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Abstract

In this paper we empirically examine a heterogenous bounded rationality
version of a hybrid New-Keynesian model. The model is estimated via
the simulated method of moments using Euro Area data from 1975Q1
to 2009Q4. It is generally assumed that agents’ beliefs display waves of
optimism and pessimism - so called animal spirits - on future movements
of the output and inflation gap. Our main empirical findings show that a
bounded rationality model with cognitive limitation provides a reasonable
fit to auto- and cross-covariances of the data. This result is mainly driven
by a high degree of intrinsic persistence in the output and inflation gap due
to the impact of animal spirits on economic dynamics. Further, over the
whole time interval the agents had expected moderate deviations of the
future output gap from its steady state value with low uncertainty. Finally,
we find strong evidence for an autoregressive expectation formation process
regarding the inflation gap.
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1 Introduction

Rational expectations are a flexible and natural way of modeling market be-
havior in dynamic stochastic general equilibrium (DSGE) models, which are
widely used by macroeconomists. Since the DSGE approach disposes a conve-
nient analytical tractability under the assumption of rational expectations, this
modeling framework serves as an efficient toolbox for analyzing monetary and
fiscal policy measures. As Selten (2001) states, however, "modern mainstream
economic theory is largely based on an unrealistic picture of human decision
theory" since evidence from experimental studies supports information process-
ing with limited cognitive ability of agents rather than perfect information (see
Hommes (2011) among others). Indeed, a plethora of studies have been done on
alternative forms of information processing mechanisms in macroeconomics; see
e.g. the literature on learning (Evans and Honkaphohja (2001)), rational inat-
tention (Sims (2003)), sticky information (Mankiw and Reis (2002)) or bounded
rationality in general (Sargent (1994) and Kahneman (2003)). Camerer (1998)
also offers an informative overview of the discussion on this topic in economics.

For the most part of the behavioral research, we can treat the realization of
economic decisions as being a complex and interactive process between different
types of agents. Keynes (1936) already attributed significant irrationality to
human nature and discussed the impacts of waves of optimism and pessimism
- so called animal spirits - on economic outcome. According to Akerlof and
Shiller (2009), the emotional states are reflected in economic behavior - see also
Franke (forthcoming) for his extensive discussion about market behavior and
how expectation formation should be treated in macroeconomic models.

In this paper we attempt to empirically examine the hypothesis that the
behavioral heterogeneity will have a macroscopic impact on the economy. The
point of view taken here is that a behavioral model can provide a conceptual
framework for a cognitive ability as well as a substantial degree of inertia in
the DSGE models. According to De Grauwe (2011), if agents are known to be
either optimists or pessimists, their ability (or better: limitation) to form their
expectations affects economic conditions, i.e. movements in employment, the
output gap and inflation, more appropriately than standard rational expecta-
tion models. Indeed, it is shown in the expectation formation process under
bounded rationality that we can explicitly model animal spirits by applying
discrete choice theory on group behavior. Then the behavior of optimists and
pessimists is considered to be a by-product of the switching mechanisms based
on the performance measure from agents’ expectations (see also e.g. Westerhoff
(2008) as well as Lengnick and Wohltmann (forthcoming) among others).

To the best of our knowledge, however, an empirical evaluation of a bounded
rationality model of this type discussed above is missing in the literature so far.
We fill the existing gap between the use of the models and their empirical
evaluations in the literature by measuring the effects of psychological behav-
ior on the economy under consideration of animal spirits. We show that the
moment-based estimation (Franke et al. (2011)) can be easily used to estimate
a small-scale DSGE model. Mainly, similarities and dissimilarities between
two polar cases of expectation formation processes will be examined: while
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the underlying model structure is identical to a standard three-equations New-
Keynesian model (NKM), we also allow both for rational expectations and
for endogenously-formed expectations using the behavioral specification by De
Grauwe (2011). In particular, we study his behavioral economic framework and
provide an empirical investigation of bounded rationality on economic dynamics
in the Euro Area from 1975Q1 to 2009Q4. Accordingly, an important aspect of
this paper is to test the bounded rationality hypothesis in order to offer reliable
parameter values that can be used for calibration in more realistic-grounded fu-
ture work, e.g. studying monetary and fiscal policy analysis in a DSGE model
without the assumption of rational expectations.

In our empirical application, we show that the NKM with rational expec-
tations or bounded rationality can generate auto- and cross-covariances of the
output gap, the inflation gap and the interest gap, which can mimic real data
well. A quadratic objective function is used in the estimation to measure the
distance between the model-generated and empirical moments. As the usual
procedure of the method of moments, the global minimum of the objective func-
tion provides consistent parameter estimates of the model. Then we evaluate
the goodness-of-fit of the model to the data from the value of the quadratic ob-
ject function; i.e. the lower this value, the better the fit of the model-generated
moments to their empirical counterparts. The empirical application using the
method of moment approach stays in line with the work of Franke et al. (2011),
who estimate a similar version of the NKM presented here for two sub-samples,
i.e. the Great Inflation and Great Moderation period in the US. They come to
the conclusion that inflation dynamics are primarily driven by intrinsic rather
than extrinsic persistence - which is the total opposite of the results when apply-
ing Bayesian estimation. This is reflected by a high degree of price indexation
and a low degree of persistence in the assumed AR(1) cost-push shock. In
general, this kind of estimation technique is closely related to the approaches
of indirect inference with the difference that in our case the structural form of
a DSGE model is used instead of an auxiliary model like a SVAR (cf. Smith
(1993) and Christiano et al. (2005) among others).

Main findings can be summarized as follows. First, over the whole time
interval the agents had expected moderate deviations of the future output gap
from its steady state value with low uncertainty. Second, we find strong evidence
for an autoregressive expectation formation process regarding the inflation gap,
which is in line with the scientific consensus among experimental economists
(Roos and Schmidt (2012)).

The remainder of the paper is structured as follows. Section 2 introduces a
small-scale NKM and discusses two model specifications, i.e. one with rational
expectations and the other under consideration of the animal spirits. The es-
timation methodology is presented in section 3. Section 4 then estimates two
versions of the model by the moment-based estimation and discusses their em-
pirical results. Afterwards, the properties of the moment-based procedure for
estimation are examined through a Monte Carlo study and a sensitivity analysis
in section 5. Finally, section 6 concludes. The appendix collects all relevant
technical details.
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2 The Model: Rational Expectations vs. Bounded

Rationality

The New-Keynesian three-equations model reads as follows:

yt =
1

1 + χ
Ẽj

t yt+1 +
χ

1 + χ
yt−1 − τ(r̂t − Ẽj

t π̂t+1) + εy,t (1)

π̂t =
ν

1 + αν
Ẽj

t π̂t+1 +
α

1 + αν
π̂t−1 + κyt + επ̂,t (2)

r̂t = φr̂(φπ̂π̂t + φyyt) + (1 − φr̂)r̂t−1 + εr̂,t (3)

where the superscript j = {RE, BR} refers to the rational expectation (RE) and
the bounded rationality (BR) model, which we describe below. The correspond-
ing expectations operator is Ẽj

t , which has to be specified for both models. It
goes without saying that all variables are given in quarterly magnitudes. Equa-
tion (1) describes a hybrid dynamic IS curve and results from the standard
utility maximization approach of a representative household. Here the current
output gap depends negatively on the real interest rate, i.e. it is stemming from
intertemporal optimization of consumption and saving resulting in consumption
smoothing. The parameter τ ≥ 0 denotes the inverse intertemporal elasticity
of substitution. Equation (2) is known as the hybrid New-Keynesian Phillips
Curve (NKPC) where the output gap (yt) is the driving force of inflation due
to monopolistic competition and the Calvo price-setting scheme. The slope of
the Phillips Curve is given by the parameter κ ≥ 0. The parameter ν denotes
the discount factor (0 < ν < 1). According to the Taylor rule with interest
rate smoothing (3), the nominal interest gap is a predetermined variable while
the monetary authority reacts directly to movements in the output (φy ≥ 0)
and inflation (φπ̂ ≥ 0) gap. We account for intrinsic persistence in this stylized
version of the well-known Smets and Wouters (2003, 2005 and 2007) model due
to the assumption of backward-looking behavior indicated by the parameters
for habit formation χ, price indexation α and interest rate smoothing φr̂, re-
spectively (0 ≤ χ ≤ 1, 0 ≤ α ≤ 1, 0 ≤ φr̂ ≤ 1). We assume that the exogenous
driving forces in the model variables follow idiosyncratic shocks εz,t, which are
drawn from multivariate normal distributions around mean zero and variance
σ2

z with variables z = {y, π̂, r̂}.
Note here that we consider the gaps instead of the levels and therefore

account explicitly for a time-varying trend in inflation and the natural rate of
interest. The corresponding gaps are simply given by taking the difference of
the actual value for output, inflation and the interest rate from their trends (i.e.
time-varying steady state values) respectively where the latter is computed by
applying the Hodrick-Prescott filter with a standard value of the corresponding
smoothing parameter of 1600. Accordingly, the set of equations is used to
describe the dynamics in the output gap yt, the inflation gap π̂t and the nominal
interest rate gap r̂t, where x̂t with x = {π, r} denotes the deviations in both
variables from the time-varying trend explicitly.

