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1 Introduction

Real decision makers have been argued to be influenced by prior loss or gain ex-
periences, e.g. in stock investment decisions (Shefrin and Statman 1985) and in
entrepreneurial decisions (Bowman 1982; Fiegenbaum and Thomas 1988; Fiegen-
baum 1990; Wiemann and Mellewigt 1998). These studies deal with the fact
that people may be risk taking after losses and risk averse after gains and relate
these findings to prospect theory’s value function (Kahneman and Tversky 1979;
Tversky and Kahneman 1992) that is concave above and convex below certain
reference points.

Although the exact influence of prior gains and losses may not always be
consistent with the shape of prospect theory’s value function (Thaler and Johnson
1990; Weber and Zuchel 2001; Schade, Steul, and Schroder 2002), it may at least
be perceived as a more valid description of real decisions makers’ behavior in
a variety of decision situations than standard (von Neumann and Morgenstern
1947) or subjective expected utility theory (Savage 1957).

It is an open question, yet, how such behavior may influence the way people
play games, however. In this paper, we provide first steps of a formal analysis of
such behavior. Specifically, we are investigating the effects of all players obeying
to prosepct theory’s value function on mixed equilibria for selected conditions in a
symmetric simultaneous market entry game. Whereas simultaneous market entry
games only have one equilibrium in pure strategies if the game is asymmetric with

individual entry costs (Selten and Giith 1982), they have numerous asymmetric



equilibria in pure strategies if they are symmetric and one symmetric equilibrium
in mixed strategies (see Rapoport 1995; Rapoport et al. 1998).

As we are going to show in this paper, there is a unique symmetric equilibrium
in mixed strategies also if all players transform payoffs according to prospect
theory’s value function and a preference calculus proposed by Schade, Steul, and
Schroder (2002) formalizing the ideas of earlier studies (see e.g. Shefrin and
Statman 1985; Bowman 1982; Fiegenbaum and Thomas 1988; Wiemann and
Mellewigt 1998) if they have identical starting points (i.e. identical gain or loss
experience). We furthermore analyze the game for the case of three players and
calculate the equilibrium points for the cases of symmetric as well as asymmetric
starting points (i.e. for one player having a starting point differing from the
others).

The paper proceeds as follows. In the next section the assumptions underlying
our analysis will be specified, and we motivate the general structure of our model.
In the third section, we define the transformed market entry game, i. e. the game
integrating our behavioral assumptions. The subsequent section then represents
a general, n-player proof of the existence, symmetry, and uniqueness of a mixed
strategy equilibrium for the case of identical starting points. We then deal with
the analysis of the three-player case. In the final two sections we will briefly

discuss our findings and outline the implications for further research.



2 Assumptions and Motivation of the Model

We assume that all players obey to a preference calculus based on prospect the-
ory’s value function vpr : R — R in the parameterized version of Tversky and
Kahneman (1992). The functional form for a median decision maker is based on

a vast number of experiments on n = 1 games:

x® if x>0;
(1) vpr(x) ==
—A=2)? if z <0,
where the parameters are a ~  ~ 0.88 and \ ~ 2.25.
If players recently experienced a gain or a loss, they are in addition assumed to

behave according to the following preference calculus proposed by Schade, Steul,

and Schroder (2002):
(2) Ogo(2) = v(zg + ) — v(20),

for a starting point x,, a reference point of zero, potential future outcomes x, and
v being prospect theory’s value function.

Figure 1 demonstrates the effect of a starting point on the subsequent evalu-
ation of payments. It is easy to see that the valuation of a subsequent outcome
is dependent of prior gains or losses.

Note that we do not include probability weighting - also implied by (cumulative)
prospect theory (Tversky and Kahneman 1992) - in our preference calculus (for
consideration of non-additve beliefs in n-person games see f.e. Eichberger and
Kelsey 2000). The analysis would become more complicated or even untractable.

Expected payoff maximization with mixed strategies is defined on the basis of
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Figure 1: Valuation of an outcome x with prior loss and gain experiences on the

basis of prospect theory’s value function and the starting points’ calculus

"regular”, non-transformed probabilities in game theory.

More important, when integrating these behavioral concepts into a simulta-
neous market entry game, we will assume that all players obey to the functional
form and the parameters valid for a median decision maker according to Tversky
and Kahneman (1992), and that this is common knowledge; i. e. all players know
that all others evaluate according to prospect theory and the above-specified pref-
erence calculus. That assumption is less restrictive than it may appear at first
sight. It means nothing but an intuitive understanding of basic behavioral con-
cepts by all players. Players assume that the others are playing in the same
way they do themselves, that others are also loss averse, that they are tending
to gamble on losses, and that gains make individuals more risk averse etc. The

basic idea is the same when Rapoport (1995) assumes risk aversion - and common



knowledge about that - of all players in additional analyses of the simultaneous
market entry game. Moreover, many contributions to auction theory operate this

way when dealing with risk averse players.

