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                                                Abstract 

 

We calibrate a standard New Keynesian model with three alternative representations 

of monetary policy- an optimal timeless rule, a Taylor rule and another with interest 

rate smoothing- with the aim of testing which if any can match the data according to 

the method of indirect inference. We find that the only model version that fails to be 

strongly rejected is the optimal timeless rule. Furthermore this version can also 

account for the widespread finding of apparent ‘Taylor rules’ and ‘interest rate 

smoothing’ in the data, even though neither represents the true monetary policy.  
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1. Introduction   

 

In this paper our aim is to uncover the principles according to which the Board of 

Governors of the US Federal Reserve System (the Fed) conducted monetary policy 

since the early 1980s. We do so in a novel way by asking which such principles can, 

when combined with a widely-accepted macro model, replicate the dynamic 

behaviour of the US economy during the sample period. By ‘principles’ we mean 

either an explicit rule the Fed follows (such as an interest-rate setting rule) or some 

other economic relationship that it aims to ensure occurs (such as a fixed exchange 

rate or as here an optimality condition).  

 

The main context for this work is the influential paper by Taylor (1993), who- 

building on earlier work by Henderson and McKibbin (1993a, 1993b) which argued 

for the efficacy of interest rate rules- suggested that the Fed actually had been for 

some time systematically pursuing a particular interest rate rule, reacting directly to 

two ‘gaps’, one between inflation and its target rate, the other between output and its 

natural rate. Such a ‘Taylor rule’ was subsequently adopted widely in New Keynesian 

models to represent the behaviour of monetary policy (e.g., Rotemberg and Woodford 

(1997, 1998), Clarida, Gali and Gertler (1999, 2000), Rudebusch (2001), English, 

Nelson and Sack (2002)).  

 

However, Minford, Perugini and Srinivasan (2001, 2002) and Cochrane (2007) have 

shown that a Taylor rule is not identified. Estimates of such a ‘rule’ may emerge from 

the data when the Fed is following quite other monetary policies; this is because a 

variety of relationships within the economy can imply a relationship between interest 

rate, inflation and output (gap) which mimics a Taylor rule. In the presence of such an 

identification problem, direct estimation of Taylor rules on the data does not establish 

whether the Fed was actually pursuing them or not. Some other way of testing 

hypotheses about monetary policy must be found. The one proposed here is to set up 

competing structural models which differ solely according to the monetary policies 

being followed, and to distinguish between these models according to the ability to 

replicate the dynamic behaviour of the data. Thus for example if one were to accept 

just one of these models and reject the rest, it would be reasonable to argue that this 
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model succeeds because in it not only the rest of the economy but also monetary 

policy is well-specified. Of course other less decisive empirical outcomes of the tests 

are entirely possible.  

 

The rest of this paper is organised as follows: section 2 reviews the work estimating 

monetary policy rules and the critique of it in terms of identification; section 3 

outlines the micro-foundations of the simple New Keynesian model with which 

hypothetical rules in this paper are tested against the real data; section 4 explains the 

testing method and the results; section 5 discusses how the model can explain the 

apparent existence of Taylor Rules in the data; section 6 concludes. 

 

 

2. Taylor Rules, Estimation and Identification  

 

Taylor (1993) suggested that, at least for the post-1982 periods during which Alan 

Greenspan was chairman of the Fed, the Federal funds rate could be well described by 

the simple equation (with quarterly data) as: 

                                 t

A

tt

A

t

A

t xi   02.0)02.0(5.05.0                 [2.1] 

where tx  is for the percentage deviation of real GDP from trend, A

t  is the annual 

averaged rate of inflation over four quarters, with both the target of inflation and 

growth rate of the real GDP (with trend) set at 2 percents.   

 

Equation [2.1] is the original ‘Taylor rule’. However, a number of variants have also 

been proposed; for example, a Taylor rule where policy inertia is assumed could take 

the form as in Clarida, Gali and Gertler (1999) as 

 t

A

ttX

A

t

A

t ixi    



1])()[1(              [2.2] 

with   showing the degree of ‘interest rate smoothing’. Others have involved lagging 

or leading the inflation and output gap terms- Rotemberg and Woodford (1997, 1998), 

Clarida, Gali and Gertler (1999, 2000), Rudebusch (2001), English, Nelson and Sack 

(2002). 
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Rules of these types are generally found to fit the actual data well in regression 

analysis, either via single-equation regression by GLS as in Rotemberg and Woodford 

(1997, 1998), Clarida, Gali and Gertler (1999, 2000) and Giannoni and Woodford 

(2005), or via full-model estimation by Maximum Likelihood as in Rotemberg and 

Woodford (1997, 1998), Smets and Wouters (2003), as well as Ireland (2007). 

However, besides the usual difficulties encountered in applied work (e.g., Carare and 

Tchaidze (2005) and Castelnuovo (2003)), these estimates face an identification 

problem pointed out in Minford, Perugini and Srinivasan (2001, 2002) and Cochrane 

(2007)- see also Minford (2008) which we use in what follows. 

 

Lack of identification occurs when an equation could be confused with a linear 

combination of other equations in the model. Thus DSGE models give rise to the 

same correlations between interest rate and inflation as the Taylor rule, even if the 

Fed is doing something quite different, such as targeting the money supply. For 

example, Minford, Perugini and Srinivasan (2001, 2002) show this in a DSGE model 

with Fischer wage contracts (see also Gillman, Le and Minford (2007)).  

 

In effect, unless the econometrician knows from other sources of information that the 

central bank is pursuing a Taylor rule, he cannot be sure he is estimating a Taylor rule 

when he specifies a Taylor rule equation because under other possible monetary 

policy rules a similar relationship to the Taylor rule is implied. Of course by 

specifying a Taylor rule he will successfully retrieve the coefficients of the ‘rule’; but 

he cannot know that these describe the true rule the central bank is following. 

 

To illustrate the point, we may consider a popular DSGE model but with a money 

supply rule instead of a Taylor rule: 

 (IS curve): ttttt vryEy    11   

(Phillips curve): tttttt uEyy  



111 )1()(    

(Money supply target): tt mm    

(Money demand): tttttt RyEpm    2111   
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(Fisher identity): 11  tttt ErR    

This model implies a Taylor-type relationship that looks like: 

,)()( 1

1

1

tttt wyyrR     

where  12  , and the error term, w t , is both correlated with inflation and 

output and autocorrelated; it contains the current money supply/demand and aggregate 

demand shocks and also various lagged values (the change in lagged expected future 

inflation, interest rate, the output gap, the money demand shock, and the aggregate 

demand shock). This particular Taylor-type relation was created with a combination 

of equations—the solution of the money demand and supply curves for interest rate, 

the Fisher identity, and the IS curve for expected future output
1
. But other Taylor-type 

relationships could be created with combinations of other equations, including the 

solution equations, generated by the model. They will all exhibit autocorrelation and 

contemporaneous correlation with output and inflation, clearly of different sorts 

depending on the combinations used. 

    

All the above applies to identifying a single equation being estimated; thus one cannot 

distinguish a Taylor rule equation from the equations implied by the model and 

alternative rules when one just estimates that equation. One could attempt to apply 

further restrictions- e.g., on the error process- but such are hard to justify- e.g., the 

error in a Taylor rule (‘monetary judgement’ based on extraneous factors) can be 

autocorrelated (because those factors may be persistent).  

 

However, when a ‘monetary rule’ is chosen for inclusion in a complete DSGE model, 

then the model imposes over-identifying restrictions through the rational expectations 

terms which involve in principle all the model’s parameters. Thus a model with a 

                                                 
1 From the money demand and money supply equation, 

tttttt yEmR    1112
. 