The results of many studies show that assuming a constant trend, like a
zero-inflation steady state, leads to misleading results. For example, Ascari
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and Ropele (2009) observe that the dynamic properties (i.e. mainly the sta-
bility of the system) depend on the variation in trend inflation. Cogley and
Sbordone (2008) also provide evidence for the explanation of inflation persis-
tence by considering a time-varying trend in inflation. In the same vein, we can
abandon the assumption of a constant natural rate of interest as being empir-
ically unrealistic. In this paper, we follow the empirical approaches proposed
by Cogley et al. (2010), Castelnuovo (2010), Franke et al. (2011) among oth-
ers, who also consider gap specifications for inflation (and the nominal interest
rate). Furthermore, inflation and money growth are likely to be non-stationary
in the Euro Area data. If that is the case, the estimation methodology such as
the method of moments approach presented here (or the generalized method of
moments in general) will lead to biased estimates.1 Taken this into account, in
the current study we consider the gaps rather than the levels in order to ensure
the stationary of the times series.

To make the description of the expectation formation processes more ex-
plicit, first we examine two polar cases in the theoretical model framework of
the NKM. First, under rational expectations, the forward-looking terms, which
are the expectations of the output gap and inflation gap at time t+ 1 in equa-
tions (1) and (2), are just given by

ẼRE
t yt+1 = Etyt+1 (4)

ẼRE
t π̂t+1 = Etπ̂t+1 (5)

where Et denotes the expectations operator conditional on information given
at time t. Second, as regards the other specification, we depart from ratio-
nal expectations by considering a behaviorial model of De Grauwe (2011). It
is generally assumed that agents will be either optimists or pessimists (in the
following indicated by the superscripts O and P , respectively) who form expec-
tations based on their beliefs regarding movements in the future output gap:

EO
t yt+1 = dt (6)

EP
t yt+1 = −dt (7)

where

dt =
1

2
· [β + δσ(yt)] (8)

"can be interpreted as the divergence in beliefs among agents about the output
gap" (De Grauwe (2011, p. 427)). In contrast to the RE model, both types of
agents are uncertain about the future dynamics of the output gap and therefore
predict a fixed value of yt+1 denoted by β ≥ 0. We can interpret the latter as the
predicted subjective mean value of yt. However, this kind of subjective forecast
is generally biased and therefore depends on the volatility in the output gap; i.e.
given by the unconditional standard deviation σ(yt) ≥ 0. In this respect, the
parameter δ ≥ 0 measures the degree of divergence in the movement of economic

1See also Russel and Banerjee (2008) as well as Aussenmacher-Wesche and Gerlach (2008)
among others for methodological issues related to non-stationary inflation in the US and the
Euro Area.
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activity. Note that due to the symmetry in the divergence in beliefs, optimists
expect that the output gap will differ positively from the steady state value
(which for consistency is set to zero) while pessimists will expect a negative
deviation by the same amount. The value of δ remains the same across both
types of agents.

The expression for the market forecast regarding the output gap in the
bounded rationality model is given by

ẼBR
t yt+1 = αO

y,t · EO
t yt+1 + αP

y,t · EP
t yt+1 = (αO

y,t − αP
y,t) · dt (9)

where αO
y + αP

y = 1. A specific forecasting rule chosen by agents, i.e. (6) or

(7), is indicated by the probability of αO
y,t and αP

y,t, respectively. In particular,

αO
y (or αP

y ) can also be interpreted as the probability being an optimist (or
pessimist). In the following, we show explicitly how these probabilities are
computed. Indeed, the selection of the forecasting rules (6) or (7) depends on
the forecast performances of optimists and pessimists Uk

t given by the mean
squared forecasting error, which can be simply updated in every period as

Uk
t = ρUk

t−1 − (1 − ρ)(Ek
t−1yt − yt)

2 (10)

where k = O, P and the parameter ρ denotes the measure of the memory of

agents (0 ≤ ρ ≤ 1). Here ρ = 0 means that agents have no memory of past
observations while ρ = 1 means that they have infinite memory instead. By ap-
plying discrete choice theory under consideration of the forecast performances,
agents revise their expectations in which different performance measures will
be utilized for αO

y,t and αP
y,t:

2

αO
y,t =

exp(γUO
t )

exp(γUO
t ) + exp(γUP

t )
(11)

αP
y,t =

exp(γUP
t )

exp(γUO
t ) + exp(γUP

t )
= 1 − αO

y,t (12)

where the parameter γ ≥ 0 denotes the intensity of choice: if γ = 0, the self-
selecting mechanism is purely stochastic (αO

y,t = αP
y,t = 1/2), whereas if γ = ∞,

it is fully deterministic (αO
y,t = 0, αP

y,t = 1 or vice versa; see De Grauwe (2011),
p. 429). For clarification, if γ = 0 agents are indifferent in being optimist or
pessimist while if γ = ∞ their expectation formation process is independent of
their emotional state, i.e. they react quite sensitively to infinitesimal changes
in their forecast performances.

We explain this revision process as follows. Given the past value of the fore-
cast performance (Uk

t−1), the lower the difference between the expected value
of the output gap (taken from the previous period, i.e. Ek

t−1yt = |dt−1|) and
its realization in period t, the higher the corresponding forecast performance
Uk

t will be. In other words, if e.g. the optimists predict future movements in

2See also Westerhoff (2008, p. 199) and Lengnick and Wohltmann (forthcoming) among others
for an application of discrete choice theory to models in finance and macroeconomics.
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yt more accurately compared to the pessimists, then this results in UO
t > UP

t .
Hence, the pessimists revise their expectations by switching to the forecasting
rule used by the optimists, which we can express as EO

t yt+1 = dt. Finally, this
forecasting rule becomes dominant and the share of pessimistic group in the
market decreases. Based on the equations (10) to (12), we can rationalize equa-
tion (9) by using simple substitution. This results in a higher degree of volatility
in the expectation formation process regarding the output gap when compared
to the outcome in the RE model (we refer to section 4.2 for a clarification).

The same logic can be applied for the inflation gap expectations. Follow-
ing the behavioral heterogeneity approach proposed by De Grauwe (2011, pp.
436), we assume that agents will be either so called inflation targeters (tar) or
extrapolators (ext).3 In the former case, the central bank anchors expectations
by announcing a target for the inflation gap ¯̂π. From the view of the inflation
targeters, we consider this pre-commitment strategy to be fully credible. Hence
the corresponding forecasting rule becomes

Etar
t π̂t+1 = ¯̂π (13)

where we assume ¯̂π = 0.4 The extrapolators form their expectations in a static
way and will expect that the future value of the inflation gap equals simply its
past value, i.e.