3 Transforming a Simple Simultaneous Market

Entry Game

Our analysis is based on a simplified version of a game introduced by Rapoport
(1995) and Rapoport et al. (1998). In this n-person noncooperative game, each

player ¢ has the pure strategy set:

(3) Si = {si, sia} = {1,0},

where 1 represents the decision to enter and 0 represents the decision not to enter

the market. All players face the payoff function

K(c—mf(s)) if s =1;
(4) Mi(s) =
n
For any strategy vector s = (s1,...,8,), s; € S;, m(s) := Zsi is the number of
i=1
players entering the market (s; = 1). The value ¢ symbolizes a certain limited

market capacity: 1 < ¢ < n, and the parameter K > 1 is a constant.
This game has the following equilibria in pure strategies: If ¢ is an integer,

then there are two possible types of equilibria. Either exactly ¢ players enter the

n
market (the number of equilibrium points in this case is ). Or the number



of entering players is ¢ — 1, with equilibrium points. If ¢ is not an
c—1

n
integer, then the number of equilibria is , with |c| entries, where |c| is the

€]

integral part of c.
The game has the following symmetric equilibrium p in mixed strategies:

c—1
n—1’

15 =
with n - p expected entries.

Assuming the preference calculus introduced in section 2 (formula (1) and

(2)), we get the following game including the subjective payoff functions:

’UPT[I,EZ' + K(C — m(s))] — UPT[ZBi] if S; = 1;
(5) Ti(s) :=
A market entry game with payoff functions 7; (i = 1,...,n) will be called a
transformed game. Note that a game will also be called transformed in the

following if subjective payoffs are - thus generalizing prospect theory’s prediction

- monotonically increasing functions of objective payoffs.

4 Equilibria of the Transformed Game

In this section, we analyze equilibria for selected cases of gain and loss experiences.
We first of all provide a proof of the uniqueness of a symmetric mixed strategy
equilibrium for the n-player case when gain or loss experiences are identical, i. e.
when all players have made the same gain or loss experience. For the n-player

6



game, equilibria have to be determined numerically. We will introduce a method
how to do so. We will then concentrate on a three-player game and also analyze
the case of different gain and loss experiences. In the three-player case, equilibria
can be determined analytically. On the basis of an analytical solution, we will
demonstrate that resulting equilibria in general differ from the equilibria predicted
by normative game theory. But they converge to the normative equilibrium if
gain or loss experiences approach infinity.

In the following analyses we use the regular definition of a Nash equilibrium:
Let T;(g;,p—i) be the payoff of player i from playing the mixed strategy ¢; while
each of the other players plays his components of his mixed stategy vector p :=
(p1,---»pn)- Then the vector of mixed strategies p is a Nash equilibrium, if for
i = 1,...,n and all strategies ¢; € P;, the payoff to i of playing ¢;, T;(¢;,p_:),

does not exceed the return from playing p, T;(p):

(6) Ti(p) = Ti(ai, i),

for all ¢; € P;.
In the case of strategy sets with two elements, the equilibrium probabilities

p; are given by:

i) ifpi =p(sia) = ¢ =1—p(su),

(7)
i) i p;=1—p(si1) = ¢ = p(sa).
We characterize a mixed strategy equilibrium as follows: In a mized equilibrium

point p,

(8) “g;f@ 0.




OM; (p)
0

1

foralls =1,...,n, where is the partial derivative of the expected payoff
function with respect to 7’s mixed strategy.

Instead of directly investigating prospect theory’s parameterized value func-
tion, we analyze the general case of a transformation of payoffs with monotonically

increasing functions where vpr is a special case. Obviously all analyses therefore

also apply to vpr. A map v : R — R is called strictly monotonic increasing, if
(9) v(a) <v(b) & a<b, forall a,b e R

If v is differentiable, then

v is strictly monotonic increasing <= v'(a) > 0, for all a € R;

(10)
v is strictly monotonic decreasing <= v'(a) < 0, for all a € R.
4.1 Analyses for n-Player Game

4.1.1 Pure Strategies Equilibria

Proposition 1 The transformed market entry game has multiple pure strategy

equilibria.

Proof: We distinguish between two situations, depending on whether the capac-
ity c is an integer or not.

First we study the situation, where c is an integer: Let p be a pure strategy
equilibrium.

