; b2

�
according to (15).

Case 3. According to (16), conditions Pr (1j1) < Pr (1j2) and Pr (2j1) �
Pr (2j2) imply that b1 � b2 holds. But then �2 = 1 � b2, and it must be
the case that �1 � �2 or otherwise type 1 would deviate and bid b2. We
argue that b2 < b1 cannot happen in the equilibrium. Conditions Pr (1j1) <
Pr (1j2) and Pr (2j1) � Pr (2j2) together with �1 � �2 imply that Fi (b) in
(17) is a decreasing function for one of the types, depending on the sign of
Pr (2j2) Pr (1j1) � Pr (2j1) Pr (1j2). Therefore, b1 = b2 must hold, and the
types bid as in Case 1.

Case 4. According to (16), conditions Pr (1j1) < Pr (1j2) and Pr (2j1) >
Pr (2j2) imply that there cannot be an equilibrium in which bi > bj, as type
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j will want to deviate and bid above bj. Hence, if there is an equilibrium,
b1 = b2 must hold. This in turn implies that �1 = �2. As we know that
�i � Pr (0ji) for i = 1; 2 and there exists a type j for whom �j = Pr (0jj),
it must be the case that �1 = �2 = Pr (0j1). This in turn implies that
F2 (b2) = 0, and 0 = b1 � b2. Also, since �i = 1 � bi for i = 1; 2, then
b1 = b2 = 1� Pr (0j1).
Since F2 (b2) = 0, from (17) for (i; j) = (2; 1), we can solve out for b2:

b2 =
Pr (1j1) (Pr (0j1)� Pr (0j2))

Pr (1j2) Pr (0j1)� Pr (1j1) Pr (0j2) � 0:

Further, from (17) for (i; j) = (1; 2), we �nd that

F1 (b2) =
Pr (0j1)� Pr (0j2)
Pr (1j2)� Pr (1j1) � 0: (22)

Also note that (13) for i = 1 gives the same expression for F1 (b2). We can
also verify that F1 (b2) < 1. It holds if Pr (0j1)+Pr (1j1) < Pr (0j2)+Pr (1j2),
which is indeed true as it is equivalent to Pr (2j1) > Pr (2j2). Finally, one can
also verify that b2 < b1 = b2. Hence, we have characterized the equilibrium,
in which type 1 bids according to (13) in [0; b2], and both types bid according
(17), where �1 = �2 = Pr (0j1), on the interval

�
b2; b2

�
.

Finally, we prove that in any symmetric equilibrium, the support of equi-
librium bids for each type must be connected. Suppose to the contrary that
there exists an interval

�
b; b
�
such that only type i bids in this interval, while

type j (and possibly type i) bids on two disconnected intervals, and b is the
upper limit of the �rst of these intervals, while �b is the lower limit of the
second of these intervals. Note that Fj (b) = Fj

�
b
�
and Pr (iji) > 0 hold.

The expected payo¤ of type i from bidding in the interval
�
b; b
�
is

�i = fPr (0ji) + Pr (jji)Fj (b) + Pr (iji)Fi (b)g (1� b) ;
which implies that

Fi (b) =
1

Pr (iji)

�
�i
1� b � (Pr (0ji) + Pr (jji)Fj (b))

�
:

Consider now type j, who deviates and bids in
�
b; b
�
. The expected payo¤ is�

Pr (0jj) + Pr (jjj)Fj (b) +
Pr (ijj)
Pr (iji)

�
�i
1� b � (Pr (0ji) + Pr (jji)Fj (b))

��
(1� b)

=
Pr (ijj)
Pr (iji)�i +

�
Pr (0jj) + Pr (jjj)Fj (b)�

Pr (ijj)
Pr (iji) (Pr (0ji) + Pr (jji)Fj (b))

�
(1� b) :
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The above expression is linear in b. Further, note that in equilibrium, type
j is indi¤erent between bidding b and b. Therefore, he must be indi¤erent
among all bids in the interval

�
b; b
�
, which implies that the expression in the

curly brackets is zero. Then,20

Fj (b) = Fj
�
b
�
=
Pr (0ji) Pr (ijj)� Pr (0jj) Pr (iji)
Pr (2j2) Pr (1j1)� Pr (2j1) Pr (1j2) ; (23)

and

�j =
Pr (ijj)
Pr (iji)�i: (24)

It immediately follows from (23) that there is at most one discontinuity in
the support for each type.
We again consider all four cases.