Eext
t π̂t+1 = π̂t−1. (14)

This results in the market forecast for the inflation gap similar to (9):

ẼBR
t π̂t+1 = αtar

π̂,tE
tar
t π̂t+1 + αext

π̂,tE
ext
t π̂t+1 = αtar

π̂,t
¯̂π + αext

π̂,t π̂t−1. (15)

The forecast performances of inflation targeters and extrapolators are given by
the mean squared forecasting error written as

U s
t = ρU s

t−1 − (1 − ρ)(Es
t−1π̂t − π̂t)

2 (16)

where s = (tar, ext), and finally we may write:

αtar
π̂,t =

exp(γU tar
t )

exp(γU tar
t ) + exp(γU ext

t )
(17)

αext
π̂,t =

exp(γU ext
t )

exp(γU tar
t ) + exp(γU ext

t )
= 1 − αtar

π̂,t . (18)

Here αtar
π̂,t denotes the probability to be an inflation targeter, which is the case

if the forecast performance using the announced inflation gap target is superior
to the extrapolation of the inflation gap expectations and vice versa. Note
here that the memory (ρ) as well as the intensive of choice parameter (γ) do

3This concept of behavioral heterogeneity has been widely used in financial market models, see
e.g. Chiarella and He (2002) as well as Hommes (2006) among others.

4In this respect (based on a optimal monetary policy strategy), an inflation gap target of
zero percent implies that the European Central Bank seeks to minimize the deviation of its
(realized) target rate of inflation from the corresponding time-varying steady state value,
where in the optimum this deviation should be zero.
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not differ across the expectation formation processes in terms of the output
and inflation gap. In the end, the bounded rationality model turns out to
be purely backward-looking (cf. equations (10) and (16)) while the forward-
and backward-looking behavior is contained in the rational expectation model.
The solution to both systems can be computed by backward-induction and the
method of undetermined coefficients respectively, which are shown in appendix
A.

Finally, one may argue that the presented model is not suitable for e.g. policy
analysis since it is not based completely on micro-foundations. In particular,
the expectation mechanisms are imposed ex post on a system of structural
equations which themselves have been derived from maximizing behavior under
the assumption of rational expectations. However, evidence from experimental
economics can help us to motivate the assumption of the divergence in beliefs
(reflects guessing) and the existence of the extrapolators (which might be seen as
pattern-based time-series forecasting) done by De Grauwe (2011) and adopted
in our study. Roos and Schmidt (2012) find evidence for a backward-looking
behavior in forming expectations by non-professionals in economic theory and
policy. In their experimental study, they show that the projections of the
future realizations in the output gap and inflation are based either on historical
patterns of the time series or - in the case of no available information - on simple
guessing.

From a theoretical point of view, Branch and McGough (2009) introduce
heterogeneous expectations into a New Keynesian framework where the for-
ward looking expressions in the IS curve and NKPC are convex combinations
of backward- and forward-looking behavior. The authors show that a micro-
founded NKM under bounded rationality can be derived if specific axioms are
considered within the optimizing behavior of households and firms. These ax-
ioms ensure the ability of agents to forecast future realization of the output
gap and inflation on the micro level as well as the aggregation of this behavior
on the macro level. In comparison, De Grauwe (2010) allows for a switching
mechanism based on discrete choice theory. It is an open question if the latter
fulfills the axioms imposed by Branch and McGough (2009) which may help to
overcome the (neglected) problem of mis-specification. To sum up, there is no
doubt that an extensive elaboration on the mircofoundation of expectations for-
mation is needed, even though up to now it is a fact that among neuroscientists
the evidence on information processing in the human brain is ambiguous.

3 The Estimation Methodology

Over the last decade the Bayesian estimation became the most popular method
for the estimation of DSGE models while pushing classical estimation methods
aside such as the generalized method of moments and the pure maximum likeli-
hood approach. Indeed, the Bayesian approach certainly has the advantage over
the others: on the one hand, the distributions of the parameters in a system
of equations framework can be easily computed from user friendly software like
e.g. Dynare. On the other hand, however, there are two major disadvantages
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when we apply Bayesian techniques to our empirical study.
First, the Bayesian approach to the DSGE model requires the choice of

appropriate prior distributions associated with the underlying economic inter-
pretation of the structural parameters. It is still an open question what criteria
are suited best in order to identify the most accurate prior information. For
instance, Lombardi and Nicoletti (2011) discuss the sensitivity of posterior esti-
mation results to the choice of different expressions of the prior knowledge; Del
Negro and Schorfheide (2008) also provide an explicit method for constructing
prior distributions based on the beliefs regarding macroeconomic indicators.
However, so far the existing knowledge by neuroscientists does not allow for
pinning down a general micro-founded model on information processing (De
Grauwe (2011)). In addition, the Bayesian estimation must be designed to
cope with the shape of the prior distribution, which is often unspecified, i.e.
’uninformative’ priors; as a result, the estimated posterior becomes quite sim-
ilar to the prior distribution. In this respect, the Bayesian analysis is not a
panacea for the BR model, since prior information is not available at least for
the behavioral parameters β, δ and ρ. Second, due to the fact that a logistic
function is applied on the parameters of the BR model (as a result of applying
the discrete choice theory), a researcher must use a Bayesian full-information
analysis such as a particle filter. Especially, as long as this filter method is
applied for evaluating the likelihood function, the estimation can be subjected
to e.g. an increase in approximation errors of the non-linear model (DeJong and
Dave (2007), Chap. 11).

To avoid these disadvantages of the Bayesian approach, in this paper we seek
to match the model-generated autocovariances of the interest gap, the output
gap and inflation gap with their empirical counterparts. We minimize the dis-
tance between these model-generated and empirical moments under considera-
tion of a quadratic function, which summarizes the characteristics of empirical
data. This method is called simply moment matching (cf. Franke et al. (2011)).
Main advantage of this econometric method is that we can check transparently
the goodness-of-fit of the model to data, since the empirical comparison (graph-
ically) between the match of the estimated and simulated autocovariances is
direct.

The method of moment approach comprises distributional properties of em-
pirical data Xt, t = 1, · · · , T . The sample covariance matrix at lag k is defined
by

mt(k) =
1

T

T−k∑

t=1

(Xt − X̄)(Xt+k − X̄)′ (19)

where X̄ = (1/T )
∑T

t=1Xt is the vector of the sample mean. The sample
average of discrepancy between the model-generated and the empirical moments
is denoted as

g(θ;Xt) ≡ 1

T

T∑

t=1

(m∗
t −mt) (20)
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where m∗
t is the empirical moment function and mt the model-generated mo-

ment function (cf. equation (19)). θ is a l × 1 vector of unknown structural
parameters with a parameter space Θ. Given that the length of the business
cycles lies between (roughly) one and eight years in the Euro Area. A rea-
sonable compromise is a length of two years. Therefore we will use auto- and
cross-covariances of the interest rate gap, the output gap and the inflation gap
at a lag k, where k = 0, · · · , 8. We have a p-dimensional vector of moment
conditions (p = 78) by avoiding double counting at the zero lags in the cross
relationships.5

We obtain the parameter estimates from the following quadratic objective
function (or loss function) as a result of the minimization process:

Q(θ) = arg min
θ∈Θ

g(θ;Xt)
′ Ŵ g(θ;Xt) (21)

with the weight matrix Ŵ estimated consistently in several ways (see Andrews
(1991)). Here we use the heteroscedasticity and autocorrelation consistent
(HAC) covariance matrix estimator suggested by Newey and West (1987). The
kernel estimator has the following general form with the covariance matrix of
the appropriately standardized moment conditions:

Γ̂T (j) =
1

T

T∑

t=j+1

(mt − m̄)(mt − m̄)′ (22)

where m̄ once again denotes the sample mean. Following an automatic selection
for the lag length, we use a popular choice of j ∼ T 1/3 leading to j = 5 when
estimating the covariance matrix (Newey and West (1994)):

Ω̂NW = Γ̂T (0) +

5∑

j=1

(
Γ̂T (j) + Γ̂T (j)′

)
. (23)

The weight matrix Ŵ is computed from the inverse of the estimated co-
variance matrix. However, a high correlation between the moment conditions
that we consider makes the estimated covariance matrix nearly singular. In
addition, the moment conditions and the elements of the weight matrix are
highly correlated when the small sample size is used (Altonji and Segal (1996)).
Therefore, we use the diagonal matrix entries as the weighting scheme, i.e. we
ignore the off-diagonal components of the matrix Ŵ = Ω̂−1

ii . The estimated
confidence bands, then, become wider since the sandwich elements in the co-
variance of parameter estimates cannot cancel out with this weighting scheme
(see also Anatolyev and Gospodinov (2011)).