Then, every strategy vector p € S is an equilibrium, if
(11) m(p) = Zﬁz‘ =c
i=1

8



or

n

(12) m(p) = Zﬁz‘ =c— 1L

i=1
With respect to equation (11), we have to distinguish between two cases:

Case 1: Let p; = 0. Then player ¢ has the payoff:
(13) Ti(p) = 0.
The only pure strategy alternative is ¢; = 1 (see (7)). Here, the payoff would be
(14)  Ti(q, p-i) = vlzi + K(c— (c +1))] = v[z;] = v[z; — K] — v[z] <0,

because K > 1 and v is a strictly increasing map. Condition (6) is satisfied

because
(15) T:(p) > Ti(gi, p-i)-
Case 2: Let p; = 1. Then player ¢ has the payoff:
(16) T;(p) = v[z; + K(c — ¢)] — v[z;] = 0.

The only pure strategy alternative here is ¢; = 0 (see (7)). Playing this strategy

implies

(17) Ty(gi, p-i) = 0.
Condition (6) is again satisfied since

(18) T:(p) = Ti(¢i: p-i)-

With respect to equation (12), we again have to distinguish between two cases:

9



Case 1: Let p; = 0. Then player ¢ has the payoff:

(19) T;(p) = 0.

The only pure strategy alternative is ¢; = 1 (see (7)). This leads to the following

payoft:

(20) Ti(gi, p—i) = v[z; + K(c — ¢)] — v[x;] = 0.

Condition (6) is satisfied since

(21) T:(p) > Ti(gqi, p-i)-

Case 2: Let p; = 1. Then player ¢ has the payoff:

(22) T:(p) = v|z; + K(c— (¢ —1))] — v[x;] > 0.

The only pure alternative is playing ¢; = 0 (see (7)). For the payoff we get

(23) Ti(¢i,p-:) = 0.

Condition (6) is again met since

(24) T;(p) > Ti(qi: p—i)-

Now we look at all vectors ¢ with m(q) > ¢. Then an integer d > 1 exists so
that m(q) = ¢+ d. Thus there is a number d of players who have an incentive to

stay out of the market, because for all players ¢ with ¢; = 1

(25) Ti(9i, ) = vlzi + K(c = (¢ + d))] = v[zi] <0 =Ti(pi, 9);

see also (9).

10



Now let m(q) < ¢ — 1. Then for an integer e > 1 we get m(q) = c—1 —e.

Here, e players have an incentive to enter the market, because with ¢; =0

(26) Ti(gi,q) =0 <vlz; + K(c— (¢ — 1 —e))] — v[x;] = Ti(ps, q)-

Summarizing, strategy vectors’ with m(q) > ¢ and m(q) < ¢—1 cannot be equilib-

n
ria in pure strategies. Altogether we therefore have pure strategy vectors
c
n
fulfilling (11) and pure strategy vectors fulfilling (12).
c—1

Second, if ¢ is not an integer, then |c| players enter the market, where |c| is

n
the integral part of ¢. Here, we have pure strategy equilibria. The proof

]

is analoguous to that for (12).

4.1.2 Mixed Strategy Equilibria for Identical Starting Points
Existence and characteristics of a mixed strategy equilibrium

We study the situation where every player has the same prior gain or loss ex-
perience (in the following called ”starting point”) =z := z; € R (i = 1,...,n).
Thus for the payoff functions we get: Ty = 15, = ... = T, := ¢ with ¢ =
v(x+ K(c—k))—v(z) for k =1,2...,n. Every n-person game with finite strategy
sets has a mixed strategy equilibrium according to the theorem by John Nash

(1950, pg. 288). If a game is symmetric, at least one symmetric mixed strategy

11



equilibrium must exist (Nash 1950, pg. 289).
In the following we are investigating such equilibria. Here, we use the descrip-
tion "mixed strategy equilibrium” if players actually randomize. First we analyze

a three-player game. In a mixed strategy equilibrium holds (see also (29)):

¢02q39(1) + (p203 + @2p3)¢(2) + papsp(3) = 0,

a1q3p(1) + (p1g3 + @1p3)(2) + Pip3p(3) = 0,

01q2p(1) + (P1g2 + @1p2) 9 (2) + p1p2¢e(3) = 0,
with (k) =v(z + K(c—k)) —v(z) and ¢; =1 —p; (i = 1,2,3).
Now we compare the first with the second equation. Solving the first equation

for po, we get

—p3p(2) — gzp(1)
p3¢(3) + g30(2) — aap(1) — p3p(2)

P2 =
Solving the second equation for p; we get

—p3<ﬂ(2) - (J380(1)
p3¢p(3) + g30(2) — g30(1) — p3p(2)

p1 =

Thus
P1 = Do

Now we compare the second with the third equation. Solving the second equation

for p3 we get

—Q1<P(1) — N (2)
@169(2) + p1p(3) — pr1o(2) — qp(1)

p3 =
Solving the third equation for p, we get

—Q1<P(1) — N (2)
19(2) + p1p(3) — prp(2) — (1)

P2 =

12



Thus
P2 = ps3-.
Therefore
P1 = P2 = Ps.