Case 1. According to Pr (1j1) � Pr (1j2), Pr (2j1) < Pr (2j2), and (19),
it is true that F1 (b) < 0 for (i; j) = (2; 1) in (23). Therefore, the support of
bids for type 1 is connected. Further, from the previous analysis of Case 1,
we already know that b1 = 0. It means that type i = 1 must bid not only in
the interval

�
b; b
�
, but also in [0; b]. But then there is an interval, in which

both types bid, which has already been ruled out by the previous analysis.
Hence, it must be that the support of bids for type j = 2 is also connected.

Case 2. According to Pr (1j1) > Pr (1j2), Pr (2j1) < Pr (2j2), (20), and
(21), we obtain that F1 (b) < 0 and F2 (b) < 0 in (23), which is a contradic-
tion. Therefore, the support of bids for each type must be connected.

Case 3. We already know that the supports of both types cannot overlap
and b1 < b2 holds. Therefore, if the support of bids for type 1 is disconnected,
then so is the support of bids for type 2. Thus, it is su¢ cient to argue that the
support of bids for type 2 must be connected. We already know that �1 � �2.
However, equation (24) for (i; j) = (1; 2) together with Pr (1j1) < Pr (1j2),
implies that �1 < �2. Hence, we have obtained a contradiction.

Case 4. We know that in any equilibrium b1 = b2 and �1 = �2 must
hold. Then, (24) implies that Pr (ijj) = Pr (iji), which contradicts the
assumptions about conditional probabilities that Pr (1j1) < Pr (1j2) and

20Alternatively, the expression in the curly brackets is zero if Pr (kj1) = Pr (kj2) for all
k, but this case has been ruled out.
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Pr (2j1) > Pr (2j2).

This completes the proof that the support of bids must always be con-
nected for each type in a symmetric equilibrium. This also implies that the
equilibrium that we have found before is the unique symmetric equilibrium
for each distribution of signals.
Proof of Theorem 1. We structure the proof along the cases identi�ed in
Proposition 1.

Case 1 and 3. These cases result in the same equilibrium structure
whereby the types bid on adjacent intervals. Combining them, the restric-
tions on probabilities such that the types bid on adjacent intervals are

Pr (0j1) � Pr (0j2) ;
Pr (2j2) � Pr (2j1) ;
Pr (0j1)
Pr (1j1) � Pr (0j2)

Pr (1j2) ;

or equivalently,

px1
px1 + (1� p) (r11 + r12)

� px2
px2 + (1� p) (r12 + r22)

;

(1� p) r22
px2 + (1� p) (r12 + r22)

� (1� p) r12
px1 + (1� p) (r11 + r12)

;

x1
r11

� x2
r12
:

The payo¤ of high valuation bidder before she receives a signal is

Pr (1) �1 + Pr (2)�2

= Pr (1) Pr (0j1) + Pr (2)
�
1� �b2

�
= Pr (1) Pr (0j1) + Pr (2) (Pr (0j2) + Pr (1j2)) Pr (0j1)

Pr (0j1) + Pr (1j1)

= px1

�
1 +

px2 + (1� p) r12
px1 + (1� p) r11

�
= px1

p+ (1� p) (r11 + r12)
px1 + (1� p) r11

; (25)

where we have used (9) and (11), and Pr (i) for i = 1; 2 denotes the proba-
bility that the bidder will be of type i.
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Hence, the problem that we are solving is21

max
x1;x2;r11;r12;r22

px1
p+ (1� p) (r11 + r12)
px1 + (1� p) r11

(P1)

subject to

x1 + x2 = 1;

r11 + 2r12 + r22 = 1;
x1
r11

� x2
r12
;

px1
px1 + (1� p) (r11 + r12)

� px2
px2 + (1� p) (r12 + r22)

;

(1� p) r22
px2 + (1� p) (r12 + r22)

� (1� p) r12
px1 + (1� p) (r11 + r12)

