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Abstract

In a seminal paper Nagar (1959) obtained �rst and second moment
approximations for the k-class of estimators in a general static simulta-
neous equation model under the assumption that the structural distur-
bances were i.i.d and normally distributed.Later Mikhail (1972) obtained
a higher-order bias approximation for 2SLS under the same assumptions
as Nagar while Iglesias and Phillips (2010) obtained the higher order ap-
proximation for the general k-class of estimators. These approximations
show that the higher order biases can be important especially in highly
overidenti�ed cases. In this paper we show that Mikhail�s higher order
bias approximation for 2SLS continues to be valid under symmetric, but
not necessarily normal, disturbances with an arbtrary degree of kurtosis
but not when the disturbances are asymmetric. A modi�ed approximation
for the 2SLS bias is then obtained which includes the case of asymmetric
disturbances. The results are then extended to the general k�class of
estimators.

1 Introduction

Moment approximations of estimators in simultaneous equation models have a
long history. The seminal paper was Nagar (1959) who derived approximations
to the �rst and second moments of the consistent k-class of estimators in a gen-
eral simultaneous equation model with exogenous regressors. In obtaining the
results, it was assumed that the structural disturbances were independently and
normally distributed. Later Mikhail (1972) extended Nagar�s bias approxima-
tion for the 2SLS case to a higher order and under the same assumptions while
Iglesias and Phillips (2010) give the higher order approximation for the consis-
tent k-class estimator. Nagar�s work led to a great deal of research concerned
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with the small sample properties of simultaneous equation estimators; in partic-
ular, various writers examined conditions under which Nagar�s approximations
were valid, see Srinavasan (1970). The main result was given by Sargan (1974)
who showed that a necessary and su¢ cient condition was that the estimator
moments should exist. Much work has been done to explore the existence of
estimator moments especially in simpli�ed models. However, a paper which is
of particular relevance, given its generality, is Kinal (1980). His results show
that in the general simultaneous equation model chosen by Nagar, the 2SLS
estimator has moments up to the order of overidenti�cation. However, k-class
estimators behave di¤erently depending on the value taken by k: In cases where
k > 1; which includes the LIML estimator, the k-class estimators do not pos-
sess moments of any order while when k < 1 higher moments exist and this does
not depend on the order of overidentication.
In Phillips (2000) it was shown that the Nagar bias approximation for the

2SLS estimator is correct under much less restricted conditions than assumed
by Nagar. In particular, the result does not require the assumption of normal-
ity nor, indeed, symmetry. In Phillips (2007) it was noted that for the bias
approximation to hold a su¢ cient condition is that the disturbances obey the
classical Gauss-Markov assumptions which includes, in particular, the class of
conditionally heteroscedastic disturbances such as ARCH=GARCH. Neither
paper considered the higher order approximation however,
In this paper it is shown that the Mikhail higher order bias approximation

is valid without assuming normality for the disturbances. It does, however,
require that the disturbances are distributed symmetrically. If disturbances
have a skewed distribution then the approximation has to be modi�ed and we
give the corrected form.. The results are then extended to include the consistent
nembers of the k�class.

2 Model and Notation

We consider a simultaneous equation model given by

Byt + �zt = ut (1)

in which yt is a G � 1 vector of endogenous variables, zt is a K � 1 vector of
strongly exogenous variables and ut is a G�1 vector of independently and identi-
cally distributed structural disturbances with G�G positive de�nite covariance
matrix �. The matrices of structural parameters, B and � are, respectively,
G�G and G�K: It is assumed that B is non-singular so that the reduced form
equations corresponding to (1) are:

yt = �B�1�zt +B�1ut
= �zt + vt;
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where � is a G�K matrix of reduced form coe¢ cients and vt is a G� 1 vector
of reduced form disturbances with a G � G positive de�nite covariance matrix

: With T observations we may write the system as

Y B0 + Z�0 = U: (2)

Here, Y is a T �G matrix of observations on endogenous variables, Z is a T �K
matrix of observations on the strongly exogenous variables and U is a T � G
matrix of structural disturbances.
The �rst equation of the system is given by

y1 = Y2� + Z1
 + u1; (3)

where y1 and Y2 are, respectively, a T � 1 vector and a T � g matrix of observa-
tions on g + 1 endogenous variables, Z1 is a T � k matrix of observations on k
exogenous variables, � and 
 are, respectively, g�1 and k�1 vectors of unknown
parameters and u1 is a T � 1 vector of independently and identically distrib-
uted disturbances with positive de�nite covariance matrix E(u1u01) = �11. The
reduced form of the system includes Y1 = Z�1 + V1 in which Y1 = (y1 : Y2),
Z = (Z1 : Z2) is a T � K matrix of observations on K exogenous variables
with an associated K � (g + 1) matrix of reduced form parameters given by
�1 = (�1 : �2), while V1 = (v1 : V2) is a T � (g + 1) matrix of reduced form
disturbances. The transpose of each row of V1 is independently and identically
distributed with zero mean vector and (g+1)�(g+1) positive de�nite covari-
ance matrix 
1 = (!ij) while the T (g + 1) vector vecV1; obtained by stack-
ing the columns of V1; has a positive de�nite covariance matrix of dimension
T (g + 1)� T (g + 1) given by Cov(vecV1) = 
vec1 and has �nite moments up to
�fth order. This latter condition is required to ensure that the expansion used
has a remainder term of appropriate order, see Phillips ( 2000). It is further
assumed that:

(i) Equation (3) is over-identi�ed so that K > g + k, i.e. the number of
excluded variables exceeds the number required for the equation to be just
identi�ed. This over-identifying restriction is su¢ cient to ensure that the Nagar
expansion is valid in the case considered by Nagar and that, at least, the �rst
estimator moment exists: see Sargan (1974).
(ii) The T�K matrix Z is strongly exogenous and of rankK and there exists

a K � K positive de�nite matrix with limit matrix �ZZ = limT!1 T
�1Z 0Z:

Following Anderson et al (1986, p7) it will also be assumed that T�1Z 0Z =
�ZZ + o(T

�1):

3 Nagar Approximations to the bias

The 2SLS estimator of � = (�0; 
0)0is given by

�̂ =

�
Y 02Y2�V̂

0
2 V̂2 Y 02Z1

Z 01Y2 Z 01Z1

��1�
Y2 � V̂2
Z 01

�0
y1: (4)
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The Nagar approach to �nding moment approximations for the 2SLS esti-
mator, proceeds from the estimation error,

�̂� � =
�
Y 02Y2�V̂

0
2 V̂2 Y 02Z1

Z 01Y2 Z 01Z1

��1�
Y2 � V̂2
Z 01

�0
u1; (5)

To �nd the expansion we �rst write

�̂� � =
�
Q�1 +X 0Vz + V

0
zX + V 0zPzVz

��1
[X 0u1 + V

0
zPzu1] (6)

=
�
I +Q�1fX 0Vz + V

0
zX + V 0zPzVzg

��1
Q [X 0u1 + V

0
zPzu1] :

X = (Z�2 : Z1), Q = (X 0X)�1, Pz = Z(Z 0Z)�1Z 0 and Vz = (V2 : 0).

