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Abstract

In a seminal paper Nagar (1959) obtained first and second moment
approximations for the k-class of estimators in a general static simulta-
neous equation model under the assumption that the structural distur-
bances were i.i.d and normally distributed.Later Mikhail (1972) obtained
a higher-order bias approximation for 2SLS under the same assumptions
as Nagar while Iglesias and Phillips (2010) obtained the higher order ap-
proximation for the general k-class of estimators. These approximations
show that the higher order biases can be important especially in highly
overidentified cases. In this paper we show that Mikhail’s higher order
bias approximation for 2SLS continues to be valid under symmetric, but
not necessarily normal, disturbances with an arbtrary degree of kurtosis
but not when the disturbances are asymmetric. A modified approximation
for the 2SLS bias is then obtained which includes the case of asymmetric
disturbances. The results are then extended to the general k—class of
estimators.

1 Introduction

Moment approximations of estimators in simultaneous equation models have a
long history. The seminal paper was Nagar (1959) who derived approximations
to the first and second moments of the consistent k-class of estimators in a gen-
eral simultaneous equation model with exogenous regressors. In obtaining the
results, it was assumed that the structural disturbances were independently and
normally distributed. Later Mikhail (1972) extended Nagar’s bias approxima-
tion for the 25LS case to a higher order and under the same assumptions while
Iglesias and Phillips (2010) give the higher order approximation for the consis-
tent k-class estimator. Nagar’s work led to a great deal of research concerned



with the small sample properties of simultaneous equation estimators; in partic-
ular, various writers examined conditions under which Nagar’s approximations
were valid, see Srinavasan (1970). The main result was given by Sargan (1974)
who showed that a necessary and sufficient condition was that the estimator
moments should exist. Much work has been done to explore the existence of
estimator moments especially in simplified models. However, a paper which is
of particular relevance, given its generality, is Kinal (1980). His results show
that in the general simultaneous equation model chosen by Nagar, the 25LS
estimator has moments up to the order of overidentification. However, k-class
estimators behave differently depending on the value taken by k. In cases where
k > 1, which includes the LIM L estimator, the k-class estimators do not pos-
sess moments of any order while when k& < 1 higher moments exist and this does
not depend on the order of overidentication.

In Phillips (2000) it was shown that the Nagar bias approximation for the
2S5 LS estimator is correct under much less restricted conditions than assumed
by Nagar. In particular, the result does not require the assumption of normal-
ity nor, indeed, symmetry. In Phillips (2007) it was noted that for the bias
approximation to hold a sufficient condition is that the disturbances obey the
classical Gauss-Markov assumptions which includes, in particular, the class of
conditionally heteroscedastic disturbances such as ARCH/GARCH. Neither
paper considered the higher order approximation however,

In this paper it is shown that the Mikhail higher order bias approximation
is valid without assuming normality for the disturbances. It does, however,
require that the disturbances are distributed symmetrically. If disturbances
have a skewed distribution then the approximation has to be modified and we
give the corrected form.. The results are then extended to include the consistent
nembers of the k—class.

2 Model and Notation

We consider a simultaneous equation model given by
By: + Tzt = uy (1)

in which y; is a G x 1 vector of endogenous variables, z; is a K X 1 vector of
strongly exogenous variables and u; is a G x 1 vector of independently and identi-
cally distributed structural disturbances with G x G positive definite covariance
matrix ¥. The matrices of structural parameters, B and I' are, respectively,
G x G and G x K. It is assumed that B is non-singular so that the reduced form
equations corresponding to (1) are:

Yt = —Bilet+Bflut
= Iz + vy,



where IT is a G x K matrix of reduced form coefficients and v; is a G x 1 vector
of reduced form disturbances with a G x G positive definite covariance matrix
Q. With T observations we may write the system as

YB + 21 = . (2)

Here, Y is a T' x G matrix of observations on endogenous variables, Z is a T' x K
matrix of observations on the strongly exogenous variables and U is a T x G
matrix of structural disturbances.

The first equation of the system is given by

y1 = Y28+ Z17y +uy, (3)

where y; and Y5 are, respectively, a T x 1 vector and a T' x g matrix of observa-
tions on g + 1 endogenous variables, Z; is a T x k matrix of observations on k
exogenous variables, 8 and y are, respectively, g x 1 and k x 1 vectors of unknown
parameters and uy is a T x 1 vector of independently and identically distrib-
uted disturbances with positive definite covariance matrix F(uju}) = %11. The
reduced form of the system includes Y7 = ZII; + V; in which Y7 = (y; : Y2),
Z = (Zy : Zy) is a T x K matrix of observations on K exogenous variables
with an associated K x (g + 1) matrix of reduced form parameters given by
II; = (my : Iz), while V3 = (v : V2) is a T' X (g + 1) matrix of reduced form
disturbances. The transpose of each row of V; is independently and identically
distributed with zero mean vector and (g+1)x(g+1) positive definite covari-
ance matrix Qy = (w;;) while the T(g + 1) vector vecV;, obtained by stack-
ing the columns of Vj, has a positive definite covariance matrix of dimension
T(g+1) x T(g+1) given by Cov(vecV;) = Q}°¢ and has finite moments up to
fifth order. This latter condition is required to ensure that the expansion used
has a remainder term of appropriate order, see Phillips ( 2000). It is further
assumed that:

(i) Equation (3) is over-identified so that K > g + k, i.e. the number of
excluded variables exceeds the number required for the equation to be just
identified. This over-identifying restriction is sufficient to ensure that the Nagar
expansion is valid in the case considered by Nagar and that, at least, the first
estimator moment exists: see Sargan (1974).

(ii) The T'x K matrix Z is strongly exogenous and of rank K and there exists
a K x K positive definite matrix with limit matrix ¥z, = limp_o T 12’ Z.
Following Anderson et al (1986, p7) it will also be assumed that T-1Z'Z =
Yzz +o(T71).

3 Nagar Approximations to the bias

The 2SLS estimator of a = (3',7')"is given by

A A —1 N /
(v vz (-1
o= ("Mt A 7 )" @



The Nagar approach to finding moment approximations for the 2SLS esti-
mator, proceeds from the estimation error,

A A —1 A /
(VYW YiZ, Ya—Ta
“ O‘_( ZYs 27 7z, )" ®)

To find the expansion we first write

ad—a= [Q71+X/V2+V.ZIX+VZIPZVZ]_1 [X/u1+VZ/qu1] (6)
—[[+Q YX'V. + V!X + V/P.V.}] ' QX uy + V! Pauy) .
X =(Zy: 21), Q= (X'X)"Y, P, = Z(Z'Z)"*Z" and V. = (V4 : 0).