In a four-player game

4293940(1)+(P2q3qa+¢2p391+924301) ©(2) +(P2p3ga+qapspa+p2qsps) p(3)+papspap(4) = 0,

0193920(1)+(P19391+q1P391+q1G3P4) (2) + (P1P391+ 1 P3Pa+P1G3P4) 0 (3) +p1pspap(4) = 0,
0192910 (1) +(P1¢294+q1P294+q142p4) 0 (2) +(P1P2q4+ 1 P2Pa+P1¢2p4) 0 (3) +p1p2pap(4) = 0,

0192630 (1) +(P1g203+q1 p203+q1 4203 ) 0 (2) +(P1P23+q1 P2P3+P192p3) 0 (3) +p1p2psp(4) = 0.

Again, from the first and second equation it follows that p; = po, from the second

and third: ps = py, and from the third and fourth: py = p3. Thus

P1 = P2 = P3 = P4.

In an n-player game: Analyzing the structure of the terms containing the com-
binations of entry probabilities, we find that the ¢’s and (¢ + 1)’s equations only
differ in the (¢ + 1)’s and #’s entry probabilities, respectively. Thus from the ¢’s

and (¢t + 1)’s equations we conclude that

Pt+1 = Pt

for all t € {1,...,n}, and therefore

pP1=p2= ... = Dn.

13



Corollary 1 Let p = (p1, ..., Pn) represent a mized strategy equilibrium in a sym-

metric transformed market entry game. Then it must be symmetric, i. e.

Uniqueness of a symmetric mixed strategy equilibrium

Proposition 2 The symmetric transformed market entry game has a unique

symmetric mixzed strateqy equilibrium p.

Proof: For pure strategies we demonstrated the existence of multiple asymmetric
equilibria. (Alternatively one could show that all players entering the market is
no equilibium, and the same holds for none entering the market.) According to
Corollary 1, we are thus allowed to conclude that a mixed strategy equilibrium
must be symmetric.

We denote with P;{m_;(s) = k} the probability that k other players (not
including the i’s player) are in the market.

For the expected payoff function of player ¢ we get:

Tp) = 3 pi Pdmoi(s) = b} - (vl + Kle — (K +1)] - vlz))

(27) n—1

= pi- Y Pfm_i(s) =k} - (v[z + K(c— (k+1))] = v[z)),
for all 2 = 1,...,n. Furthermore, we define
(28) (k) :=v[x + K(c— k)] — v[z],

for £ € {0,...,n}. Then for the derivative of the i’s player’s expected payoff

14



function and an equilibrium p the following must hold (see (8)):

(29) =) Bi{m_i(s) =k} - p(k+1) =0,

k=0

for all i = 1,...,n. The expression P,{m_;(s) = k} symbolizes the equilibrium
probability that & players (not including the i’s player) enter the market. If pis a
symmetric mixed strategy equilibrium point (see corollary 1), the following must

hold:

(30) b

Il
=l
N

Il

Il
=
3

Il

=N

Thus the system implied by (29) is reduced to

(31) (1—7)" 17k ok +1) =0,

(32) o(T) = (1 —m)"*trk ok +1).

Obviously a zero T of p in [0,1] is a Nash equilibrium p = (p1, o, - .., Pn) With
p; =7 forallt=1,...,n. Thus we only have to show that the polynomial @ has
a unique zero in [0, 1]:

It is
(33) p(0) = (1) = vz + K(c—1)] = v[z] > 0,
because of (9) and for ¢ > 1.

Also,

(34) p(1) = ¢(n) = o[z + K(c = n)] = v[z] <0,



because of (9) and for ¢ < n.
Obviously g is continuous for arguments in [0, 1]. Thus we have to show that
o is strictly monotonic decreasing. Or in other words, we proof that the criterion

@ (m) < 0 is fulfilled for all 7= € [0, 1] (see also (10)), whereby ¢ is the derivative

of p.
We get
(35)
i n-1
o (m) = [krE = (1 =) — b (= k= 1) (1 —7)"* 2] p(k +1).

In addition, the following equalities hold:

n—1 B (n—1)!  (n=1)!

(36) . e S T s ) AUl ey 1
and

n—1 n—1)! n—1)!
(37) . (n_k_l)_k!(v(m—kzl)!( g 1):1&(75,—/«;12)!‘
From (35), (36), and (37) we get:

nmlf n—1

(38)  ¢'(m) = et (L= )" ok + 1) = (k)]

Because v is strictly monotonic increasing we get
(39)  @k+1)—¢k)=v[zr+K(c—(k+1))] —vjz+ K(c—Fk)] <O,

forallk=1,...,n—1and 1 < ¢ < n. Thus ¢'(7) < 0 for all 7 € [0, 1]. It follows

that p has a unique zero in (0, 1).