5The Delta method is used to compute the confidence bands in the auto- and cross-covariance
moment estimation (see appendix B for details).
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Under certain regularity conditions, one can derive the following asymptotic
distribution of the method of moments estimation of the parameters:

√
T (θ̂T − θ0) ∼ N(0,Λ) (24)

where Λ = [(DWD′)−1]D′WΩWD[(DWD′)−1]′, and D is the gradient vector
of moment functions evaluated around the point estimates:

D̂ =
∂m(θ;XT )

∂θ

∣∣∣∣
θ=θ̂T

. (25)

Under RE, we can obtain the simple analytic moment conditions of the
model. However, for the BR model, the analytic expressions for the moment
conditions are not readily available due to the non-linear discrete choice frame-
work. To circumvent this problem, we use the simulated method of moments to
estimate the behavioral parameters in the BR model. The simulated method
of moments is particularly suited to a situation where the model is easily sim-
ulated by replacing theoretical moments. Then the model-generated moments
in Equation (21) are replaced by their simulated counterparts:

mt =
1

S · T

S·T∑

t=1

m̃t. (26)

We can simulate the data from the model and compute the moment condi-
tions (m̃t) in order to approximate the theoretical moments (mt). The simula-
tion size is denoted by S. The asymptotic normality of the simulated method of
moments holds under certain regularity conditions (Duffie and Singleton (1993),
Lee and Ingram (1991)):

√
T (θ̂SMM − θ0) ∼ N(0,ΛSMM ) (27)

where ΛSMM = (B′WB)−1B′W (1 + 1/S) Ω WB(B′WB)−1′ , i.e. a covariance
matrix of the SMM estimates. A gradient vector of the moment function is

defined as B ≡ E
[

∂mt

∂θ

∣∣∣
θ=θ̂

]
. Since the covariance matrix becomes less accurate

than the estimation where the analytic moments are used, the model estimation
is now subjected to simulation errors. To reduce the simulation error, we set
the simulation size to a reasonably large value 100.

Finally, we use the J test to evaluate compatibilities of the moment condi-
tions:

J ≡ T ·Q(θ̂)
d→ χ2

p−l (28)
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where the J-statistic is asymptotically χ2 distributed with (p − l) degrees of
freedom (over-identification).6 A striking feature of the method of moments
approach is its transparency. In particular, it is easy to check the goodness-
of-fit of the model from the moment conditions of interest, i.e. the dynamic
properties of the model can be tested by evaluating graphically the match of
the estimated and model-generated moments.

4 Empirical Application to the Euro Area

In this section, we first present the data for our empirical application. Then
we discuss our empirical results of the structural and behavioral parameters.
Finally, we examine the finite sample properties of the moment-based estimator
via a Monte Carlo study and investigate three-dimensional parameter space of
the BR model.

4.1 Data

The data source for the New Keynesian model is the 10th update of the Area-
wide Model quarterly database described in Fagan et al. (2001). The output
gap and interest rate gap are computed from real GDP and nominal short-
term interest rate respectively using the Hodrick-Prescott filter with a stan-
dard smoothing parameter of 1600. The inflation measure is the quarterly log-
difference of the Harmonized Index of Consumer Prices (HICP) instead of the
GDP deflator. The inflation gap is also computed using the Hodrick-Prescott
filter.7 The sample for this data set is available from 1970:Q1 onwards. As we
use the data over five years in a rolling window analysis to estimate the per-
ceived volatility of the output gap σ(yt), the data applied in this study cover
the period from 1975:Q1 to 2009:Q4.

4.2 Basic results

We first estimate the RE and BR model parameters using the moment-based
estimation presented in the previous section. Afterwards we make a comparison
between the two models and examine the effects of divergence in beliefs on the
inflation and output gap dynamics. As it is common in a persuasive amount of

6However, if the off-diagonal components in the estimated Newey and West matrix are dis-
carded, the the distribution in the J-statistic is likely to have a larger dispersion than the
χ2-distribution with degrees of freedom of p − l. Indeed, when the weight matrix is not opti-
mal or some moment conditions are not valid, the J-statistic is no longer χ2 distributed. We
check the validity of the weight matrix with our chosen moment conditions via a Monte Carlo
study.

7We resort to the HICP instead of the conceptually more appropriate implicit GDP-deflator
which is common in the literature, since the former is more in line with micro data evidence.
For instance, Forsells and Kenny (2004) show that inflation expectations can be approximated
by micro-level data like consumer surveys (i.e. in the European Commission survey indicators).
Also see Ahrens and Sacht (2011, pp. 10–11) for a more detailed discussion on using the HICP
instead of the GDP-deflator in macroeconomic studies.
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empirical studies, the discount parameter ν is calibrated to 0.99. We also fix
γ to unity, which is in line with De Grauwe (2011, p. 439) and accounts for a
moderate degree in the intensity of choice.8 By fixing those parameters in the
final estimation, we can reduce problems in high-dimensional parameter space
and cope with the uncertainty of the estimates. Given these assumptions, we
can separately obtain the estimates for remaining parameters from the rational
and bounded rationality model via the moment-based estimation. They are
presented in Table 1.

Several observations are worth mentioning. The parameter estimate of the
degree of price indexation α is much higher in the RE (0.765) than the BR
(0.203) model. It follows that the expressions, which are in front of the forward-
and backward-looking terms in the Phillips Curve, indicate a higher weight on
future inflation Ẽj

t π̂t+1 (i.e. ν
1+αν >

α
1+αν ); the result is more pronounced for the

BR (0.82 > 0.18) compared to the RE model (0.56 > 0.43). For the latter, this
indicates that there is strong evidence for a hybrid structure of the NKPC. The
empirical applications of the BR model show that the dynamics of the inflation
gap are primarily driven by the expectations (i.e. the evaluation of the forecast
performance) for the inflation gap if cognitive limitation of agents is assumed.
This is not necessarily true under rational expectations. In other words, we find
strong evidence for an autoregressive expectation formation process, since the
estimated value for α is high; one group assumes a central bank inflation target
of zero percent (equation (13)), while the other group of the agents form their
expectations in a purely static way (equation (14)). Regarding the dynamic IS
equation, the output gap is influenced by the forward- and backward-looking
terms at the same proportion, since the empirical estimates show that χ = 1 and
χ = 0.950 hold for the RE and the BR models, respectively. In particular, this
degree of habit persistence suggests that past observations strongly matter for
the dynamics of the output gap. Finally, the parameter estimate for the degree
of interest rate smoothing shows that there is a moderate degree of persistence
(φr̂,t) in the nominal interest rate gap for both models.

Furthermore, while the empirical estimates for κ and τ in the RE model
indicate a small degree of inherited persistence due to changes in the real in-
terest rate gap and the output gap respectively, this does not hold for the BR
model. Here the changes in the output gap have a strong impact (κ = 0.219)
on movements in the inflation gap relative to the RE case (κ = 0.035). For
the output gap, inherited persistence plays a fundamental role in shaping the
dynamics of this economic indicator, which can be seen through the high values
of inverse intertemporal elasticity of substitution. For the BR model, this value
(τ = 0.387) is much larger than the one for the RE model (τ = 0.079). This
implies that the tendency towards risk aversion in the BR is stronger than the
RE model. To sum up, our results show that in the BR model cross-movements

8Goldbaum and Mizrach (2008) estimated the intensity of choice parameter in the dynamic
model for mutual fund allocation decision. In our application, the system with many pa-
rameters is likely to have a likelihood with multiple peaks, some of which are located in
uninteresting or implausible regions of the parameter space. By fixing the intensity of choice
parameter, it makes it easier to concentrate on our objective of empirical application, i.e. the
interpretation of the role of bounded rationality in the NKM.
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Table 1: Estimates of the RE and BR model

Label RE BR

α 0.765 0.203

(0.481 - 1.000) (0.000 - 0.912)

χ 1.000 0.950

- (0.000 - 1.000)

τ 0.079 0.387

(0.000 - 0.222) (0.000 - 0.927)

κ 0.035 0.219

(0.011 - 0.058) (0.075 - 0.362)

φy 0.497 0.673

(0.058 - 0.936) (0.404 - 0.942)

φπ̂ 1.288 1.073

(1.000 - 1.944) (1.000 - 1.775)