Setting A = X'V, + V/X + V/P.V. and expanding the inverse [I + Q7 'A}] !
in a Taylor expansion yields

d—a=[+QAY ' Q[X v + V/P.uy
=1 - QA+ QAQA — +...]Q[X us + V] P.uq] (7)

where terms can be arranged in decreasing order of stochastic magnitude.
In fact, if we write u; = Vi3, and V, = Vi H', where 8, = (—1,3") and

H= <8 %’) isa (g+k) x (g+1) selection matrix, then the Nagar expansion

may be written in the form

& —a=QX'Vif, + QHV{ P.ViB, — QX'ViH'QX'Vi8, — QHV{ P,V 53,
— QHV{P.ViH'QHV1f3, — QHV{P.ViH'QX'V1f3,
— QX'ViH'QHV]P, Vi3, — QHV' XQHV'P,V13,
+ QX'HV]QXViH'QX'ViB, + QHV] P,ViH'QX V13,
+ QX'ViHQHV|P, V13, + QHVI XQHV{P, Vi3, + 0,(T"3).  (8)

The Nagar bias approximation is found by summing the expectations of the
terms up to order 7. We shall later compare this expansion with an alternative
representation presented in Phillips (2000)., If we require the Nagar expansion
for a general element of the vector &, say &;, i=1,..,g + k, then we may simply
extract the required terms by premultiplying the expansion for & — « by e},
where e; is a (¢ + k) x 1 unit vector.

The Nagar approximation for the bias of the 25LS estimator for « in (4) is
given by

E(a@—a)=[L-1Qq+o(T™"). (9)

U
where L = K — g — k is the order of overidentification, ¢ = 2 {E(Vzul)] and

@ is as defined above.

T 0



The Mikhail higher order approximation for the 2SLS estimator for a in
( 4), in the same framework as Nagar but extending the expansion to include
terms up to O, (I"~2), is given by

E(&a—a)=(L—-1D[I+tr(QC) — (L —2)QC)Qq +o(1/T?).  (10)

which adds two terms to Nagar’s result, namely, (L — 1)(tr(QC)Qq and -(L —
1)(L — 2)QCQq, both of which are O(T~2). The (g + k) x (g + k) matrix C
above is given by

o [ WTEWV) 0

0 0

It is apparent that when L is relatively large these added terms can be
important. Hence in models with a large number of intruments the higher order
approximation will be of particular value. Some evidence for this is given in
Iglesias and Phillips (2008).

The assumptions made by Mikhail in obtaining this result were the same
as those used by Nagar so that normality was assumed for the disturbances.
We shall examine this approximation later in the paper; in particular, we shall
show that the assumption of normality for disturbances can be relaxed. We
shall also consider how the approximation is modified when the disturbances are
asymmetric. It is of interest that the bias approximation is zero when L = 1,
i.e. when the parameters of the equation are overidentified of order unity. The
approximation may work well, see Hadri and Phillips (1999) and Iglesias and
Phillips (2008) for evidence of this.

In Iglesias and Phillips ( 2010) Mikhail’s approximation was extended, under
the same assumptions as used by Mikhail, to include the general k—class of
estimators as follows:

E(ap —a) = (L-1-0)Qq+ (L—1)-20)trQC.Qq
—[(L = 1)(L —2) — 02(L — 2) + 6%)QCQq
0 Qq+ o(T%) (11)

Here k =1+ % and 6 <0 is a real negative number. Notice that this ap-
proximation reduces to that of Mikhail when 6 = 0 for then the k—class estima-
tor is just 25 LS

4 An Alternative Approach to Approximating
The 2SLS Bias

We consider the estimation of the equation given in (3) by the method of 25LS.
It is well known that the estimator can be written in the form

(BN (Mzziy, z2'z \ (L2 24 "
s )7\ zzm 77 7! Z# (12)
vy 1 2 141 1 1



where [Iy = (Z2'Z)"'Z'Ys and #t, = (Z'Z)~'Z'y,. This representation of 25 LS
was considered in Harvey and Phillips (1980) and in Phillips (2000, 2007). It
is apparent that, conditional on the exogenous variables, the 25LS estimators
are functions of the matrix II; = (#; : II5); hence we may write & = f(vecll,).
As shown in Phillips (2000), the unknown parameter vector can be written as
o = f(veclly), so that the estimation error is f(veclly) — f(vecll;). A Tay-
lor expansion about the point vecll; may then be employed directly to find a
counterpart of the Nagar expansion. In fact, Phillips considered the general
element of the estimation error &; — oy = €}(& — a)=f;(vecll;) — fi(veclly),
1=1,2,....... ,g + k, where €} is a 1x(g + k) unit vector, and the bias approxi-
mation to order T~ 'was found using the first two terms of the expansion:

fi(veclly) = f;(veclly) + (vee(Il; — Hl)’fi(l)

+%(vec(f{1 —10)) £ (vee(Il; —1Iy))

1 . .
+5zﬁilzg+1(m — ) (vee(lly — 1)) ) (vee(Il, —111))

s=1

+%F<vec«ﬂ1 —10)) + 0, (T72). (13)

where fi(l) is a K(g+1) vector of first-order partial derivatives, % : fi(Z) is a
1

(K(g+1))x(K(g+1)) matrix of second-order partial derivatives,%,
veclly (Qveclly

fL(i)S isa (K(g+1)) x (K (g+1)) matrix of third-order partial derivatives defined
(2)
as & = afii, r=1,...K, s =1,..,9+ 1. The derivatives, fi(l),fi@) and

1,78 OT s
fz(?;)s are given in Phillips(2000). The expression F(vec((IT; — II;)) represents
the unknown fourth term which will involve the fourth order partial derivatives
and products of four components of vec((IT; —II;). All derivatives are evaluated
at vecll;.
The bias approximation to order T~! is obtained by taking expectations
of the first two terms of the stochastic expansion to yield:

B(a — o) = gyt [(F2 (T 0 (2/2) 2)01(1 © 2(2'2)™)] + 0T ™)

When the partial derivatives fi(2) are introduced and Q7°° is interpreted in
terms of the structural parameters, the bias approximation is readily found.
It is of interest to examine this bias approximation further. Note that the
approximation changes as the matrix 27°° changes. When Q7°¢ = ) ® Ir,
which is the case where the rows of the matrix V; are serially uncorrelated and
homoscedastic, the approximation reduces to that given by Nagar;

E(&; — a;) = €iQq +o(T™). (14)

However, to obtain his approximation Nagar assumed that the disturbances
were normally distributed while here we need only assume that the row vectors



of V; obey the Gauss Markov assumptions so that the row vectors are serially
uncorrelated and homoscedastic.

It is not immediately obvious that the above expansion in (13) is equivalent
to that used by Nagar. Examining the Nagar expansion in (8), however, we
note that the first term, which is Op(T_%), may be written as

eiQX'V1By = tr{ByeiQX'V1} = tr{B,e;QX' Z(Z' Z)Z'V1 }

= {vec(Z2' Z2) 1 Z'Vi) Yvec(Bye,QX' Z) = (vee(Ily — 1) (B, ® Z' X Qe;)

= (vee(l, — 1) £V

where fi(l) = (By ® Z'XQe;) is derived in Phillips (2000). This is just the
first term in the above expansion (8). By the same approach it may be shown
that the O,(T~') part of the Nagar expansion, which is given by the second,
third and fourth terms, equals the second term in ( 8 ), and so on.