16



Remark

If we want to investigate monotonically decreasing transformations of the payoff
function of the Rapoport Game, then the proofs for existence und uniqueness of
a symmetric mixed strategy equilibrium can be carried out analoguously: Here,
©(0) < 0 and p(1) > 0. Consequently, one would have to demonstrate that ' is

monotonically increasing, here.

4.1.3 Numerical Analysis

If we are interested in computing a symmetric Nash equilibrium, then we must

find a 7 so that the following equation is fulfilled:

(40) s (1 —7)"*=17k ok +1) =0,
k=0 k

with

(41) ok+1) :=v[z+ K(c— (k+1))] —v[z].

In the special case v(y) := y, we have the situation of Rapoport’s game in (4).
Here, an analytical solution of (40) is possible and validates Rapoport et al’s
findings:

(42)

17



Using the two equalties

43 1 — )" 1%% = 1 (binomial formula
(43) (1—7)
k=0 2
and
nt n—1
(44) k (1 —7)"*=17% = (n — 1)7 (binomial expected value),
k=0 k

we get for (42):

c—1
n—1

(45) Kec—-1)—-Kn-1)7=0 =>7=

For the transformation of payoffs via prospect theory’s value function vpr defined
in (1) and according to the preference calculus introduced in (2), a Nash equilib-
rium may only be determined numerically. For this means, we have implemented
a simple secant method (Judd 1998, pg. 158-159) in a java routine.

The calculations show that equilibrium probabilities are dependent of the
parameter K, the capacity ¢, and also of the number of players n. For starting

points x < 0, the entry probabilty is always larger, and for starting points x >

0 always smaller than the normative solution A numerical sensitivity

/"L J—
analysis also seems to allow for the tentative conclusion that for z — —oc and x —
~+o00, entry probabilties converge strictly monotonic to the normative equilibrium.

For the three-player game, this tentative conclusion can be analytically vali-

dated (see the next section).

18



4.2 Analytical Solutions for the Three-Player Game

The further analyses cannot be carried out for monotonically increasing functions
in general, anymore. Instead, we have to be more restrictive and analyze convex
and concave maps. Herewith, we are however still more general than prospect
theory’s value function.

A function v : R — R will be called strictly concave, if for all a,b € R and for

all A € (0,1)

(46) (1= A)a+ Ab) > (1 — A(a) + Av(b).
If for all a,b € R and for all A € (0, 1),

(47) v((1 = A)a + Ab) < (1= Av(a) + Av(b),

then we call v strictly convex.
If v: R — Ris twice differentiable, then we can characterize (46) and (47) as

follows:

(48) Let v"(z) < 0, then for all z € R = v is strictly concave for = € R,

(49) Let v"(z) > 0, for all z € R = v is strictly convex of z € R.

4.2.1 Basic Considerations

Lemma 1 Let v : R — R be strictly monotonic increasing and € > 0. If v is also

strictly concave, then, for all x € R

v(x) —v(r —¢)
(50) v(x+e)—v(x)

v(x
> 1 resp.
v(x +

19



If v is also strictly convex, then, for all z € R

(51) v(z) —v(r —¢)

<1 o
resp.
v(x+e)—v(x) b

v(z+e)—v(x)

Proof: Fora:=x —¢,b:=x+¢, and X := % we get:
(1—XNa+Ab=uz.
Because of (46),
1 1
v(z) > Ev(x —e)+ iv(x +¢)

(52) 20(z) > v(r —¢e) +v(z+e).

Subtracting v(z) and v(z —¢), and dividing by the right-hand side of the inequa-
tion (possible since v is strictly monotonic increasing), results in (50).

The correctness of (51) can be shown accordingly.

Lemma 2 Let v : R — R be diferentiable strictly monotonic increasing and

e>0. Also let w: R — Ry with

v(z) —v(r —¢)
v(z+e)—v(z)

(53) w(z) ==

If v is differentiable and v' is strictly monotonic decreasing then w is strictly

monotonic decreasing if and only if

(54)




If v is differentiable and v' is strictly monotonic increasing then w is strictly

monotonic decreasing if and only if

v'(z) —v'(x —¢)

(55) v'(z+¢e) —v'(x)

< w(z).