;

and all probabilities (x1; x2; r11; r12; r22) must be non-negative. The non-
negativity constraints together with the above equality constraints ensure
that each of the probabilities is also less than 1. The inspection of this pro-
gram tells that the objective function is increasing in x1. Therefore, setting
x1 = 1 and x2 = 0 is optimal, since it does not violate any of the constraints.
Using these results, we simplify our problem to

max
r11;r12;r22

r12
p+ (1� p) r11

subject to

r11 + 2r12 + r22 = 1;

r22 (p+ (1� p) r11) � (1� p) r212;

and (r11; r12; r22) must be non-negative. Note that we have taken a monotone
transformation of the objective function.
Suppose the above inequality does not bind. Then it is always possible

to increase the payo¤ by raising r12 by a small amount, and correspondingly
decreasing r22. (If r22 = 0, then r12 = 0 must also hold. But then the
objective also takes zero value, which is clearly not a maximum.) Therefore,

21Since we restrict attention to symmetric signal structures and symmetric equilibria,
it is enough to maximize the payo¤ of single bidder.
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r22 (p+ (1� p) r11) = (1� p) r212 holds. Using both equalities we can solve
for r11 and r12 as functions of r22

r11 = 1� 2
p
r22p
1� p + r22; (26)

r12 =

p
r22p
1� p � r22; (27)

and write the objective function as

max
r22

p
r22

1p
1�p �

p
r22
;

which is always increasing in r22.
To now, we have ignored the non-negativity constraints that r11 � 0 and

r12 > 0 must also be satis�ed. One can verify from (27) that r12 > 0 is
satis�ed for all 0 < r22 � 1, while from (26), r11 is always decreasing in r22.
Therefore, r22 can be raised up to the point where r11 = 0, implying that

r12 =

p
p

1 +
p
p
;

r22 =
1�pp
1 +

p
p
:

Evaluating (25) at the optimum gives that the payo¤of high valuation bidder
before she receives a signal is

p
p. Therefore, bidder�s ex ante payo¤ is

(1� p)pp in the optimum.

Case 2. The payo¤s of types 1 and 2 are, respectively, �1 = Pr (0j1) and
�2 = Pr (0j2), therefore the ex ante payo¤ of bidder is the same as in the
case without collusive communication, p (1� p).

Case 4. The payo¤of high valuation bidder in this equilibrium is Pr (0j1),
irrespective of her type. Hence, we are solving the following problem:

maxPr (0j1)

subject to Pr (0j1) � Pr (0j2), Pr (1j1) < Pr (1j2), and Pr (2j1) > Pr (2j2).
Constraint Pr (1j1) < Pr (1j2) can be ignored as it is implied by the other
two inequalities. Thus,

max
x1;x2;r11;r12;r22

px1
px1 + (1� p) (r11 + r12)

(P2)
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subject to

x1 + x2 = 1;

r11 + 2r12 + r22 = 1;
px1

px1 + (1� p) (r11 + r12)
� px2

px2 + (1� p) (r12 + r22)
;

(1� p) r12
px1 + (1� p) (r11 + r12)

>
(1� p) r22

px2 + (1� p) (r12 + r22)
;

and all probabilities (x1; x2; r11; r12; r22) must be non-negative. The objective
is increasing in x1 and decreasing in r11 and r12. Consider decreasing r11 by
2�, while increasing r12 by �. Then, none of the constraints is violated and
the objective has increased. Therefore, it is optimal to set r11 = 0. We can
re-write the inequality constraints as

px2
px2 + (1� p) (r12 + r22)

� px1
px1 + (1� p) r12

<
px2 + (1� p) r12

px2 + (1� p) (r12 + r22)
:

We want
px1

px1 + (1� p) r12
to be as high as possible but strictly less than the right-most expression in
the above constraint. It follows that this program does not have a maximum.
If we sat the second inequality as equality in the above constraint, we would
obtain that Pr (0j1) = 1� Pr (2j2). This, together with Pr (1j1) = 0, implies
that F1 (b2) = 1 in (22), that is, the types bid on adjacent intervals, which
contradicts the equilibrium structure of Case 4.
Although program (P2) does not have a maximum, we still need to verify

that its supremum does not exceed the maximum that we have found for
program (P1). To �nd the supremum, we can rewrite (P2) in the following
form:

max
x1;x2;r12;r22

p+ (1� p) r12 (P3)

subject to

x1 + x2 = 1;