To find the bias approximation to order T2 we shall also need the next two
terms in the expansion. It has proved possible to find an explicit representation
for the third term but it is quite difficult to do so for the fourth term. Notice
that the third term term

SIS G = ) el — )Y f3 veelly ~ ) (15)
is a linear function of products of three components of vec(Il; — II;) and the
bounded third order derivatives which are evaluated at vec(Il;). In Appendix
1 it is shown that the third moment of the least squares regression estimator is
O(T~?) from which we may deduce that the expectation of the third term in
(13 ) is also O(T~?) and we evaluate this in Appendix 2.

While we cannot easily find an explicit representation for the fourth term in
the expansion, F(vec((Il; —II)), it turns out that we do not need to do so. We
may readily deduce that it is a linear function of fourth order products of the
components of vec(IT; —IT;) and the bounded fourth order derivatives evaluated
at vec(Il).We find that not knowing its precise form is of no consequence in
context because the fourth moment of the least squares regression estimator
does not depend upon the kurtosis of the error distribution to the order of the
approximation. This is shown in Appendix 2 where we demonstrate that the
fourth moment has two components. The first of these is O(T~2) while the
second, which involves the kurtosis of the error distribution is O(7~3) and,
as such, it plays no role in our approximation to O(T~2). Because of this the
expectation of the fourth term to the order of the approximation will not depend
upon the actual distribution of the errors provided the moment conditions are
met. Hence the expectation based upon the normal distribution, which has
already been found by Mikhail, will also be appropriate for other distributions
and in finding the higher order bias approximation to order 7'~2 we shall simply
add the relevant part of the Mikhail result. We shall see that the analysis can
also be extended to find similar results for the k—class of estimators.



5 The Higher Order Bias Approximations For
2SLS

In this section we present the bias approximation under weaker conditions than
those assumed by Mikhail. In case the disturbances are non-normal but sym-
metric, the evaluation of the expected value of the third term in (13) is trivally
zero while the evaluation of the fourth term has already been done by Mkihail
for the normal distribution and. as noted above, the same evaluation will apply
here also. Hence the Mikhail approximation carries over directly for non-normal
but symmetric distributions for which the moment conditions are met and does
not depend upon kurtosis. We now state the following theorem.

Theorem 1

In the model of Section 2 where the errors are symmetrically but not neces-
sarily normally distributed, the bias of the i** component of the 2S5 LS estimator
in (4), is given by

E(&; — o) = (L = 1)[ejQq + tr(QC)eiQq

—(L —2)eiQCQq) +o(T72),i=1,2,...,9 + k.

This is exactly the approximation found by Mikhail for the case of normally
distributed errors and the proof of the theorem follows immediately from the
preceding discussion. This result helps to explain the findings of Knight(1985)
who, using exact finite sample theory in the context of a two equation model,
found that a moderate level of kurtosis had little effect on the bias of the 25LS
estimator.

The second case of interest is where the errors are asymmetrically distrib-
uted. Now it is necessary to extend the Mikhail approximation to allow for asym-
metry but, again, the approximation does not depend upon the kurtosis of the
error distribution. Introducing the evaluation of the third term of (13) we find
that the revised approximation is given in the following.

Theorem 2
In the model of Section 2 where the errors may be asymmetrically distrib-
uted, the bias of the i*” component of the 2SLS estimator is given by

B(6; —a;) = (L-1)[e;Qq+tr(QC).€;Qq — (L — 2)e;QCQq]
QH By ® Ip1) QU H'QX' Ay - + €, (QH (Iy1 @ Bp) Q0 H' +
tr(QH(Ig+1 ® ﬁg)Q*H/)-IQ-i-k)QX/Aa:z
—tr((Iys1 @ B0) H'QX' Diag(XQe) XQH) + o(T™2)

where the effects of the asymmetry of the disturbances are indicated by the
presence of the (g + 1)? x (g + 1) matrix of third moments Q*which is obtained
by stacking the (g +1) x (g + 1) matrices Q55,5 = 1,.,(¢9+1).The T' x 1 vector
A, has p™ component a),(X'X) " ta, — 2,(Z2'Z) 2, p=1,2,.......,T .When



O* is zero the bias approximation reduces to that of Mikhail (1972) The proof
of the above is given in Appendix 2.

Notice that the asymmetry effect does not depend explicity on L and so it is
present whatever the order of overidentification; in particular, the asymmetry
effect does not go to zero when L=1.

If it is required to express the asymmetry effect in terms of the structural
parameters we can replace Q*with its structural parameter representation.viz,
O = ((B’);il)’z*((B');il ® (B’);il) where (B’);il comprises the first g + 1
columns of (B")™1, ¥*is the G x G? matrix formed as ¥* = (X1, Xij2, ..., BijG)
and X;;; is a G x G symmetric matrix with general element equal to the third
moment o,k =1,..,G.

It is apparent that the asymmetry effect is a complicated function of the
endogenous variable parameters in the model and all the third moments of the
structural disturbances. As such it is difficult to deduce its sign or magnitude
in general though it is possible to calculate the value of the approximation for
a given structure. The study by Knight (1985) referred to above also examined
the effect of error skewness on the bias of 25LS and found that a moderate
degree of skewness appeared to have only a small effect; however, we have no
results for substantial departures from symmetry nor, indeed, for cases with a
large number of instruments.

6 An extension to the general k-class of estima-
tors

In a recent paper Iglesias and Phillips (2010) have derived the higher order
bias of the consistent k—class of estimators, thus extending the result for 25LS
in Mikhail (1972). This class of estimators for which 0 < k < 1 is poten-
tially interesting because the estimators have all necessary moments, see Kinal
( 1980), whereas, for example, 25LS only has moments up to the order of over-
identification. To obtain the higher order bias of the general k—class estimator
under skewness and kurtosis, we shall need to modify the above approach. Con-
sider the k—class estimator given by

o (B ek Yz (Vi - kY
T\ ) 4w 4z xp )"
A A~ NIRPN A —1 A A
0,2/ 210 + (1 = k)V3Va 1,27, 1,7' Zt, + (1 — k) V3
Z 211 27 7,27,

Here it is clear that, conditional on the exogenous variables, the k—class
estimators are functions not only of II; = (7 : IIz) but also of ViV, and V40;.



However by suitably manipulating the estimator it is possible to express it in
the same form as (12) so that no new analysis, beyond that set out in Phillips
(2000), is required to find the bias approximation.

