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Abstract 
 
While most economists agree that the recent worldwide financial crises evolved as a 
consequence of the US house price bubble, the related literature yet failed to deliver a 
consensus on the question when exactly the bubble started developing. The estimates in the 
literature range in between 1997 and 2002, while applications of market-based-procedures 
deliver even later dates. In this paper we employ the methods of statistical process control 
(SPC) to date the likely beginning of the bubble. The results support the view that the bubble 
on the US house market already emerged as early as 1996. We also show that SPC in general 
might be a useful tool in constructing early warning systems for asset price bubbles. 
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1 Introduction

Throughout the last years, the world was hit by a deep financial crisis. Financial

institutions around the globe have collapsed or been bought out. Often banks

could be rescued only because governments came up with huge rescue packages.

The most severe crisis since the Great Depression also affected the real economy

and contributed to the most acute recession of the post-war period.

As soon as the crisis became obvious, a bulk of economic literature evolved

studying the likely causes of the crisis. According to the prevailing view a bubble on

the U.S. house market which derived as the consequence of the booming subprime

segment triggered the global crisis.1 Some authors go even further and argue that

the global financial crisis is the logical consequence of a series of sequential events.2

Economists have been accused for both their failure to predict the upcoming

crisis and for underestimating its consequences (Colander et al. (2009)). In fact,

only a few economists such as Nouriel Roubini and Robert Shiller sent early warn-

ings on the upcoming financial turmoil. While a number of methods have been

developed to identify speculative bubbles, these methods are mostly backward-

looking.3 While they are thus potentially useful in dating a crisis from an ex-post

perspective they are less useful in constructing early warning systems. Interestingly

enough, the existing studies and methods have also delivered quite heterogenous

answers on the question when exactly the U.S. house price bubble originated (see,

e.g., Hagerty (2009)). While some authors date back the origin of the bubble to

1997/1998, others argue the crisis started in 2001/2002 or even later.

Against this background further research on detecting bubbles in financial mar-

kets and constructing early warning systems seems to be necessary. In this paper

we employ methods of Statistical Quality Control (SQC) for this purpose. For

decades Statistical Process Control (SPC), the related sub-field of SQC, has rou-

tinely been used to monitor manufacturing processes. Somewhat surprisingly, only

a few attempts were yet undertaken to apply this method to economic data.4 SPC

is the application of statistical methods to the monitoring and control of a process

1See, e.g., Demyanyk and van Hemert (2011) or Mishkin (2011).
2Based on a general equilibrium model Caballero, Farhi and Gourinchas (2008) argue the

DotCom bubble in the 1990s, the asset bubbles over 2005-2006, the subprime crisis in 2007 and
the commodity bubbles of 2008 to be closely related. Phillips and Yu (2011) recently presented
empirical evidence in favor of this line of argument.

3We briefly review these methods in Section 2.
4See, e.g., Theodossiou (1993), Yashchin (1997) or Blondell et al. (2002).
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to ensure that it doesn’t not change its properties unnoticedly. For this purpose,

SPC uses typically control charts. A control chart is a specific kind of run chart al-

lowing to differentiate between natural and excess variability of a process. Control

charts can be seen as part of an objective and disciplined approach of statistical

surveillance of a process. SPC can be used to detect change points in time series

of any kind and thus can be highly useful in dating the beginning of bubbles in

financial markets. Moreover, SPC methods have the advantage to be applicable

under real-time conditions. They are thus a natural candidate for constructing

early warning systems.

We illustrate the usefulness of SPC at the example of the U.S. housing market.

In order to do so, we apply SPC to U.S. data under real-time conditions. After

estimating a vector autoregressive model (VAR) of the U.S. economy for a base

period we generate a time series of house price forecasts for the monitoring period

via a recursive procedure. By comparing the forecasts to the realizations we yield

a time series of house price forecast errors. We then monitor this time series using

two different control charts (EWMA, CUSUM). Based on occurring alarms we

proceed by estimating the likely change point of the house price time series. Both

employed control charts deliver quite similar results. Using the EWMA control

chart we identify the period between September 1996 and April 1997 as the most

likely starting point of the house price bubble. The CUSUM control chart implies

a change point in between November 1996 and June 1998. In line with Shiller

(2007) and parts of the literature our empirical results thus indicate that in fact

the U.S. house price bubble emerged already in the late 1990s. Moreover our results

indicate that SPC might be a useful method not only in ex-post timing of bubbles

in financial markets but also a suitable tool to design early warning systems of

upcoming financial market turmoils.

The paper is organized as follows: the second section gives a brief review of early

warning systems of asset price bubbles already considered in the literature. The

third section delivers an introduction to SPC and the considered control charts.

Section 4 explains the estimation approach and the employed data. Section 5

delivers an overview on the results of previous studies concerned with dating the

U.S. house price bubble and presents results from an application of conventional

dating techniques to our dataset. The 5th section also delivers the results for

the SPC technique and compares the results to the earlier findings. Section 6

summarizes the main results and concludes.
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2 Identification of Asset Price Bubbles

Identifying asset price bubbles is a difficult task. In order to be able to do so, the

fundamental part of asset prices has to be separated from speculative components.

Neither is the fundamental value of an asset price easy to calculate nor is the

speculative element easy to measure. Because speculation is driven by unobservable

expectations it is hard to decide whether current asset prices deviate from their

fundamentally justified values or whether an asset price bubble is evolving. It

is thus not surprising that there is a considerable literature concerned with the

issues of bubble identification and early warning systems. Roughly, this literature

can be classified into three groups: Indicator-based procedures, market-orientated

analyses and econometric approaches (see Gurkaynak (2008), Mikhed and Zemcik

(2009)). We will discuss these methods briefly in the following, thereby focussing

on the identification of house price bubbles.

Indicator-based identification schemes monitor a set of variables that are as-

sumed to be closely linked to the asset prices being studied. Typically, these

variables are monetary and credit aggregates. Whenever they develop in an “ab-

normal” or “conspicuous” way this is taken as a signal for a possibly upcoming (or

bursting) bubble. An indicator which is often employed in the context of house

prices is the price-earnings-ratio (P/E-ratio) which is defined as the current price

at which a house sells divided by the current rent that could be earned if the house

was rented (see Leamer (2002), Feldman (2003), Case and Shiller (2003) or Him-

melberg, Mayer and Sinai (2005)). According to the theory of asset pricing, the

price of a house is related to current and future rents as well as to the interest

rate. Thus, house price changes should be in line with rent changes given constant

interest rates and the P/E-ratio should be constant over time in the abscence of a

bubble. If house prices are too high compared to current rents over a long period

this might be interpreted as a sign of an existing house price bubble. Various empir-

ical studies find the ratio of aggregate bank lending and income (“credit-to-income

ratio”) or the ratio of house prices to income (“price-to-income ratio”) to serve

as reliable early-warning indicators of financial imbalances in both stock markets

and real estate markets (see Borio and Lowe (2002), Case and Shiller (2003), ECB

(2005) or Alessi and Detken (2009)). However, two shortcomings of monetary and

credit aggregates as indicators of asset price bubles are well-known. First, they

do not feature any component that accounts for financial risk premia. Second,
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high growth rates of aggregate bank lending are not always followed by asset price

booms (see Bernanke (2002)).