Substitute for 
11  tt yE  from the IS curve and then inside that for real interest rates from the Fisher identity giving 

ttttttttt vyERmR 


  })(){( 11
1

12
; then, rearrange this as 

tttttttt vyyEmRR 















 



 1111 )()()()( 112
, where the constants R  and y  have 

been subtracted from 
tR  and 

ty  respectively, exploiting the fact that when differenced they disappear. Finally, 

},)(){()()( 111

11

1

111

1

11

1

1

1

tttttttttt vyyERRyyrR  











   

where we have used the steady state property that   rR  and  m . 
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particular rule is in general over-identified so that estimation by full information 

methods of that particular model as specified is possible (as in Rotemberg and 

Woodford (1997, 1998), Smets and Wouters (2003), Ontaski and Williams (2004) and 

Ireland (2007)). One way of putting this is that there are more structural parameters 

than reduced form parameters. Another is to note that the reduced form will change if 

the structural description of monetary policy changes- a point first made by Lucas 

(1976) in his ‘critique’ of conventional optimal policy optimization at that time, and 

some illustrations of how reduced forms will change for a model like the one in this 

paper (see Meenagh et al. (2008)). So if the econometrician posits a Taylor rule then 

he will retrieve its coefficients and those of the rest of the model under the assumption 

that it is the true structural monetary rule. He could then compare the coefficients for 

a model where he assumes some other rule. He can distinguish between the two 

models via their different reduced forms and hence their different fits to the data. 

Thus it is possible to identify the different rules of monetary policy behavior via full 

information estimation. 

 

However, the identification problem does not go away, even when a model is over-

identified in this way. The problem is that the Taylor rule included in such a model 

could be mimicking the joint behaviour of the rest of the model and some other (true) 

monetary rule (e.g., a money supply rule). Then including it in the model is capturing 

an approximation to this other monetary behaviour; it could fit the data to some 

reasonable approximation, therefore, because it is such an approximation. But until 

we have also estimated the possible alternative monetary rules with the same model, 

we cannot be sure that the chosen monetary rule is correctly specified. We need to 

check whether there is a better model which with its over-identifying restrictions may 

fit the data more precisely. In other words, the econometrician has not successfully 

identified the true rule until he has also estimated the rival models in order to 

distinguish them from the one he has assumed.  

   

The identification problem thus shows itself here as the possibility that there is an 

alternative (true) model that could generate the Taylor rule features in the chosen 

model. In choosing to specify this model with a Taylor rule because there seems to be 

such a relationship in the data one would be estimating a mis-specified model, which 

nevertheless may provide an approximation to the data.  
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However, this points the way to a possible way forward. One may specify a complete 

DSGE model with alternative monetary rules and use the over-identifying restrictions 

to determine their differing behaviour. One may then test which of them is accepted 

by the data. Thus one may be able to select the ‘true’ model out of those that are 

merely approximating it. This is the approach taken here. 

 

 

3. A Simple New Keynesian Model for Inflation, Output Gap 

and Nominal Interest Rate Determinations 

 

We follow a common practice among New Keynesian authors of reducing a full 

DSGE model to a three-equation framework consisting of an ‘IS’ curve derived from 

the optimization problem of the representative household, a Phillips curve derived 

from the price-setting optimization problem of the representative firm, and a monetary 

policy rule (Clarida, Gali and Gertler (1999, 2000), Rotemberg and Woodford (1997, 

1998), Walsh (2000)).  

 

We adopt a standard New Keynesian DSGE set-up with representative agents as 

follows: 

 

The Households 

 

In each period, representative households are assumed to consume a composite of 

differentiated goods, which are produced by monopolistically competitive firms that 

make up of a continuum of measure 1. In particular, let the composite consumption 

that enters the utility function in each period be: 

                                           








1

][
1

1

0




 djcC jtt                                                 [3.1]          

where )1(  represents the price elasticity of demand for individual good j. Then the 

cost minimization process of the representative household implies the demand for 

individual good j could be shown as: 



 7 

                                             t

t

jt

jt C
P

p
c



 )(                                                    [3.2]            

where  pjt is the price of individual good j and Pt is the general price level in period t
2
. 

 

For simplicity, assume that the representative agents care only about leisure and the 

level of composite consumption such that the life-time utility function to be 

maximized takes the form: 




















0

11

]
11

[
i

ititi

tt

NC
EU









                          [3.3] 

where   indicates the inverse of the intertemporal elasticity of substitution of 

consumption, whereas   shows the inverse of the elasticity of labour supply
3
.   

 

Suppose further that the representative agents own the firm and at the same time work 

as employees, the budget constraint (in real terms) they face in period t could be 

written as: 

                  t

t

t

t

t

t

t

t

t

t

t

t

t

t
P

B
i

P

M
N

P

W

P

B

P

M
C   )1(11

          [3.4] 

where Mt and Bt are respectively the initial stocks of money and nominal bond in each 

period, Wt is the nominal wage income, t  denotes the profit from running the firm 

and it defines the nominal rate of interest. Notice that the bond market is introduced 

such that the nominal interest rate is given a role. Note also (as will be seen from the 

firms’ problem below) that the only factor that assumed to be input into the 

production process is labour, hence the only disposal income of representative 

households as employees is the wage income. 

 

By assuming that consumptions can only be carried out by using cash 

(i.e.,
ttt MCP  ), the utility maximization problem of representative households can 

be described with the Lagrangean function as:  

 

                                                 
2  Details of this could be found in Walsh (2000, pp.232). 
3 The utility function here is deliberately assumed to be the same as in Woodford and Rotemberg (1998) as well as 

in Nistico (2007) such that the utility-based micro-founded quadratic social welfare loss function suggested by 

those authors are also applicable in this context; In contrast to Walsh (2000) where MIU is assumed, this model 

retains the role of money by taking the CIA approach, i.e., money does not directly enter the utility function, but 

only acts as a tool that eases transactions. 
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That is, representative households choose, in each period, the levels of consumption 

and labour input, as well as the end-of-period money stock and bond stock, such that 

the discounted life-time utility is maximized, subject to the budget constraint and the 

cash-in-advance constraint. The first order conditions of the problem are given as 

follows: 

 

F.O.C.s: 

tC :           )( tttC  
 

tN :          
t

t

tt
P

W
N     

1tM :       )()1( 111   tttt   

1tB :        )1()1( 111   tttt i        

 

By substituting around the F.O.C.s, the two important relationships about the 

household problem could be obtained: 

  





  1

1

)1( t

t

t

ttt C
P

P
EiC                              [3.6] 

t

t

t

t

t

P

W
i

C

N



)1(




                                               [3.7] 

In particular, [3.6] is the well-known ‘Euler’s equation’ which shows the optimal 

substitution between intertemporal consumptions that is commonly found in literature, 

whereas equation [3.7], equating the (discounted) real wage to the ratio of marginal 

utility of working to the marginal utility of consumption, indicates the implied 

optimal intratemporal marginal rate of substitution.  
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By Log-linearising equation [3.6] around zero-inflation steady state, it yields the 

linearised version of [3.6] as: 

)
~

)(
1

(~~
11   tttttt EicEc 


                           [3.6]’ 

where ‘~’ denotes ‘percentage deviation from steady state’
4
.  

 

Since no physical capital (and therefore no investment) is assumed for the economy, 

log-linearising the market clearing condition Yt=Ct+Gt implies: 

                                
Y

C

Y

G
yc

t

t
tt ln)1ln(~~                                     [3.8] 

 

Combining equations [3.6]’ and [3.8], it gives the ‘IS’ curve commonly found in the 

New Keynesian literature (See e.g., Clarida, Gali and Gertler (1999, 2000), 

Rotemberg and Woodford (1997, 1998), Walsh (2000)) as: 

                          ttttttt vEixEx   )
~

)(
1

( 11 


                              [3.9] 

where f

ttt yyx ~~  , )ˆˆ()~~( 11 ttt

f

t

f

ttt ggEyyEv    with )1ln(ˆ
t

t

t
Y

G
g 

5
. 

 

Notice in equation [3.9] that, ‘output gap’ xt is defined as the difference between 

actual output and the output that would prevail if nominal flexibility were assumed, in 

contrast to the gap between actual and ‘potential’ outputs as traditionally defined. 

Also, vt , which is interpreted as the ‘demand shock’, is a combination of disturbances 

that captures the effects of shocks to both technology and the exogenously determined 

government expenditure.  

 

The ‘IS’ curve [3.9] describes the ‘demand side’ of the economy. As will be seen, it 

constitutes one of the structural equations of the simple New Keynesian model 

presented in this paper. 

 

The Firms 

                                                 
4 In particular, iii tt 

~ . 