To see this let W = (Z : Z) be a T x T matrix of rank T obtained by
augmenting the X matrix and adding T — K linearly independent columns Z.
Then it is possible to write

Y1 = (y1: Y2) = W(n] : 1013),
where
(71 : 103) = (W'W) " TW/ (g1 : Ya) = W (1« Ya).
Let
W*=[I-c( - P,)|W,
where ¢ = 1 + +/1 —k. The corresponding k—class estimator may then be
written as
um (B ) = (T Ty )7
=\ (Wiywemy o (Wywi wiywsi )
(16)
where W7 is a T x k1 matrix forming the first k1 columns of W*. Thus W = Z;.

(%)
Tk
we may write that, conditional on W*,

ay = f*(vecdly),

Now putting

where E(IT}) =TI, = ( L

0 ) and the 0 matrix is (T'— K) x (g + 1).
Also,

W, = [[—e(I— Py Wiy = [I— eI - P2)|(Z: Z) < 1})1 )

= [I—cI—-"Py)ZIly =ZI; = (Zm : Z1l,).

On putting ( 71 : I ) in place of ( w7 : II5 ) in ( 16 ), it is seen that
f*(veclly) = f(veclly) = a.

Thus we have shown that (ay); = f7(veclli) and o; = fi (veclly).
We may now write down a Taylor Series expansion analogous to (13) as
follows

fiweelly) = ff(veelly) + (vee(Ilj — 1) f; ) +

1 S . A
o (vee(TT} = )’ £ (vee(TT} — 1))

1 _ x _
g S B (g = ) (vee(Il] — 1)) £, (vee(IT} — 1))

+F* ((vee(IT} — T11)) + 0, (T™2),

10
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where f:(l) is a T(g + 1) vector of first-order partial derivatives

fi*(Q) isa (T(g+1)) x (T(g+1)) matrix of second-order partial derivatives,

2 * . . . .
W = “(fz) isa (T(g+1)) x (T(g+1)) matrix of third-order partial
*(3) _ o f 2

derivatives defined as f;,J = 55—, r=1,...,T, s = 1,...,g+ 1. All derivatives
are evaluated at vecIl;. The bias approximation to order 7~' is then obtained
by taking expectations of the first two terms of the stochastic expansion to yield

B((@x): — i) = gt [(F7D (T e (W 105(T 0 (W) ™)] +o(T7),
where we have used the result that vec(Ilf — ;) = (I, 41 ® W HvecV].

The introduction of the matrix W was made simply to write the k—class
estimator in a form which enabled the bias approximation to be obtained directly
using the same analysis as in the 25LS case. When fi*(z)is interpreted in terms
of the structural parameters, and 27°¢ is set equal to 1 ® Iy, W is cancelled
out and then we have

E((ar)i — ;) = tr[(HQeify® (I — Pz) — k(I — Px))Qy*]
—tr[(I"(XQeify ® H'QX")Q{*] +o(T™1).  (17)

which reduces to the result of Nagar(1959).

Notice that when k = 1 and (I — Pz)— k(I — Px) is replaced by Px — Pz , the
approximation reduces to that for 25LS given above. Previously we noted that
the 25LS bias approximation was obtained under much weaker assumptions
than were employed by Nagar. Here we see that we have obtained the bias
approximation for the consistent k—class under the same weak assumptions;
in particular, we do not need normality nor independence of the disturbances,
merely that the row vectors of V; should satisfy the Gauss Markov conditions.
Consequently, the Nagar bias approximation for k—class estimators is valid, for
example, as it is for 25LS, under assumptions such as martingale differences
and ARCH/GARCH disturbances.

The higher order bias approximation can now be derived as in the 2SLS
case and the bias to order 772 does not depend upon the kurtosis of the error
distribution Hence the higher order bias given in Iglesias and Phillips (2010)
holds also under symmetric distributions whatever the degree of kurtosis. We
may now state:

Theorem 3.

In the model of Section 2 where the errors may be asymmetrically distrib-
uted, the bias of the i*” component of the k—class estimator is given by

11



E((ar);i —a;) = (L—1)[eQq+tr(QC)e'Qq — (L — 2)e.QCQq]
—[(L —1)(L —2) — 02(L — 2) + 6%]'QCQq + ege’Qq +

eQH(B) @ I1) U H'QX'AF) + €} (QH (Iy41 ® By)U H' +

tr(QH (Iy41 ® BG)V H') Iy 1) QX' AL
—tr((Iy41 ® By)Q* H'QX'Diag(XQe;) XQH)

+o(T™2) (18)

The part of the approximation which relates to the effects of the asymmetric
errors differs from that of 25 LS. In fact the effects of asymmetric errors involves
the term A, in the 25LS case which is a T x 1 vector with p** component
z;(X’X)’lscp - z;,(Z'Z)’lzp, p =12 ... ,T,. In the general k—class case
examined here where £ = 1 + % and 6 < 0, this is replaced by A¥ _ which

is a T x 1 vector with p'* component 1 — z/,(2'Z) 'z, — k(1 — x;(X’X)’lxp),
p=1,2,.... , T. While the asymmetry effects depend directly on k through ASZQ,

none of the higher order terms in the k—class bias approximation is explicit in
L — 1; hence, when L = 1 the higher order bias does not go to zero under
asymmetric disturbances. It was seen earlier that this is the case for 25LS also.

7 A Simple case

In the general model it is difficult to interpret the affects of asymmetry in the

disturbances on the estimators and in this section we explore the effects in a very

simple simultaneous equation model in an attempt to isolate the key factors.
We consider the simple model given by

Y2t = ﬁ2y2,t + fY/Zt + u?,tat = 17 27 "'7Ta (19)

where z; is a px 1 vector of exogenous variables.
reduced form for ys ; is given by

Yoo = PBo(Bryae +ure) + 7'z + ugy
B1Boy2.s + 7 2t 4 Uz + Bour s
= oz + vy (20)
where 7 = 1_7;52.
Also yo = Zmy 4+ v from which we shall write X = Zwy. We shall also
require, Q =(nhZ'Zmy) ™1 = W,H =(0,1),

12
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wW1,1,1 wW2,1,1
w121 w221
We now define the vector

wi1,1,2
w1,1,2

w2.1,2
w222

(Q*)/ —

where X'A,, = 74(21, 22, ..., 27), and A,
All summations run from 1 to 7.

The first of the asymmetric terms is
QH(By @ I )X H'QX'A, . =

Wi1,1,1
L__(0,1) 1o —-p 0 w211
whZ Zma \7 0 1 0 —,81 Wi
w2.1,2
1 S (zfm2)? / 1 (7l 7N —1
X whZ' Zmo [ wQZ]’Zﬂ'Q - ZWQZij(Z Z) Zj]

Y(zjma)®  3mhziZ(2'2) 7

},,Boz(_lﬂ )andeizl.
1

’ !
21(mam2)z1 (=1
T Fr — A (Z'Z)"tz

’ !
2o(mom2)2z2 gz —1
s — % (Z'Z) 1z

! ’
zip(myma) 2T
VAV A D

— 2 (Z'Z) Loy

’ 3
_ X(zm) = W’szz;(Z’Z)_lzj..