Market-based identification schemes directly monitor developments of asset

prices. Such schemes identify asset price bubbles as excessive deviations of a par-

ticular asset price from its long-term trend (see Borio and Lowe (2002), Detken and

Smets (2004), Hülsewig and Wollmershäuser (2006), Adalid and Detken (2007) or

Alessi and Detken (2009)). In order to define what is ”excessive” the papers typi-

cally use pre-defined but somewhat arbitrary threshold levels. The main drawback

of market-based identification schemes is that the thresholds obviously lack any

economical or methodological foundation. In consequence, empirical studies using

such schemes have yielded quite heterogeneous results with respect to the number

and timing of bubbles in financial markets. One might also argue that concentrat-

ing on pure asset price developments is problematic whenever the macroeconomic

environment plays a decisive role for their explanation. Unusual behavior of as-

set prices does not always imply that an asset price bubble is evolving since the

observed asset price development could well be the result of macroeconomic fun-

damentals.

Econometric studies try to overcome the problems of the market-based ap-

proach. In the early 1980s the literature began establishing various econometric

tests in order to decide whether observed asset prices are fundamentally justified

(see Shiller (1981), LeRoy and Porter (1981), West (1987), Flood, Hodrick, Kaplan

(1994) or Gurkaynak (2005)). Especially cointegration tests have been in use to

test for the existence of a stable long-term relationship between asset prices and

other variables considered as fundamentals (see Campbell and Shiller (1987), Diba

and Grossmann (1988), Meen (2002) or Gallin (2003, 2004)). If such a long-term

relationship exists explosive bubbles can be ruled out. Evans (1991) criticized tra-

ditional unit root and cointegration tests for their lack of power in the wake of

periodically collapsing asset price bubbles. His critique triggered renewed interest

in the development of new tests for asset price bubbles. One such test, based on

cointegration techniques, has been developed by Taylor and Peel (1998). Their

test is applicable to the case of periodically collapsing asset price bubbles (see also

Pierdzioch (2010)). A yet different class of econometric tests based on Markov

switching models has been explored by Funke et al. (1994) and Schaller and van

Norden (2002), among others. Other researchers use advanced state-spaces models

for bubble identification (Wu (1995, 1997), Bhar and Hamori (2005), Kizys and
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Pierdzioch (2009), to name just a few).

Although the briefly reviewed methods vary in their empirical approaches and

clearly have virtues in detecting speculative bubbles, they mainly focus on ex-

post identification of asset-price bubbles. In consequence, they are less useful in

constructing efficient early-warning systems of speculative asset bubbles. While re-

cursive estimation may remedy this shortcoming to some extent (for an application

of recursive methods to the study of stock markets in times of financial crises, see

Hartmann, Kempa and Pierdzioch (2008)), SPC methods seem to be natural can-

didates to solve the real-time problem (see Knoth (2002, 2006), Andersson (2002),

Blondell, Hoang, Powell and Shi (2002), Zeileis, Leisch, Kleiber and Hornik (2005)).

While the classical structural break methodology within econometrics relies more

or less exclusively on power measures that are less useful in real-time monitoring

schemes, the SPC framework and its set of performance measures allow appropriate

evaluation and tuning of the considered alarming schemes.

3 Statistical Process Control

Most of the econometric literature concerned with estimating and monitoring chan-

ges in time series belongs to the field of structural change. Roughly speaking,

structural change methods provide a toolset for identifying rather general types of

changes in complex time series models. Typically, the methods developed in the

existing literature are based on functional central limit theorems. These models

are evaluated within the framework of fixed sample theory and thus, can detect

changes in time series only retrospectively.

Only recently, the first papers taking a sequential perspective appeared in the

econometric literature.5 However, as Zeileis et al. (2005) mention, this problem has

already been discussed extensively in SQC. SPC, the related sub-field of SQC, deliv-

ers methods for detecting changes in time series in a sequential fashion.6 Originally,

SPC methods were used to improve the quality of manufactured goods. Nowadays,

these techniques are applied to any area within a company such as manufactur-

ing, process development, engineering design, finance and accounting, distribution

and logistics. However, the main field of application is the control of production

5See Zeileis et al. (2005).
6Note that in Mathematical Statistics (Sequential Analysis) the term “change point detection”

is usual while in Biostatistics the term “surveillance” is used.
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processes in order to detect anomalies in quality performance early. One of the

primary tools of SPC are control charts plotting sample averages or other suitable

statistics of quality measurement against time. Control charts have proved to be

quite powerful in distinguishing between the natural and excess variability of a

process.

Every control chart has one or two (upper and lower) control limits which are

determined from statistical considerations. A process is flagged as out-of-control

whenever the utilized statistic exceeds these alarm thresholds, thereby indicat-

ing that the monitored process has changed significantly in one (or more) of its

properties, e.g., a shift in the mean, variance or any other distributional parame-

ter. Given this ”alarm”, the surveillant then investigates the likely sources of the

observed changes. In production processes the sources for the occurred changes

will then be removed whenever possible.7 While econometric approaches consider

measures of testing theory such as size, power or error probabilities8, classic SPC

performance measures are based on the expected time to signal. The most popular

measure is the Average Run Length (ARL), i.e., the time until a signal occurs for

an undisturbed or initially out-of-control process.

The SPC approach has various advantages compared to the competing struc-

tural change procedures. First, the sequential properties of control charts are well

studied. For evaluating and designing traditional structural change procedures,

limit theorem results have to be exploited. For small size data sets as they are

common for quarterly, monthly or even daily time series this procedure is often in-

appropriate. As an alternative, Monte Carlo studies have to be used. The setup of

SPC algorithms is much simpler and accurate results are readily available. Second,

at least some optimality properties of control charts have been proven.9 Third,

from a practitioner’s point of view the application of SPC techniques is much eas-

ier. Fourth, during the last 20 years highly complex models such as multivariate

time series or profiles were considered in the SPC literature. The results can be

easily transferred to economic data. Finally, at least one scheme, the CUSUM con-

trol chart, comes with a built-in change point estimator. For the EWMA control

chart, the change point can also be estimated in a reasonable way.

7See Montgomery (2005).
8All SPC procedures are power 1 algorithms so that the econometric approach would not help

in identifying reasonable procedures.
9See Moustakides (1986).

7



For our purposes we consider three different control charts: the classical She-

whart chart, the CUSUM chart and the EWMA chart.10 We shall outline their

operation briefly in the following.

Assume a stream of empirical residuals εt which is independent and normally

distributed with mean 0 and variance σ2. Then, the designs of the control charts

are given by a certain sequence of statistics and a stopping time L.

The traditional Shewhart chart uses only the most recent residual. The corre-

sponding stopping time L is given by

LShewhart = inf
{
t ∈ N : |εt| > csσ

}
.