φr̂ 0.604 0.673

(0.411 - 0.797) (0.523 - 0.824)

σy 0.561 0.827

(0.354 - 0.768) (0.463 - 1.190)

σπ̂ 0.275 0.743

(0.097 - 0.453) (0.449 - 1.046)

σr̂ 0.421 0.244

(0.140 - 0.701) (0.000 - 0.624)

β - 2.221

(0.000 - 9.747)

δ - 0.665

(0.000 - 7.877)

ρ - 0.003

(0.000 - 1.000)

J 56.30 40.30

p-value 0.8436 0.9931

5% crit. of χ2 dist. 88.25 84.82

Note: The data cover the period spanning 1975:Q1 - 2009:Q4 (T=140 observa-
tions). The parameters ν and γ are set to 0.99 and unity, respectively. We use
the rolling window of 5 years (20 observations) to compute the perceived volatil-
ity of the output gap, i.e. the unconditional standard deviation of yt is denoted
by σ(yt). The 95% asymptotic confidence intervals are given in brackets.
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in the output and inflation gap account for persistence in both variables (under
consideration of perfect habit formation χ = 1) rather than price indexation
alone. This can be seen through the high values of κ and τ compared to α. For
the RE model, the opposite holds.

The output and inflation gap shocks, whose magnitudes are estimated to
be σy = 0.827 and σπ̂ = 0.743 respectively, are larger for the BR than those
of the RE model. The results reveal that the volatilities of the output and
inflation gap are strengthened by the effects of behavioral heterogeneity on the
consumption and pricesetting rules. For instance, the waves of optimism and
pessimism act as a persistent force in the output gap fluctuations with peaks and
troughs. Figure 1 illustrates that the peak of the fluctuation in the simulated
output gap (middle-left panel) corresponds to the market optimism (lower-left
panel) and vice versa. The qualitative interpretation remains almost the same
for the inflation gap dynamics (middle- and lower-right panel respectively) -
but the dynamics of extrapolators are highly volatile reflecting the large second
moment of the empirical inflation gap (upper-right panel). The goodness-of-fit
of the models could not be directly compared by illustrating the simulated time
series (middle-panels), but we can see that the series resemble qualitatively
their empirical counterparts (upper-panels). Finally, the nominal interest rate
shocks σr̂ in the RE model are estimated to be roughly twice as large as in the
BR model.

The remaining parameter estimates confirm the known results from the
literature where the monetary policy coefficient on the output gap is low while
the opposite holds for the coefficient on the inflation gap. The latter indicates
that the Taylor principle holds over the whole sample period. Nevertheless,
the results for the BR model indicate a stronger concern in the output gap
movements relative to the dynamics in the inflation gap. Again, the opposite
is true for the RE model. It is worth mentioning that the estimation results
indicate a monetary policy coefficient on the output gap φy of 0.673, which is in
line with the observations of De Grauwe (2011, pp. 443-445). His simulations
show that flexible inflation targeting can reduce both output gap and inflation
(gap) variability at a minimum level if φy lies in the range of 0.6 to 0.8.

The interpretation of this observation is two-fold. First, consider the case
of strict inflation targeting, where the central bank does not account for the
volatility in the output gap. As a result, the forecast performance of the op-
timists and pessimists are not affected since the (real) interest rate gap in the
dynamic IS curve does not response directly to monetary policy. However, there
is still an indirect effect (even highly volatile movements in yt are not damp-
ened by the policy makers) indicated by κ in the NKPC. Hence, due to the
high degree of inherited persistence the strict inflation targeting can fail to con-
trol strong fluctuations in the output and inflation gap. Second, in the case of
strong output gap stabilization (relative to the inflation gap) the central bank
dampens its pre-commitment to an inflation target. The amplification effects
of this kind of policy on the forecast performances of the inflation extrapolators
will then result in higher inflation variability. We conclude that our empirical
findings account for neither the first nor the second extreme case, but for a
optimal flexible inflation targeting in the Euro Area over the observed time
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Figure 1: Dynamics in the output gap and the inflation gap.

Note: Upper and middle panels plot empirical and simulated values for the
output gap (left) and the inflation gap (right), while lower panels plot the corre-
sponding fraction of market optimists (left) and extrapolators (right). The sim-
ulated time series are computed using the parameter estimates for both models
given in Table 1.
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Figure 2: Model covariance (Cov) profiles in the Euro Area.

Note: The dashed line results from the empirical covariance estimates. The
shaded area is the 95% confidence bands around the empirical moments. The
triangle (BR) and star (RE) lines indicate the model generated ones. The con-
fidence bands are computed via the Delta method (see Appendix B).
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interval instead.
As already noted, the present study focuses on the estimation of the bounded

rationality parameters. First, we come to the conclusion that over the whole
sample period, the optimistic agents have expected a fixed divergence of be-
lief of β = 2.221. Roughly speaking, the optimists have been really optimistic
that the future output gap will differ positively by slightly above one percent
on average from its steady state value.9 Due to the symmetric structure of
the divergence in beliefs, over the same sample period pessimistic agents were
moderately pessimistic instead, since from their point of view the future output
gap was expected to be around one percent on average below its steady state
value. Furthermore, both types of agents felt safely about their expectations
due to the fact that the estimate for the variable component in the divergence
of pessimistic beliefs is very low (δ = 0.665) - this implies that there is a low
degree of uncertainty connected to the expected future value of yt. In line with
the results for (and assumptions of) the parameters, which indicate endogenous
and inherited persistence (α,χ, κ and τ), the highly subjective expected mean
value of the output gap β - in conjunction with the dynamics induced by the
self-selecting mechanisms (see the corresponding fractions in the lower-panels
in Figure 1) - explains the high volatility of the output gap. Based on discrete
choice theory, this strengthens the optimistic agents’ belief about the future
output gap to diverge in the data, since they can over(or under)-react to under-
lying shocks that occur across the Euro Area. The same observation holds for
the inflation gap dynamics. The proportion of the extrapolators in the econ-
omy corresponds to the inflation gap movements (cf. lower right vs. upper-right
panels in Figure 1): the higher the fraction of extrapolators is, the more volatile
the inflation gap dynamics will be. Finally, ρ is estimated to be zero, i.e. past
errors are not taken into account (cf. equations (10) and (16)). This leads to
the conclusion that strict forgetfulness or cognitive limitation holds, which is a
requirement for observing animal spirits (cf. De Grauwe (2011, p. 440)).

Indeed, visual inspection shows a fairly remarkable goodness-of-fit of the
models to data (see Figure 2). The match both models achieve looks clearly
good over the first few lags and still fairly good over the higher lags until the
lag 8. In any case, all of the moments are now inside the confidence intervals of
the empirical moments. This even holds true for some covariances up to lag 20.
This is also confirmed by the values of the loss function J for the RE (56.30)
and BR (40.30) model given in the last row of Table 1. The asymptotic χ2

distributions for the J-test have the degrees of freedom of 68 and 65 for the
RE and BR model, respectively. Since the critical values at 5% level are 85.25
and 84.82 respectively, and the estimated loss function values are smaller than
these criteria, we do not reject the null hypothesis that these models are valid.
Moreover, the picture shows a remarkable fit of the BR model, which leads
to some confidence in the estimation procedure. We conclude that a bounded
rationality model with cognitive limitation provides good fits for auto- and
cross-covariances of the data.

9Note that expected future value of the output gap is given by Ei
tyt+1 = |dt| = 1

2
β on average

with i = {O, P}.
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Note here that the significant differences between two models have to be
tested by a formal model comparison method, since the models do not have
any difficulties to fit the empirical moments at the 5% significant interval (see
also Jang (2012) among others). In other words, the J-test only evaluate the
validity of the model along the lines of the chosen moment conditions. Therefore
we cannot provide a direct comparison between the fits of the two models. More
rigorous test will be a priority for future research.

Finally, our empirical results indicate that the empirical test of bounded
rationality (viz. the assumption of the divergence in beliefs) has to be treated
carefully, because all parameters (especially the behavioral ones) within the non-
linear modeling approach are generally poorly determined, i.e. wide confidence
bands occur. We delve into this problem by examining the finite size properties
of the moment-based procedure through a Monte Carlo study and a sensitivity
analysis presented in the next section. Our results from these exercises will
achieve confidence in the parameter estimates given in Table 1.