7T2Z/Z7T2

w1,2,1
w221
w1,2,2

w222

)
N———

= (Wa21-Brwa22)l 7

The second asymmetric term is
€2((QH(IQ+1 & BG)Q*HIQX/A:E,Z -

wi1,1,1
wi1,2,1

w2,1,1
w221

w1,1,2
w1,1,2

w2,1,2

1
“’22/2”2( b w2,2,2

w1 [Z(Z§7r2)3

o Z' Zmol o Z!' Zma 7Z7TIQZJZ§(Z/Z)7IZJ]

>o(zjma)? X mhz 25 (2 Z) "

(WQZ’ZW2)2
1 0
61 0 0
0 1 1
0 -5

= (w272,1761w272,2)[ 702! 2o

The third asymmetric term is

(7T2Z/Z7TQ)2 ] (22)

tr{HQH'((Ig1+1® B) V' e;QX' Ay .} = tr{QH'((Ig41® 8) 2 He;QX' A, - }

wi1,1,1
,} (0 1) 1 7B1 O O w27171
M2 2w R 0o 0 1 =5 W1,1,2
w2.1,2
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S (zfma)® -
; [7722"212 _ZWIQZJ'Z;'(Z/Z) 1Zj]

D(#gma)®  Yomhza(Z2'Z) e
7o Z' Zmo)3 (moZ' Zmy)?

X ThZ' Zmo

= (w2,2,1ﬂ31w2,2,2)[( ] (23)

on noting that wy 22 = w221.
Finally the fourth asymmetric term is

—tr((Ig41 ® By )V H'QX'Diag(XQe;) XQH)
= —tr(XQH)((By ® Iy+1 )Q* H'QX'Diag(XQe;))
wi11,1 Wi1,2,1

1 -5, 0 0 w w
—_ Zma 1 1 2,1,1 2,2,1
tr{”éZ’ZW (0,1) 0 10 -5, Wil Wi22 (

w212 W222

= O
N—

’
Z1T2
ToZ' Zo /0 0 0
1t ZaT2
_ ™4 0 o Z' Zmo 0 }
‘ITQZ/ZTFQ

/
O ZpT2
o FQZ'ZTK‘Q -

= —tr{ﬁ(wzg,l - 51”27272)

’
Z1T2 ’
7T2Z/Z7!‘2 0 0 0 2171-2
/
77’ 0 0 ELEN DY
7T2Z’ZT(2

X

0 Z%ﬂ’z Z/T7T2
L o ! Loy A

Z(Z}'/TQ)S
= (W2,2,17ﬂ1W2,2,2)[W

] (24)
Finally, summing (21)-(24), we find that the asymmetric terms

€QH(By ® I,y 1)U H'QX'A, . + €;((QH (Iy11 © o)V H' +
tr(QH(Ig-ﬁ-l 0 BG)Q*H/)JQHC)QX/AM
—tr((Iy41 @ By )" H'QX'Diag(XQe))XQH) + o(T~?)

are equal to

Dem)  Erud@n sy
WQZ’ZTFQ)S (7T2Z’Z7T2)2

/ 3
—(wz,z,1—ﬂ1w2,272)[(7§<ZZ’JZw7ii)?’]

3(w2,2,1—ﬁ1w2,2,2)[(
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this special case.It is seen that the above expression is of order T2 as expected
and the bracketed terms may go to zero quite quickly as T" gets large. Clearly
(wa2,21-f1w222) plays a key role. It is helpful to interpret the disturbance
skewness factors in terms of the structural parameters. Noting that

w21 Prwaes = BE(v,w03,) = BE®WS,)
_ E(€1,t + 31824 )(ﬁzﬁl,t + €2t )2
1— B8 1— 818,
Bag1t + 2,3
—B,B(22= =0 2%
FE s, 20
with some manipulation simplifies to

Bi(0111-0222) 011183 +20119+ 0192 (27)

w2.2,1-Piwa 22 = (1—3,8,)° + (1—518,)2

is clear that this term can be made large for suitable choice of the parame-
ters, especially since 5;and [, are unrestricted other than the requirement that

B1By # 1.

Consider now the part not involving wg 21— 8wz 2.2. If we define z; = 25-71'2
and «; = 2(Z'Z) "'z then

2(2’371'2)3 - 271"22:]‘2;(2/2—1>zj B Z.’Bi’ B dzja; (28)
(152" Zma)? (my2'Zmy)? (T3 (Xaf)?

Upon putting z; = rc; where r = (3 z?)%and > ¢ = 1, the above becomes
£(X ¢ — Y ¢ja ). If we allow all the z; (and hence the ;) to shrink at the
same rate then c¢; and «; are unchanged while r becomes small. In this case
in the limit, as 7 — 0, of 5 (3¢} — Y ¢;ja;).is unbounded. Similarly on not-
ing that 7§, = % where the structural parameter vector 4 can be varied
independently of the all the other structural parameters and, in particular, it
can be varied to make 7o arbitrarily small (which might happen in the weak
instrument case), it is clear that as 72 becomes small ( so that r becomes small),
the overall expression could become relatively large despite the fact that it is of
order T~2. Thus there is another situation in which the asymmetry might lead
to a significant bias.

This simple case provides evidence that skewness of disturbances seems likely
to cause estimation biases to differ substantially in some situations compared
to when disturbances are symmetric.
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The analogous result for the general k—class of estimators in the simple case
is given by
Lk YEm | Smss(22)
7T2Z’Z7T2)2 (7T2Z/Z7T2)3 (7T2Z/Z7T2)2
1k S
o ! Zg)? (moZ' Z7g)3

3(w2,2,1—ﬁ1w2,2,2)[(

—(w2,2,17ﬁ1w2,2,2)[( (29)

Notice that when k = 1 the above reduces to the result for 25LS.We shall
not give a separate analysis for the general k—class estimator:since it is clear
that the same observations can be made as in the case of 2S5LS.

8 Conclusion

The 2S5LS estimator has an important place in the history of simultaneous
equation estimation and continues to be frequently used in practice. Hence the
results in this paper are of both theoretical and practical interest. As noted
previously, the Mikhail 25LS bias approximation is likely to be of importance
when equations are heavily overidentified since then the higher order terms
will not be neglible The fact that the approximation holds under symmetric
distributions and any degree of kurtosis obviously increases its applicability in
practical cases.When the errors are asymmetrically distributed we have seen
that the Mikhail approximation no longer holds and we have presented the
correct approximation for such cases.

The k—class of estimators where k < 1 are also of interest partly because es-
timators in this class have all necessary moments. In Iglesias and Phillip(2008),
a linear combination of k—class estimators for which k < 1, was presented which
was unbiased to order 7! , had all necessary moments and dominated 2SLS on
a MSEFE criterion in strongly overidentified cases. Here it has been shown that
the terms in the higher order bias approximation which measured the asymme-
try effects, depend directly on & while kurtosis did not play a role to the order
of the approximation.