Shewhart control charts are extremely useful in a first phase of implementing SPC

because they are relatively easy to construct and to interpret. What is more, they

are able to detect both large and sustained shifts in the process parameters.11

In contrast to the simple Shewhart procedure, the EWMA and CUSUM control

charts use more than just the most recent data and include past developments. The

EWMA chart was introduced by Roberts (1959) and was intensively discussed in

Lucas and Saccucci (1990). For the design of the EWMA control chart, the series

{Zt} with

Z0 = z0 = 0 ,

Zt = (1− λ)Zt−1 + λεt , t = 1, 2, . . .

has to be calculated. Thus, EWMA employs all sample data, although with de-

creasing weights through the smoothing parameter λ. The natural center line for

monitoring residuals is zero. This effects the initializing at z0 = 0 and the shape of

the stopping rule. The EWMA chart gives an out-of-control signal if the current

value of Zt exceeds the threshold

LEWMA = inf

{
t ∈ N : |Zt| > cE

√
λ

2− λ
σ

}
.

The normalizing term resembles the asymptotic standard deviation of Zt (t→∞).

10See Shewhart (1926), Page (1954), Roberts (1959).
11See Montgomery (2005).
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CUSUM12 in contrast uses just the last data points within a small and random

sized window.13 In the two-sided case which is the natural counterpart to EWMA

both a positive and a negative series S±
t have to be calculated:

S+
0 = S−

0 = 0 ,

S+
t = max{0, S+

t−1 + εt − k} , S−
t = min{0, S−

t−1 + εt + k} .

Whenever the upper (respectively lower) series exceeds the corresponding threshold

the system signals an alarm:

LCUSUM = inf
{
t ∈ N : max{S+

t ,−S−
t } > cCσ

}
.

While the classical Shewhart control chart is more effective in detecting larger shifts,

the EWMA and CUSUM procedures perform considerably better with regard to

smaller shifts. Figure 1 illustrates these patterns. All three charts are calibrated

for an in-control process to yield the same expected time A = 500 to signal.

The alarm thresholds cS, cE and cC are determined accordingly by using the R

package spc.14 The three profiles show the ARL as a function of the true expectation

µ of the residuals. Their standard deviation σ is set to 1. Note that steep profiles

indicate powerful charts. Figure 1 exhibits the usual order: Shewhart charts are

dominated by EWMA and CUSUM for shifts smaller than about 2. Only for values

larger than 2.5 the classical Shewhart chart is considerably better.15

The parameters λ ∈ (0, 1] and k ≥ 0 for EWMA and CUSUM, respectively,

are set by the user to most rapidly detect a shift µ1 in the residuals’ mean. The

design rule for CUSUM’s k is simple: Set k = µ1/2.16 It is more subtle for EWMA.

There is no explicit relationship between µ1 and λ. Even more, the optimal λ

also depends on the in-control ARL A. For ease of application, there are some

12For more details see the monography of Hawkins and Olwell (1998).
13In Zeileis et al. (2005) either all data or a moving window with fixed size are used. Note

that the CUSUM process of the structural change literature differs from the one in statistical
process control. Both designs are also known in the SPC literature (repeated significance tests
and moving average charts, respectively), but are not frequently used for change point detection,
because they are dominated by other methods such as namely CUSUM, EWMA and a further
one called Shiryaev-Roberts procedure.

14See Knoth (2011).
15For a more thorough discussion of performance evaluation of SPC procedures see, e.g., Knoth

(2006).
16See for optimality Moustakides (1986) and for a more detailed discussion Hawkins and Olwell

(1998).

9



Figure 1: ARL profiles of Shewhart, EWMA (λ = 0.1) and CUSUM (k = 0.5)
control charts with in-control ARL of 500.
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general recommendations such as λ = 0.05, λ = 0.10 and λ = 0.20.17 Some nice

design rules are provided in Srivastava and Wu (1997) who constructed certain

simple approximations. It should be noted that there are pitfalls while searching

the optimal λ especially for one-sided EWMA schemes.18 It turns out that not

the regular ARL should be the target for optimizing λ but more complex measures

like the steady-state ARL, i.e., the expected detection delay for a long running

monitoring process without false alarm.

An alarm signal might be interpreted as an indication for a structural break

in the (recent) past. Both, EWMA and CUSUM come with a built-in estimator

for the change point which is highly useful for dating purposes. No comparable

estimator is available for the Shewhart control chart. In the remainder of this paper

we therefore concentrate on the implementation of the EWMA and the CUSUM

chart.

The CUSUM estimator of the change point τ is given by:

τ̂CUSUM = 1 +

max{1 ≤ t ≤ LCUSUM : S+
t = 0} , S+

LCUSUM
> cCσ

max{1 ≤ t ≤ LCUSUM : S−
t = 0} , S−

LCUSUM
< −cCσ

17See Lucas and Saccucci (1990) and Montgomery (2005).
18See Knoth (2006).
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Since the EWMA chart lacks such re-setting behavior, the change-point estimator

which is given by

τ̂EWMA = 1 +

max{1 ≤ t ≤ LEWMA : Zt ≤ 0} , ZLEWMA
> 0

max{1 ≤ t ≤ LEWMA : Zt ≥ 0} , ZLEWMA
< 0

needs some more justification. In an evaluation of this estimator Nishina (1992)

concludes that it performs sufficiently well. Even though other authors have con-

tributed to the discussion, there has not been much progress since then.19 Hence,

for the present analysis we also chose the popular built-in estimators.

4 Empirical Approach and Data

In this paper we apply SPC methods similarly to the structural change analysis

proposed in Zeileis et al. (2005). To begin, we estimate a model of the U.S.

economy for a base (fitting) period for which we assume that no house price bubble

was present. On the one hand, the fitting period has to be long enough to allow

estimating a stable model, on the other hand the fitting period should end well

before the house price bubble started evolving. According to the literature, the

earliest estimates of the beginning of the U.S. house price bubble range in between

1997 and 1998. The necessary data for the U.S. economy was available since 1987

in monthly frequency. We thus chose the period of 1987:M01 to 1994:M12 as fitting

period. Doing so leaves us with 96 time series observations which is sufficient for

estimating a stable macroeconometric model. Moreover, according to the Business

Cycle Dating Committee of the NBER the second half of the 1980s was classified

as an economic expansion. This expansion started in November 1982 and reached

its peak in July 1990. Three quarters later, in the beginning of 1991, the U.S.

economy reached a through. One thus might argue that our fitting period roughly

consists of a whole business cycle which seems to be necessary to qualify as a base

period. We also could not detect any further empirical evidence indicating that

this period was ”abnormal” in any respect.