Proof: We show, that the criterion w'(z) < 0 (see (10)) is fulfilled:

(56)
w/(z) — ['U’(l") - U’(ZE - 5)][U(ZE + 8) - U(I)] - [U(aj) — U(gj — 6)][1)’(:E + 8) i ’Ul(aj)]
[v(z+¢) —v())? -
Also:
(57) w'(z) = v'(z) —v'(z —¢) —w(z)- V'(z+e) = (x)

v(z+¢e) —v(z) vz +e)—v(x)’

Case 1: If v' is strictly monotonic decreasing, then v'(z) — v'(z —¢) < 0 and

v'(x 4+¢) —v'(z) < 0 and we have:

w'(z) < 0
&
(58) V(@) —v(e—e) < wz)- 0'(z+e)—v'(2))
=

v'(z) —v'(x —¢€)
v'(x +¢e) —v'(2)

Case 2: If v’ is strictly monotonic increasing, then v'(z) — v'(x — &) > 0 and

v'(x +¢) —v'(x) > 0 and we have:

w'(z) < 0
&

(59) V() =z —¢e) < w(z)- (@ (z+e) -0 (z))
&

v'(z) —v'(x —¢)
v'(x+¢e) —v'(2)




Lemma 3 Let w : R — R, be strictly monotonic decreasing and w and /w

differentiable. Then the map v : R — R with
(60) u(z) ==

18 strictly increasing.

Proof: We show, that «'(z) > 0 is satisfied (see (10)):

| “w(e) - o/ @)]1 - w@)] — [1 - Vo))
w(o) T w@P

_ —w(z) W@ — 12> 0,

2-Vw(@)[l —w(z)?

because w'(z) < 0.

4.2.2 Equilibria for Identical Starting Points

Proposition 3 Let ¢ = 2, K = 1, and prospect theory’s value function repre-
sent the subjective transformation of payoffs. Then the transformed three-player’s

market entry has the following symmetric mized equilibrium:

1-v=a

62 T =
( ) T 1+«

with

. ’UPT(LE — ].) - ’UPT(LE)
UPT(I + 1) - ’UPT(I) ’
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Proof: Because of proposition 2 and the respective proof, the three-players

market entry game equilibrium 7 is the (unique) solution in (0, 1) of the polynome
(64) (1 — W)Q(UPT(ZB + 1) — UPT(ZB)) —+ 7T2(UPT(I,E — 1) — UPT(I,E)) =0.

The candidates for such a zero are:

(65) T = 1o and T = ———,

with

’UPT(]I — 1) — ’UPT(LE)

(66) @ ’UPT(I,E + 1) — ’UPT(ZB) ’

The expression « and thus the zero is dependent on whether the convex or con-
cave "part” of vpr is active. For the sake of simplicity, we only analyze situations
where either the convex or the concave part of vpr is ”active”, or where x = 0;

this covers starting points z € (—oo, —1] U [1, +00) U {0}.

Case 1: Let vpy be strictly concave. Then from (50) in Lemma 1 we get o < —1

or 1 +a < 0. Moreover 1 4++/—a >0 and 1 — y/—a < 0. Thus 74 is the zero.

Case 2: Let vpr be strictly convex. Then from (50) in Lemma 1 follows —1 <
a<0or0<1+4+a<1. Moreover 1 ++/—a >1and 7y > 1. Thus 7y is the zero

also in this case.

Case 3: x = 0. Then a = —2.25; this implies that the third case is a special case

of the second.

23



Remark

Note that the equilibrium reported in (65) and (66) differs from the equilibrium
reported in section 3 (see (45)). Thus our analysis leads to equilibrium entry
probabilities of our players that differ from the normative game. Consider e.g.
the case where x is equal to zero: The entry probabilty p; in the normative game
that can be derived from (45) will allways be 0.5 independent of z. But in the
transformed game ((65), (66)), 7, = 0.4 (: = 1,2,3). The expected number of
entries in the normative case is therefore 1.5 - already only 75% of market capacity
-, but even reduces to 1.2 or 60% in the transformed game.

Interpretation: If players use prospect theory’s value function instead of a
linear utility model, entry probabilities are reduced even if the starting point is

equal to reference point.

Proposition 4 Let ¢ = 2 and K = 1. Then for the Nash equilibrium 7 of a

three-players market entry game we have: For

1 —/w(zx)

(67) =)

with

’UPT(LE) — ’UPT(LE — ].)

(68) w(x) - UPT(]I + 1) — ’UPT(JI),
we have
©) i ufe) =3 = Jim_u(a).
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Also is
(70) u(z) ==
strictly monotonic increasing for x € (—oo, —1) U (41, +00).