5 In Walsh (2000, pp. 244) where Yt=Ct  is assumed, it has: 
f

t

f

ttt yyEv ~~
1   . 
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The supply side of the economy is characterised by a number of firms owned by the 

representative agents themselves. In particular, firms in the economy are assumed to 

operate under a monopolistically competitive environment with production function 

as: 

                                                  jttjt NAy                                                      [3.10] 

where ‘j’ denotes the j
th

 firm in the economy; At is the technology at time t, with 

ttt zAA  1loglog  , where zt indicates shocks to productivity and is assumed to be 

independently identically distributed (i.i.d.). Note that equation [3.10] has assumed no 

physical capital will be used for production; and, the same technology, At, is 

employed across different industries. 

 

Nominal (price) stickiness is introduced into the economy in the spirit of Calvo 

(1983). That is, for any given period t, only a fraction, 1 , of firms in the economy 

are able to reset prices to optimum, whereas the rest  portion have to keep their 

prices unchanged due to the menu cost
6
.  

 

By implication of equation [3.2], the demand curve faced by each individual firm j 

takes the form: 

                                                  t

t

jt

jt Y
P

p
y



 )(                                               [3.11] 

 

Hence, in each period, firms producing differentiated goods but processing identical 

pricing strategy would set individual prices jtp  , subject to production constraint 

[3.10], the Calvo contract price-resetting probability 1 , as well as the demand 

constraint [3.11], such that (the discounted)  real profits to firms are maximised.  

 

Let  denotes the real marginal cost to individual firms’ production. The cost 

minimization process would imply: 

                                                  
t

tt

t
A

PW
                                                   [3.12] 

                                                 
6 For simplicity, nominal wages in the labour market are presumed to be fully flexible. 
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It follows that the profit maximization problem of individual firm j can be described 

as: 
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where itiV , is a discount factor, indicating the ratio of marginal utilities of 

consumption between periods. 

 

Using the demand curve [3.11] to substitute away itjy , , equation [3.13] can be 

rewritten as: 

                    it
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The first order condition of [3.13]’ with respect to individual price jtp implies: 

         0)(
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Log-linearising equation [3.14] around zero inflation steady state, it yields the optimal 

reset price for individual firm at time t as: 

                         






 
0

)
~~()1(~

i

ittitt

ii

jt PEEp                          [3.15] 

 

Given the ‘Calvo contract’, the general price level in each period can be written as the 

weighted average of the up-to-date reset prices and the old prices, with the weights 

being the reset probability, 1 , and its opposite,  , respectively
7
. That is: 

                                   1)1( 

  tjtt PpP                                            [3.16] 

Log-linearization of equation [3.16] implies: 

                                 1

~
)1(~)1( 

  tjtt Pp                                    [3.17] 

 

Combining [3.15] and [3.17], it gives: 

                            tttt E 



 ~)1)(1(

1


                               [3.18]

8
 

                                                 
7 Note that individual firms have exactly the same pricing strategy



jtp  (or equivalently,


jtp~ ). 
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Or more conveniently: 

                                     tttt E  ~
1                                                [3.18]’ 

where 





)1)(1( 
 . 

 

Equation [3.18]’ is the standard forward-looking New Keynesian Phillips curve that 

commonly derived in literature when the ‘Calvo contract’ is imposed (e.g., Walsh 

(2000), Clarida, Gali and Gertler (2001) and Holmberg (2006)). In particular, it states 

that inflation can be caused by expectations of the next period inflation, as well as the 

current deviations of real marginal cost from its steady state level. 

 

In fact, equation [3.18]’ can be further transformed such that inflation is related to the 

output gap as traditionally understood. This is done by log-linearising the real 

marginal cost equation [3.12] and the labour supply curve [3.7] (which was implied 

by the household’s problem) and combining the results. After some tedious algebra, it 

can be shown that: 

                        t

f

ttt x
C

Y
yy

C

Y
)()~~)((~                        [3.19]

9
 

In the spirit of Clarida, Gali and Gertler (2002), suppose further that the labour market 

is not perfectly competitive such that the mark-up of wages over the intratemporal 

substitution between consumption and labour is subject to stochastic shocks, equation 

[3.19] becomes: 

                                    
w

ttt ux
C

Y
 )(~                                        [3.19]’ 

where w

tu is interpreted as any stochastic disturbance that would cause deviations of 

such wage mark-ups. It follows that the New Keynesian Phillips curve [3.18]’ can be 

rewritten as: 

                              ttttt uxE    1                                      [3.20] 

where )(
C

Y
  , w

tt kuu  , and 





)1)(1( 
 . 

 

                                                                                                                                            
8 Under rational expectations, equation [3.15] could be conveniently written as: )

~~(
)1(

)1(~
1 ttjt P

B
p 








 


  

9 This result is obtained when the market-clearing condition is assumed to be Yt=Ct+Gt; Had it been defined that 

Yt=Ct, as in Walsh (2000), it would imply
tt x)(~   . 
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Equation [3.20] is the New Keynesian Phillips curve that relates inflation to the 

‘output gap’ as traditionally understood, with ut interpreted as the ‘supply shock’
10

. It 

summarises the aggregate relationships of the ‘supply side’, and is therefore 

effectively the aggregate supply curve of the economy. 

 

Monetary Policy 

 

To close the model, most existing literature where the ‘three-equation’ New 

Keynesian framework is considered has employed an exogenously-specified Taylor-

type rule that is similar to [2.2] as the monetary policy, such that a model for inflation, 

output gap and interest rate determinations is complete. We retain these exogenous 

rules for comparison. But as a natural alternative, this section starts with the situation 

in which the monetary authority is assumed to behave optimally- such that an 

‘optimal rule’ would prevail. 

 

Following Rotemberg and Woodford (1998) and Nistico (2007), let the ‘social 

welfare loss’ be defined as ‘the loss in units of consumption as a percentage of steady-

state output’. That is: 

YMU

UU
SWL

c

t

t



  

Under the Calvo (1983) pricing mechanism and utility function [3.3], Rotemberg and 

Woodford (1998) showed the social welfare loss function can approximately be 

expressed in terms of variance of inflation and output through second order Taylor 

expansion. Explicitly as in Rotemberg and Woodford (1998): 

                                          ][
2

22

ttt xSWL 


                                [3.21]
11

  

where  is some measure of stickiness,  indicates the relative weight that central 

banks put on loss from output variations against that from inflation deviations
12

.  

 

                                                 
10 Note, however, that under the particular setup in this paper, the fundamental driving force of such ‘supply 

shock’ is the stochastic disturbances to the wage mark-ups. 
11 Note it has implicitly assumed that the steady state inflation is zero; also, the social welfare loss function [3.21] 

is not ad hoc but indeed micro-founded. The same expression is also derived by Nistico (2007), who assumed the 

Rotemberg (1982) pricing mechanism. In particular, Nistico (2007) showed that the relative weight  is equal to 

the ratio of the slope of the Phillips curve to the price elasticity of demand, i.e.,   . 
12 Note that the value of  would affect the measurement of social welfare loss, but not the form of the implied 

optimal response based on that social welfare loss function, as it will be cancelled out in the F.O.Cs. 
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Assuming optimal behaviour and commitment by the monetary authority, the social 

planner’s problem in each period involves minimizing the social welfare loss [3.21] 

subject to the Phillips curve [3.20] (i.e., the ‘supply side’ of the economy). In terms of 

a Lagrangean equation as shown in McCallum and Nelson (2001), the planner’s 

problem can be written as: 

)}()(
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{ 1

0

22
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    [3.22] 

Hence, in each period, the social planner chooses the level of inflation and output gap, 

such that the intertemporal discounted social welfare loss is minimized. 

 

Suppose the problem above starts from time ‘1’, the first order conditions with respect 

to t ’s and tx ’s are: 

1 :        011                         (the initial period)           [3.23] 

t :       0)( 11   tttE         t=2,3,……                      [3.24]  

ty :       0)(1  ttxE                t=1,2,3,…….                  [3.25]  

 

For optimal policy with commitment, we follow the ‘timeless perspective’ advocated 

by McCallum and Nelson (2001), as well as Woodford (1999), in which the potential 

problem of time inconsistency is avoided through ‘ignoring any conditions prevailing 

at the regime’s inception’ (McCallum and Nelson, 2001, pp.4). The optimal response 

under ‘timeless perspective’ is derived by combining equations [3.24] and [3.25], 

while the initial period condition [3.23] is neglected. The optimal policy is found to 

take the form: 

)( 1 ttt xx



                                          [3.26]

13
 

 

Equation [3.26] is what McCallum and Nelson (2001) called the ‘target rule’. It states 

that the optimal policy that would intertemporally minimize the social welfare loss is 

such that the rate of inflation in each period is kept as a constant fraction of the first 

difference of output gap.  