It has become common to use VAR models in the tradition of Sims (1980)

19The classic is Hinkley (1971) while some more recent references are Srivastava and Wu (1999),
Pignatiello and Samuel (2001), Wu (2004) and Lou (2008). They considered typical properties of
the built-in estimators (mainly of CUSUM). Only Pignatiello and Samuel (2001) introduced an
estimator whose design does not depend on the control chart that triggers the alarm signal.
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to explain house price developments by macroeconomic fundamentals (see, e.g.,

Belke, Orth and Setzer (2008), Assenmacher-Wesche and Gerlach (2009), Dreger

and Wolters (2009), Adalid and Detken (2007), Demary (2009), Jarocinsky and

Smets (2008) or Goodhart and Hofmann (2008)). In VAR models each endogenous

variable is regressed on its own lags and the lags of all other variables in the model.

In contrast to other econometric approaches VAR models do not refer to structural

relations between the variables but rather specify their own structure to describe

interactions of the variables. The predominance of the VAR approach might be

attributed to the fact that VARs are capable of dealing with possible endogeneity

problems in an adequate way (see Dreger and Wolters (2009)). In our study we

follow this approach and use a VAR approach to model the U.S. economy.

More precisely, we estimate the following unrestricted VAR in reduced form:

xt = c+

p∑
i=1

Ai xt−i + ut ,

where xt is a vector of n endogenous variables at time t, Ai are the n× n matrices

of reduced-form parameters and c is a n× 1 vector of constants. ut denotes a n× 1

vector of unobservable error terms.

In line with the literature, our VAR model contains the following six variables

that are usually included to explain house price developments over time: production

index (prod), inflation (p), mortgage rates (i), broad money (m), housing prices

(hp) and share prices (s) (see, e. g., Dreger and Wolters (2009), Goodhart and

Hofmann (2008), Baffoe-Bonnie (1998)). Data on the index of industrial produc-

tion, inflation and broad money M3 were taken from the OECD database. House

prices are measured by the Case Shiller house price index which is constructed by

Standard and Poor’s. For stock prices we use the Dow Jones Industrial Average

from EUROSTAT. Mortgage rates are taken from the Federal Finance Housing

Agency (FHFA). Table 1 provides a summary of the data sources. All variables are

seasonally adjusted, deflated by the consumer price index and taken in logs except

inflation and mortgage rates.

The focus of our analysis is on the development of the house price index. The

Case Shiller house price index is a repeat-sales index which measures the develop-

ment of single-family house prices by considering data on properties that have been

sold at least twice in order to capture the true appreciated value of each specific

12



Table 1: Data sources.

Name Description Source

Production (prod) Index of industrial production, OECD base
year=100, seasonally adjusted, deflated by CPI and
taken in logs.

OECD 2012

Inflation (p) Measured as %-change on the same period of the
previous year, based on the CPI, 2005=100.

OECD 2012

Broad money M3 index, 2005=100, deflated by the CPI, seasonally
adjusted and taken in logs.

OECD 2012

Housing prices (hp) The S&P/Case-Shiller U.S. National Home Price In-
dex Composite 10 measures the value of single-family
housing within the United States. The indices mea-
sure changes in housing market prices given a con-
stant level of quality. Changes in the types and sizes
of houses or changes in the physical characteristics
of houses are specifically excluded from the calcula-
tions to avoid incorrectly affecting the index value.
Data are deflated by the CPI, seasonally adjusted
and taken in logs.

Standard &
Poor’s 2012

Share prices (s) Dow Jones Industrial Average, price adjusted using
the CPI, seasonally adjusted and taken in logs.

EUROSTAT
2012

Mortgage rates (i) Terms on the conventional single-familiy mortgages,
monthly national averages, all homes, contract inter-
est rates.

FHFA 2012

sales unit.20 In Figure 2 we show the development of the Case Shiller house price

index over the sample period.

When inspecting the displayed time series one might have the impression that

the house price bubble is easy detectable without any empirical methods. However,

this impression is somewhat misleading since we can not rule out that the observed

development of house prices is driven by purely fundamental causes. Before being

able to detect an asset market bubble it is therefore necessary to estimate the

underlying fundamental house price process.

We estimate our VAR model in levels. Thus, the vector of endogenous variables

x has the form:

x = (gdp, p, i,m, hp, s) .

In the light of our data frequency we allowed for a maximum lag order of six. Ac-

cording to the Schwarz criterion one lag turned out to be the appropriate lag order.

Unit-root tests reveal that all time series turned out to be non-stationary and are

integrated of order one. Since estimating a model with unit root variables leads to

20For a detailed description see S&P’s (2012).
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Figure 2: Case Shiller house price index 1987-2010.
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spurious regression problems one might think about using first differences. Indeed,

this solution implies a loss of information contained in level variables. However, as

Sims, Stock and Watson (1990) show, VAR estimations containing some unit-root

variables lead to consistent OLS estimators when there are cointegration relations

among the variables. According to the Johanson procedure there are at least two

cointegration relationship between the variables of the VAR model.21 Thus, esti-

mating the VAR in levels seems to be justified. The VAR model is estimated by

using the R package vars (version 1.5-0).

Since we are interested in studying the development of house prices, the referring

VAR equation is of special interest. We display the estimated coefficients of the

house price equation of the VAR model in Table 2.22 Three variables turn out to

have a significant effect on house prices in the base period: The lagged value of the

price index, industrial production and inflation. More than 99% of the house price

developments in the base period can be explained by the baseline VAR which is

mainly due to the sluggish development of house prices. Although current house

prices are mainly driven by their lagged variable, industrial production and inflation

turn out to play a significant role.

The estimation results for the base period presented in Table 2 are also robust to

21See Table 5 and Table 7 in the appendix for detailed results of all unit root tests and the
VAR cointegration test.

22For a detailed view of the estimation results of the baseline VAR see Table 6 in the appendix.
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Table 2: VAR estimation results of house price equation.

Endogenous variables: hp, prod, s, m, p, i

Deterministic variables: const

Sample size: 95

Log Likelihood: 1399.869

Roots of the characteristic polynomial:

0.993 0.9936 0.9471 0.9471 0.7299 0.7299

Estimation results for equation hp:

===================================

hp = hp.l1 + prod.l1 + s.l1 + m.l1 + p.l1 + i.l1 + const

Estimate Std. Error t value Pr(>|t|)

hp.l1 0.9809 0.0225 43.563 < 2e-16 ***

prod.l1 0.0707 0.0184 3.842 0.0002 ***

s.l1 -0.0105 0.0088 -1.200 0.2333

m.l1 -0.0206 0.0704 -0.292 0.7711

p.l1 -0.0020 0.0010 -1.993 0.0494 *

i.l1 0.0003 0.0014 0.256 0.7988

const -0.1027 0.3114 -0.330 0.7423

_______________________________________________________________________________

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 0.004934 on 88 degrees of freedom

Multiple R-Squared: 0.9965, Adjusted R-squared: 0.9963

F-statistic: 4231 on 6 and 88 DF, p-value: < 2.2e-16

changes of the sample size: We increased respectively decreased the base period to

102 and 108 months respectively to 90 and 84 months to ensure that our following

results are robust of the choice of the length of the base period.