4.3 Comparison with other studies

There exists a plethora of studies on the estimation of (small, medium or large)
NKM with rational expectations using Euro Area data. However, to the best of
our knowledge these studies are different to our contribution in several dimen-
sions. While we apply a moment-based estimation on the Euro Area data over a
specific time interval up to the end of 2009, most of the investigations are based
on the generalized method of moments and Bayesian estimations using data
just to the beginning of the 21st century instead. Furthermore, we consider gap
specifications of π̂t and r̂t explicitly while in the literature the majority of time
series are not detrended. Hence, a comparison of our results with those from
the literature has to be done with some caution.

More generally, one of the representative studies in this field is the empirical
application of Smets and Wouters (2003). Here the sample period captures the
period from 1980:Q2 to 1999:Q4. In their paper, they apply Bayesian estimation
on a medium scale model for the Euro Area. Compared to the cases of the RE
and BR presented here, they found different values for the parameters τ and φπ̂t

,
which are estimated to be higher (0.739 and 1.684). In contrast, the estimated
values for κ and φy are relatively small (0.01 and 0.10). Finally, φr̂ = 0.673 is
slightly lower than in Smets and Wouters (2003, φr = 0.956).

Moons et al. (2007) give a good overview on the results stemming from
different studies using different techniques except for the Bayesian one. Most
of the parameter estimates are in line with those reported in column 1 of our
Table 1, i.e. in case of the RE model. According to Table 1 in Moons et al.
(2007, p. 888) τ and κ vary in a range of (0.03, 0.08) and (0.02, 0.17), while we
find τ = 0.079 and κ = 0.035. The results for the policy parameters φŷ = 0.604,
φπ̂ = 1.288 and φr̂ = 0.497 are slightly below the estimates reported in Moons
et al. (2007) where φy = (0.77, 0.90), φπ = (0.87, 2.02) and φr = (1, 3.2). For
the latter, note once again that the level and not the gap of the corresponding
time series is considered. The composite parameter, which indicate backward-
looking behavior in the dynamic IS curve and the NKPC, can be denoted by
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ψ1 = χ
1+χ and ψ2 = α

1+αν . It can be stated that our results for the RE model,
ψ1 = 0.5 and ψ2 = 0.43, mimic roughly those found in the literature, i.e.
ψ1 = (0.22, 0.97) and ψ2 = (0.13, 0.54).

Comparing the results discussed in the previous paragraph with those pre-
sented in column 2 of Table 1, it can be seen that in the case of the BR model
these results differ substantially from the those reported in the literature. Not
surprisingly, this stems from the fact that the behavioral model of De Grauwe
exhibits a different kind of expectation channel which can substitute the ab-
sence of rational expectations for the model dynamics. Nevertheless, Moons et
al. (2007) estimate a small scale NKM of an open-economy under consideration
of a fiscal policy rule (in the spirit of the European Stability and Growth Pact)
with Bayesian techniques and found the parameter estimates, which are similar
with our results. In particular, τ is estimated to be high (0.24) which is in
line with the BR model (0.387). The authors also find that a high value of
the monetary policy coefficient concerning the output gap is estimated to be
φy = 0.75, while we find a value of 0.673.

5 Robustness Checks

In this section, we report the variation of the parameter estimates under both
the RE and BR model. First, we study the finite size properties of the moment-
based estimation using the Monte Carlo study. The result shows that we can
reduce the estimation uncertainty presented here with a large sample size. Com-
pared to the RE model, however, the parameter estimates of the BR model have
wide confidence intervals, because the non-linearity of the model gives rise to
additional parameter uncertainty during the estimation. This affects the cor-
responding values of the bounded rationality parameters β, δ and the memory
parameter ρ in the forecasting heuristics (11) and (12) as well as (17) and
(18). Second, we investigate the sensitivity of these behavioral parameters in
the objective function by investigating three-dimensional parameter space. We
vary these parameters in a reasonable range to find the lowest value of the loss
function (21).

5.1 Monte Carlo study

To analyze the finite sample properties in the macro data, we use three sampling
periods in the data generating process (T=100, 200, 500). The experimental
true parameters are drawn from the parameter estimates in the previous sec-
tion. After 550 observations are simulated, we discard the first 50 observations
to trim a transient period. In the RE model, we compute the empirical moment
conditions and its Newey-West weight matrix of each artificial time series, and
estimate the parameters using the method of moment estimator over 500 repli-
cations. The same procedure is carried out to estimate the parameters of the
BR model. However, this makes the computation expensive for the simulated
method of moment estimator. We reduce the computational cost by setting the
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simulation size to S = 10.10

Table 2: Monte Carlo study for the RE model

T=100 T=200 T=500

Label True (θ0) Mean RMSE Mean RMSE Mean RMSE

α 0.750 0.802 0.174 0.778 0.125 0.763 0.079

S.E: 0.155 S.E: 0.112 S.E: 0.073

χ 1.000 0.943 0.128 0.939 0.127 0.946 0.103

S.E: 0.365 S.E: 0.293 S.E: 0.202

τ 0.085 0.100 0.062 0.088 0.043 0.083 0.029

S.E: 0.079 S.E: 0.061 S.E: 0.041

κ 0.035 0.047 0.026 0.042 0.016 0.039 0.009

S.E: 0.016 S.E: 0.011 S.E: 0.071

φy 0.500 0.518 0.267 0.487 0.167 0.487 0.107

S.E: 0.236 S.E: 0.162 S.E: 0.104

φπ̂ 1.250 1.350 0.309 1.322 0.217 1.296 0.146

S.E: 0.343 S.E: 0.222 S.E: 0.144

φr̂ 0.600 0.623 0.111 0.615 0.076 0.611 0.046

S.E: 0.094 S.E: 0.069 S.E: 0.045

σy 0.600 0.632 0.127 0.627 0.090 0.623 0.059

S.E: 0.125 S.E: 0.095 S.E: 0.062

σπ̂ 0.275 0.249 0.075 0.263 0.049 0.270 0.030

S.E: 0.062 S.E: 0.046 S.E: 0.031

σr̂ 0.400 0.234 0.240 0.289 0.181 0.345 0.105

S.E: 7.487 S.E: 1.456 S.E: 1.026

J 30.58 24.12 20.10

# of rejections 4 6 0

Note: ν is set to the value of 0.99. The reported statistics are based on 500
replications. RMSE is the root mean square error. S.E denotes the mean of
standard error.

Table 2 summarizes the results from the MC experiment for the RE model.
We report the mean, the root mean square error (RMSE) and the standard
error (S.E). The true values of the parameters are stated in the second column.
The results show that the method of moment estimation of the RE model has
good finite sample properties; see the RMSE sensitivity to variations in sample
size. The large sample size remarkably improves the asymptotic efficiency of
the method of moments estimator, since the mean of standard error for the
estimates becomes the smallest. However, the estimated value for the policy

10The implementation of the MC study on the model with a large simulation size (i.e. S=100)
does not have a drastic change in parameter estimates; see appendix C. The approximation
error rates of analytic moments are 10% and 1% for the simulation sizes S = 10 and 100,
respectively. The computation becomes expensive when the large simulation size is used.

21



shock parameter σr often hit the boundary (i.e. σr = 0.0) and makes the nu-
merical derivative of the moment conditions unstable. This leads to the large
asymptotic error for this parameter.11

The J-statistic is used to evaluate the validity of the two models when fitting
the artificial data. On average, the null hypothesis that the model is the true
one is not rejected according to the over-identification test for both the RE and
BR model; e.g. for the sample size of T=100, the J test rejects the validity of
the RE and BR model for 4 and 16 times, respectively. The number of rejection
is very small, since the simulated replications are 500. And we do not find any
rejection of both models when a large sample size is used (T=500). In addition,
it can be seen from the J test that the BR model fits the data slightly better
than the RE model on average. Nevertheless, the direct diagnostic comparison
between two models must be made with caution, because the BR model has
more parameters than the RE model, i.e. their χ2-distributions are different.