We cannot say, without further work, what the general effects of asymmetry
are except that they are likely to be greater the larger the degree of skewness
in the error distributions. We have examined a special case where it appears
that the skewness effects can be significant. This can be explored numerically in
more general cases by calculating the approximations for a variety of different
structures; it can also be examined in Monte Carlo experiments.In fact some
preliminary Monte Carlo results of a two-equation model indicate that when the
skewness is considerable the effect on bias is far from trivial. A comprehensive
study of the asymmetry effects would be a major exercise and a natural next
step; however it lies outside the scope of this paper.
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Appendix 1
In our examination of the Mikhail approximation we shall need the third and
fourth moments of reduced form regression estimators where, for the general
static simultaneous equation case, the reduced form model is equivalent to the
classical linear regression model. In this appendix we derive the third and fourth
moments of the OLS estimator in a linear regression model.

(i) The Third Moment of the OLS Estimator

17



In the regression model y = X3 + ¢ where the errors are i.i.d, (0,02) and X
contains p exogenous regressors, the OLS estimator B = (X’X)"1X'y has an
estimation error

ﬁ 6 ( ) lX/
The general element of this vector will be written as
ej(B—B)=B;— B, =e}(X'X)"' X'e

Our interest centres on the third moment

E(B; - B;)° = B(ej(X'X) "' X'e)? (30)

To obtain this we first consider

(X' X)IXe)? = (X' X) ' X ee) (X' X) 1 X ee! X (X' X) Le; (31)

contains the stochastic component (e(X'X) 1 X'e)ee’

To find the expectation of this we first note the general term of the T X

T matrix e’ which is ejex, j,k = 1,2,...,T. then find the expectation of

(ef(X'X)"1X'e)ejer Notice that e, (X'X)"1X’ is the i row of (X'X)71X’
T

and we denote this row vector by o’ so that ef(X'X) 1 X'e = d/e = Y a,e.

T
Now consider E{ Y a,&q€;ex twhich will contain non-zero components only

r=1

T
for r = j = k. Hence E{Y" a,e,cjert = a,E(ed), r=j =k, k=1,2,,T, and
r=1

r

is zero otherwise.

It follows that E{(ei(X'X)~1X’e)ee’} is a diagonal matrix with 7, 7" compo-
nent given by a,. E(3) where a,. is the r*" component of «. Note that e/(X’ X)X’
picks out the 7" row of (X’X)~'X’ and so a, is the r*"component of this row
vector. We now write that

(X'X) X" = (X'X)"Y(z1, 22, ..., 1), where z; is the j* column of X',
from which it is seen that the r** component of e/(X’X)~* X" is equal to e} (X' X) " 1z,.

It follows that

E(ei(X'X)71X'e)? = B(e3)el(X'X) "1 X' Diag(a,) X (X' X) " te; where Diag(a)
is a 7' x T diagonal matrix with the 7, r**component ..

Some simplification is possible by noting that X’ Diag(a,)X with a, re-
placed by e/ X (X'X) 'z,,r = 1,2,....,T, may be written as

T
2 J ] € XX)
Then el(X’ X)’lX’Diag(a,,)X(X’X)’lei is equal to

(X' X) 7 Yl (X X) T (X' X) They = 3o(ef (X X))

18



Hence the required third moment is

T
E(B; = 8:)° = B(e]) ) (ei(X'X)1ay)? (32)
j=1
Finally, it is seen that e}(X'X) 'z; is O(T1), (ef(X'X) " z;)3 is O(T3)
T
and Y (e}(X'X)71x;)® is O(T2) and, hence, the third moment of the OLS
j=1

estimator is O(T~2).

(ii) The fourth moment of the OLS Estimator
The fourth moment is given by F(e}(X'X)"1X’e)* and we commence by
writing
(ei(X'X) 1 Xe)t = (X'X) ' Xed! X(X'X) Vey
xehi(X'X) ' Xee X (X'X) Vs (33)
We shall need to find the expected value of this but we can proceed by
focusing on the stochastic part

E(ee’ X(X'X) Heel (X' X) 1 Xee").
In fact we shall write

Bee’ X (X'X) teei(X'X) ' Xee!) = E(ee’ Aee’) (34)
where the matrix A defined as
A=XX'X) Deel (X' X)X (35)

is T x T and symmetric.
Note that the T x T' matrix e’ has a general element ¢;e,while, in addition,
we have

T T T

/ — 2.2 ; :

g’ Ae = E aze; + E E Ai€E5,% F# J,
i=1

i=1 j=1

When ¢ = j =k , we may write
E(eicheAe) = apE(e},) +(trA — agp)ot k=1,2,...,T
whereas when i # j but ¢ = k, j = [,we have
E(eigleAe) = (am + aw) E(e3e)
= (agp + alk.)E(si)E(le) = (ap; + alk)a4,
kJd=1,2,.,T,k #1.

It follows that

E(c'Aeec’) = E(e})DiagA+ (trA.Ip — DiagA)o?
+2(A — DiagA)o?
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= (E(c}) — 30*)DiagA + (2A + trA.Ir)o* (36)

We now replace the matrix A with X (X’X)™1)e;el(X'X)71X " and consider
the earlier expression
(X' X)1Xe)t = el (X' X)X e/ X (X' X) 7T
xeh(X'X) 1 Xee! X(X'X)7!
Taking expectations.

B(el(X'X) ' Xe) = (B(e}) — 30N el (X' X)71 X'
x Diag[[X (X' X) e es(X' X)X | X(X'X) Ve
+30* (el(X'X)e;)? (37)

where this latter term above is O(T~2).

Consider the matrix Diag[[X (X'X) )e;el(X’' X)X .]. The first diagonal
element of this matrix is

AX(X'X) el (X' X)X ey = (ef( X' X) 1 X ep)%

Here ey is a T x 1 unit vector with unity in the first position and all other el-
ements zero. Noting that X’e; = x1,which is the transpose of the first row of X,
we see €)(X'X) 71X e; = ef(X'X) 'z1and Diag[[X(X'X) Veiel(X'X)71X"]
is a diagonal matrix with j, jth component (e}(X'X)"'z;)? j = 1,2,....,T.

The foregoing enables some simplication of the expression for the fourth
moment since it is easy to see that

ef(X' X)X x Diag|[X (X' X) Vees( X' X)X )X (X' X) ey (38)

T
reduces to Y (2} (X'X) " e;)t.

Hence, finally it has been shown that

E(B; = 8,)" = o"3(ei(X'X) es)® +
T
) —30%) > (] Le) (39)
j=1

Notice that the first term is O(T~2) and the second is O(T~3). Thus the
kurtosis of the error distribution does not affect the fourth moment of j3; to
order T~2If the error distribution is normal then E(u}) — 30* = 0 so that the
second term disappears.In such a case Bl is normally distributed and again we
see that the fourth moment is just three times the squared variance as required.