In a next step we use the estimated VAR to generate a time series of house

price forecasts under quasi real-time conditions. Using the realized values of

gdp, p, i,m, hp, s we therefore apply a recursive procedure and generate a time se-

ries of one-month-ahead out-of-sample forecasts of house prices. By subtracting

the forecasts from the realized values we yield a time series of house price forecast

errors.

ε̂ = hp− ĥp

After doing so we apply two different control charts (EWMA, CUSUM) to the

time series of house price forecasts ε̂ and study when the first alarm occurs. Based

on the first alarm we then estimate the likely change point of the house price time

series.
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5 Dating the bubble

In this section we study when exactly the U.S. house price bubble started unfold-

ing. We start out with reviewing the findings of earlier studies on this aspect. In

a second step we study the development of various of the earlier mentioned indica-

tor variables as well as a market-based identification schemes and an econometric

approach. Finally we apply SPC to the data and compare the results with those

from the literature.

5.1 Previous Evidence

There is yet no common agreement on when exactly the U.S. house price bubble

started developing (Hagerty (2009)). While some authors date back the origin of

the bubble to 1997/1998, others argue the bubble started in 2001/2002 or even

later.

First, some economists date the likely beginning of the bubble quite early to

the years 1997/98. One of the most prominent advocates of this theory is Shiller

(2007). He argues that regional bubbles in some U.S. states developed as early as

in 1998 which then culminated in a nationwide bubble in the subsequent years.

According to his view the house price increases at that time were not justified by

economic fundamentals such as construction costs or the owner’s equivalent rent

but rather driven by psychological factors such as speculative behavior. Pinto (cited

in Hagerty (2009)), Baker (2008) and White (2010) come to similar results. Pinto

(cited in Hagerty (2009)), a former Fannie Mae expert, and White (2010) blame

the misguided government efforts to raise the homeownership rate, lax lending

conditions to households of low income classes and the expansion and securitization

of residential mortgage finance since the early and mid 90s for the upcoming bubble

in 1997. According to Baker (2008) the housing bubble built up alongside the stock

bubble in the mid 90s due to the increasing wealth of the households and led to

higher consumption and especially positive demand shifts towards housing. While

none of these authors delivers a detailed empirical study supporting his line of

argument, Ferreira and Gyourko (2011) use regional U.S. housing transaction data

to construct hedonic house price indices for all metropolitan statistical areas in the

U.S. and then identify likely structural breaks by estimating the quarter in which

the change in the price growth series has the greatest impact on the explanation
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of the price growth series itself. Broadly in line with Shiller (2007) they find house

price booms in some metropolitan areas in the mid of the last decade which then

spread to other regions in the following years. However, Ferreira and Gyourko

(2011) do not use the term “speculative bubble” for this development but rather

speak of a “house price boom” which is more linked to the existence of good

investment opportunities than to excessively high house prices as the consequence

of speculative behavior. One might therefore conclude from the results of Ferreira

and Gyourko (2011) that the crisis was at least initially based on a favourable

fundamental development of the housing market in some metropolitan areas.

A second group of authors argues that the likely starting point of the U.S. house

price bubble was roughly four years later, i.e. in the years 2001/2002. Phillips and

Yu (2011) date the likely starting point of the house price bubble with the help

of a recursive regression method. Using a sequential right-sided unit root test

they date the beginning of the bubble to the fourth quarter of 2001. Dreger and

Kholodilin (2011) use a signaling approach and logit/probit models to construct

bubble chronologies in 12 OECD countries. For the U.S. housing market, the

estimation results indicate that the bubble started in the second quarter of 2001

which is quite similar to the result found by Phillips and Yu (2011). Even some

housing market experts like Lawler (cited in Hagerty (2009)) argue that the crisis

started not before 2002. Lawler blames the loose monetary policy of the Federal

Reserve System since the bursted DotCom Bubble in 2001 for the upcoming house

price bubble in the following year.

5.2 Application of Traditional Identification Methods

Since almost all of the earlier cited authors argue on the basis of more or less differ-

ing data and sample periods it is not easy to compare these results to our following

empirical analysis. It thus seems to be useful to first give an overview on the re-

sults of indicator-based, market-based and at least some econometric identification

methods using our dataset and sample period before turning to our application of

SPC to the data.

We start out with some popular indicators of house price bubbles as discussed

earlier. Figure 3 shows the development of the price-earnings ratio over the sample

period. We consider two different measurements of the rent component: the rent

of primary residence and the owner’s equivalent rent of residence. Both are taken
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from the Bureau of Labour Statistics (BLS) database and are often used to calculate

historical developments of the price-earnings ratio. Figure 3 reveals clearly that the

price-earnings ratio increased significantly in between the mid of the 90s until the

house price peak in 2006. However, it is obviously hard to use the price-earnings

ratio to date the beginning of the house price bubble. While the price-earnings

ratio increased since 1997, it did exceed the values from the late 1980s not before

the early 2000 years.

Figure 3: Price-earnings ratio 1987-2011
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A similar picture arises when switching to the development of the credit-to-

income and the price-to-income ratio (see Figure 4 and Figure 5). While the price-

to-income ratio shows almost the same development as the price-earnings-ratio,

leaving us with the same interpretation problems, the credit-to-income ratio rose

only slightly over the 1990s and increased significantly since the early 2000s.

A main drawback of the indicator-based identifcation schemes is the obvious

lack of a properly derived threshold up to which price increases might be qualified

as justified and thus can serve as a sort of yardstick to identify an asset price bubble.

There is little consensus in the literature on the question how to judge shifts in the

development of house-price-related indicators. One approach is to compare current

indicator values to their long-term average value (see, e.g., McCarthy and Peach

(2004), Himmelberg, Mayer and Sinai (2005)). Following this approach, both price-

earnings-ratios from Figure 3 started to exceed their long-run averages (63,3% for

rent of primary residence and 59,9% for the owner’s equivalent rent of residence

18



Figure 4: Credit-to-income ratio 1987-2011
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Figure 5: Price-to-income ratio 1987-2011

1990 1995 2000 2005 2010

0.
25

0.
30

0.
35

0.
40

0.
45

0.
50

Income: real GDP per head, US $, OECD base year (OECD 2012) seasonally adjusted.

re
al

 p
ric

e−
to

−
in

co
m

e 
ra

tio
 in

 %

from 1987 until 2011) in the beginning of 2002. Similar results hold for the credit-

to-income ratio and the price-to-income ratio which exceed their long-term trends

in 2002 for the first time. However, it seems questionable in how far it is reasonable

to include the bubble period itself into the calculation of the long-term averages.