 

                                                 
13 Exactly the same results can be found in Clarida, Gali and Gertler (1999, pp.41), as well as McCallum and 

Nelson (2001, pp.7). 



 15 

Note that equation [3.26] is the relationship that is achieved if the monetary authority 

has been able to behave optimally. We will assume that the implementation of 

monetary policy is subject to ‘policy shocks’ so that the required relationship [3.26] 

does not always hold, and so we obtain: 

tttt xx 



   )( 1                                 [3.26]’ 

where t  is interpreted as the ‘policy shock’ that causes distortions to the optimal 

condition [3.26]. 

 

The Simplified Model 

 

So far, the ‘IS’ curve [3.9], the New Keynesian Phillips curve [3.20], as well as the 

optimal response [3.26]’ constitute a fully micro-founded New Keynesian model for 

inflation, interest rate and output gap determinations, where the monetary authority is 

assumed to behave optimally subject to a policy shock. We treat the disturbances as 

representing omitted variables and following an AR(1) process. The log-linearised 

model can then be summarised as: 

ttttttt vEixEx   )
~

)(
1

( 11 


                           [3.9]     

w

ttttt uxE   1                                       [3.20]     

tttt xx 



   )( 1                                               [3.26]’                   
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ttvt vv   1 ,  
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t uu   1 ,  


  ttt  1 ,    

where  )(
C

Y
  ,    






)1)(1( 
  

and     ),0(~   Nt ,   ),0(~
ww uu

t N  ,   ),0(~ vv

t N  . 

 

While monetary policy in the baseline model above is governed by the optimal 

response [3.26]’, notice that equation [3.26]’ can be easily replaced with other 

exogenous rules (e.g., Taylor-type rules), such that models fitted with alternative 

policy regimes are readily comparable.   
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4. Identification of Monetary Policy Rules with Tests 

 

4.1. The Testing Strategy   

 

This paper aims at testing three typical rules that are usually modelled as the 

prevailing monetary policy in the US. They are the ‘target rule’ [3.26]’, the original 

Taylor rule [2.1] and the Taylor rule with ‘interest rate smoothing’ [2.2], respectively. 

In particular, since the meaning of a hypothetical rule that is not backed with a 

structural model is ambiguous, the rules to be tested are all fitted into the baseline 

model outlined in the previous section such that three different pseudo economies can 

be constructed as follows: 

 
 

Table 4.1: models to be tested 

 

Model one                              (‘IS’+PP+ the ‘target rule’) 

‘IS’ curve                        
ttttttt vEixEx   )

~
)(

1
( 11 


                 v

ttvt vv   1
 

 

PP curve                             
w

ttttt uxE   1                     
w

w

u

t

w

tu

w

t uu   1
 

 

Policy rule                             
tttt xx 




   )( 1

                       

  ttt  1
 

 

  Model two                      (‘IS’+PP+ the original Taylor rule) 

‘IS’ curve                          
ttttttt vEixEx   )

~
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1
( 11 
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PP curve                              
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Policy rule                 
t

A

tt

A

t

A

t xi   02.0)02.0(5.05.0  

 
The transformed  

policy rule                                '125.05.1
~

tttt xi    
14

                  

  ttt  

'

1

'  

 
 

                                                 
14 Note that both the rates of interest and inflation are transformed to quarter rates; all constants in the transformed 

rule are dropped because the tests will use data that are in deviations from their sample means, as will be revealed 

in the ‘Data’ section. Also, recall that 
)1

1
(

~



ttt iiii

 if zero-inflation steady state is assumed. 
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  Model three                   (‘IS’+PP+ Taylor rule with ‘interest rate smoothing’) 

‘IS’ curve                          
ttttttt vEixEx   )

~
)(

1
( 11 
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ttvt vv   1
 

 

PP curve                               
w

ttttt uxE   1                    
w

w

u

t

w

tu

w

t uu   1
 

 

Policy rule                 
t

A

ttX

A

t
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t ixi    



1])()[1(  

 

The transformed                    

policy rule                         '

1

' ~
])[1(

~
tttxtt ixi    

15
        

  ttt  

'

1
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As table 4.1 shows, the three models only differ in the ways in which monetary 

policies are implemented. Hence, by comparing their capacity to fit the real data, one 

should be able to tell which rule, when included in a simple New Keynesian model, 

provides the best explanation for the observed ‘stylized facts’ and therefore the most 

appropriate description of the existing monetary policy, since it is only the policy 

rules that differ.  

 

4.2. Methodology—Testing the Models Using Indirect Inference 

 

To evaluate each model’s fitness to the actual data, this paper adopts the approach that 

is proposed in Minford, Theodoridis and Meenagh (2007), where models are tested 

using indirect inference
16

.  

 

Specifically, when a theoretical model is tested against the actual data, an auxiliary 

model that is completely independent of the theoretical one is employed to produce 

descriptors of the data against which the performance of the theory can be evaluated 

indirectly. Such descriptors can be either the estimated parameters of the auxiliary 

model or functions of these. While these are treated as the ‘reality’, the theoretical 

model being evaluated is simulated to find its implied values for them. 

 

Indirect inference has been widely used in the estimation of structural models (e.g., 

Smith (1993), Gregory and Smith (1991, 1993), Gourieroux et al. (1993), Gourieroux 

and Monfort (1995) and Canova (2005)). Here we make a different use of indirect 

                                                 
15 See footnote 14. 
16 For more applications of this approach, see Meenagh, Minford and Wickens (2008) and Le, et al. (2008, 2009).  
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inference as our aim is to evaluate an already estimated or calibrated structural model. 

The common element is the use of an auxiliary time series model. In estimation the 

parameters of the structural model are chosen such that when this model is simulated 

it generates estimates of the auxiliary model similar to those obtained from the actual 

data. The optimal choices of parameters for the structural model are those that 

minimise the distance between a given function of the two sets of estimated 

coefficients of the auxiliary model. Common choices of this function are the actual 

coefficients, the scores or the impulse response functions. In model evaluation the 

parameters of the structural model are taken as given. The aim is to compare the 

performance of the auxiliary model estimated on simulated data derived from the 

given estimates of a structural model - which is taken as a true model of the economy, 

the null hypothesis - with the performance of the auxiliary model when estimated 

from the actual data. If the structural model is correct then its predictions about the 

impulse responses, moments and time series properties of the data should statistically 

match those based on the actual data. The comparison is based on the distributions of 

the two sets of parameter estimates of the auxiliary model, or of functions of these 

estimates. 

 

In other words, the testing procedure involves first constructing the errors derived 

from the previously estimated structural model and the actual data. These errors are 

then bootstrapped and used to generate for each bootstrap new data based on the 

structural model. An auxiliary time series model is then fitted to each set of data and 

the sampling distribution of the coefficients of the auxiliary time series model is 

obtained from these estimates of the auxiliary model. A Wald statistic is computed to 

determine whether functions of the parameters of the time series model estimated on 

the actual data lie in some confidence interval implied by this sampling distribution. 