One further observation is that without assuming normality,
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as T — oo, where limT(X'X)~! = ¥ 1. This does not involve kurtosis and. as
expected, it is equal to three times the square of the limiting variance.

Appendix 2

In this Appendix we evaluate the expectation of the skewness term
5 Y S (s = mps) (wee(Tly — ) £ (vee(Thy — T1y)).

We commence with the following:

Lemma 1

E{(ftys — mps)(vecVr)(vecV1)'} =  Qjs ® Diag(zy)

where
W1ils W12s  eeees wl,g+1.s
w21s W22s e W2,g+1,s
Qijs: . . . . and
Wg+1,1,s Wg41,2,s Wg41,2,s
Zrl . . 0
. 0 =z 0
Diag(z,) = 2
0 0 ZrT
Proof

To see this we proceed from

E{(7ys — 7rs)(vecVy) (vecVh)'} = E{el(Z'Z) "1 Z'vs(vecVy ) (veeVr)'}

/ / /
V1V, V1Vy ’U11}g+1
/ ! /
_ V2V V2V V22U
=B{el(Z2'Z)"" Z"v, ! 2 g+1
/ / /
Vg+1V1 Ug41Uy  ..... ’Ug+1’l)g+1

where v; is a T x 1 vector forming the j*" column of V;.

We shall write e/.(Z2'2)"1Z" = z. and e/.(Z'Z)"'Z'vs = Zlvs and consider
E(z.vsvv%) with general term  E(Z.v5vpivg5) p.¢ = 1.2...., T which is non-zero
only when the stochastic terms are of the same time period. When p = ¢ it
is seen that E(ZLvsvpiVp;) = E(ZprUpsUpiVp;) = ZpjWijs Where z,; is the pt?
component of Z, and E(vp;vp;Vps) = wijs . More generally,

za 0 ... 0
_ 0 z 0
E(z;.vsviv}) =Wijs 2
0 0 ... Zr

= wijsDiag(Z,) for 4,j,s =1,2,....,9g+ 1.

In Phillips (2000). it is shown that the term of interest

K g+1
SO Grrs — mrs)wee(lly — L)Y £ (vee(Tl; — 10,)) (40)

!
r=1

W)~
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is equal to the sum of the following three terms:
K g+1

S 3 (frps — rs) (veeVy) {H' Qe BoELZ' XQH ® (Px — Pz)}vecVy
r=1s=1
K g+1
5 S (s — ) (e T QX Z B, HY + HELZ'X) Qe
r—=1s=1
®(PX — PZ)}vecV1
K g+1

=3 > (Frs—7rs)(vecV)){BeiQX' ZE, s HQX'@X QH } [*vecV;
r=1s=1
where E,., is a K x (g-+1) matrix of rank one with unity in the r, s' position
and zeroes elsewhere.
It is required to find the expected value of the above and we shall do so by
evaluating each of the three components in turn.
First we examine

(a). (Frs — mrs) (vecVy) {H'Qe; By EL,Z' XQH ® (Px — Pz)}vecVy (41)

=tr((Trs — Trs)(vecV)(vecVt) {H'QeiBoEL Z' XQH ® (Px — Pz)}
where 7., —7,.¢,which is the K (r—1)+s* component of Vec(Il;—II;),and which
may be written as Frps—Tps = (2" Z) "1 Z"vs.
Here €/ is a 1 x K unit vector with unity in the 7' position and zeroes elsewhere.
Thus it picks out the 7"component of (Z’Z)~'Z'v, where v, is a T x 1 vector
of reduced form disturbances appearing in the s reduced form equation, i.e,
the s** column of V4.

The term of interest can then be written as

trle/(Z' Z) 1 Z' v, (vecVh) (vecVy ) {H' Qe By EL, 7' XQH & (Px — Pz)}]. (42)

‘We have shown above in Lemma 1 that
E{e)(2'Z)~ ' Z'vs(vecVy)(vecVh)'} = Q455 @ Diag(z,)

so it follows that

Etrlel(Z2'Z) 1 Z'vs(veeVy ) (veeVh ) { H'Qe; By EL Z' XQH @ (Px — Pz)}]
= tr[Qjs @ Diag(Z, ){H'QeiBo B, Z' XQH @ (Px — Pz)}]
—tr(Q0y H'Qei By Bl 2/ XQH v Diag(:) (Px — P7)}

Some simplification is possible by writing

ir{Diag(z)(Px — P7)} = 2. A,

where A, ; is a T'x 1 vector with p™ component @), (X' X) " 'a,—2,(2'Z) " 2,
p=1,2,.... ,T.

Next we shall write E,s = e.e,, where e, is a (¢ + 1) x 1 unit vector with
unity in the s'"position. On putting €., = B, the s'* component of 3,
the above expression may be written as

e, QHOQ i H' QX' Ze Sz, Ny, (43)
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Finally we need to find the value of

K g+1

> EQHQH QX' Ze,Byg7) Az (44)

r=1s=1

We shall proceed by first finding the summation for r = 1,...., K and so we
consi}gler

Z eéQHQijSHIQX/Z(iTﬂsO?; Aa:,z

r=1

= B,0eiQHQ;j HQX'Z Z ere(2'Z2) V2 A,

=

=B, QHQj HQX'A, .

K

where we have used the fact that > e.el. = I and X'Z(2'2)~*7" = X'.
r=1

To complete the evaluation we simply need to sum over s. Hence the final

expression is
K g+1
E Y Z (Frrs — Trs) (vecVy) {H'Qe; By Bl Z' XQH @ (Px — Pz)}vecV;

r=1s=

= BQQH( 21 BSOQijS)H/QXIAII:,Z
=e;QH (B, @ I;1) V' H'QX'A, . (45)

g+1
Here we have used the result that Z B40S2ijscan be written as (8y®@1,41)2*

where Q* is a (g + 1)? x (g + 1) matrlx obtained by stacking the matrices
Qij.97 S = 17 g + 1,

(b).The second term of interest is

K g+1
S 3 (ps — rs) (vecVy) {H'Q(X' ZE,sH' + HE! . Z' X)Qe; 3,
r=1s=1
®(Px — Pz)}vecVy
Again we shall initially disregard the summations and consider
Eltr(e.(Z'Z) 1 Z'vsvecV; (vecVy))
x{H'Q(X'ZE, H' + HE' 7' X)Qe; 3, @ (Px — Pz)}]
= tr((Qijs by Diag(zr)){HlQ(X/ZETsH/ + HELSZ/X)QGZ% ® (PX - PZ)})
=tr(Qi;s(H'Q(X'ZE.sH' + HE! 7' X)Qe;3,))tr(Diag(z.)(Px — Pz))
:egQHE;-SZ/XQHQistOE;-AxZ+e;QX/ZETSH/QHQijsﬁOE;-sz
Putting F,, = e,¢, the above becomes

e;QHese’TZ/XQHQistOZ;AM + QX' Ze, e, HQHQ; 580z Ay

= egQHeSA;,ZZ(Z’Z)_ erenZ' XQHQ,; 580+ e;,QX’ Zeré Ay rel HQHQ, 545,
= e;QHeSAfEZZ(Z'Z) ere, Z’XQHQZJSBO—F@ QX' Ze,e (Z/Z)_IZ'Ame'SH/QHQijS,BO