In a next step we consider market-based identification procedures and use tra-

ditional HP-filter methods to detect the U.S. house price bubble. Following the

approach of Goodhart and Hofmann (2008) we use real house prices measured by
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Figure 6: HP-filter of real house prices and cyclical components
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the Case Shiller house price index of different frequencies (monthly, quarterly, an-

nual) and calculate their long-term trend with different smoothing parameters as

used in the related literature. Figure 6 shows the resulting long-term trend and

current values of house prices for the sample period. We calculated the percentage

deviation of house prices from their HP-trend for each period (right column) and

examined whether and when these deviations exceed the threshold values in Good-

hart and Hofmann (2008) and Adalid and Detken (2007).23 The exact results of

23While Goodhart and Hofmann (2008) use a 5% deviation from the trend, Adalid and Detken
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the market-based identification procedure depend on the employed data frequency,

the smoothing parameter and the threshold level.24 Using the highest available

data frequency (which is also used in our following empirical analysis) dates the

bubble to the year 2005 and thus almost 8 years later than the estimate of Shiller

(2007).

Finally, we conducted traditional cointegration tests as it is done in parts of

the econometric literature25 concerned with identifying house price bubbles. We

tested for a long-run relationship between real house prices and other variables such

as mortgage rates, real broad money, real share prices, the unemployment rate,

real disposable personal income and real rents. Following the Johansen-procedure

we test for the existence of such a relationship between house prices and each

of the fundamental variables for the period 1987 to 2011. As the results reveal,

we find no indication of a stable long-run relationship between house prices and

any of the considered fundamentals. The cointegration tests indicate that house

price developments were not in line with economic fundamentals during the sample

period.26 Thus, according to this identification approach the existence of a house

price bubble can not be ruled out. A main drawback of this approach is that

traditional cointegration tests do not allow for the estimation of the likely period

in which the bubble came up or to date the likely starting point of that bubble. In

the literature, they are therefore rather used to test for the existence of a bubble

for a finite sample than to date the beginning and the time point when the bubble

bursts.

Figure 7 summarizes the results from the previous literature and the application

of traditional identification methods to our dataset. In the light of the evolving

heterogeneous picture it is an interesting question which result is supported by the

(2007) apply a 10% deviation.
24Given a threshold of 5% (respectively 10%), monthly house prices exceed the threshold levels

the first time in 2005:M03 (respectively 2005:M12) for a HP–smoothing parameter of λ=100.000.
Choosing a smoothing parameter of λ=300.000 which is the more appropriate choice with respect
to monthly data the threshold of 5% is achieved in 2004:M10 and the 10%-boundary in 2005:M05.
For quarterly and annual house price data, the results are quite different; for quarterly data and
a smoothing parameter of λ=100.000 the observed house prices pass the 5%-threshold the first
time in 2003:Q4 and the 10%-boundary in 2004:Q1 and thus nearly two years earlier than for
monthly data. The same holds for annual data. House prices exceed the thresholds in 2003 (5%)
respectively 2004 (10%).

25See Campbell and Shiller (1987), Diba and Grossmann (1988), Meen (2002) or Gallin (2003,
2004).

26See Table 8 in the appendix for detailed test results.
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Figure 7: Starting point of the recent U.S. housing bubble found by previous studies
and traditional identification methods

application of the SPC techniques.

5.3 SPC Evidence

Our applied estimation procedure simulates a surveillant engaged in controlling

the U.S. house price development over the sample period using the described two

control charts: EWMA and CUSUM.

We start out with employing the EWMA control chart. In a first run we ap-

ply a smoothing parameter of λ = 0.1 which is the average value of the interval

recommended in the corresponding literature.27 Figure 8 and 9 show the results

for the EWMA control charts. Figure 8 shows the development of the EWMA

series of the house price forecast errors ε̂ resulting from the VAR coefficients of the

inital model in the base period with the average value of λ = 0.1. The upper and

lower horizontal lines mark the alarm thresholds calculated for the EWMA series

and the left dashed line the left-sided margin of the monitoring period starting in

27For both, the EWMA and CUSUM approach, we choose the in–control ARL to be 500.
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1995:M01. The vertical lines indicate when exactly the referring chart generate

alarms. According to the EWMA control chart shown in Figure 8, the first alarm

occurs in 1997:M12. Here, the EWMA residuals exceed the upper alarm threshold

and thus a signal occurs. Given this signal, the likely change point (structural

break) is shown by the second dashed vertical line and is estimated exactly one

year earlier to 1996:M12. Figure 9 marks the first alarm and the corresponding

change point estimation along the Case Shiller house price series.

Figure 8: Residual EWMA chart for the initial model and the first alarm (λ = 0.1).

To test for the robustness of our results we repeated the analysis for an upper

und lower value of the interval of the smoothing parameter (λ = 0.05 and λ = 0.20)

as it was recommended in the related literature. Table 3 shows the time points of

first alarm and the corresponding change points found by the EWMA procedure

for different smoothing parameters.

Choosing a smoothing parameter of λ = 0.05, the change point is estimated

only five months later than in our benchmark model (1997:M04) while the EWMA

control chart set up for λ = 0.20 dates the likely starting point three months

earlier (1996:M09).28 Obviously the change point estimations of our three EWMA

specifications with different smoothing parameters λ are only slightly different. We

thus might date the likely beginning of the U.S. house price bubble to the time

period between 1996:M09 and 1997:M04 using the EWMA control chart.

28For the corresponding EWMA series with λ = 0.05 and λ = 0.20 see Figure 14 and 15 in the
appendix.
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Figure 9: First EWMA chart alarm marked along the Case Shiller house price
series (λ = 0.1).

Table 3: EWMA results for different values of λ.

Parameter value First alarm Change point

λ = 0.1 1997:M12 1996:M12
(Reference value)

λ = 0.05 1998:M06 1997:M04

λ = 0.2 1997:M12 1996:M09

The positive alarm signal shown by the EWMA control chart for the benchmark

model indicates that the observed house prices exceed those prices explained by the

fundamentals of the VAR. To ensure that this alarm in fact indicates an upcoming

house price bubble, one would expect increasing forecast errors after the first alarm

until the house price peak in mid 2006. Figure 10 shows the development of the

house price forecast errors since 1997:M12. The corresponding ADF-test reveals

that the house price forecast errors since the first alarm until 2006 contain a unit
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root confirming the plausibility of the EWMA control chart results.29

Figure 10: House price forecast errors 1997:M12–2006:M03 for the EWMA control
chart and the initial model (λ = 0.1).
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In the next step we employ the CUSUM control chart and set the tuning pa-

rameter k to 0.5. The estimation results for the CUSUM control charts are shown

in Figure 11 and 12. The residual CUSUM charts ε̂ for both the upper and lower

CUSUM series S+
t and S−

t based on the initial model and the first alarm are dis-

played in Figure 11. Similar to EWMA, the upper und lower horizontal red lines

mark the alarm thresholds calculated for the EWMA run chart and the left-sided

margin of the monitoring period is indicated by the left vertical left line. In doing

so, the first alarm generated by the CUSUM procedure is dated to 1998:M04. Here,

the CUSUM residuals exceed the upper threshold and thus a positive signal occurs

which is in line with the implication of an upcoming positive house price bubble.

Based on this alarm, the likely change point of the house price series and thus the

beginning of the U.S. house price bubble is estimated to be 1997:M06.