2r12 + r22 = 1;
px1

px1 + (1� p) r12
� px2

px2 + (1� p) (r12 + r22)
;

px1
px1 + (1� p) r12

=
px2 + (1� p) r12

px2 + (1� p) (r12 + r22)
;
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and all probabilities (x1; x2; r12; r22) must be non-negative, where the ob-
jective of (P3) is obtained by combining the three equality constraints to
express x1 as a function of r12. At the same time, we know that the solution
to program (P1) satis�es r11 = 0 and the third inequality holds as equality.
If we impose these constraints on (P1) from the outset, we obtain program
(P3). (The �rst inequality in (P1) is automatically satis�ed when r11 = 0
and therefore can be ignored.) Hence, we conclude that (P1) and (P3) have
the same solution. This completes the proof that the optimal signal structure
is given as the solution to program (P1).
Proof of Proposition 2. Given a public signal i 2 N , if rii = 0, then the
bidder with a high valuation knows that the opponent has a low valuation
and therefore both will bid 0. If x1:i = x2:i = 0 and rii > 0, then it is
common knowledge that the valuations of both bidders are equal to 1. It
is a standard argument to show that the unique equilibrium involves both
bidders submitting bids equal to 1.
Suppose that xl:i � xm:i, xl:i > 0,and rii > 0. First, note that Fl:i

�
�bi
�
=

Fm:i
�
�bi
�
= 1 is satis�ed and so the distribution functions (1) and (2) are well

de�ned. The expected payo¤ of bidder l with valuation vl = 1 is given by�
pxl:i

pxl:i + (1� p) rii
+

(1� p) rii
pxl:i + (1� p) rii

Fm:i (b)

�
(1� b) : (28)

Substituting (2) into (28), we can verify that bidder l is indi¤erent among all
bids in the interval

�
0;�bi

�
, earning the expected payo¤given in (3). Similarly,

the expected payo¤ of bidder m with valuation vm = 1 is�
pxm:i

pxm:i + (1� p) rii
+

(1� p) rii
pxm:i + (1� p) rii

Fl:i (b)

�
(1� b) : (29)

Substituting (1) into (29), we can verify that bidder m is also indi¤erent
among all bids in the interval

�
0;�bi

�
, earning the same expected payo¤ given

in (3). Obviously, no bidder has incentives to bid above �bi, while any bid
below 0 would give a payo¤ of 0. Thus, we can conclude that (1) and (2) rep-
resent the equilibrium strategies of high valuation bidders when they observe
the public signal i.
To prove that this equilibrium is unique, we can argue as in the proof

of Proposition 1 that each bidder of type i will submit a bid according to
an atomless distribution function, except possibly at 0; ties occur with zero
probability; the supports of both distribution functions coincide; the common
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support is connected with the lower limit being equal to 0. Then the payo¤of
bidders 1 and 2 are given by (28) and (29), respectively. The common support
also implies that the equilibrium payo¤s of both bidders are the same and
equal to the expression in (3). Equating (28) and (29) with (3) gives (1) and
(2). Hence, the equilibrium is unique.
Proof of Theorem 2. We partition all signals into two sets, S and
NnS. The former contains all signals i such that x1:i > x2:i, while the latter
contains all signals such that x1:i < x2:i. Signals i for whom x1:i = x2:i holds
are assigned arbitrarily as long as each set is non-empty.
Using the results of Proposition 2, the joint ex ante payo¤ of bidders is

p (1� p) times the following expressionX
i2S
x1:i +

X
i2NnS

x2:i
px1:i + (1� p) rii
px2:i + (1� p) rii

+
X
i2NnS

x2:i +
X
i2S
x1:i
px2:i + (1� p) rii
px1:i + (1� p) rii

:

The �rst two terms represent the payo¤ of bidder 1, and the other two terms
- the payo¤ of bidder 2. UsingX

i2S
x1:i +

X
i2NnS

x1:i = 1;

X
i2S
x2:i +

X
i2NnS

x2:i = 1;

we can rewrite the joint payo¤ as

2�
X
i2NnS

x1:i+
X
i2NnS

x2:i
px1:i + (1� p) rii
px2:i + (1� p) rii

�
X
i2S
x2:i+

X
i2S
x1:i
px2:i + (1� p) rii
px1:i + (1� p) rii

:

(30)
The expression in (30) is increasing in x1:i for all i 2 S but decreasing for all
i 2 NnS. Similarly, (30) is increasing in x2:i for all i 2 NnS but decreasing
for all i 2 S. Therefore, x1:i = 0 for all i 2 NnS and x2:i = 0 for all i 2 S,
and we simplify (30) to

2 +
X
i2NnS

x2:i
(1� p) rii

px2:i + (1� p) rii
+
X
i2S
x1:i

(1� p) rii
px1:i + (1� p) rii

:

One can verify that

ab

a+ b
+

cd

c+ d
� (a+ c) (b+ d)

a+ b+ c+ d
:
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(This inequality can be rewritten as (ad� bc)2 � 0.) Therefore,

X
i2NnS

x2:i
(1� p) rii

px2:i + (1� p) rii
�

(1� p)
P

i2NnS rii

p+ (1� p)
P

i2NnS rii
;

X
i2S
x1:i

(1� p) rii
px1:i + (1� p) rii

�
(1� p)

P
i2S rii

p+ (1� p)
P

i2S rii
;

where we have additionally used the fact that
P

i2NnS x2:i =
P

i2S x1:i = 1.
Therefore, we can increase the joint payo¤ if we aggregate all signals i 2 S
into a (new) signal 1 and all signals i 2 NnS into a (new) signal 2 such that
~x1:1 = 1, ~x1:2 = 0, ~x2:1 = 0, ~x2:2 = 1, ~r11 =

P
i2S rii, and ~r22 =

P
i2NnS rii =

1 � ~r11. Given these signals 1 and 2, we can apply Proposition 2 to verify
that the joint equilibrium payo¤ is indeed given by

2 +
(1� p) ~r11

p+ (1� p) ~r11
+

(1� p) ~r22
p+ (1� p) ~r22

: (31)

This completes the proof that it is su¢ cient that the public signal takes one
of two values in order to achieve the maximal joint payo¤.
To �nd the optimal distribution of signals, it remains to maximize (31)

subject to ~r11 + ~r22 = 1. It follows that ~r11 = ~r22 = 0:5. According to (3), a
high valuation bidder expects a payo¤ of 2p

1+p
irrespective of the public signal

that she observes. The ex ante payo¤ of bidder is p (1� p) 2
1+p
.

Proof of Proposition 3. First, note that Fi
�
�bi
�
= 1 for all i 2 N is

satis�ed and so the mixed strategies are well de�ned. Suppose that bidder 2
follows the strategy given in Proposition 3 and y1 > 0. Consider bidder 1 of
type i 2 N . Her expected payo¤ when bidding b 2

�
�bi�1;�bi

�
is(

pxi + (1� p) yi
Pi�1

k=1 yk
pxi + (1� p) yi

+
(1� p) y2i

pxi + (1� p) yi
Fi (b)

)
(1� b) :

Substituting Fi (b) from (4) yields a positive constant

pxi + (1� p) yi
Pi�1

k=1 yk
pxi + (1� p) yi

�
1� �bi�1

�
:

Therefore, bidder 1 is indeed indi¤erent between any bid in the interval�
�bi�1;�bi

�
.
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Suppose now that bidder 1 of type i bids in an interval
�
�bj�1;�bj

�
for j 6= i.

Her expected payo¤ is(
pxi + (1� p) yi

Pj�1
k=1 yk

pxi + (1� p) yi
+

(1� p) yiyj
pxi + (1� p) yi

Fj (b)

)
(1� b)

=
pxi + (1� p) yi

Pj�1
k=1 yk

pxi + (1� p) yi
(1� b)

+
(1� p) yiyj

pxi + (1� p) yi
pxj + (1� p) yj

Pj�1
k=1 yk

(1� p) y2j
�
b� �bj�1

�
=

b

pxi + (1� p) yi

(
yi
yj

 
pxj + (1� p) yj

j�1X
k=1

yk

!
�
 
pxi + (1� p) yi

j�1X
k=1

yk

!)
+ �

=
pb

pxi + (1� p) yi

�
yi
yj
xj � xi

�
+ �;