Setting � = X 0Vz + V
0
zX + V 0zPzVz and expanding the inverse

�
I +Q�1�g

��1
in a Taylor expansion yields

�̂� � = [I +Q�g]�1Q [X 0u1 + V
0
zPzu1]

= [I �Q�+Q�Q��+::::]Q [X 0u1 + V
0
zPzu1] (7)

where terms can be arranged in decreasing order of stochastic magnitude.
In fact, if we write u1 = V1�0 and Vz = V1H

0, where �0 = (�1; �0)0 and

H =

�
0 Ig
0 0

�
is a (g+ k)� (g+ 1) selection matrix, then the Nagar expansion

may be written in the form

�̂� � = QX 0V1�0 +QHV
0
1PzV1�0 �QX 0V1H

0QX 0V1�0 �QHV 01PxV1�0
�QHV 01PzV1H 0QHV1�0 �QHV 01PzV1H 0QX 0V1�0

�QX 0V1H
0QHV 01PzV1�0 �QHV 0XQHV 0PzV1�0

+QX 0HV 01QXV1H
0QX 0V1�0 +QHV

0
1PxV1H

0QXV1�0

+QX 0V1HQHV
0
1PxV1�0 +QHV

0
1XQHV

0
1PxV1�0 + op(T

� 3
2 ): (8)

The Nagar bias approximation is found by summing the expectations of the
terms up to order T�1.We shall later compare this expansion with an alternative
representation presented in Phillips (2000)., If we require the Nagar expansion
for a general element of the vector �̂; say �̂i; i=1,..,g + k, then we may simply
extract the required terms by premultiplying the expansion for �̂ � � by e0i,
where ei is a (g + k)� 1 unit vector.
The Nagar approximation for the bias of the 2SLS estimator for � in (4) is

given by
E(�̂� �) = [L� 1]Qq + o(T�1): (9)

where L = K � g � k is the order of overidenti�cation, q = 1
T

�
E(V 02u1)

0

�
and

Q is as de�ned above.
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The Mikhail higher order approximation for the 2SLS estimator for � in
( 4), in the same framework as Nagar but extending the expansion to include
terms up to Op

�
T�2

�
, is given by

E(�̂� �) = (L� 1)[I + tr(QC)I � (L� 2)QC]Qq + o(1=T 2): (10)

which adds two terms to Nagar�s result, namely, (L � 1)(tr(QC)Qq and -(L �
1)(L � 2)QCQq, both of which are O(T�2): The (g + k) � (g + k) matrix C
above is given by

C =

�
(1=T )E(V 02V2) 0

0 0

�
:

It is apparent that when L is relatively large these added terms can be
important. Hence in models with a large number of intruments the higher order
approximation will be of particular value. Some evidence for this is given in
Iglesias and Phillips (2008).
The assumptions made by Mikhail in obtaining this result were the same

as those used by Nagar so that normality was assumed for the disturbances.
We shall examine this approximation later in the paper; in particular, we shall
show that the assumption of normality for disturbances can be relaxed. We
shall also consider how the approximation is modi�ed when the disturbances are
asymmetric. It is of interest that the bias approximation is zero when L = 1,
i.e. when the parameters of the equation are overidenti�ed of order unity. The
approximation may work well, see Hadri and Phillips (1999) and Iglesias and
Phillips (2008) for evidence of this.
In Iglesias and Phillips ( 2010) Mikhail�s approximation was extended, under

the same assumptions as used by Mikhail, to include the general k�class of
estimators as follows:

E(�̂k � �) = (L� 1� �)Qq + (L� 1)� 2�)trQC:Qq
�[(L� 1)(L� 2)� �2(L� 2) + �2]QCQq

+�
K

T
Qq + o(T�2) (11)

Here k = 1+ �
T and � � 0 is a real negative number. Notice that this ap-

proximation reduces to that of Mikhail when � = 0 for then the k�class estima-
tor is just 2SLS :

4 An Alternative Approach to Approximating
The 2SLS Bias

We consider the estimation of the equation given in (3) by the method of 2SLS.
It is well known that the estimator can be written in the form

�̂ =

�
�̂

̂

�
=

�
�̂02Z

0Z�̂2 �̂02Z
0Z1

Z 01Z�̂2 Z 01Z1

��1�
�̂02Z

0Z�̂1
Z 01Z�̂1

�
(12)
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where �̂2 = (Z 0Z)�1Z 0Y2 and �̂1 = (Z 0Z)�1Z 0y1: This representation of 2SLS
was considered in Harvey and Phillips (1980) and in Phillips (2000; 2007): It
is apparent that, conditional on the exogenous variables, the 2SLS estimators
are functions of the matrix �̂1 = (�̂1 : �̂2); hence we may write �̂ = f(vec�̂1):
As shown in Phillips (2000), the unknown parameter vector can be written as
� = f(vec�1); so that the estimation error is f(vec�̂1) � f(vec�1): A Tay-
lor expansion about the point vec�1 may then be employed directly to �nd a
counterpart of the Nagar expansion. In fact, Phillips considered the general
element of the estimation error �̂i � �i = e0i(�̂ � �)=fi(vec�̂1) � fi(vec�1),
i = 1; 2; :::::::; g + k, where e0i is a 1�(g + k) unit vector, and the bias approxi-
mation to order T�1was found using the �rst two terms of the expansion:

fi(vec�̂1) = fi(vec�1) + (vec(�̂1 ��1)0f (1)i

+
1

2!
(vec(�̂1 ��1))0f (2)i (vec(�̂1 ��1))

+
1

3!
�Kr=1�

g+1
s=1(�̂rs � �rs)(vec(�̂1 ��1))0f

(3)
i;rs(vec(�̂1 ��1))

+
1

4!
F (vec((�̂1 ��1)) + op(T�2): (13)

where f (1)i is a K(g+1) vector of �rst-order partial derivatives, @fi
@vec�̂1

: f
(2)
i is a

(K(g+1))�(K(g+1)) matrix of second-order partial derivatives, @2fi
@vec�̂1(@vec�̂1)0

,

f
(3)
i;rs is a (K(g+1))�(K(g+1)) matrix of third-order partial derivatives de�ned

as f (3)i;rs =
@f

(2)
i

@�rs
; r = 1; ::::;K; s = 1; :::; g + 1: The derivatives, f (1)i ; f

(2)
i and

f
(3)
i;rs are given in Phillips(2000). The expression F (vec((�̂1 � �1)) represents
the unknown fourth term which will involve the fourth order partial derivatives
and products of four components of vec((�̂1��1): All derivatives are evaluated
at vec�1:

The bias approximation to order T�1 is obtained by taking expectations
of the �rst two terms of the stochastic expansion to yield:

E(�̂i � �i) =
1

2!
tr
h
(f
(2)
i (I 
 (Z 0Z)�1Z 0)
vec1 (I 
 Z(Z 0Z)�1)

i
+ o(T�1)

When the partial derivatives f (2)i are introduced and 
vec1 is interpreted in
terms of the structural parameters, the bias approximation is readily found.
It is of interest to examine this bias approximation further. Note that the
approximation changes as the matrix 
vec1 changes. When 
vec1 = 
1 
 IT ;
which is the case where the rows of the matrix V1 are serially uncorrelated and
homoscedastic, the approximation reduces to that given by Nagar;

E(�̂i � �i) = e0iQq + o(T�1): (14)

However, to obtain his approximation Nagar assumed that the disturbances
were normally distributed while here we need only assume that the row vectors
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of V1 obey the Gauss Markov assumptions so that the row vectors are serially
uncorrelated and homoscedastic.
It is not immediately obvious that the above expansion in (13) is equivalent

to that used by Nagar. Examining the Nagar expansion in (8), however, we
note that the �rst term, which is Op(T�

1
2 ); may be written as

e0iQX
0V1�0 = trf�0e0iQX 0V1g = trf�0e0iQX 0Z(Z 0Z)Z 0V1g

= fvec(Z 0Z)�1Z 0V1)g0vec(�0e0iQX 0Z) = (vec(�̂1 ��1)0(�0 
 Z 0XQei)
= (vec(�̂1 ��1)0f (1)i ,
where f (1)i = (�0 
 Z 0XQei) is derived in Phillips (2000). This is just the

�rst term in the above expansion (8). By the same approach it may be shown
that the Op(T�1) part of the Nagar expansion, which is given by the second,
third and fourth terms, equals the second term in ( 8 ), and so on.