Summing over r = 1, ..., K yields
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€iQHe AL XQH Q80+ €;QX Apo el H'QHQ; 555
Finally, summing over s = 1,....,g + 1 gives

g+1 g+1
e;QH Z( esBoQj ) H' QX' Apot iQX Apstr(H'QH 35 QijsBoel,)
s=1

Alternatively, on noting that Z (eéﬂOQ”S) *(Iy41 ® By) where Q*is a

(9+1)%?x (g+1) matrix obtained by stacklng the matrices Q5 , s =1,..,g+1,
we may write
K g+1
ELY S (Frs — 7)) (vecVi ) {H'Q(X' ZE, s H' + HE ,Z' X)

r=1s=1

QeiBy ® (Px — Py)}tvecVi}
= e{(QHQ ' (Iy11 @ Bo)H' + tr(QHQ* (Iy11 @ Bo)H')-Iy1x)QX'Ays  (46)

(c).The third and final term is
K g+1
=33 (Frrs — 7rs) (vecVh) {BoeiQX'ZE, s HQX' @ XQH }I*vecV
r=1s=1
where intiially we focus on

—Etr[(frs — mrs)vecVy(vecVy) {ByeiQX' ZE, H' QX' @ XQH }I*]

= —trE[(7ys — mps)vecVy (vecVh) {BoeiQX' ZE, H QX' @ XQH }I*]

= —tr[(Qijs ® Diag(z.)){B,¢}QX' ZE, H'QX' © XQH}I"]
:_tT[(Qijsﬁoe;QXlZErsH/QX/ ® Diag(zr)XQH)I*}

——tr[(Q, Boel QX' ZE, H'QX' Diag(%,) X QH)]
=—tr[(QjsBoe; QX' Ze,re, H QX' Diag(z,) X QH)].

Consider now €;QX’Ze, z,; in which Z,; is the jth component of z, and z,; =

e(Z'2) 1 Z'ej, 5 = 1,...,T. where e; is a T x 1 unit vector.Then f: QX' Ze, zj =
K K !

Zle QX' Ze el (2'Z) 1 Z'e; = €elQX'Z 21 ere(2'Z) 17 e; = e;QX'ej.on sum-
Tmmg over r =1,. K. "

It follows that Z Diag(z,)elQX' Ze, is a diagonal matrix with 7, j** compo-

nent e; X Qe; = Qel We shall refer to this matrix as Diag(XQe;) whereupon
we shall write

Z tr[(QijsPoeiQX' Zere, H QX' Diag(z,) XQH)]
*tr[ ijsBoesH' QX' Diag(XQei) XQH].
g+1

Summing over s = 1,.., g+1 gives tr[ > (i;s8pes) H' QX' Diag(X Qe;) X QH].

s=1
g+1
which when introducing Z (esB08Y;,) = Q*(Ig41 ® By) enables the final result

as follows:
E > > (ftps — mps) (vecVh) {BoeiQX' ZE, s HQX' @ XQH } I*vecVy
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= tr{Q*(Ig+1 ® By ) H'QX'Diag(XQe;) XQH }.
=tr{(I;41 ® B, )" H' QX' Diag(XQe;) XQH} (47)

Summing the three terms in (44),(45) and (46) above yields finally:

B{& XS (s — ) (vee(Tly — L)) £ (vee(Il; — 11y)) }

= eQH(By® I,11)VHQX'A, .
+e;(QH (Igs1 ® Bo)Q H' + tr(QH (g1 ® Bo)Q H') Ig11)) QX' Ay
—tr{(Ig+1 ® By ) Q" H'QX'Diag(XQe;) XQH}. (48)

The results are in terms of the (g + 1) x (g + 1)? matrix Q* which itself is
obtained by stacking the matrices §2;;5 where the ijthelement of Qijs Is wijs =
Elvivjivse]. We shall now express 2* in terms of the structural parameters.

First note that v;; = eQU(B’);ilei where (B');jlis a G x (g4 1) matrix
containing the first (g + 1) columns of (B') 'and e; and e; are T x 1 and
(g + 1) x 1 unit vectors, respectively. Therefore

!
Vip = Uy,

where u; is a G x 1 vector of structural disturbances at time ¢ and b; =
(B’)g_ilei,i =1,..,(g+1),is a G x 1 vector. Similarly we have

D
vjt = uzb;

/
Vst = Uyzbs

where b; = (B’)g;llej and by = (B’);jles, Jjss = 1,.,(g + 1). With these
definitions we can write

Wijs = E[”Uitvjtvst}
= Elujbjuib;juybs]
= Elupbibiuiusbs),i, j,s = 1,..,9 + 1.

Using result (A.27) of Ullah(2005) we then have
w,;js = [tr(bjb;Eijl), e ,tT(bjb;EijG)]bs7

where the ijt" element of the G' x G matrix ¥;;5 is Elujyujius] = 0ij5. We can
rewrite this as

wijs = [bQZijlbj, ceey b;zijgbj]bs

G
= (D biZijpbse; )bs.
p=1
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where e, is a G x 1 unit vector. Denoting the first column of €5, by ;1 we
have

G G
(Zp:l bllzijpble;)bs bll(zpzl Zijpble;)bs

Qils = . =

el . G
(Zp:l b;+1zijpb16;)bs b;+1(zp:1 Eijpblefg)bs
Noting that (B’ )gJrl = (b1, ..., bg41),

Dirs = ((B/);h)l(z Sijpbrep)b

blellbs
= ((B/);il)/[zij17 R el
ble’GbS
= ((B")1) 2" (bs ® by),
where X% is a G x G2 matrix given by
Y= [Zijla ey zijG]-
Generalising, the p* column of Qs is
(B')y11)'S" (bs @ by),
so the matrix ;;, is
Qijs = (B)1)S" Y (bs @ by)e,
p=1
G
= ((B),£)'S" Y (B hes ® (B) Liep)e
p=1

B );il)/zl*((B/)g-H ® (B )g+1)(e ® Ig41)
= ((B/);il)lz *(B/)ngles ( )g+1)
The (g + 1) x (g + 1)? matrix Q"*is then given by
Q" = (Qj, Qij2i-~-;Qij(g+1))1 ) )
=((B )g+1) E/*(B/);J{161®(B/);+11)’ (B)g11)' =" (B') g f1e2@(B) 1), vveene
((B)11)'E*(B') g t1eg41 © By )
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=((B)y 1) T *((B) ;11 © (B)41)
on noting that(ey, es, ..., eg11) = I541.Hence finally

Q" = (B, )= (B) 1 @ (B)
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