where the rest of the terms that do not contain b are collected in the para-
meter �. Since xj=yj > xi=yi for all j < i, it follows that the payo¤ of type
i is increasing in b for b < �bi�1 and therefore bidder 1 of type i does not
want to deviate by bidding below �bi�1. Similarly, since xj=yj < xi=yi for all
j > i, it follows that the payo¤ of type i is decreasing in b for b > �bi and
therefore bidder 1 of type i does not want to deviate by bidding above �bi
either. The same argument establishes that there is no equilibrium, in which
the supports of equilibrium strategies are arranged in a di¤erent order. That
is, for any two types i and j such that i < j it must be the case that the
support of type i�s mixed strategy must lie to the left of the support of type
j�s mixed strategy.
It remains to prove that supports cannot overlap in an equilibrium. Sup-

pose on the contrary that an interval
�
b; b
�
belongs to the support of equilib-

rium mixed strategies of more than one type. Let the set of these types be
denoted by S. The expected payo¤ of type i 2 S from bidding in the interval�
b; b
�
is

�i =
pxi + (1� p) yi

P
k2N yk

~Fk (b)

pxi + (1� p) yi
(1� b) ;

where ~Fk (b) denotes the distribution of bids for type k in this equilibrium.
If we multiply both sides with

yj
pxj + (1� p) yj
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where j 2 Sn fig, we obtain

yj�i
pxj + (1� p) yj

=
pxiyj + (1� p) yiyj

P
k2N yk

~Fk (b)

(pxi + (1� p) yi) (pxj + (1� p) yj)
(1� b) :

If we subtract the analogous expression, in which the roles of types i and j
are reversed, from the above expression we have that

yj�i
pxj + (1� p) yj

� yi�j
pxi + (1� p) yi

=
pxiyj � pxjyi

(pxi + (1� p) yi) (pxj + (1� p) yj)
(1� b) :

Given that xiyj 6= xjyi, the above expression is satis�ed only for a single value
of b. Therefore, the supports of mixed strategies of types i and j cannot
overlap in the equilibrium. This completes the proof that the symmetric
equilibrium, described in Proposition 3, is unique. If y1 = 0, using the tie
breaking rule, the proof is basically the same.
Proof of Theorem 3. Using (5)-(7), the expected payo¤ of a bidder can
be expressed as

P (x; y) = (1� p) (z1 + z1z2 + z1z2z3 + :::+ z1z2:::zn�1zn) ;

where

zi =
pxi + (1� p) yi

Pi�1
j=1 yj

pxi�1 + (1� p) yi�1
Pi�1

j=1 yj

for i > 1 and z1 = px1. The proof consists of two parts. First, we show that
a signal structure (x; y)n with xn > 0 cannot be optimal. Next, we show for
any signal structure (x; y)n with xn = 0 how we can increase bidder�s payo¤
by introducing an additional signal.
Assume �rst that xn > 0. Let us de�ne a new signal structure (x0; y0)n

as follows: x0i = xi for i = 1; :::; n � 2, x0n�1 = xn�1 + �, x0n = xn � � � 0,
and y0i = yi for i = 1; :::; n. � must be su¢ ciently small to ensure that
x0n�2=y

0
n�2 > x

0
n�1=y

0
n�1 holds.

22 Given the assumptions about (x0; y0)n+1, we
only need to show that

zn�1 (1 + zn) < z
0
n�1 (1 + z

0
n)

22It can also be shown that it is always possible to increase bidder�s payo¤ by introduc-
ing an extra signal when xn > 0. It can be done by de�ning the new probabilities in the fol-
lowing way: x0i = xi and y

0
i = yi for i = 1; :::; n�1, and x0n = xn=2+�, x0n+1 = xn=2�� � 0,

y0n = yn=2, and y
0
n+1 = yn=2, where � is such that x

0
n�1=y

0
n�1 > x

0
n=y

0
n holds.
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or

pxn�1 + (1� p) yn�1
P
yj

pxn�2 + (1� p) yn�2
P
yj
�
�
1 +

pxn + (1� p) yn (
P
yj + yn�1)

pxn�1 + (1� p) yn�1 (
P
yj + yn�1)

�
<

p (xn�1 + �) + (1� p) yn�1
P
yj

pxn�2 + (1� p) yn�2
P
yj

�
�
1 +

p (xn � �) + (1� p) yn (
P
yj + yn�1)

p (xn�1 + �) + (1� p) yn�1 (
P
yj + yn�1)