In comparison with the results of the RE model, we found that the simu-
lated method of moments regarding the BR model has more or less poor finite
sample properties when inspecting the parameters α, τ , β, and δ (see Table 3).
However, the large uncertainty for the parameter estimates can be mitigated by
more observations in the data. On the other side, note here that we can consis-
tently recover the true values for the other parameter estimates. Put differently,
the parameter estimates almost converge to the true ones as the sample size
increases (i.e. T=500). In this case the RMSE gets smaller. The large sample
allows us to make more accurate inference about the group behavior in the
market expectation formation processes. Indeed, as market behavior is unob-
servable in most cases, we need a large sample size to consistently estimate
the behavioral parameters. Nevertheless, the estimated results for the behav-
ioral parameters can be seen as confident starting values used for calibration
exercises like for e.g. (optimal) monetary and fiscal policy analysis.

5.2 Sensitivity of the behavioral parameters

In this sensitivity analysis we investigate the region of the objective function
with respect to different values of β, δ and ρ. The findings from the MC study
indicate that the RMSE values for these behavioral parameters in the discrete
choice theory are higher than those for the other structural parameters even for
a large sample size. We discuss the poor finite sample properties of these crucial
parameters in the BR model by evaluating the loss function under consideration
of different pairs for β, δ and ρ. The remaining parameters are fixed on their
estimated values taken from the second column of Table 1. It is our aim to
pin down those values from the parameter space, which are associated with the
lowest value of the loss function.

11Note here that we use the optimization tool (Matlab version R2010a) with the fmincon solver.
Especially the interior-point algorithm has a number of advantages over other algorithms (i.e.,
active-set, trust-region-reflective, and sqp). For example, the implementation of the interior-
point algorithm for large-scale linear programming is considerably simpler than for the other
algorithms. Furthermore, it can handle nonlinear non-convex optimization problems of the
BR model.
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Table 3: Monte Carlo study for the BR model

T=100 T=200 T=500

Label True (θ0) Mean RMSE Mean RMSE Mean RMSE

α 0.200 0.326 0.286 0.383 0.278 0.285 0.187

S.E: 0.312 S.E: 0.232 S.E: 0.142

χ 1.000 0.666 0.724 0.798 0.679 0.850 0.655

S.E: 1.802 S.E: 1.614 S.E: 1.470

τ 0.385 1.075 0.837 0.620 0.370 0.550 0.292

S.E: 0.810 S.E: 0.341 S.E: 0.216

κ 0.215 0.246 0.153 0.223 0.142 0.225 0.139

S.E: 0.076 S.E: 0.051 S.E: 0.035

φy 0.675 0.757 0.458 0.697 0.435 0.694 0.430

S.E: 0.248 S.E: 0.116 S.E: 0.065

φπ̂ 1.100 1.090 0.703 1.069 0.699 1.089 0.699

S.E: 0.326 S.E: 0.174 S.E: 0.106

φr̂ 0.670 0.681 0.427 0.675 0.425 0.681 0.424

S.E: 0.073 S.E: 0.046 S.E: 0.028

σy 0.825 0.872 0.549 0.888 0.533 0.874 0.527

S.E: 0.290 S.E: 0.182 S.E: 0.133

σπ̂ 0.740 0.606 0.496 0.647 0.477 0.699 0.470

S.E: 0.090 S.E: 0.053 S.E: 0.034

σr̂ 0.240 0.165 0.182 0.180 0.176 0.165 0.180

S.E: 0.169 S.E: 0.140 S.E: 0.113

β 2.250 2.831 1.867 2.440 1.608 2.330 1.543

S.E: 5.638 S.E: 4.149 S.E: 3.670

δ 0.650 1.293 1.021 0.925 0.750 0.862 0.663

S.E: 4.000 S.E: 3.596 S.E: 3.223

ρ 0.000 0.213 0.218 0.104 0.134 0.093 0.122

S.E: 0.422 S.E: 0.386 S.E: 0.335

J 29.34 22.30 20.74

# of rejections 16 1 0

Note: ν is set to the value of 0.99. The reported statistics are based on 500
replications. RMSE is the root mean square error. S.E denotes the mean of
standard error.
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Figure 3: 3-D contour plot of the parameter space with β and δ

Note: The value of the quadratic objective function J is given on the vertical
axis.
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Figure 4: 3-D contour plot of the parameter space with β and ρ

Note: The value of the quadratic objective function J is given on the vertical
axis.
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Figures 3 to 5 illustrate three contour plots, from which we can examine
the region of the loss function J under consideration of the pairwise variation
in all three parameters over a reasonable range. We see from Figure 3 that
the minimum value of the loss function is centered around (δ, β) = (0.6, 2.2).
This observation is in line with our results given in Table 1, and indicates
that applying the method of moment approach leads to consistent parameter
estimates. However, our result emphasizes that the shape of the contour plot
is moderately flat for specific combinations of δ and β, i.e. which still indicates
the existence of wide confidence bands. Note that the value of the loss function
increases dramatically if δ and β deviate strongly from their estimated values. In
this case a trade-off arises: a highly predicted subjective mean value β requires
a low degree of divergence δ in order to ensure a minimum value of J .
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Figure 5: 3-D contour plot of the parameter space with δ and ρ

Note: The value of the quadratic objective function J is given on the vertical
axis.

Figure 4 and 5 show that the minimum of the loss function is given by a value
of the memory parameter ρ equal to zero in conjuncture with the estimated
values of β and δ around 2.2 and 0.6, respectively. This result confirms the
estimate of ρ given in Table 1 and strengthens our argumentation in section 4
since strict forgetfulness holds as a requirement for observing animal spirits.

In sum, this simulation results show that for a small sample size, the results
from a MC study and a sensitive analysis confirm the absence of statistical
accuracy of these behavioral parameters (i.e. the case of wide confidence bands)
when applying the method of moment approach.
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6 Conclusion

In this paper, we attempt to provide empirical evidence for the behavioral as-
sumption in the model of De Grauwe (2011). The validity of the model assump-
tion on the cognitive limitation (e.g. because of different individual emotional
states) is empirically tested using historical Euro Area data. We attempt to
identify the so-called behavioral parameters, which account for animal spirits in
the Euro Area; i.e. we hypothesize that historical movements of macro dynamics
are influenced by waves of optimism and pessimism.

To examine the effects of the group behavior on the output and inflation
gap, we follow the behavioral approach of De Grauwe (2011), who assumes
divergence in beliefs about the future value of both variables. The corresponding
decision rules for market optimism and pessimism are given by the forecast
performance of the agents from the discrete choice theory. To see this, we
contrast a standard hybrid version of the three-equations New-Keynesian model
of rational expectations with a version of the same model where we assume
bounded rationality in expectation formation processes using the moment-based
estimation.

Our main empirical findings show that a bounded rationality model with
cognitive limitation provides a reasonable fit to auto- and cross-covariances of
the Euro Area data. Therefore our empirical results of the BR model offer some
new insights into expectation formation processes for the Euro Area. First,
over the whole time interval the agents had expected moderate deviations of
the output gap from its steady state value with low uncertainty. Second, in
the absence of rational behavior we find strong evidence for an autoregressive
expectation formation process regarding the inflation gap. Both observations
explain a high degree of persistence in the output gap and the inflation gap.
Based on the discrete choice theory and the self-selection process of the agents,
we found that animal spirits strengthen the optimistic’s belief about the future
output gap to diverge in the historical Euro Area data.

To the best of our knowledge, such kind of empirical studies have not been
extensively investigated before in the literature. However, the empirical test
of bounded rationality (viz. the assumption of the divergence in beliefs) has to
be treated carefully, because the parameters (especially the behavioral ones)
within the non-linear modeling approach are poorly determined, i.e. wide con-
fidence bands occur. We delve into this problem by examining the finite size
properties of the moment-based procedure through a Monte Carlo study and a
sensitivity analysis. In the end, we provide empirical evidence in support of De
Grauwe (2011, fn. 4) for understanding the group’s over- and under-reaction to
the economy. In order to identify the effects of individual expectation forma-
tion processes on the economy, in further research, the decision rules i.e. the
transition rules from one state of the economy to another can be calculated
based on survey data (for example see Lux (2009)). Thus these probabilities
are then treated as exogenous and (in contrast to the De Grauwe model) are
computed under consideration of the underlying time series using the discrete
choice theory. Finally and only if the estimation of small-scale models is con-
sidered to be satisfactory, one can further continue the model estimation with
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much richer models like e.g. the medium-scale version developed by the Smets
and Wouters (2005, 2007). We leave these issues to future research.
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Appendix

A: Solution of the NKM

In general, all model specifications are described by the following system in
canonical form:

AXt +BXt−1 + CXt+1 + εt = 0 (29)

where

Xt =




yt

π̂t

r̂t


 , Xt−1 =




yt−1

π̂t−1

r̂t−1


 , Xt+1 =




Ẽj
t yt+1

Ẽj
t π̂t+1

Ẽj
t r̂t+1


 , εt =




εy,t

επ̂,t

εr̂,t


 .