To �nd the bias approximation to order T�2 we shall also need the next two
terms in the expansion. It has proved possible to �nd an explicit representation
for the third term but it is quite di¢ cult to do so for the fourth term. Notice
that the third term term

1

3!
�Kr=1�

g+1
s=1(�̂rs � �rs)(vec(�̂1 ��1))0f

(3)
i;rs(vec(�̂1 ��1) (15)

is a linear function of products of three components of vec(�̂1 � �1) and the
bounded third order derivatives which are evaluated at vec(�1). In Appendix
1 it is shown that the third moment of the least squares regression estimator is
O(T�2) from which we may deduce that the expectation of the third term in
(13 ) is also O(T�2) and we evaluate this in Appendix 2.
While we cannot easily �nd an explicit representation for the fourth term in

the expansion, F (vec((�̂1��1)); it turns out that we do not need to do so. We
may readily deduce that it is a linear function of fourth order products of the
components of vec(�̂1��1) and the bounded fourth order derivatives evaluated
at vec(�1):We �nd that not knowing its precise form is of no consequence in
context because the fourth moment of the least squares regression estimator
does not depend upon the kurtosis of the error distribution to the order of the
approximation. This is shown in Appendix 2 where we demonstrate that the
fourth moment has two components. The �rst of these is O(T�2) while the
second, which involves the kurtosis of the error distribution is O(T�3) and,
as such, it plays no role in our approximation to O(T�2): Because of this the
expectation of the fourth term to the order of the approximation will not depend
upon the actual distribution of the errors provided the moment conditions are
met. Hence the expectation based upon the normal distribution, which has
already been found by Mikhail, will also be appropriate for other distributions
and in �nding the higher order bias approximation to order T�2 we shall simply
add the relevant part of the Mikhail result. We shall see that the analysis can
also be extended to �nd similar results for the k�class of estimators.
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5 The Higher Order Bias Approximations For
2SLS

In this section we present the bias approximation under weaker conditions than
those assumed by Mikhail. In case the disturbances are non-normal but sym-
metric, the evaluation of the expected value of the third term in (13) is trivally
zero while the evaluation of the fourth term has already been done by Mkihail
for the normal distribution and. as noted above, the same evaluation will apply
here also. Hence the Mikhail approximation carries over directly for non-normal
but symmetric distributions for which the moment conditions are met and does
not depend upon kurtosis. We now state the following theorem.
.
Theorem 1
In the model of Section 2 where the errors are symmetrically but not neces-

sarily normally distributed, the bias of the ith component of the 2SLS estimator
in (4), is given by
E(�̂i � �i) = (L� 1)[e0iQq + tr(QC)e0iQq

�(L� 2)e0iQCQq] +o(T�2); i = 1; 2; ::; g + k:
This is exactly the approximation found by Mikhail for the case of normally

distributed errors and the proof of the theorem follows immediately from the
preceding discussion. This result helps to explain the �ndings of Knight(1985)
who, using exact �nite sample theory in the context of a two equation model,
found that a moderate level of kurtosis had little e¤ect on the bias of the 2SLS
estimator.
The second case of interest is where the errors are asymmetrically distrib-

uted. Now it is necessary to extend the Mikhail approximation to allow for asym-
metry but, again, the approximation does not depend upon the kurtosis of the
error distribution. Introducing the evaluation of the third term of (13) we �nd
that the revised approximation is given in the following.

:

Theorem 2
In the model of Section 2 where the errors may be asymmetrically distrib-

uted, the bias of the ith component of the 2SLS estimator is given by

E(�̂i � �i) = (L� 1)[e0iQq + tr(QC):e0iQq � (L� 2)e0iQCQq]
e0iQH(�

0
0 
 Ig+1)
�H 0QX 0�x;z + e

0
i((QH(Ig+1 
 �00)
�H 0 +

tr(QH(Ig+1 
 �00)
�H 0):Ig+k)QX
0�xz

�tr((Ig+1 
 �00)
� H 0QX 0Diag(XQei)XQH) + o(T
�2)

where the e¤ects of the asymmetry of the disturbances are indicated by the
presence of the (g+1)2 � (g+1) matrix of third moments 
�which is obtained
by stacking the (g+1)� (g+1) matrices 
ijs; s = 1; :; (g+1):The T � 1 vector
�xz has pth component x0p(X

0X)�1xp � z0p(Z 0Z)�1zp; p = 1; 2; ::::::; T .When
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� is zero the bias approximation reduces to that of Mikhail (1972) The proof
of the above is given in Appendix 2.
Notice that the asymmetry e¤ect does not depend explicity on L and so it is

present whatever the order of overidenti�cation; in particular, the asymmetry
e¤ect does not go to zero when L=1:

If it is required to express the asymmetry e¤ect in terms of the structural
parameters we can replace 
0�with its structural parameter representation.viz,

0� = ((B0)�1g+1)

0�?((B0)�1g+1 
 (B0)�1g+1) where (B0)�1g+1 comprises the �rst g + 1
columns of (B0)�1, ��is the G�G2 matrix formed as �� = (�ij1;�ij2; ::::;�ijG)
and �ijk is a G�G symmetric matrix with general element equal to the third
moment �ijk; k = 1; ::; G:
It is apparent that the asymmetry e¤ect is a complicated function of the

endogenous variable parameters in the model and all the third moments of the
structural disturbances. As such it is di¢ cult to deduce its sign or magnitude
in general though it is possible to calculate the value of the approximation for
a given structure. The study by Knight (1985) referred to above also examined
the e¤ect of error skewness on the bias of 2SLS and found that a moderate
degree of skewness appeared to have only a small e¤ect; however, we have no
results for substantial departures from symmetry nor, indeed, for cases with a
large number of instruments.

6 An extension to the general k-class of estima-
tors

In a recent paper Iglesias and Phillips (2010) have derived the higher order
bias of the consistent k�class of estimators, thus extending the result for 2SLS
in Mikhail (1972): This class of estimators for which 0 < k < 1 is poten-
tially interesting because the estimators have all necessary moments, see Kinal
( 1980), whereas, for example, 2SLS only has moments up to the order of over-
identi�cation. To obtain the higher order bias of the general k�class estimator
under skewness and kurtosis, we shall need to modify the above approach. Con-
sider the k�class estimator given by

�̂k =

� b�k

̂k

�
=

�
Y 02Y2 � kV̂ 02 V̂2 Y 02Z1

Z 01Y2 Z 01Z1

��1�
Y 02 � kV̂ 02
X 0
1

�
y1

=

�
�̂02Z

0Z�̂2 + (1� k)V̂ 02 V̂2 �̂02Z
0Z1

Z 01Z�̂2 Z 01Z1

��1�
�̂02Z

0Z�̂1 + (1� k)V̂ 02 v̂1
Z 01Z�̂1

�
:

Here it is clear that, conditional on the exogenous variables, the k�class
estimators are functions not only of �̂1 = (�̂1 : �̂2) but also of V̂ 02 V̂2 and V̂

0
2 v̂1:
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However by suitably manipulating the estimator it is possible to express it in
the same form as (12) so that no new analysis, beyond that set out in Phillips
(2000), is required to �nd the bias approximation.
To see this let W = (Z : �Z) be a T � T matrix of rank T obtained by

augmenting the X matrix and adding T �K linearly independent columns �Z:
Then it is possible to write

Y1 = (y1 : Y2) =W (�
�
1 : �

�
2);

where
(��1 : �

�
2) = (W

0W )�1W 0((y1 : Y2) =W
�1(y1 : Y2):

Let
W � = [I � c(I � Pz)]W;

where c = 1 +
p
1� k. The corresponding k�class estimator may then be

written as

�̂k =

� b�k

̂k

�
=

�
��02 (W

�)0W ���2 ��02 (W
�)0W �

1

(W �
1 )
0W ���2 (W �

1 )
0W �

1

��1�
��02 (W

�0)0W ���1
(W �

1 )
0W ���1

�
;

(16)
whereW �

1 is a T�k1 matrix forming the �rst k1 columns ofW �: ThusW �
1 = Z1:

Now putting

�k =

�
�k

k

�
;

we may write that, conditional on W �;

�k = f
�(vec��1);

where E(��1) = ��1 =

�
�1
0

�
and the 0 matrix is (T �K)� (g + 1):

Also,

W � ��1 = [I � c(I � PZ)]W ��1 = [I � c(I � PZ)] (Z : �Z)
�
�1
0

�
= [I � c(I � PZ)]Z�1 = Z�1 = (Z�1 : Z�2) :

On putting
�
��1 : ��2

�
in place of

�
��1 : ��2

�
in ( 16 ), it is seen that

f�(vec��1) = f(vec�1) = �:

Thus we have shown that (�k)i = f�i (vec�
�
1) and �i = f

�
1 (vec

��1):
We may now write down a Taylor Series expansion analogous to (13) as

follows

f�i (vec�
�
1) = f�i (vec��1) + (vec(�

�
1 � ��1)0f

�(1)
i +

1

2!
(vec(��1 � ��1))0f

�(2)
i (vec(��1 � ��1))

+
1

3!
�Kr=1�

g+1
s=1(�

�
rs � ��rs)(vec(��1 � ��1))0f

�(3)
i;rs (vec(�

�
1 � ��1))

+F �((vec(��1 � ��1)) + op(T�2);

10



where f�(1)i is a T (g + 1) vector of �rst-order partial derivatives, @f�i
@vec��1

=

f
�(2)
i is a (T (g + 1)) � (T (g + 1)) matrix of second-order partial derivatives,

@2f�i
@vec��1(@vec�

�
1)
0 = f

�(3)
i;rs is a (T (g+1))� (T (g+1)) matrix of third-order partial

derivatives de�ned as f�(3)i;rs =
@�f

(2)
i

@��rs
; r = 1; ::::; T; s = 1; :::; g+1: All derivatives

are evaluated at vec��1: The bias approximation to order T�1 is then obtained
by taking expectations of the �rst two terms of the stochastic expansion to yield

E((�̂k)i � �i) =
1

2!
tr
h
(f
�(2)
i (I 
 (W�1)
vec1 (I 
 (W )�1)

i
+ o(T�1);

where we have used the result that vec(��1 � ��1) = (Ig+1 
W�1)vecV1:
The introduction of the matrix W was made simply to write the k�class

estimator in a form which enabled the bias approximation to be obtained directly
using the same analysis as in the 2SLS case. When f�(2)i is interpreted in terms
of the structural parameters, and 
vec1 is set equal to 
1 
 IT , W is cancelled
out and then we have

E((�̂k)i � �i) = tr
�
(HQei�

0
0 
 (I � PZ)� k(I � PX))
vec1

�
�tr[(I�(XQei�00 
H 0QX 0))
vec1 ] + o(T�1): (17)

which reduces to the result of Nagar(1959).
Notice that when k = 1 and (I�PZ)�k(I�PX) is replaced by PX�PZ , the

approximation reduces to that for 2SLS given above. Previously we noted that
the 2SLS bias approximation was obtained under much weaker assumptions
than were employed by Nagar. Here we see that we have obtained the bias
approximation for the consistent k�class under the same weak assumptions;
in particular, we do not need normality nor independence of the disturbances,
merely that the row vectors of V1 should satisfy the Gauss Markov conditions.
Consequently, the Nagar bias approximation for k�class estimators is valid, for
example, as it is for 2SLS; under assumptions such as martingale di¤erences
and ARCH=GARCH disturbances.
The higher order bias approximation can now be derived as in the 2SLS

case and the bias to order T�2 does not depend upon the kurtosis of the error
distribution Hence the higher order bias given in Iglesias and Phillips (2010)
holds also under symmetric distributions whatever the degree of kurtosis. We
may now state:

Theorem 3.
In the model of Section 2 where the errors may be asymmetrically distrib-

uted, the bias of the ith component of the k�class estimator is given by

11



E((�̂k)i � �i) = (L� 1)[e0iQq + tr(QC)e0Qq � (L� 2)e0iQCQq]

�[(L� 1)(L� 2)� �2(L� 2) + �2]e0QCQq + �K
T
e0Qq +

e0iQH(�
0
0 
 Ig+1)
�H 0QX 0�(k)x;z + e

0
i((QH(Ig+1 
 �00)
�H 0 +

tr(QH(Ig+1 
 �00)
�H 0):Ig+k)QX
0�(k)xz

�tr((Ig+1 
 �00)
� H 0QX 0Diag(XQei)XQH)

+o(T�2) (18)

The part of the approximation which relates to the e¤ects of the asymmetric
errors di¤ers from that of 2SLS. In fact the e¤ects of asymmetric errors involves
the term �xz in the 2SLS case which is a T � 1 vector with pth component
x0p(X

0X)�1xp � z0p(Z 0Z)�1zp; p = 1; 2; ::::::; T; : In the general k�class case
examined here where k = 1 + �

T and � � 0, this is replaced by �kx;z which
is a T � 1 vector with pth component 1� z0p(Z 0Z)�1zp � k(1� x0p(X 0X)�1xp);

p = 1; 2; ::::::; T:While the asymmetry e¤ects depend directly on k through�(k)xz ;
none of the higher order terms in the k�class bias approximation is explicit in
L � 1; hence, when L = 1 the higher order bias does not go to zero under
asymmetric disturbances. It was seen earlier that this is the case for 2SLS also.

7 A Simple case

In the general model it is di¢ cult to interpret the a¤ects of asymmetry in the
disturbances on the estimators and in this section we explore the e¤ects in a very
simple simultaneous equation model in an attempt to isolate the key factors.
We consider the simple model given by

y2;t = �2y2;t + 

0zt + u2;t; t = 1; 2; :::; T; (19)

where zt is a p�1 vector of exogenous variables. The
reduced form for y2:t is given by

y2;t = �2(�1y2;t + u1;t) + 

0zt + u2;t

= �1�2y2;t + 

0zt + u2;t + �2u1;t

= �02zt + vt (20)

where �02 =

0

1��1�2
:

Also y2 = Z�2 + v2 from which we shall write X = Z�2: We shall also
require, Q =(�02Z

0Z�2)
�1 = 1

�02Z
0Z�2

;H = (0; 1);

12



(
�)0 =
�
!1;1;1 !2;1;1 !1;1;2 !2;1;2
!1;2;1 !2;2;1 !1;1;2 !2;2;2

�
; �0 =

�
1
��1

�
and ei = 1:

We now de�ne the vector

�x;z =

2664
x01(X

0X)�1x1 � z01(Z 0Z)�1z1
x2(X

0X)�1x2 � z02(Z 0Z)�1z2
::::

x0T (X
0X)�1xT � z0T (Z 0Z)�1zT

3775 =
26664

z01(�
0
2�2)z1

�2Z0Z�2
� z01(Z 0Z)�1z1

z02(�
0
2�2)z2

�2Z0Z�2
� z02(Z 0Z)�1z2
::::

z0T (�
0
2�2)zT

�2Z0Z�2
� z0T (Z 0Z)�1zT

37775
whereX 0�xz = �

0
2(z1; z2; :::::; zT ); and�xz =

P
(z0j�2)

3

�2Z0Z�2
�
P
�02zjz

0
j(Z

0Z)�1zj ::
All summations run from 1 to T:

The �rst of the asymmetric terms is
e0iQH(�

0
0 
 Ig+1)
�H 0QX 0�x;z =

1
�02Z

0Z�2
(0; 1)

�
1 0 ��1 0
0 1 0 ��1

�2664
!1;1;1 !1;2;1
!2;1;1 !2;2;1
!1;1;2 !1;2;2
!2;1;2 !2;2;2

3775� 0
1

�

� 1
�02Z

0Z�2
[
P
(z0j�2)

3

�2Z0Z�2
�
P
�02zjz

0
j(Z

0Z)�1zj ]

= (!2;2;1��1!2;2;2)[

P
(z0j�2)

3

(�2Z 0Z�2)3
�
P
�02zjz

0
j(Z

0Z)�1zj

(�2Z 0Z�2)2
] (21)

The second asymmetric term is

e0i((QH(Ig+1 
 �
0
0)


�H 0QX 0�x;z =

1
�02Z

0Z�2
(0; 1)

�
!1;1;1 !2;1;1 !1;1;2 !2;1;2
!1;2;1 !2;2;1 !1;1;2 !2;2;2

�2664
1 0
��1 0
0 1
0 ��1

3775� 0
1

�

� 1
�02Z

0Z�2
[
P
(z0j�2)

3

�2Z0Z�2
�
P
�02zjz

0
j(Z

0Z)�1zj ]

= (!2;2;1��1!2;2;2)[

P
(z0j�2)