 

Following Minford, Theodoridis and Meenagh (2007), this paper takes a VAR(1) for 

the three macro variables (interest rate, output gap and inflation) as the appropriate 

auxiliary model and treats as the descriptors of the data the VAR coefficients and the 

variances of the three variables. The Wald statistic is computed from these
17

. This 

                                                 
17 Note that the VAR impulse response functions, the co-variances, as well as the auto/cross correlations of the 

left-hand-side variables will all be implicitly examined when the VAR coefficient matrix is considered, since the 

formers are functions of the latter. 
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tests whether the observed dynamics and volatility of the chosen variables are 

explained by the simulated joint distribution of the corresponding parameters at a 

given confidence level. The Wald statistic is given by: 

                                                  )()'(
1

)( 



                                   [4.1] 

where   is the vector of VAR estimates of the concerned parameters yielded in each 

simulation, with  and )(  representing the corresponding sample means and 

variance-covariance matrix of these estimates calculated across simulations, 

respectively. The whole test procedure can be illustrated diagrammatically in Figure 

4.1 as follows: 

 

                             Figure 4.1: the principle of testing using indirect inference  

                               

                                                                        Panel A:  
                                                                                                    Model(s) to be tested     

                                                                                                ↓         (Bootstrap simulations) 

                        Actual data                                                         Simulated data 

                              ↓                                                                           ↓  

                  VAR representation                                              VAR representation 

                                    ↓                                                                           ↓ 

                The VAR inference (the ‘reality’)          vs.         Distribution(s) of the VAR inference                     

        

                                                           
                                                                   Wald statistic 

                                                                        

 

                                                                      Panel B: 

      

 

While the first panel in Figure 4.1 summarises the main steps of the methodology 

described in the past two paragraphs, the ‘mountain-shaped’ diagram replicated from 
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Meenagh, Minford and Wickens (2008, pp.8) in panel B gives an example of how the 

‘reality’ is compared to model predictions using the Wald test when only two 

parameters of the auxiliary model are concerned: let either of the spots in panel B 

indicate the real-data-based estimates of the two concerned parameters and the 

‘mountain’ represent their corresponding joint distribution generated from model 

simulations; when the real-data-based estimates are given at point A, the theoretical 

model in hand will fail to provide a sensible explanation for the real world, since what 

the model predicts is too ‘far away’ from what the ‘reality’ suggests; by contrast, if 

the real-data-based estimates are given at point B, which, according to the diagram, 

means the ‘reality’ is captured by the model-implied joint distribution of the 

corresponding parameters, the hypothesis that ‘the real data are generated by the 

model under discussion’ will be completely possible, although how likely that will be 

the case is dependent on what is reported for the Wald-statistic
18

. 

 

While one may refer to Minford, Theodoridis and Meenagh (2007) and Meenagh, 

Minford and Wickens (2008), as well as Le, et al. (2008, 2009), where a ‘three-step’ 

test procedure is explained, for more details, it is worth emphasising that the 

simulated joint distribution of the concerned VAR parameters mentioned above is a 

bootstrapped distribution, generated from the innovations implied by the data and the 

theoretical model
19

. This has the advantage over asymptotic distribution estimates that 

it uses the actual errors implied by the model and allows for any small sample effects. 

Under the null hypothesis that the theoretical model is true, the model-implied 

innovations will provide us with a sample of ‘true’ shocks with which the genuine 

distributions of innovations can be bootstrapped. In particular, to preserve any 

contemporaneous correlation between the innovations, the bootstraps are drawn as 

time vectors. 

 

4.3. Data and Calibration 

 

Data 

 

                                                 
18 Note that in this particular example, only two parameters are considered and they are both assumed to be 

normally-distributed. Yet, the principle of the Wald test would not be changed for more general cases, where more 

parameters, which may follow various kinds of distribution, are concerned. 
19 By bootstrapping the innovations to Taylor-type rules, we mean those from the transformed equations. 
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For testing the prevailing monetary policy in the US, this paper employs the quarterly 

data published by the Federal Reserve Bank of St. Louis from 1982Q2 to 2007Q4, 

when most of the period are covered by the ‘Greenspan era’, during which the US 

economy is thought to have been governed by one identical monetary regime and 

most discussions about the Fed’s behaviour are concerned
20

.  

 

Regarding the three endogenous variables involved, ti
~

is measured as the deviation of 

current Fed rate from the steady-state value, output gap tx  is approximated by the 

percentage deviation of real GDP from its HP trend, whereas t  indicates the 

quarterly inflation rate defined as the log difference between the current CPI and the 

one captured in the last quarter
21

. For simplicity, the tests use data that are in 

deviations from means
22

. In particular, a linear trend is taken out of the interest rate 

series such that stationarity is ensured. Figure 4.2 to figure 4.4 below plot each of 

these series in deviation forms; the relevant unit root test results are also presented in 

table 4.2. 

 

       Figure 4.2: ti
~

                             Figure 4.3: tx                               Figure 4.4: t   

          
 

 
Table 4.2 Unit Root Tests for Stationarity 

 

      Time series            5% critical value                 ADF test statistics                p-values* 

       ti
~

                                   -1.94                                           -2.81                                     0.0053 

              tx
                                   -1.94                                           -2.95                                     0.0035 

              t                                   -1.94                                           -3.60                                     0.0004 

  Note: ‘*’ denotes the Mackinnon (1996) one-sided p-values at 5% level of significance; H0: the time series has a  
  unit root. 

                                                 
20 Data base of Federal Bank of St. Louis: http://research.stlouisfed.org/fred2/ 
21 Notice that the annual Fed rates proposed by the Fred are purposely adjusted into quarterly rates such that the 

frequencies of all the time series are kept consistently on quarterly basis. 
22 Nevertheless, the time series of output gap used is in level, as its sample mean is not significantly different from 

zero. 
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Note that since all the data used are in deviation from mean, a VAR(1) representation 

of them would contain no constant but only nine parameters in the autoregressive 

coefficient matrix. Also, the use of such data requires dropping the constants in any 

equation of the models as well. This explains why the two transformed Taylor rules 

involved in model two and three have no constant at all. 

 

Calibration 

 

The values of parameters chosen for the tests are those commonly calibrated and 

accepted for the US economy in literature. These parameters and their values are 

listed in table 4.3 as follows:  

 

Table 4.3 Calibration of Parameters 

 

  Parameters               Definitions                                                            Calibrated values 


                time discount factor                                                                              0.99 

                 inverse of elasticity of intertemporal consumption                              2 


                 inverse of elasticity of labour                                                               3 

                 Calvo contract price non-adjusting probability                                    0.53 

    YG               steady-state government expenditure to output ratio                            0.23 

CY                steady-state output to consumption ratio                                             1/0.77              (implied) 

                 




)1)(1( 


                                                                              0.42                 (implied) 


                

)(
C

Y
 

                                                                                    2.36                 (implied) 

                  price elasticity of demand                                                                    6 

 
1 

       (see footnote 11)                                                                                  1/6                   (implied) 

 


               degree of interest rate smoothness                                                        0.76 

               interest rate response to inflation                                                         1.44 

'

x               interest rate response to output gap                                                      0.14 

       v              autoregressive coefficient of demand disturbance                                0.91     (sample estimate) 

wu


            autoregressive coefficient of supply disturbance                                 0.82     (sample estimate) 

                autoregressive coefficient of policy disturbance: model one               0.35     (sample estimate) 
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                autoregressive coefficient of policy disturbance: model two               0.37     (sample estimate) 

                autoregressive coefficient of policy disturbance: model three            0.31     (sample estimate) 

 

As table 4.3 shows, the quarterly time discount rate is calibrated as 0.99, implying an 

approximately 1% quarterly (or equivalently 4% annual) rate of interest in steady state. 

 and   are set to as high as 2 and 3 respectively as in Carlstrom and Fuerst (2008), 

who emphasized on the values’ consistency with the inelasticity of both intertemporal 

consumption decision and labour supply shown by the US data. The Calvo price 

stickiness of 0.53 and the price elasticity of demand of 6 are both taken from Kuester, 

Muller and Stolting (2007). Note that these values accordingly imply a contract length 

of more than two and a half quarters
23

, while the constant mark-up of price to nominal 

marginal cost is 1.2. The implied steady-state output-consumption ratio of 1/0.77 is 

calculated based on the steady-state ratio of government expenditure over output of 

0.23 calibrated in Foley and Taylor (2004). Regarding the Taylor rule tested in model 

three, again, calibration follows those in Carlstrom and Fuerst (2008), where the 

interest rate’s response to a unit change in inflation and output gap are 1.44 and 0.14 

respectively, with the degree of ‘smoothness’ of 0.76. The last five lines in table 4.2 

also report the autoregressive coefficients of the structural disturbances implied by the 

models, which are all sample estimates based on the real data
24

. Notice that both of 

the demand and supply shocks are shown to be highly persistent, in contrast to the 

policy shocks reflected in all the three models.  