�
where we write

P
yj instead of

Pn�2
j=1 yj. The above expression is equivalent

to

pxn�1 + (1� p) yn�1
P
yj

pxn�1 + (1� p) yn�1 (
P
yj + yn�1)

<
p (xn�1 + �) + (1� p) yn�1

P
yj

p (xn�1 + �) + (1� p) yn�1 (
P
yj + yn�1)

:

The right hand side is increasing in � and since both sides are equivalent
for � = 0, it follows that we can always increase the payo¤ by shifting some
probability away from xn to xn�1. Thus, xn > 0 cannot hold in the optimum.
Suppose now that xn = 0. We introduce an additional signal in the

following way: x0i = xi and y
0
i = yi for i = 1; :::; n� 2, x0n�1 + x0n = xn�1 and

y0n�1 + y
0
n + y

0
n+1 = yn�1 + yn, and let x

0
n+1 = 0. Now we need to compare

zn�1 (1 + zn) with z0n�1
�
1 + z0n

�
1 + z0n+1

��
.

Now

zn�1 (1 + zn) =
pxn�1 + (1� p) yn�1

P
yj

pxn�2 + (1� p) yn�2
P
yj

�
1 +

(1� p) yn (
P
yj + yn�1)

pxn�1 + (1� p) yn�1 (
P
yj + yn�1)

�
where we write

P
yj instead of

Pn�2
j=1 yj, while

z0n�1
�
1 + z0n

�
1 + z0n+1

��
=

px0n�1 + (1� p) y0n�1
P
yj

pxn�2 + (1� p) yn�2
P
yj
�

�
 
1 +

px0n + (1� p) y0n
�P

yj + y
0
n�1
�

px0n�1 + (1� p) y0n�1
�P

yj + y0n�1
��

�
 
1 +

(1� p) y0n+1
�P

yj + y
0
n�1 + y

0
n

�
px0n + (1� p) y0n

�P
yj + y0n�1 + y

0
n

�!! :
Desired inequality

zn�1 (1 + zn) < z
0
n�1
�
1 + z0n

�
1 + z0n+1

��
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is satis�ed if

pxn�1 + (1� p) yn�1
P
yj

px0n�1 + (1� p) y0n�1
P
yj

�
1 +

(1� p) yn (
P
yj + yn�1)

pxn�1 + (1� p) yn�1 (
P
yj + yn�1)

�
< 1 +

px0n + (1� p) y0n
�P

yj + y
0
n�1
�

px0n�1 + (1� p) y0n�1
�P

yj + y0n�1
�  1 + (1� p) y0n+1

�P
yj + y

0
n�1 + y

0
n

�
px0n + (1� p) y0n

�P
yj + y0n�1 + y

0
n

�!
or

pxn�1 + (1� p) yn�1
P
yj

px0n�1 + (1� p) y0n�1
P
yj
� (32)

�pxn�1 + (1� p) (yn�1 + yn) (
P
yj + yn�1)

pxn�1 + (1� p) yn�1 (
P
yj + yn�1)

� 1

<
px0n + (1� p) y0n

�P
yj + y

0
n�1
�

px0n�1 + (1� p) y0n�1
�P

yj + y0n�1
� �

�
px0n + (1� p)

�
y0n + y

0
n+1

� �P
yj + y

0
n�1 + y

0
n

�
px0n + (1� p) y0n

�P
yj + y0n�1 + y

0
n

� :

Let us de�ne the new probabilities as follows:

x0n�1 = (1� �)xn�1;
x0n = �xn�1;

x0n+1 = 0;

y0n�1 = (1� �) yn�1;
y0n = �yn�1 + �;

y0n+1 = yn � �;

where � 2 (0; 1) and � 2 (0; yn).
Using that

xn�1
yn�1

=
x0n�1
y0n�1

;

the left hand side of (32) becomes

pxn�1 + (1� p) (yn�1 + yn) (
P
yj + yn�1)

px0n�1 + (1� p) y0n�1 (
P
yj + yn�1)

� 1:
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Further, using that xn�1 = x0n�1 + x
0
n and yn�1 + yn = y

0
n�1 + y

0
n + y

0
n+1, it

can be written as

px0n + (1� p)
�
y0n + y

0
n+1

�
(
P
yj + yn�1)

px0n�1 + (1� p) y0n�1 (
P
yj + yn�1)