3

�2Z 0Z�2
�
P
�02zjz

0
j(Z

0Z)�1zj

(�2Z 0Z�2)2
] (22)

The third asymmetric term is
trfHQH 0((Ig+1
�00)
�e0iQX 0�x;zg = trfQH 0((Ig+1
�00)
�He0iQX 0�x;zg

1
�02Z

0Z�2
(0; 1)

�
1 ��1 0 0
0 0 1 ��1

�2664
!1;1;1 !1;2;1
!2;1;1 !2;2;1
!1;1;2 !1;2;2
!2;1;2 !2;2;2

3775� 0
1

�
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� 1
�02Z

0Z�2
[
P
(z0j�2)

3

�2Z0Z�2
�
P
�02zjz

0
j(Z

0Z)�1zj ]

= (!2;2;1��1!2;2;2)[

P
(z0j�2)

3

(�2Z 0Z�2)3
�
P
�02zjz

0
j(Z

0Z)�1zj

(�2Z 0Z�2)2
] (23)

on noting that !1;2;2 = !2;2;1:

Finally the fourth asymmetric term is

�tr((Ig+1 
 �00 )
� H 0QX 0Diag(XQei)XQH)
= �tr(XQH)((�00 
 Ig+1 )
� H 0QX 0Diag(XQei))

=�trf Z�2
�02Z

0Z�2
(0; 1)

�
1 ��1 0 0
0 10 ��1

�2664
!1;1;1 !1;2;1
!2;1;1 !2;2;1
!1;1;2 !1;2;2
!2;1;2 !2;2;2

3775� 0
1

�

� �02Z
0

�2Z0Z�2

26664
z01�2

�2Z0Z�2
0 0 0

0
z02�2

�2Z0Z�2
0

: :

0
z0T�2

�2Z0Z�2

37775g

= �trf 1
�02Z

0Z�2
(!2;2;1 � �1!2;2;2)

� �02Z
0

�2Z0Z�2

26664
z01�2

�2Z0Z�2
0 0 0

0
z022�

�2Z0Z�2
0

: :

0
z0T�2

�2Z0Z�2

37775
2664
z01�2
z02�2
:

z0T�2

3775g

= (!2;2;1��1!2;2;2)[

P
(z0j�2)

3

(�2Z 0Z�2)3
] (24)

Finally, summing (21)-(24), we �nd that the asymmetric terms

e0iQH(�
0
0 
 Ig+1)
�H 0QX 0�x;z + e

0
i((QH(Ig+1 
 �00)
�H 0 +

tr(QH(Ig+1 
 �00)
�H 0):Ig+k)QX
0�xz

�tr((Ig+1 
 �00 )
� H 0QX 0Diag(XQei)XQH) + o(T
�2)

are equal to

3(!2;2;1��1!2;2;2)[

P
(z0j�2)

3

(�2Z 0Z�2)3
�
P
�02zjz

0
j(Z

0Z)�1zj

(�2Z 0Z�2)2
] (25)

�(!2;2;1��1!2;2;2)[
P
(z0j�2)

3

(�2Z 0Z�2)3
]
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in

this special case.It is seen that the above expression is of order T�2 as expected
and the bracketed terms may go to zero quite quickly as T gets large. Clearly
(!2;2;1��1!2;2;2) plays a key role. It is helpful to interpret the disturbance
skewness factors in terms of the structural parameters. Noting that

!2;2;1��1!2;2;2 = E(v
1;tv

2
2;t)� �1E(v32;t)

= E(
"1;t + �1"2;t
1� �1�2

)(
�2"1;t + "2;t
1� �1�2

)2

��1E(
�2"1;t + "2;t
1� �1�2

)3 (26)

which
with some manipulation simpli�es to

!2;2;1��1!2;2;2 =
�1(�1;1;1��2;2;2)

(1� �1�2)3
+
�1;1;1�

2
2 + 2�1;1;2 + �1;2;2
(1� �1�2)2

(27)

it
is clear that this term can be made large for suitable choice of the parame-
ters, especially since �1and �2 are unrestricted other than the requirement that
�1�2 6= 1:

Consider now the part not involving !2;2;1��1!2;2;2: If we de�ne xj = z
0
j�2

and �j = z0j(Z
0Z)�1zj thenP�
z0j�2

�3
(�02Z

0Z�2)3
�
P
�02zjz

0
j(Z

0Z�1)zj

(�02Z
0Z�2)2

=

P
x3j

(
P
x2j )

3
�
P
xj�j

(
P
x2j )

2
(28)

Upon putting xj = rcj where r = (
P
x2j )

1
2 and

P
c2j = 1; the above becomes

1
r3 (
P
c3j �

P
cj�j)::If we allow all the zj (and hence the xj) to shrink at the

same rate then cj and �j are unchanged while r becomes small. In this case
in the limit, as r ! 0; of i

r3 (
P
c3j �

P
cj�j):is unbounded. Similarly on not-

ing that �02 =

0

1��1�2
where the structural parameter vector 
 can be varied

independently of the all the other structural parameters and, in particular, it
can be varied to make �2 arbitrarily small (which might happen in the weak
instrument case), it is clear that as �2 becomes small ( so that r becomes small),
the overall expression could become relatively large despite the fact that it is of
order T�2. Thus there is another situation in which the asymmetry might lead
to a signi�cant bias.
This simple case provides evidence that skewness of disturbances seems likely

to cause estimation biases to di¤er substantially in some situations compared
to when disturbances are symmetric.
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The analogous result for the general k�class of estimators in the simple case
is given by

3(!2;2;1��1!2;2;2)[
1� k

(�2Z 0Z�2)2
+ k

P
(z0j�2)

3

(�2Z 0Z�2)3
�
P
�02zjz

0
j(Z

0Z)�1zj

(�2Z 0Z�2)2
]

�(!2;2;1��1!2;2;2)[
1� k

(�2Z 0Z�2)2
+ k

P
(z0j�2)

3

(�2Z 0Z�2)3
] (29)

Notice that when k = 1 the above reduces to the result for 2SLS:We shall
not give a separate analysis for the general k�class estimator:since it is clear
that the same observations can be made as in the case of 2SLS:

8 Conclusion

The 2SLS estimator has an important place in the history of simultaneous
equation estimation and continues to be frequently used in practice. Hence the
results in this paper are of both theoretical and practical interest. As noted
previously, the Mikhail 2SLS bias approximation is likely to be of importance
when equations are heavily overidenti�ed since then the higher order terms
will not be neglible The fact that the approximation holds under symmetric
distributions and any degree of kurtosis obviously increases its applicability in
practical cases.When the errors are asymmetrically distributed we have seen
that the Mikhail approximation no longer holds and we have presented the
correct approximation for such cases.
The k�class of estimators where k < 1 are also of interest partly because es-

timators in this class have all necessary moments. In Iglesias and Phillip(2008);
a linear combination of k�class estimators for which k < 1; was presented which
was unbiased to order T�1 , had all necessary moments and dominated 2SLS on
a MSE criterion in strongly overidenti�ed cases. Here it has been shown that
the terms in the higher order bias approximation which measured the asymme-
try e¤ects, depend directly on k while kurtosis did not play a role to the order
of the approximation.
We cannot say, without further work, what the general e¤ects of asymmetry

are except that they are likely to be greater the larger the degree of skewness
in the error distributions. We have examined a special case where it appears
that the skewness e¤ects can be signi�cant. This can be explored numerically in
more general cases by calculating the approximations for a variety of di¤erent
structures; it can also be examined in Monte Carlo experiments.In fact some
preliminary Monte Carlo results of a two-equation model indicate that when the
skewness is considerable the e¤ect on bias is far from trivial. A comprehensive
study of the asymmetry e¤ects would be a major exercise and a natural next
step; however it lies outside the scope of this paper.
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Appendix 1
In our examination of the Mikhail approximation we shall need the third and

fourth moments of reduced form regression estimators where, for the general
static simultaneous equation case, the reduced form model is equivalent to the
classical linear regression model. In this appendix we derive the third and fourth
moments of the OLS estimator in a linear regression model.