Similar to our EWMA procedure, we also run the CUSUM control chart for

different specifications of k. Table 4 shows the corresponding estimation results for

different values of k.30 Similar to the results found for different EWMA specifica-

tions, the parameter k affects the time of the first alarm occuring. For k = 0.25,

the first alarm occurs in 1998:M06. The corresponding change point estimation

for k = 0.25 is 1996:M11. For k = 1.0 the first alarm occurs in 1998:M08 and the

likely beginning is dated two months earlier to 1998:M06. We conclude that the

29See Table 9 in the appendix for detailed test results.
30The detailed CUSUM series can be found in Figure 16 and 17 in the appendix.
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Figure 11: Residual CUSUM chart for the initial model and the first alarm
(k = 0.5).

Figure 12: First CUSUM chart alarms marked along the Case Shiller house price
series (k = 0.5).

CUSUM control chart dates the likely beginning of the U.S. house price bubble to

the time period in between 1996:M11 and 1998:M06.

As in the EWMA approach, we find that the empirical residuals of the baseline

model between the first alarm and the house price peak in 2006 follow a unit-root

process (see Figure 13).31

31See Table 10 in the appendix for the corresponding ADF-test results.
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Table 4: CUSUM results for different values of k.

Parameter value First alarm Change point

k = 0.5 1998:M04 1997:M06
(Reference value)

k = 0.25 1998:M06 1996:M11

k = 1.0 1998:M08 1998:M06

Figure 13: House price forecast errors 1998:M04–2006:M03 for the CUSUM control
chart and the intial model (k = 0.5).
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Interestingly enough, there are only slight differences between the two applied

control charts concerning the likely starting point of the bubble. While the EWMA

control chart dates the likely beginning to the time in between 1996:M09 and

1997:M04, the CUSUM control chart estimates the likely starting with respect to

different parameter specifications to the period between 1996:M11 and 1998:M06.

Although the change point estimations of the EWMA and CUSUM control chart

thus differ slightly, they both indicate that the house price bubble started already

in the end of the 1990s.
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6 Summary and conclusions

While the literature on dating the U.S. house price bubble yet reached no consensus

on the question when the bubble started developing, the empirical evidence derived

from the application of two SPC control charts presented in this paper points

into the direction that the bubble originated quite early. Depending on the exact

specification of the control charts the derived change point estimators range in

between the end of 1996 and the first half of 1998. Both control charts are thus

supportive to the results of Shiller (2007), Ferreira and Gyourko (2011), Pinto

(cited in Hagerty (2009)), Baker (2008) and White (2010) arguing that the U.S.

house price bubble originated in the years 1997/98.

However, the application of the methods of Statistical Process Control are not

only useful in dating the U.S. house price bubble (or more general the estimation

of change points in time series of asset prices). They also have the advantage to

be designed for the use under real-time conditions. This makes them a natural

candidate for the construction of early warning systems. In our application of

SPC to the US housing market the two control charts performed quite well in

detecting the occurring change points. For the EWMA control chart the time-to-

signal ranged in between 12 and 15 months. The CUSUM chart sent alarms in

between 2 and 19 months after the likely change in the house price time series

occurred. It thus seems to be adequate to add SPC techniques to the construction

set of early warning systems.
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7 Appendix

Table 5: Results of Unit Root tests of the baseline VAR (ADF-Test).

Augmented Dickey-Fuller Test of prod

Lag Order: 0

Dickey-Fuller: -0.9433

P VALUE: 0.7058

_____________________________________________________________________________

Augmented Dickey-Fuller Test of p

Lag Order: 0

Dickey-Fuller: -0.1073

P VALUE: 0.5787

______________________________________________________________________________

Augmented Dickey-Fuller Test of i

Test Results:

Lag Order: 0

STATISTIC:

Dickey-Fuller: -1.0084

P VALUE: 0.9326

______________________________________________________________________________

Augmented Dickey-Fuller Test of m

Lag Order: 0

Dickey-Fuller: -2.2844

P VALUE: 0.4589

______________________________________________________________________________

Augmented Dickey-Fuller Test of hp

Lag Order: 0

Dickey-Fuller: 1.096

P VALUE: 0.99

______________________________________________________________________________

Augmented Dickey-Fuller Test of s

Lag Order: 0

Dickey-Fuller: -2.566

P VALUE: 0.3425
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Table 6: Estimation Results of the baseline VAR.

Endogenous variables: hp, prod, s, m, p, i

Deterministic variables: const, Sample size: 95

Log Likelihood: 1399.869 , Roots of the characteristic polynomial:

0.9936 0.9936 0.9471 0.9471 0.7299 0.7299

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

===================================

Estimation results for equation hp:

hp = hp.l1 + prod.l1 + s.l1 + m.l1 + p.l1 + i.l1 + const

Estimate Std. Error t value Pr(>|t|)

hp.l1 0.9809263 0.0225174 43.563 < 2e-16 ***

prod.l1 0.0706616 0.0183896 3.842 0.000229 ***

s.l1 -0.0105396 0.0087828 -1.200 0.233348

m.l1 -0.0205574 0.0704262 -0.292 0.771050

p.l1 -0.0019660 0.0009866 -1.993 0.049388 *

i.l1 0.0003469 0.0013570 0.256 0.798810

const -0.1026841 0.3113986 -0.330 0.742372

Residual standard error: 0.004934 on 88 degrees of freedom

Multiple R-Squared: 0.9965, Adjusted R-squared: 0.9963

F-statistic: 4231 on 6 and 88 DF, p-value: < 2.2e-16

=====================================

Estimation results for equation prod:

prod = hp.l1 + prod.l1 + s.l1 + m.l1 + p.l1 + i.l1 + const

Estimate Std. Error t value Pr(>|t|)

hp.l1 -0.038914 0.029073 -1.338 0.184

prod.l1 1.034533 0.023743 43.572 <2e-16 ***

s.l1 0.011615 0.011340 1.024 0.308

m.l1 0.051893 0.090929 0.571 0.570

p.l1 -0.001739 0.001274 -1.365 0.176

i.l1 0.001387 0.001752 0.791 0.431

const -0.245115 0.402056 -0.610 0.544

Residual standard error: 0.006371 on 88 degrees of freedom

Multiple R-Squared: 0.988, Adjusted R-squared: 0.9872

F-statistic: 1205 on 6 and 88 DF, p-value: < 2.2e-16

==================================

Estimation results for equation s:

s = hp.l1 + prod.l1 + s.l1 + m.l1 + p.l1 + i.l1 + const

Estimate Std. Error t value Pr(>|t|)

hp.l1 0.257134 0.140440 1.831 0.070498 .