 

 

4.4. Evaluating the Models’ Performances—the Test Results 

 

The test results and the corresponding evaluations for the three models proposed are 

presented in turn in this subsection, where the simulated 95% lower bounds and upper 

bounds for the concerned parameters, their real-data-based counterparts, as well as the 

relevant Wald statistics, are considered
25

. Since there are three endogenous variables, 

namely, interest rate, output gap, and the rate of inflation, in the VAR(1) 

                                                 
23 To be accurate, 77.212 1  . 
24 These estimates are all significant at 5% significance level. 
25  Note that the relevant diagrams for the VAR impulse response functions and cross-correlations between 

variables are also plotted with lower bounds and upper bounds in appendix. 
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representation, twelve components are involved in calculation of the Wald statistics; 

these are the nine VAR coefficients and the three variances of the L.H.S. variables
26

. 

The detailed results for each model are as follows: 

 

Model one (‘IS’+PP+the ‘target rule’) 

 

Table 4.4 below summarises the test results regarding the dynamic properties of 

model one: 

  

Table 4.4:   Individual VAR coefficients and the ‘directed’ Wald statistic 
 

 VAR(1)                       95%                        95%                          Values estimated                     In/Out 
   Coefficients          lower bound          upper bound                    with real data 

11
                      0.6454                    0.9420                                0.8017                               In 

12
                    - 0.0844                   0.0439                                 0.0834                              Out 

13
                    - 0.1774                   0.0991                                  0.0112                              In 

21
                    - 0.2589                  0.2578                               - 0.2711                              Out 

22
                     0.6685                   0.9105                                 0.9009                               In 

23
                   - 0.4037                   0.1871                               - 0.1090                              In 

31
                   - 0.1821                   0.1595                                -0.0187                               In 

32
                   - 0.0434                   0.1361                                0.1428                              Out 

33
                     0.1010                   0.4976                                 0.2552                               In 

            ‘Directed’ Wald  statistic                                                                                         98.2%  
                   (for dynamics) 

 

According to table 4.4, three out of the nine real-data-based estimates of the VAR 

coefficients that reflect the actual dynamics are found to lie outside their 

corresponding 95% bounds implied by the theoretical model. Specifically, the 

response of interest rate to the lagged output gap and the response of output gap to the 

lagged interest rate, as well as the response of inflation to the lagged output gap, are 

all shown to be more aggressive than what the theoretical model would predict. In 

                                                 
26 Note that the VAR(1) representation is assumed to take the form: 
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particular, the interest rate’s response to the lagged output gap in reality is more than 

twice as great as what could be generated from model simulations. Overall, the 

‘directed’ Wald statistic is reported as 98.2%; this indicates the model’s success in 

capturing the actual dynamics at the 99% confidence level, although it clearly fails at 

the more conventional 95% level. Clearly, all the DSGE models here have problems 

fitting the data closely; our main purpose is to rank them and to see if one of them 

stands out as relatively acceptable. 

 

Turing to the other aspect of the concerned ‘stylized facts’, table 4.5 below shows the 

extent to which the observed volatilities of real data are explained by the theoretical 

model: 

 
          Table 4.5:  Volatilities of the endogenous variables and the ‘directed’ Wald statistic 

 

      Volatilities of the                      95%                      95%                     Values calculated                 In/Out 
  endogenous variables         lower bound      upper bound                  with real data 

            
)

~
var(i

                             0.0102                 0.0450                              0.0171                              In 

            
)var(x

                             0.0411                 0.1601                               0.0951                              In 

            
)var(

                             0.0094                 0.0206                               0.0153                              In 

     ‘Directed’ Wald  statistic                                                                                             10.4%  
           (for volatilities) 

Note: Values reported in table 4.5 are magnified by 1000 times as their original values. 

 

As table 4.5 shows, while the variances of the three considered endogenous variables 

calculated with the real data are all within the model-implied 95% bounds, the 

‘directed’ Wald statistic is reported as 10.4%. That is, at the confidence level of 95%, 

the observed volatilities are not only individually, but also jointly explained by the 

theoretical model- with such a low Wald statistic, they are very close to the joint 

means of the variances.  

 

Note that, by using the ‘directed’ Wald, we have been examining the theoretical 

model’s partial capacities in explaining either the dynamics or the volatilities of the 

actual data.  To evaluate the model’s overall fitness to the real world, we consider 

both the dynamics and the volatilities simultaneously, for which we use the ‘full’ 

Wald statistic. This is reported in table 4.6 as 96.5%; hence the null hypothesis that 

the theoretical model explains both the actual dynamics and volatilities is easily 

accepted at the 99% confidence level and only marginally rejected at 95%.  
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                                       Table 4.6: the ‘full’ Wald statistic 

    The concerned model properties                                                           ‘Full’ Wald statistic 

     Dynamics + Volatilities                                                                                  96.5% 

 

To summarise, model one does not only provide a rough explanation for the actual 

dynamics, but also precisely captures the volatilities shown by the real data; its overall 

fitness in explaining the data is fairly good, as DSGE models go and we may consider 

as a reasonable approximation to the real-world economy. 

  

Model two (‘IS’+PP+the original Taylor rule) 

 

Leaving the economic environment (i.e., the ‘IS’ curve and the Phillips curve) 

unchanged, model two replaces the optimal ‘target rule’ assumed in model one with 

the original Taylor rule, widely regarded as a good description of the Fed’s monetary 

policy from 1982 to at least the early 1990s. The test results for the dynamic 

behaviour of the model are reported in table 4.7 as follow: 

 

Table 4.7:   Individual VAR coefficients and the ‘directed’ Wald statistic 
 

VAR(1)                        95%                       95%                       Values estimated                    In/Out 
Coefficients            lower bound        upper bound                  with real data   

   11
                        0.6139                   1.1165                             0.8017                                 In 

   12
                      - 0.0743                   0.2385                             0.0834                                 In 

   13
                      - 0.3098                  0.2977                             0.0112                                 In 

   21
                      - 0.1571                  0.3175                           - 0.2711                               Out 

   22
                       0.6112                   0.8960                             0.9009                               Out 

  23
                      - 0.4316                  0.1654                            - 0.1090                                In 

  31
                      - 0.1055                   0.6202                            -0.0187                                In 

  32
                     - 0.1457                   0.1983                             0.1428                                 In 

            33
                        -0.0043                  0.6596                             0.2552                                 In 

                ‘Directed’ Wald statistic                                                                                           100%  
                      (for dynamics) 

 

As revealed in table 4.7, while most of the real-data-based estimates of the VAR 

coefficients are individually captured by the 95% bounds implied by model 
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simulations, the output gap’s responses to the lagged interest rate and to its own 

lagged value are found to exceed their corresponding lower bound and upper bound, 

respectively. Overall, the ‘directed’ Wald statistic is reported as 100%, which means 

there is no hope at all for the theoretical model to generate a joint distribution of the 

VAR coefficients that simultaneously explains the ones observed in reality. The 

theoretical model thus is totally rejected by the Wald test for the dynamics. 

  

Yet the model can still explain most of the data volatilities, as shown in table 4.8. It 

generates excessive interest rate variance, but reasonably matches series the variances 

of the output gap and inflation. The ‘directed’ Wald statistic for the variances is 

91.5%, comfortably accepted therefore at 95%.  

 

          Table 4.8:  Volatilities of the endogenous variables and the ‘directed’ Wald statistic 
 

       Volatilities of the                          95%                        95%                     Values calculated               In/Out 
   endogenous variables            lower bound        upper bound                  with real data 

              
)

~
var(i

                                0.0604                   0.2790                              0.0171                         Out 

              
)var(x

                                0.0400                   0.1527                              0.0951                          In 

              
)var(

                               0.0475                   0.1672                              0.0153                          In 

                  ‘Directed’ Wald statistic                                                                                                91.5%  
                        (for volatilities)  

Note: Values reported in table 4.8 are magnified by 1000 times as their original values. 

 

Lastly, table 4.9 shows the ‘full’ Wald statistic as 100%. This is hardly surprising 

since it fails so badly to capture the dynamics in the data. 

 

Table 4.9: the ‘full’ Wald statistic 

   The concerned model properties                                                        ‘Full’ Wald statistic 

     Dynamics + Volatilities                                                                               100% 

 

So far, it is clear that model two, where the original Taylor rule is set as the 

fundamental monetary policy, has only partially captured the characteristics shown by 

the actual data; unless the discussions are focused exclusively on the ‘size’ of the 

economy’s fluctuations, such a model is not to be taken as a realistic description of 

the prevailing economic reality. 
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Model three (‘IS’+PP+Taylor rule with ‘interest rate smoothing’) 

 

In this last model, a calibrated Taylor type rule whose specification reflects the feature 

of ‘interest rate smoothing’ is assumed to be the underlying policy reaction function. 