(i) The Third Moment of the OLS Estimator

17



In the regression model y = X� + " where the errors are i:i:d; (0; �2) and X
contains p exogenous regressors, the OLS estimator �̂ = (X 0X)�1X 0y has an
estimation error

�̂ � � = (X 0X)�1X 0"
The general element of this vector will be written as

e0i(�̂ � �) = �̂i � �i = e0i(X 0X)�1X 0" .
Our interest centres on the third moment

E(�̂i � �i)3 = E(e0i(X 0X)�1X 0")3 (30)

To obtain this we �rst consider

(e0i(X
0X)�1X 0")3 = e0i(X

0X)�1X 0"e0i(X
0X)�1X 0""0X(X 0X)�1ei (31)

which
contains the stochastic component (e0i(X

0X)�1X 0")""0

:
To �nd the expectation of this we �rst note the general term of the T �

T matrix ""0 which is "j"k, j; k = 1; 2; :::; T: then �nd the expectation of
(e0i(X

0X)�1X 0")"j"k :Notice that e0i(X
0X)�1X 0 is the ith row of (X 0X)�1X 0

and we denote this row vector by �0 so that e0i(X
0X)�1X 0" � �0" =

TP
r=1

�r":

Now consider Ef
TP
r=1

�r"r"j"kgwhich will contain non-zero components only

for r = j = k: Hence Ef
TP
r=1

�r"r"j"kg = �rE("3r); r = j = k; k = 1; 2; ; T; and
is zero otherwise.
It follows that Ef(e0i(X 0X)�1X 0")""0g is a diagonal matrix with r; rth compo-

nent given by �rE("3r) where �r is the r
th component of �:Note that e0i(X

0X)�1X 0

picks out the ith row of (X 0X)�1X 0 and so �r is the rthcomponent of this row
vector. We now write that
(X 0X)�1X 0 = (X 0X)�1(x1; x2; :::::; xT ); where xj is the jth column of X 0;

from which it is seen that the rth component of e0i(X
0X)�1X 0 is equal to e0i(X

0X)�1xr:
It follows that
E(e0i(X

0X)�1X 0")3 = E("3t )e
0
i(X

0X)�1X 0Diag(�r)X(X
0X)�1ei whereDiag(�r)

is a T � T diagonal matrix with the r; rthcomponent �r:
Some simpli�cation is possible by noting that X 0 Diag(�r)X with �r re-

placed by e0iX(X
0X)�1xr; r = 1; 2; ::::; T; may be written as

=
TP
j=1

xjx
0
je
0
i(X

0X)�1xj :

Then e0i(X
0X)�1X 0Diag(�r)X(X

0X)�1ei is equal to

e0i(X
0X)�1

P
xjx

0
je
0
i(X

0X)�1xj(X
0X)�1ei =

P
(e0i(X

0X)�1xj)
3
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Hence the required third moment is

E(�̂i � �i)3 = E("3i )
TX
j=1

(e0i(X
0X)�1xj)

3 (32)

Finally, it is seen that e0i(X
0X)�1xj is O(T�1), (e0i(X

0X)�1xj)
3 is O(T�3)

and
TP
j=1

(e0i(X
0X)�1xj)

3 is O(T�2) and, hence, the third moment of the OLS

estimator is O(T�2):

(ii) The fourth moment of the OLS Estimator
The fourth moment is given by E(e0i(X

0X)�1X 0")4 and we commence by
writing

(e0i(X
0X)�1X")4 = e0i(X

0X)�1X""0X(X 0X)�1)ei

�e0i(X 0X)�1X""0X(X 0X)�1)ei (33)

We shall need to �nd the expected value of this but we can proceed by
focusing on the stochastic part

E(""0X(X 0X)�1)eie
0
i(X

0X)�1X""0):
In fact we shall write

E(""0X(X 0X)�1eie
0
i(X

0X)�1X""0) = E(""0A""0) (34)

where the matrix A de�ned as

A = X(X 0X)�1)eie
0
i(X

0X)�1X (35)

is T � T and symmetric.
Note that the T �T matrix ""0 has a general element "i"jwhile, in addition,

we have

"0A" =
TX
i=1

a2ii"
2
i +

TX
i=1

TX
j=1

aij"i"j ; i 6= j;

When i = j = k , we may write
E("i"

0
j"A") = akkE("

4
k) +(trA� akk)�4; k = 1; 2; ::::; T

whereas when i 6= j but i = k; j = l;we have
E("i"

0
j"A") = (akl + alk)E("

2
k"
2
l )

= (akl + alk)E("
2
k)E("

2
l ) = (akl + alk)�

4;
k; l = 1; 2; :; T; k 6= l:

:
It follows that

E("0A"""0) = E("4i )DiagA+ (trA:IT �DiagA)�4

+2(A�DiagA)�4
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= (E("4i )� 3�4)DiagA+ (2A+ trA:IT )�4 (36)

We now replace the matrix A with X(X 0X)�1)eie
0
i(X

0X)�1X 0 and consider
the earlier expression
(e0i(X

0X)�1X")4 = e0i(X
0X)�1X 0""0X(X 0X)�1ei

�e0i(X 0X)�1X""0X(X 0X)�1ei:
Taking expectations:

E(e0i(X
0X)�1X")4 = (E("4i )� 3�4)e0i(X 0X)�1X 0

�Diag[[X(X 0X)�1)eie
0
i(X

0X)�1X 0:]X(X 0X)�1)ei

+3�4(e0i(X
0X)�1ei:)

2 (37)

where this latter term above is O(T�2):
Consider the matrix Diag[[X(X 0X)�1)eie

0
i(X

0X)�1X 0:]: The �rst diagonal
element of this matrix is
e01X(X

0X)�1)eie
0
i(X

0X)�1X 0e1 = (e
0
i(X

0X)�1X 0e1)
2:

Here e1 is a T �1 unit vector with unity in the �rst position and all other el-
ements zero. Noting that X 0e1 = x1;which is the transpose of the �rst row of X;
we see e0i(X

0X)�1X 0e1 = e
0
i(X

0X)�1x1and Diag[[X(X 0X)�1)eie
0
i(X

0X)�1X 0:]
is a diagonal matrix with j; jth component (e0i(X

0X)�1xj)
2; j = 1; 2; ::::; T:

The foregoing enables some simplication of the expression for the fourth
moment since it is easy to see that

e0i(X
0X)�1X 0 �Diag[[X(X 0X)�1)eie

0
i(X

0X)�1X 0:]]X(X 0X)�1)ei (38)

reduces to
TP
j=1

(x0j(X
0X)�1ei)

4:

Hence, �nally it has been shown that

E(�̂i � �i)4 = �43(e0i(X
0X)�1ei)

2 +

(E(u4i )� 3�4)
TX
j=1

(x0j(X
0X)�1ei)

4 (39)

Notice that the �rst term is O(T�2) and the second is O(T�3). Thus the
kurtosis of the error distribution does not a¤ect the fourth moment of �̂i to
order T�2:If the error distribution is normal then E(u4i )� 3�4 = 0 so that the
second term disappears:In such a case �̂i is normally distributed and again we
see that the fourth moment is just three times the squared variance as required.

One further observation is that without assuming normality,

limE(T
1
2 (�̂i � �i))4 = 3�4((e0i��1xx ei)2
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as T !1; where limT (X 0X)�1 = ��1xx :This does not involve kurtosis and. as
expected, it is equal to three times the square of the limiting variance.

Appendix 2

In this Appendix we evaluate the expectation of the skewness term
1
3!