prod.l1 -0.453395 0.114695 -3.953 0.000156 ***

s.l1 0.773834 0.054778 14.127 < 2e-16 ***

m.l1 -1.252820 0.439246 -2.852 0.005410 **

p.l1 -0.019346 0.006153 -3.144 0.002272 **

i.l1 0.010982 0.008463 1.298 0.197829

const 7.049082 1.942182 3.629 0.000476 ***

Residual standard error: 0.03077 on 88 degrees of freedom

Multiple R-Squared: 0.9449, Adjusted R-squared: 0.9411

F-statistic: 251.3 on 6 and 88 DF, p-value: < 2.2e-16
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Estimation results for equation m:

m = hp.l1 + prod.l1 + s.l1 + m.l1 + p.l1 + i.l1 + const

Estimate Std. Error t value Pr(>|t|)

hp.l1 0.0400782 0.0224203 1.788 0.077285 .

prod.l1 -0.0269356 0.0183102 -1.471 0.144838

s.l1 -0.0212663 0.0087449 -2.432 0.017048 *

m.l1 0.7532458 0.0701223 10.742 < 2e-16 ***

p.l1 -0.0012016 0.0009823 -1.223 0.224519

i.l1 0.0010680 0.0013511 0.790 0.431401

const 1.0654048 0.3100547 3.436 0.000903 ***

Residual standard error: 0.004913 on 88 degrees of freedom

Multiple R-Squared: 0.9331, Adjusted R-squared: 0.9286

F-statistic: 204.7 on 6 and 88 DF, p-value: < 2.2e-16

==================================

Estimation results for equation p:

p = hp.l1 + prod.l1 + s.l1 + m.l1 + p.l1 + i.l1 + const

Estimate Std. Error t value Pr(>|t|)

hp.l1 -0.77824 1.13024 -0.689 0.49291

prod.l1 2.44802 0.92305 2.652 0.00949 **

s.l1 0.86782 0.44084 1.969 0.05215 .

m.l1 5.35068 3.53498 1.514 0.13370

p.l1 0.87319 0.04952 17.633 < 2e-16 ***

i.l1 0.09873 0.06811 1.449 0.15076

const -34.01671 15.63039 -2.176 0.03221 *

Residual standard error: 0.2477 on 88 degrees of freedom

Multiple R-Squared: 0.9474, Adjusted R-squared: 0.9438

F-statistic: 264 on 6 and 88 DF, p-value: < 2.2e-16

==================================

Estimation results for equation i:

i = hp.l1 + prod.l1 + s.l1 + m.l1 + p.l1 + i.l1 + const

Estimate Std. Error t value Pr(>|t|)

hp.l1 0.63242 0.49496 1.278 0.2047

prod.l1 1.15329 0.40422 2.853 0.0054 **

s.l1 0.25196 0.19306 1.305 0.1953

m.l1 -0.80236 1.54805 -0.518 0.6055

p.l1 0.05043 0.02169 2.326 0.0223 *

i.l1 0.90793 0.02983 30.439 <2e-16 ***

const -5.17764 6.84490 -0.756 0.4514

Residual standard error: 0.1085 on 88 degrees of freedom

Multiple R-Squared: 0.99, Adjusted R-squared: 0.9893

F-statistic: 1445 on 6 and 88 DF, p-value: < 2.2e-16
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Table 7: Results of the Johansen cointegration test for the baseline VAR.

Test type: maximal eigenvalue statistic (lambda max),

with linear trend in cointegration

Eigenvalues (lambda):

[1] 4.899709e-01 4.040799e-01 2.301118e-01 1.149592e-01 1.065815e-01

6.602200e-02 2.071605e-17

Values of teststatistic and critical values of test:

test 10pct 5pct 1pct

r <= 5 | 6.42 10.49 12.25 16.26

r <= 4 | 10.59 16.85 18.96 23.65

r <= 3 | 11.48 23.11 25.54 30.34

r <= 2 | 24.58 29.12 31.46 36.65

r <= 1 | 48.66 34.75 37.52 42.36

r = 0 | 63.29 40.91 43.97 49.51

Table 8: Results of Cointegration tests of house prices and macroeconomic funda-
mentals 1987-2011.

HOUSE PRICES AND MORTGAGE RATES

Test type: trace statistic , with linear trend in cointegration

Eigenvalues (lambda): 0.05451555 0.01640961 0.00000000

Values of teststatistic and critical values of test:

test 10pct 5pct 1pct

r <= 1 | 4.73 10.49 12.25 16.26

r = 0 | 20.76 22.76 25.32 30.45

_______________________________________________________________________________

HOUSE PRICES AND BROAD MONEY

Test type: trace statistic , with linear trend in cointegration

Eigenvalues (lambda): 3.249828e-02 1.252162e-02 8.326673e-17

Values of teststatistic and critical values of test:

test 10pct 5pct 1pct

r <= 1 | 3.60 10.49 12.25 16.26

r = 0 | 13.05 22.76 25.32 30.45

_______________________________________________________________________________

HOUSE PRICES AND SHARE PRICES

Test type: trace statistic , with linear trend in cointegration

Eigenvalues (lambda): 1.605125e-02 1.154054e-02 6.938894e-18

Values of teststatistic and critical values of test:

test 10pct 5pct 1pct

r <= 1 | 3.32 10.49 12.25 16.26

r = 0 | 7.95 22.76 25.32 30.45
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HOUSE PRICES AND UNEMPLOYMENT RATE

Test type: trace statistic , with linear trend in cointegration

Eigenvalues (lambda): 2.506483e-02 8.968171e-03 2.428613e-17

Values of teststatistic and critical values of test:

test 10pct 5pct 1pct

r <= 1 | 2.58 10.49 12.25 16.26

r = 0 | 9.84 22.76 25.32 30.45

_______________________________________________________________________________

HOUSE PRICES AND RENTS

Test type: trace statistic , with linear trend in cointegration

Eigenvalues (lambda): 4.567518e-02 1.915823e-02 -1.387779e-17

Values of teststatistic and critical values of test:

test 10pct 5pct 1pct

r <= 1 | 5.53 10.49 12.25 16.26

r = 0 | 18.90 22.76 25.32 30.45

_______________________________________________________________________________

HOUSE PRICES AND INCOME

Test type: trace statistic , with linear trend in cointegration

Eigenvalues (lambda): 1.172571e-01 1.539660e-02 1.629943e-16

Values of teststatistic and critical values of test:

test 10pct 5pct 1pct

r <= 1 | 1.51 10.49 12.25 16.26

r = 0 | 13.60 22.76 25.32 30.45

Figure 14: Residual EWMA chart for the initial model and the first alarm
(λ = 0.05).
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Figure 15: Residual EWMA chart for the initial model and the first alarm (λ = 0.2).

Figure 16: Residual CUSUM chart for the initial model and the first alarm
(k = 0.25).

Table 9: ADF-test of house price forecast errors for the EWMA control chart
(λ = 0.1).

Test Results:

PARAMETER:

Lag Order: 0

STATISTIC:

Dickey-Fuller: -1.4162

P VALUE: 0.1617
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Figure 17: Residual CUSUM chart for the initial model and the first alarm
(k = 1.0).

Table 10: ADF-test of house price forecast errors for the CUSUM control chart
(k = 0.5).

Test Results:

PARAMETER:

Lag Order: 0

STATISTIC:

Dickey-Fuller: -1.3384

P VALUE: 0.1865
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