In effect, the rate of interest implied by such a rule is a weighted average of what was 

set in the last period and what would be required had the original Taylor rule been put 

in place, with the weights being the degree of ‘policy inertia’ and its complement, 

respectively. While Taylor-type rules in which interest rates are ‘smoothed’ are 

commonly claimed to be supported by empirical evidence as the prevailing monetary 

policies (e.g., Clarida, Gali and Gertler (1999, 2000), Rotemberg and Woodford (1997, 

1998)), the test results regarding model three’s performance are revealed as follows: 

 

Table 4.10:   Individual VAR coefficients and the ‘directed’ Wald statistic 
 

VAR(1)                         95%                         95%                      Values estimated                  In/Out 
        Coefficients              lower bound          upper bound                with real data 

    11
                        0.7228                    0.9470                            0.8017                                  In 

    12
                      - 0.0168                   0.1287                            0.0834                                  In 

    13
                      - 0.0029                   0.1553                            0.0112                                  In 

   21
                       - 0.1424                   0.2095                          - 0.2711                                Out 

   22
                        0.6551                    0.8971                            0.9009                                Out 

   23
                      - 0.2840                  -0.0046                          - 0.1090                                 In 

   31
                      - 0.1668                    0.4706                           -0.0187                                 In 

   32
                      - 0.1260                   0.2655                             0.1428                                 In 

              33
                        0.0830                    0.5427                            0.2552                                  In 

              ‘Directed’ Wald  statistic                                                                                             99.9%  
                    (for dynamics) 

 

Table 4.10 above summarises how the actual dynamics are explained by the 

theoretical model. Again, except for the output gap’s responses to the lagged interest 

rate and to its own lagged value, all dynamic relationships shown by the real data are 

individually captured by the simulated 95% bounds. Yet, the ‘directed’ Wald statistic 

reported is as high as 99.9%, indicating the theoretical model can hardly be used for 
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explaining the observed dynamics, as the set of real-data-based estimates of the VAR 

coefficients is not captured by the corresponding joint distribution generated from 

model simulations, even at a 99% confidence level
27

. 

 

Turning to the volatilities of the endogenous variables, table 4.11 shows the 

theoretical model has merely correctly mimicked the performance of the output gap, 

but evoked too much variance for both the interest rate and inflation; the ‘directed’ 

Wald statistic is reported as 99.4%, which implies the model in hand is not a proper 

explanation for the observed volatilities, either. 

  

         Table 4.11: Volatilities of the endogenous variables and the ‘directed’ Wald statistic 
 

         Volatilities of the                       95%                        95%                      Values calculated               In/Out 
    endogenous variables            lower bound         upper bound                 with real data 

            
)

~
var(i

                                 0.0229                   0.1174                              0.0171                          Out 

 
)var(x

                                  0.0380                   0.1430                              0.0951                           In 

 
)var(

                                  0.0532                   0.1158                              0.0153                          Out 

                  ‘Directed’ Wald statistic                                                                                         99.4%  
                         (for volatilities) 

Note: Values reported in table 4.11 are magnified by 1000 times as their original values. 

 

In fact, the poor explanatory power of model three is not only detected by the 

‘directed’ Wald, but also captured by the ‘full’ Wald when the model’s overall fitness 

is considered: note that the ‘full’ Wald statistic reported in table 4.12 is 99.9%, which 

is another way of saying it is hardly possible for the model to have generated data that 

simultaneously fit the dynamics and volatilities observed in reality. 

 

 Table 4.12: the ‘full’ Wald statistic 

   The concerned model properties                                                        ‘Full’ Wald statistic 

     Dynamics + Volatilities                                                                               99.9% 

 

Thus model three, where a Taylor rule with ‘interest rate smoothing’ is in operation,  

cannot be considered to be a good proxy for the real-world economy. 

 

 

 

                                                 
27 Note that the test results in this case are rather similar to their counterparts suggested for model two. 
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5. Reconsidering the Prevailing Monetary Policy Rule in Light of 

the Test Results 

 

5.1 The truly-fitting monetary policy rule in the US 

 

While the performances of the three hypothetical NK models are evaluated in the last 

section, recall that these models only differ in the ways in which monetary policies 

are set. Hence, by ranking the models in terms of their ‘closeness’ to the real world, 

one will in effect be considering whether the observed data are more likely to have 

been generated with the optimal ‘target rule’ or the original Taylor rule, or with a 

Taylor-type rule where the interest rate is ‘smoothed’
28

. For ranking the models’ 

performances, the test results revealed in section 4.4 are summarised as follows: 

 

                                    Table 5.1: Summary of the test results 
 

            NK models                   ‘Directed’ Wald statistics         ‘Directed’ Wald statistics           ‘ Full ‘ Wald statistics 
                                                (for dynamics)                           (for volatilities) 

 
            Model  one                                  98.2%                                          10.4%                                       96.5%        

             
            Model  two                                  100%                                           91.5%                                       100% 

           
           Model  three                                99.9%                                          99.4%                                       99.9% 

 

 

Given the test results reproduced in table 5.1, comparison by columns immediately 

shows the first model, which is combined with the optimal ‘target rule’, is generally 

superior to its rivals in fitting US data, as it consistently yields the lowest Wald 

statistics. More importantly, this model is the only one capable of explaining the 

dynamics and volatility of the data not only separately but also jointly. By contrast, in 

the cases where Taylor-type rules are incorporated into exactly the same economic 

environments, model two is only able to capture the scale of the economy’s volatility, 

whereas model three is completely rejected by the data in all dimensions.  

 

 

                                                 
28 That is, the ‘true’ monetary policy rule is identified as a part of the ‘true’ model in a relative sense. 
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5.2 Taylor rules as statistical relationships 

 

The above suggests that the widespread success reported in single-equation 

regressions of Taylor rules on US data could simply represent some sort of statistical 

relationship emerging from the model with the optimal ‘target rule’. To examine this 

possibility, we treat the optimal ‘target rule’ model again as the true model, the null 

hypothesis and ask whether the existence of empirical Taylor rules would be 

consistent with it. 

  

Suppose an arbitrarily specified Taylor-type regression is estimated to infer the 

potential ‘Taylor rule’ of the US economy. For simplicity, let the Taylor-type 

regression take the form:  

                                           
tttxtt ixi   1

~~
                                [5.1] 

where variables have their usual meanings. Equation [5.1] can be estimated either 

using OLS if we assume the basic requirements for an OLS estimator are fulfilled, or 

via the IV approach to allow for possible correlations between the explanatory 

variables and the error term. The OLS and IV estimates based on the US data from 

1982Q2 to 2007Q4 are summarised in table 5.2 below
29

: 

 

                  Table 5.2: estimates of Taylor-type regression [5.1] 

                                                                                           x                                                       Adjusted 
2R  

          
           OLS estimates                      0.0453                       0.0922                       0.8233                             0.92       
 
            IV estimates                        0.0376                       0.1003                       0.8017                             0.90                                                                                  

 

 

Now, use the technique of ‘indirect inference’ to test if the observed ‘Taylor rule’ can 

be explained by model one based on the data simulated for the same periods
30

. The 

test results are revealed as follows: 

 

                                                 
29  For the IV approach, here we take the lagged inflation and lagged output gap as instruments for their 

corresponding current values, respectively. 

30 Note: a) While one may expect the estimates of   reported in table 5.2 be greater than one such that the ‘Taylor 

principle’ would be found, note that most existing literature has treated the interest rate series that is I(1) as a 

stationary series (See Carare and Tchaidze (2005), pp.17, footnote 17), whereas stationarity is obtained here by de-

trending the data; Indeed, the ‘Taylor principle’ would be retrieved if the original I(1) interest rate series were used 

for estimation. b) In terms of the methodology, the Taylor-type regression [5.1] is now taken as the auxiliary 

model and the real-data-based estimates reported in table 5.2 are seen as the ‘reality’ in this case.  