:

Thus, it remains to check whether the following inequality

px0n + (1� p)
�
y0n + y

0
n+1

�
(
P
yj + yn�1)

px0n�1 + (1� p) y0n�1 (
P
yj + yn�1)

<
px0n + (1� p) y0n

�P
yj + y

0
n�1
�

px0n�1 + (1� p) y0n�1
�P

yj + y0n�1
� �

�
px0n + (1� p)

�
y0n + y

0
n+1

� �P
yj + y

0
n�1 + y

0
n

�
px0n + (1� p) y0n

�P
yj + y0n�1 + y

0
n

�
or, after substituting for x0n�1, x

0
n, y

0
n�1, and y

0
n, and re-arranging, whether

the following inequality

pxn�1 + (1� p) yn�1 (
P
yj + yn�1)

pxn�1 + (1� p) yn�1 (
P
yj + (1� �) yn�1)

�

�p�xn�1 + (1� p) (�yn�1 + �) (
P
yj + (1� �) yn�1)

p�xn�1 + (1� p) (�yn�1 + �) (
P
yj + yn�1 + �)

� p�xn�1 + (1� p) (�yn�1 + yn) (
P
yj + yn�1)

p�xn�1 + (1� p) (�yn�1 + yn) (
P
yj + yn�1 + �)

> 0

is true.
We take the �rst order Taylor expansion of the above expression at � = 0

to see if for � > 0 this expression is strictly positive. If the above expression
is represented as f (�), then f (�) = f (0) + f 0 (0) � + R (�). Notice that if
� = 0, then the above expression is equal to 0, that is, f (0) = 0, while f 0 (0)
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is

pxn�1 + (1� p) yn�1 (
P
yj + yn�1)

pxn�1 + (1� p) yn�1 (
P
yj + (1� �) yn�1)

�
�

(1� p) (
P
yj + (1� �) yn�1)

p�xn�1 + (1� p) �yn�1 (
P
yj + yn�1)

�p�xn�1 + (1� p) �yn�1 (
P
yj + (1� �) yn�1)

p�xn�1 + (1� p) �yn�1 (
P
yj + yn�1)

�

� (1� p) (
P
yj + (1 + �) yn�1)

p�xn�1 + (1� p) �yn�1 (
P
yj + yn�1)

�
+
p�xn�1 + (1� p) (�yn�1 + yn) (

P
yj + yn�1)

p�xn�1 + (1� p) (�yn�1 + yn) (
P
yj + yn�1)

�

� (1� p) (�yn�1 + yn)
p�xn�1 + (1� p) (�yn�1 + yn) (

P
yj + yn�1)

;

which can be simpli�ed to

1

�
� (1� p) (

P
yj + (1� �) yn�1)

pxn�1 + (1� p) yn�1 (
P
yj + (1� �) yn�1)

�1
�
� (1� p) (

P
yj + (1 + �) yn�1)

pxn�1 + (1� p) yn�1 (
P
yj + yn�1)

+
(1� p) (�yn�1 + yn)

p�xn�1 + (1� p) (�yn�1 + yn) (
P
yj + yn�1)

:

To simplify notation, let 	 =
p

1� pxn�1. Then

1

�
�

P
yj + (1� �) yn�1

	+ yn�1 (
P
yj + (1� �) yn�1)

�1
�
�

P
yj + (1 + �) yn�1

	+ yn�1 (
P
yj + yn�1)

+
�yn�1 + yn

�	+ (�yn�1 + yn) (
P
yj + yn�1)

=
	

(�	+ (�yn�1 + yn) (
P
yj + yn�1))

�

� 	yn � �yn�1 (	 + yn�1)
(	 + yn�1 (

P
yj + (1� �) yn�1)) (	 + yn�1 (

P
yj + yn�1))

:

It follows that if � is chosen such that

0 < � < min

�
1;

	yn
yn�1 (	 + yn�1)

�
; (33)
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then the derivative f 0 (0) is positive, which was necessary to prove.
Finally,

R (�) =
f 00 (�)

2
�2

where � 2 [0; �]. f 00 (�) exists and is �nite for � 2 [0; �]. Therefore, for a given
�, satisfying (33), we can always select � satisfying�

f 0 (0) +
f 00 (�)

2
�

�
� > 0.
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