Proof: First we show the identities in (69). Therefore we analyze the limits

lim w(z)and lim w(z) (for vpr and B € (0,1)):

T—+00 T——00

‘ .2 —(z—1)F =)
e e = ey T TS
Because
72 lim 1 (x — 1) lim 1— ( T )ﬂ 0
im 1— = im 1- -
Z—>+00 €T T—+00 X + 1 ’

we can utilize L’Hospital’s theorem. This implies that

)y, 10

(73) :cl—1>r—|{loo g(x) T—+00 g’(x)
with
flao) =1 (T
and
g(z) :==1— (x+1)ﬁ-
Thus
. L BE)T e+ 1)) (@ - 1)
(74) A wl) = I e
We also have
T e P ) B e e
e - e payer sy
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Since

|
(76) lim 1— (25

r—-+00 xT T——+00 x—1

we can use L’Hospital’s theorem:

(77) mE{nww(m) - mgrfoow(_m) - mggrnoo —ﬁ(i)ﬁfl(—]ﬂ)m

Now we calculate liin u(z) and lim wu(x). Asin (74), we have
T—r+00 T—r—00

(78) lim 1—w(z)= lim 1-—/w(x).

T—+/—00 T—+/—00
Therefore the suppositions of L’Hospital’s theorem are satisfied. We get:

w1

(79) lim wu(z)= lim

1w B
T—+/—00 z—+/—00 2 4 /w(x)w’(x) 2

Thus the statement in (69) is proofed.

For x > 0, vpr is defined as:
vpr(z) = 2P,

with 5 & 0.88 (see also (1)). For the derivatives we get:
Vpr(a) = B2t > 0,vpp () = B(B —1)2” 2 < 0.

Therefor v is strictly monotonic increasing and v’ strictly monotonic decreasing.

Because of Lemma 2 we must show, that:

Vpr(2) — vpr(z —€)
Vpr(@ +€) — vpr(2)

> w(x).

Also we have to show, that:

B (2Pt — (z — 1)) . (x—1)2f —a(x —1)°
B-((z+1)fF1t—af )" z(z4+1)8— (x4 1)2f
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This is equivalent to

(x—1D2f —a(x -1 2Pz —1) - z(x— 1)
zx+ 1) —(x+1)2f = (x+1)tlp — 2Pt (x4 1)

Because the monotony condition of v’ this inequality is fulfilled if
(=12’ —z(2—1)%)((z+1) la—2 (2+1)) < @ (2—1)—2(2—1)") (2(a+1)P —(2+1)2?)
This condition can be rewritten to

(x — 1)1% <z P,

and the correctness of the inequality is obvious. Thus it follows by Lemma 3 that
u is strictly monotonic increasing.

The case vpr(x) = —A - (—x)? for x < 0 can be shown accordingly.

Figure 2 represents the real valued function

1-v=a

(50 pla) = —

b

where z are variable (but for all players identical) starting points and ¢ describes
the variation of equilibrium entry probabilities of all players if all starting points
are symmetrically varied.

Interpretation: According to figure 2, equilibrium entry probabilities first of
all differ between the situations of negative and positive starting points (of all
players). As could be expected, entry probabilities are lower for positive rather
than negative starting points since players are risk averse above and risk seeking
below their reference point.
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LS

--------- TOL)

Loss R 0 +1 Gain

Figure 2: Entry probabilities with varied identical starting points in the trans-

formed game

Moving the starting points of all players upwards leads to an increase in the
entry probability that eventually is equal to the normative solution for positive
infinity. Moving the starting points of all players downwards leads to a decrease
in the entry probability that again comes out to be equal to the normative so-
lution for negative infinity. Both results are intuitive, since players may want
to adjust their entry probabilities downwards (upwards) if not only their own
starting situation is getting worse (better) but the same applies to all others who
in turn also have stronger (smaller) incentives to enter (before considering the

incentives of the others).
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4.2.3 Equilibria for Different Starting Points

In this section we again restrict our analyes to starting points =,y € (—oo, —1]U

[1,400) U {0}.

Proposition 5 Let 1 = x5 := y, 23 := x and ¢ = 2. Then the transformed

three-player market entry game has a unique mized strateqy equilibrium 7 with

1-y=a

(83) Fi=fp=
for

_ UPT(:E - 1) - UPT(SC)‘
& “= vpr(z +1) —vpr(x)’
. S

1+ (1 -y )ay

with
(86) o, = vpr(y) —vpr(y — 1)

vpr(y +1) —ver(y)
Proof: Let T = (71,79, 73) be a mixed equilibrium point. Then for the
partial derivatives of expected payoff functions of the i’s player (i = 1,2,3 ) (see

also (8) and (29)) the following must be fulfilled:

T ()

=0
or;

(87)

Therefore

(88) (1 —179)(1 —73)(vpr(y+ 1) —vpr(y)) + Toits(vpr(y — 1) — vpr(y)) = 0,

(89) (1 —m)(1—73)(ver(y +1) —vpr(y)) + TiTs(vpr(y — 1) — ver(y)) =0,
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(90) (1 —7y)(1 — 7o) (vpr(x + 1) — vpr(x)) + T2 (vpr(z — 1) — vpr(z)) = 0.
From (88) and (89) we dirctly get