 32 

             Table 5.3: Individual Taylor rule coefficients and the ‘directed’ Wald statistic 

 
                                                     Panel A: Test for the OLS estimates 
 

           Taylor rule                         95%                        95%                       Values calculated                  In/Out 
          coefficients                lower bound         upper bound                  with real data 

                                             0.0514                     0.3436                            0.0453                              Out 

             

           x                   -0.0702              0.0650                            0.0922                               Out 

           
                                     0.6330                     0.9198                            0.8233                                In 

                  ‘Directed’ Wald statistic                                                                                          97.1%  
               (for Taylor rule coefficients) 

 

 

                                                      Panel B: Test for the IV estimates 
 

           Taylor rule                         95%                        95%                       Values calculated                  In/Out 
          coefficients                lower bound         upper bound                  with real data 

                                            -0.8867                     0.3062                            0.0376                               In 

             

           x                   -0.1072              0.0514                             0.1003                             Out 

           
                                     0.6454                     0.9420                            0.8017                               In 

                  ‘Directed’ Wald statistic                                                                                         97.8%  
               (for Taylor rule coefficients) 

 

According to table 5.3, although the real-data-based estimates of the ‘Taylor rule’ 

coefficients are not all individually captured by the model-implied 95% bounds, they 

are indeed explained as a set by the joint distribution of their simulation-based 

counterparts at the 99% confidence level, since the ‘directed’ Wald statistics are 

reported as 97.1% and 97.8% in panel A and panel B, respectively, indicating that it is 

statistically possible for model one to imply the ‘Taylor rules’ observed from both 

OLS and IV estimations as shown in table 5.2.  

 

These results illustrate the identification problem with which we began this paper: a 

Taylor-type relation that has a good fit to the data may well be generated by a model 

where there is no structural Taylor rule at all
31

. Hence, any estimated or calibrated 

Taylor-type rule, no matter how well it might predict the actual movements of the 

nominal interest rate, is not by itself evidence that monetary policy follows this rule. 

                                                 
31 Note that the adjusted

2R ’s reported in table 5.2 are as high as 0.92 for the OLS estimates and 0.90 for the IV 

estimates. 
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Note that table 5.4 below also summarises the Wald statistics when the Optimal 

Target Rule model is used to explain several popular variants of the Taylor rule 

estimated with OLS. According to the reported Wald statistics, the real-data-based 

estimates of these Taylor rules are all well captured by the model. The model is thus 

robust in generating essentially the whole range of Taylor rules that have been 

estimated on US data.  

 

                 Table 5.4: Model one in explaining different Taylor-type rules (by OLS) 

       Taylor-type  regressions                       Adjusted 
2R                       ‘Directed’ Wald statistic   

                                                                                                             (for Taylor rule coefficients) 

       
ttxtt xi  

~
  

                
ttt    1
                                   0.89                                            92.9%     

         

   
ttxtt xi     11

~
                          0.40                                            87.0% 

 

       
ttxttt xii     111

~~
              0.90                                            97.9% 

 

 

5.3 The ‘interest rate smoothing’ illusion: an implication 

 

Another issue on which the test results in this paper and the analysis from the 

previous subsection sheds light is related to ‘interest rate smoothing’. In an early 

paper Clarida, Gali and Gertler (1999) claimed that a ‘puzzle’ regarding the central 

banks’ behaviour was yet to be solved, as the optimal ‘target rule’ which could be 

generally derived from a standard NK model as the optimal policy response to 

changes of macro variables would imply once-and-for-all adjustments of the nominal 

interest rate, whereas empirical ‘evidence’ from typical Taylor-type regressions 

estimated with the real data usually displayed a high degree of ‘interest rate 

smoothing’, in which case the sluggishness of interest rate variations could not be 

rationalized in terms of optimal behaviours.  

 

While various authors explain such a discrepancy either at a theoretical level (e.g., 

Rotemberg and Woodford (1997, 1998), Woodford (1999, 2003a, 2003b)) or at an 

empirical level (e.g., Sack and Wieland (2000), Rudebusch (2001)), the tests in this 

paper support the optimal ‘target rule’ but reject the Taylor rule with ‘interest rate 
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smoothing’- implying the Fed has been responding to economic changes optimally 

without deliberately smoothing the interest rate. It is the persistence in the shocks 

themselves that induced the appearance of inertia in interest rate setting. Furthermore 

we show that one would find regressions of ‘interest-smoothing Taylor rules’ 

successfully fit the data even though this was being produced by the optimal ‘target 

rule’ model. Hence we would argue that these optimal responses by policymakers 

have been incorrectly interpreted as ‘policy inertia’ due to these misleading 

regressions.  

 

 

6. Conclusion 

 

In this paper we have attempted to identify the principles governing US monetary 

policy since the early 1980s. The ‘Taylor rule’ is widely regarded as a good 

description of these principles. Yet there is an identification problem plaguing efforts 

to estimate it: other relationships implied by the DSGE model in which it is embedded 

could imply a relationship that mimicked a Taylor rule. To get around this problem 

we have set up three models, each with the same New Keynesian structure but 

differing only in their monetary rules. The three different rules are an optimal target 

rule, a standard Taylor rule and another with ‘interest rate smoothing’. We show, 

using statistical inference based on the method of indirect inference, that only the 

optimal target rule can replicate both the dynamics and the volatilities of the data. We 

also show that if the optimal target rule model was operating it would have produced 

data in which regressions of an interest-rate-smoothed Taylor rule would have been 

found. In short, the policy of the Fed in this period appears to have been 

approximately optimal and the fact that its behaviour looks like a Taylor rule with 

interest-rate smoothing is a statistical artefact. 
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Appendix: supplementary diagnoses of the models’ performances 

 

 
                          Figure A.1: Charts of structural disturbances and innovations 

 
            Demand disturbance and innovations                           Supply disturbance and innovations  

 

              
 

     

                                                            Policy disturbance and innovations                      

 

                          (With the ‘target rule’)                                        (With the original Taylor rule)  

                        
 

       (With Taylor rule with ‘interest rate smoothing’) 
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          Table A.1: Estimates of relevant inference of the structural errors and innovations 
 

             Errors                         AR(1) coefficients             t-statistics           Standard deviations of the innovations 

 Demand disturbance                       0.91                            25.25                                            0.0012 
                                                           [0.0359] 
 

Supply disturbance                          0.82                           14.09                                            0.0336 
                                                          [0.0581] 
 

Policy disturbance                           0.35                            3.84                                              0.0034 
(‘target rule’)                           [0.0917] 

  
Policy disturbance                          0.37                             4.06                                              0.0056 

(Original Taylor rule)                    [0.0916] 
 

Policy disturbance                          0.31                             3.26                                             0.0016 
(Taylor rule with ‘IRS’

32
)               [0.0948] 

  Note: Values in [ ] are the standard deviations of the estimates of AR(1) coefficients. 

 

 

 

 

Behaviour of VAR Impulse Response Functions:  

 

 

Model one (IS+PP+the ‘target rule’) 

 

 

1a. VAR Impulse responses to demand shock (with 95% bounds): 
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 IRF: interest rate smoothing. 
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1b. VAR Impulse responses to supply shock (with 95% bounds): 
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1c. VAR Impulse responses to policy shock (with 95% bounds): 
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Model two (IS+PP+the original Taylor rule) 

 

 

2a. VAR Impulse responses to demand shock (with 95% bounds): 
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2b. VAR Impulse responses to supply shock (with 95% bounds): 
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2c. VAR Impulse responses to policy shock (with 95% bounds): 
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Model three (IS+PP+ Taylor rule with ‘interest rate smoothing’) 

 

 

3a. VAR Impulse responses to demand shock (with 95% bounds): 
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3b. VAR Impulse responses to supply shock (with 95% bounds): 
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3c. VAR Impulse responses to policy shock (with 95% bounds): 
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Cross correlations between variables: 

 

 

Model one (IS+PP+the ‘target rule’) 

 

 

1a. Autocorrelations (with 95% bounds): 
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1b. Cross Correlations (with 95% bounds): 
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Model two (IS+PP+the original Taylor rule) 
 

 

2a. Autocorrelations (with 95% bounds): 
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2b. Cross Correlations (with 95% bounds): 
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Model three (IS+PP+ Taylor rule with ‘interest rate smoothing’) 

 

 

3a. Autocorrelations (with 95% bounds): 
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3b. Cross Correlations (with 95% bounds): 
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