PP
(�̂rs � �rs)(vec(�̂1 ��1))0f (3)i;rs(vec(�̂1 ��1)):

We commence with the following:
Lemma 1
Ef(�̂rs � �rs)(vecV1)(vecV1)0g = 
ijs 
Diag(zr)

where


ijs=

266664
!11s !12s ::::: !1;g+1:s
!21s !22s ::::: !2;g+1;s
:
:

:
:

:
:

:
:

!g+1;1;s !g+1;2;s :::: !g+1;2;s

377775 and

Diag(zr) =

2664
zr1 : : 0
0 zr2 o
: :
0 0 zrT

3775
Proof
To see this we proceed from

Ef(�̂rs � �rs)(vecV1)(vecV1)0g = Efe0r(Z 0Z)�1Z 0vs(vecV1)(vecV1)0g

=Efe0r(Z 0Z)�1Z 0vs

2664
v1v

0
1 v1v

0
2 ::: v1v

0
g+1

v2v
0
1 v2v

0
2 :::: v2v

0
g+1

: : ::: ::::
vg+1v

0
1 vg+1v

0
2 ::::: vg+1v

0
g+1

3775
where vj is a T � 1 vector forming the jth column of V1:
We shall write e0r(Z

0Z)�1Z 0 = �z0r and e
0
r(Z

0Z)�1Z 0vs = �z0rvs and consider
E(�z0rvsviv

0
j) with general term E(�z0rvsvpivqj) p:q = 1:2::::; T which is non-zero

only when the stochastic terms are of the same time period. When p = q it
is seen that E(�z0rvsvpivpj) = E(�zprvpsvpivpj) = �zpj!ijs where �zpj is the pth

component of �zr and E(vpivpjvps) = !ijs . More generally,

E(�z0rvsviv
0
j) =!ijs

2664
�zr1 0 :::: 0
0 �zr2 0

: :
0 0 :::: �zrT

3775
= !ijsDiag(�zr) for i; j; s = 1; 2; ::::; g + 1:

In Phillips (2000). it is shown that the term of interest

1

3!

KX
r=1

g+1X
s=1

(�̂rs � �rs)(vec(�̂1 ��1))0f (3)i;rs(vec(�̂1 ��1)) (40)
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is equal to the sum of the following three terms:
KP
r=1

g+1P
s=1
(�̂rs � �rs)(vecV1)0fH 0Qei�

0
0E

0
rsZ

0XQH 
 (PX � PZ)gvecV1

+
KP

r�=1

g+1P
s=1
(�̂rs � �rs)(vecV1)0fH 0Q(X 0ZErsH

0 +HE0rsZ
0X)Qei�

0
0


(PX � PZ)gvecV1
�

KP
r=1

g+1P
s=1

(�̂rs��rs)(vecV1)0f�0e0iQX 0ZErsH
0QX 0
XQHgI�vecV1

where Ers is a K�(g+1) matrix of rank one with unity in the r; sth position
and zeroes elsewhere.
It is required to �nd the expected value of the above and we shall do so by

evaluating each of the three components in turn.
First we examine

(a): (�̂rs � �rs)(vecV1)0fH 0Qei�
0
0E

0
rsZ

0XQH 
 (PX � PZ)gvecV1 (41)

=tr[(�̂rs � �rs)(vecV1)(vecV1)
0fH 0Qei�

0
0E

0
rsZ

0XQH 
 (PX � PZ)g
where �̂rs��rs;which is theK(r�1)+sth component of V ec(�̂1��1);and which
may be written as �̂rs��rs = e0r(Z 0Z)�1Z 0vs:
Here e0r is a 1�K unit vector with unity in the rth position and zeroes elsewhere.
Thus it picks out the rthcomponent of (Z 0Z)�1Z 0vs where vs is a T � 1 vector
of reduced form disturbances appearing in the sth reduced form equation, i.e,
the sth column of V1:
The term of interest can then be written as

tr[e0r(Z
0Z)�1Z 0vs(vecV1)(vecV1)

0fH 0Qei�
0
0E

0
rsZ

0XQH 
 (PX � PZ)g]: (42)

We have shown above in Lemma 1 that
Efe0r(Z 0Z)�1Z 0vs(vecV1)(vecV1)0g = 
ijs 
Diag(�zr)

so it follows that

Etr[e0r(Z
0Z)�1Z 0vs(vecV1)(vecV1)

0fH 0Qei�
0
0E

0
rsZ

0XQH 
 (PX � PZ)g]
= tr[
ijs 
Diag(�zr)fH 0Qei�

0
0E

0
rsZ

0XQH 
 (PX � PZ)g]
=trf
ijsH 0Qei�

0
0E

0
rsZ

0XQHgtrfDiag(�zr)(PX � PZ)g

Some simpli�cation is possible by writing
trfDiag(�zr)(PX � PZ)g = �z0r �x;z
where�x;z is a T�1 vector with pth component x0p(X 0X)�1xp�z0p(Z 0Z)�1zp;

p = 1; 2; ::::::; T:
Next we shall write Ers = ere0s where es is a (g + 1) � 1 unit vector with

unity in the sthposition. On putting e0s�0 = �s0; the s
th component of �0;

the above expression may be written as

e0iQH
ijsH
0QX 0Zer�s0�z

0
r �x;z (43)
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Finally we need to �nd the value of

KX
r=1

g+1X
s=1

e0iQH
ijsH
0QX 0Zer�s0�z

0
r �x;z (44)

We shall proceed by �rst �nding the summation for r = 1; ::::;K and so we
consider

KP
r=1

e0iQH
ijsH
0QX 0Zer�s0�z

0
r �x;z

= �s0e
0
iQH
ijsH

0QX 0Z
KP
r=1

ere
0
r(Z

0Z)�1Z 0�x;z

=�s0e
0
iQH
ijsH

0QX 0�x;z

where we have used the fact that
KP
r=1

ere
0
r = IK and X 0Z(Z 0Z)�1Z 0 = X 0:

To complete the evaluation we simply need to sum over s: Hence the �nal
expression is

E
KP
r=1

g+1P
s=1
(�̂rs � �rs)(vecV1)0fH 0Qei�

0
0E

0
rsZ

0XQH 
 (PX � PZ)gvecV1

= e0iQH(
g+1P
s=1

�s0
ijs)H
0QX 0�x;z

= e0iQH(�
0
0 
 Ig+1)
�H 0QX 0�x;z (45)

Here we have used the result that
g+1P
s=1

�s0
ijscan be written as (�
0
0
Ig+1)
�

where 
� is a (g + 1)2 � (g + 1) matrix obtained by stacking the matrices

ijs; s = 1; :::; g + 1;

(b).The second term of interest is
KP
r=1

g+1P
s=1
(�̂rs � �rs)(vecV1)0fH 0Q(X 0ZErsH

0 +HE0rsZ
0X)Qei�

0
0


(PX � PZ)gvecV1
Again we shall initially disregard the summations and consider
E[tr(e0r(Z

0Z)�1Z 0vsvecV1(vecV1)
0)

�fH 0Q(X 0ZErsH
0 +HE0rsZ

0X)Qei�
0
0 
 (PX � PZ)g]

= tr((
ijs 
Diag(�zr))fH 0Q(X 0ZErsH
0 +HE0rsZ

0X)Qei�
0
0 
 (PX � PZ)g)

=tr(
ijs(H 0Q(X 0ZErsH
0 +HE0rsZ

0X)Qei�
0
0))tr(Diag(�zr)(PX � PZ))

=e0iQHE
0
rsZ

0XQH
ijs�0�z
0
r�xz+e

0
iQX

0ZErsH
0QH
ijs�0�z

0
r�xz

Putting Ers = ere0s the above becomes
e0iQHese

0
rZ

0XQH
ijs�0�z
0
r�xz + e

0
iQX

0Zere
0
sH

0QH
ijs�0�z
0
r�xz

= e0iQHes�
0
xzZ(Z

0Z)�1ere
0
rZ

0XQH
ijs�0+ e
0
iQX

0Zer�z
0
r�xz re

0
sH

0QH
ijs�0
= e0iQHes�

0
xzZ(Z

0Z)�1ere
0
rZ

0XQH
ijs�0+ e
0
iQX

0Zere
0
r(Z

0Z)�1Z 0�xze
0
sH

0QH
ijs�0
Summing over r = 1; :::;K yields
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e0iQHes�
0
xzXQH
ijs�0+ e

0
iQX

0�xze
0
sH

0QH
ijs�0
Finally, summing over s = 1; ::::; g + 1 gives

e0iQH
g+1P
s=1
(es�

0
0


0
ijs)H

0QX 0�xz+ e0iQX
0�xztr(H

0QH
g+1P
s=1


ijs�0e
0
s)