(91) 1 = 7o

Using this result in (90) we get

(92) Flmfy = Y&

with

. UPT(I,E — 1) — UPT(I,E)
(93) “= ’UPT(IB + 1) — UPT(ZB) '

(The other zero is not valid, see the proof for Proposition 3.) Using (92) and (93)

for (89) and (87), respectively, we get:

(94) Fry = _ ,

with

vpr(y) —vpr(y — 1)
vpr(y +1) —vpr(y)

(95) Qy =

We now take a closer look at the situation implied by Proposition 5. We define

99 o) = ——
1+(m)ay

describing the equilibrium entry probability 73 if y is fixed and x is variable, and

(97) ealy) = ! ,

1+ (o ()

describing the entry probability 73 if x is fixed and y is variable.

1—-m
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Proposition 6 Let 1 = x5 := vy, x3 := x and ¢ = 2. Then the identities

: 1 :
(98) mETOO py(z) = 1+a, - mgglm py(T),
where c, is given in (86), and
(99) lim_¢aly) = 5 = lim_eu(0)
1m x = e = m x )
Jim ea(y g i ea(y

where Ty is given in (83), respectively, hold.

Proof: The statement in (98) obviously follows from (69) in Propositon 4
and the statement in (99) is the result of the limit analysis in (74) and (77) (see

Proof of Proposition 4).

Because the monotony properties of ¢, (x) and ¢,(y) induced by the monotony
properties of u and w in Proposition 4 and because ¢,(z) and ¢,(y) are contin-

uous, we conclude:

Corollary 2 The functions defined in (96) and (97) are monotone for x,y €

(—00, —=1) U (+1, +00) and we have:

1 ) 1 .
(100) 0z (y) > ﬁ cify < =1 and ¢,(y) < @ cify > +1
and
(101) y(x) < cif v < —1 and p,(z) > cif x> 41

1+ ay 1+ ay
To interpret these results, we analyze a special case where x is fixed and equal
to 0. Here, 0.6 is the limit for the entry probability w3 := 73 if y is varied up to
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---------- TD(-1)
................................... O SRR
D1)F--------
Loss y=-1 x=0 y=+1 Gain

Figure 3: Entry probability 73 with fixed  and varied starting points y

positive and down to negative infinity. A good intuition for our findings may be
gained from figure 3.

Interpretation: We hold the starting point of the third player constant and
equal to 0 and vary the starting points of the two others. We look at the entry
probability of the third. If the starting point values of the two first players are
small and positive, the entry probability of the third player is smaller as compared
to the situation when the starting point values of the two first players are large
and positive.

If the starting point values of the two first players are small and negative,
however, the entry probability is higher as compared to the situation when they
are large and negative.

In the situation described in (101), the value of y is fixed and z is varied.

Within the loss area ,m3 converges from below and within the gain area from
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above, both against the limit value 0.302. Additionally, we found out that within
the loss area an increasing 73 corresponds with a decreasing m(= my = 7).

Within the gain area the reverse holds.

5 Discussion

The integration of behavioral concepts into the simultaneous market entry game
leads to unique equilbria in mixed strategies for the cases analyzed, here. Not
surprisingly, equlibrium entry probabilities differ between the normative game
and the behavioral game as has been demonstrated in the tree-player case. For
a potentially more accurate prediction of real players’ behavior - given that the
equlibrium concept itself holds in reality - it may therefore be essential to take
into account behavioral phenomena such as loss aversion and gambling on losses.
Interesting phenomena also arise on the aggregated market level. Here, expected
total entry is smaller in the behavioral rather than the normative game already
without any prior gain or loss experience. The loss aversion feature of prospect

theory’s weighting function seems to deter individuals from entry.

6 Implications and Further Research

Assuming that behavioral assumptions are common knowledge and keeping the
general framework of game theory - i. e. equilibrium analysis - seems to open
the door for an integration of behavioral concepts into n > 1 games. More

behavioral concepts, more normatively irrelevant drivers of real decision makers’
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behavior, and more games may be analyzed using this approach. This makes
it feasible to test behavioral assumptions in laboratory experiments on n > 1
games. Experimental economics may benefit from this approach since normative
and decriptive predictions may be compared. The first step in this research
should be a replication of a (slightly modified) Rapoport (1995) simultaneous
market entry game with different starting conditions (loss or gain experiences)
manipulated. The entry probabilities should be measured according to a study
of Anderhub et al (1999).

Further research on the simultaneous market entry game should address the
uniqueness of a mixed strategy equilibrium for the n-player case with asymmetric

starting conditions.
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