The corresponding system matrices are given by:

A =




1 0 τ
−λ 1 0

−φr̂φy −φr̂φπ 1


 , B =




− χ
1+χ 0 0

0 − α
1+αν 0

0 0 −(1 − φr̂)


 (30)

and

C =




− 1
1+χ −τ 0

0 − ν
1+αν 0

0 0 0


 . (31)

Recall that for the rational expectations model we assume

ẼRE
t yt+1 = Etyt+1

ẼRE
t π̂t+1 = Etπ̂t+1

and for the bounded rationality model we assume

ẼBR
t yt+1 = (αO

y,t − αP
y,t)dt

ẼBR
t π̂t+1 = αtar

π̂,t
¯̂π + αext

π̂,t π̂t−1

where we also consider equations (10) to (18) with ¯̂π = 0. In the following, we
solve for the dynamics of the system (29). In case of the BR model, the solution
is given by

Xt = −A−1[BXt−1 + CXt+1 + εt] (32)

where the matrix A is of full rank, i.e. its determinant is not equal to zero, given
the parameter estimates in section 4. Under consideration of the heuristics for
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the forecasts regarding the output and inflation gap expectations, the forward
looking term Xt+1 is substituted by the equivalent expressions for the discrete
choice mechanism given in section 2. It follows that the model becomes purely
backward-looking and thus (32) can be solved by backward-induction.

In contrast, the RE model is both backward- and forward-looking. Therefore
we apply the method of undetermined coefficients in order to solve the model.
The law of motion which describes the analytical solution is given by

Xt = ΩXt−1 + Φεt (33)

where Ω ∈ R
3×3 and Φ ∈ R

3×3 are the solution matrices. The former is a stable
matrix as long as (similar to the matrix A in the BR case) its determinant is
not equal to zero, which ensures the invertibility of Ω. Again, this is confirmed
given the estimation results in section 4. We substitute (33) into (29) which
yields

A(ΩXt−1 + Φεt) +BXt−1 + C(ΩXt + ΦEtεt+1) + εt = 0.

This is equivalent to

A(ΩXt−1 + Φεt) +BXt−1 + C(Ω2Xt−1 + ΩΦεt + ΦEtεt+1) + εt = 0.

Hence, the reduced form can be rewritten as

(CΩ2 +AΩ +B)Xt−1 + (AΦ + CΩΦ + I)εt = 0 (34)

with I being the identity matrix. Note that εt ∼ N(0, σ2
z ) with z = {y, π̂, r̂}

and thus Etεt+1 = 0. In order to solve equation (34), all the terms in brackets
must be zero.12 Thus the solution matrices can be uniquely determined. We
may write that as

CΩ2 +AΩ +B = 0 ⇒ Ω = −(CΩ +A)−1B. (35)

In order to solve the quadratic matrix equation (35) numerically, we employ
the brute force iteration procedure mentioned in Binder and Pesaran (1995, p.
155, fn 26). Hence an equivalent recursive relation of (35) is given by

Ωn = −(CΩn−1 +A)−1B (36)

with an arbitrary number of iteration steps N where n = {1, 2, ..., N}. We
define Ω0 = ξI with 0 ≤ ξ ≤ 1. The iteration process (36) proceeds until
||Ωn −Ωn−1|| < ξ where ξ is an arbitrarily small number. Given the solution of
Ω, the computation of Φ is straightforward:

AΦ + CΩnΦ + I = 0 ⇒ Φ = −(A+ CΩn)−1. (37)

12Obviously the trivial solution Xt−1 = Γt = εt = 0 is discarded.
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B: Delta Method and Confidence Interval for Auto- and Cross-

covariances

The Delta method is a common technique for providing the first-order ap-
proximations to the variance of a transformed parameter; see chapter 5 of
Davidson and Mackinnon (2004) among others. In the study, we use the Delta
method when computing the standard errors of the estimated auto- and cross-
covariances of the data. The covariance is defined as follows:

γij(h) = E[(Xi,t − µi)(Xj,t+h − µj)
′], t = 1, · · · , T (38)

where γij is the auto-covariance function when i = j. Otherwise γij denotes

the cross-covariance between Xi,t and Xj,t+h. h denotes the lag in data and
µi(or µj) is the sample mean of the variable Xi(or Xj). The covariance function
in Equation (38) proceeds with a simple multiplication:

γij(h) = E[Xi,t ·X ′
j,t+h] − µi ·E[X ′

j,t+h] = µij − µi · µj

where µij denotes E[Xi,t · X ′
j,t+h]. Now we see that γij(h) is a transformed

function of the population moments µi, µj and µij. Denote the vector µ as the
collection of the moments: µ = [µi µj µij ]. We differentiate the covariance
function with respect to the vector µ:

D =
∂γij(h)

∂µ
=




∂γij (h)
∂µi

∂γij (h)
∂µj

∂γij (h)
∂µij




=




−µj

−µi

1


 (39)

Therefore the Delta method provides the asymptotic distribution of the estimate

γ̂ij by matching the sample moments of the data.
√
T (γij − γ̂ij) ∼ N(0,D′SD). (40)

For some suitable lag length q, we use a common HAC estimator of Newey

and West (1994) when estimating the covariance matrix of sample moments.
Specifically, we follow the advice in Davidson and MacKinnon (2004, p.364)
and scale q with T 1/3. Accordingly we may set q = 5 for the Euro area data.

Σ̂µ = Ĉ(0) +

q∑

k=1

(
1 − k

q + 1

)
[Ĉ(k) + Ĉ(k)′] (41)

Ĉ(k) =
1

T

T∑

t=k+1

[f(zt) − µ̂][f(zt−h) − µ̂]′

where f(zt) = [Xi, Xj , Xi · Xj]. We use the optimal weight matrix S = Σ̂−1
µ

in estimating the covariance matrix of moments. Let sγ be
√
D′SD. Then the

95% asymptotic confidence intervals for auto- and cross-covariance estimates
become:

[γij − 1.96 · sγ , γij + 1.96 · sγ ]. (42)
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C: Large-scale Simulation Study for the BR Model

We report the results of a simulation study for the BR model when a large
simulation size is used; S=100. At present, we see that the model estimates
using a large simulation size have slightly smaller values for the RMSEs than
ones from a small simulation size in the section 4.3.

Table 4: Monte Carlo Study for the BR Model

T=100

Label True (θ0) Mean RMSE

α 0.200 0.249 0.262

S.E: 0.314

χ 1.000 0.693 0.716

S.E: 2.653

τ 0.385 0.884 0.818

S.E: 0.699

κ 0.215 0.236 0.154

S.E: 0.0800

φy 0.675 0.728 0.454

S.E: 0.181

φπ̂ 1.100 1.105 0.701

S.E: 0.701

φr̂ 0.670 0.677 0.427

S.E: 0.066

σy 0.825 0.913 0.561

S.E: 0.302

σπ̂ 0.740 0.689 0.479

S.E: 0.081

σr̂ 0.240 0.165 0.198

S.E: 0.246

β 2.250 2.585 1.812

S.E: 9.275

δ 0.650 1.139 0.992

S.E: 7.656

ρ 0.000 0.224 0.239

S.E: 0.547

J 28.53

# of rejections 9

Note: ν is set to the value of 0.99. The reported statistics are based on 500
replications. RMSE is the root mean square error. S.E denotes the mean of
standard error. Since the simulation studies become computationally expensive
with a large sample size, we only report the case of T = 100.
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