Alternatively, on noting that
g+1P
s=1
(es�

0
0


0
ijs) = 


0�(Ig+1 
 �0) where 
�is a

(g+1)2�(g+1) matrix obtained by "stacking" the matrices 
ijs , s = 1; ::; g+1;
we may write

Ef
KP
r=1

g+1P
s=1
(�̂rs � �rs)(vecV1)0fH 0Q(X 0ZErsH

0 +HE0rsZ
0X)

Qei�
0
0 
 (PX � PZ)gvecV1g

= e0i(QH

�0(Ig+1 
 �0)H 0 + tr(QH
0�(Ig+1 
 �0)H 0):Ig+k)QX

0�xz (46)

(c).The third and �nal term is

�
KP
r=1

g+1P
s=1

(�̂rs � �rs) (vecV1)0 f�0e0iQX 0ZErsH
0QX 0 
XQHgI�vecV1

where intiially we focus on
�Etr[(�̂rs � �rs)vecV1(vecV1)0f�0e0iQX 0ZErsH

0QX 0 
XQHgI�]
= �trE[(�̂rs � �rs)vecV1(vecV1)0f�0e0iQX 0ZErsH

0QX 0 
XQHgI�]
= �tr[(
ijs 
Diag(�zz))f�0e0iQX 0ZErsH

0QX 0 
XQHgI�]
=�tr[(
ijs�0e0iQX 0ZErsH

0QX 0 
Diag(�zr)XQH)I�]
=�tr[(
ijs�0e0iQX 0ZErsH

0QX 0Diag(�zr)XQH)]
=�tr[(
ijs�0e0iQX 0Zere

0
sH

0QX 0Diag(�zr)XQH)]:
Consider now e0iQX

0Zer�zrj in which �zrj is the jth component of �zr and �zrj =

e0r(Z
0Z)�1Z 0ej ; j = 1; :::; T: where ej is a T�1 unit vector.Then

KP
r=1

e0iQX
0Zer�zrj =

KP
r=1

e0iQX
0Zere

0
r(Z

0Z)�1Z 0ej = e
0
iQX

0Z
KP
r=1

ere
0
r(Z

0Z)�1Z 0ej = e
0
iQX

0ej:on sum-

ming over r = 1; ::::;K:

It follows that
KP
r=1

Diag(�zr)e
0
iQX

0Zer is a diagonal matrix with j; jth compo-

nent e0jXQei = x
0
jQei:We shall refer to this matrix as Diag(XQei) whereupon

we shall write
KP
r=1

tr[(
ijs�0e
0
iQX

0Zere
0
sH

0QX 0Diag(�zr)XQH)]

= tr[
ijs�0e
0
sH

0QX 0Diag(XQei)XQH]:

Summing over s = 1; ::; g+1 gives tr[
g+1P
s=1
(
ijs�0e

0
s)H

0QX 0Diag(XQei)XQH]:

which when introducing
g+1P
s=1
(es�

0
0


0
ijs) = 


0�(Ig+1
 �0) enables the �nal result
as follows:
E
PP

(�̂rs � �rs)(vecV1)0f�0e0iQX 0ZErsH
0QX 0 
XQHgI�vecV1
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= trf
0�(Ig+1 
 �0 ) H 0QX 0Diag(XQei)XQHg:

= trf(Ig+1 
 �00 )
� H 0QX 0Diag(XQei)XQHg (47)

Summing the three terms in (44),(45) and (46) above yields �nally:

Ef 13!
PP

(�̂rs � �rs)(vec(�̂1 ��1))0f (3)i;rs(vec(�̂1 ��1))g

= e0iQH(�
0
0 
 Ig+1)
�H 0QX 0�x;z

+e0i(QH(Ig+1 
 �00)
�H 0 + tr(QH(Ig+1 
 �00)
�H 0):Ig+k))QX
0�xz

�trf(Ig+1 
 �00 ) 
�H 0QX 0Diag(XQei)XQHg: (48)

The results are in terms of the (g + 1) � (g + 1)2 matrix 
? which itself is
obtained by stacking the matrices 
ijs where the ijthelement of 
ijs is !ijs =
E[vitvjtvst]. We shall now express 
� in terms of the structural parameters.
First note that vit = e0tU(B

0)�1g+1ei where (B
0)�1g+1is a G � (g + 1) matrix

containing the �rst (g + 1) columns of (B
0
)�1and et and ei are T � 1 and

(g + 1)� 1 unit vectors, respectively. Therefore

vit = u
0
tbi;

where ut is a G � 1 vector of structural disturbances at time t and bi =
(B0)�1g+1ei; i = 1; ::; (g + 1); is a G� 1 vector. Similarly we have

vjt = u
0
tbj

vst = u
0
tbs

where bj = (B0)�1g+1ej and bs = (B0)�1g+1es, j; s = 1; ::; (g + 1): With these
de�nitions we can write

!ijs = E[vitvjtvst]

= E[u0tbiu
0
tbju

0
tbs]

= E[u0tbib
0
jutu

0
tbs]; i; j; s = 1; ::; g + 1:

Using result (A.27) of Ullah(2005) we then have

!ijs = [tr(bjb
0
i�ij1); : : : ; tr(bjb

0
i�ijG)]bs;

where the ijth element of the G�G matrix �ijs is E[uitujtust] = �ijs. We can
rewrite this as

!ijs = [b
0
i�ij1bj ; : : : ; b

0
i�ijGbj ]bs

= (
GX
p=1

b0i�ijpbje
0
r)bs:
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where ep is a G � 1 unit vector. Denoting the �rst column of 
ijs by 
i1s we
have


i1s =

0BBBB@
(
PG

p=1 b
0
1�ijpb1e

0
p)bs

:
:
:

(
PG

p=1 b
0
g+1�ijpb1e

0
p)bs

1CCCCA =

0BBBB@
b01(
PG

p=1 �ijpb1e
0
p)bs

:
:
:

b0g+1(
PG

p=1 �ijpb1e
0
p)bs

1CCCCA :

Noting that (B0)�1g+1 = (b1; :::; bg+1),


i1s = ((B
0)�1g+1)

0(
GX
p=1

�ijpb1e
0
p)bs

= ((B0)�1g+1)
0[�ij1; : : : ;�ijG]

0BBBB@
b1e

0
1bs
:
:
:

b1e
0
Gbs

1CCCCA
= ((B0)�1g+1)

0�0?(bs 
 b1);

where �
0? is a G�G2 matrix given by

�
0? = [�ij1; : : : ;�ijG].
Generalising, the pth column of 
ijs is

(B0)�1g+1)
0�0?(bs 
 bp);

so the matrix 
ijs is


ijs = ((B
0)�1g+1)

0�0?
GX
p=1

(bs 
 bp)e0p

= ((B0)�1g+1)
0�0?

GX
p=1

((B0)�1g+1es 
 (B0)�1g+1ep)e0p

= ((B0)�1g+1)
0�0?((B0)�1g+1 
 (B0)�1g+1)

GX
p=1

(es 
 ep)e0p

= ((B0)�1g+1)
0�

0?((B0)�1g+1 
 (B0)�1g+1)(es 
 Ig+1)

= ((B0)�1g+1)
0�

0?(B0)�1g+1es 
 (B0)�1g+1)

The (g + 1)� (g + 1)2 matrix 
0�is then given by

0� = (
ij1; 
ij2;:::;
ij(g+1))

= ((B0)�1g+1)
0�0�(B0)�1g+1e1
(B0)�1g+1); ((B0)�1g+1)0�0?(B0)�1g+1e2
(B0)�1g+1); ::::::

((B0)�1g+1)
0�0?(B0)�1g+1eg+1 
B�1g+1)
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=((B0)�1g+1)
0�

0?((B0)�1g+1 
 (B0)�1g+1)
on noting that(e1; e2; :::; eg+1) = Ig+1:Hence �nally


0� = ((B0)�1g+1)
0�

0?((B0)�1g+1 
 (B0)�1g+1) (49)
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