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We discuss how to assess the performance for credit scores under the
assumption that for credit data only a part of the defaults and non-
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default. We show how to estimate bounds for this criterion, the Gini
coefficient and the accuracy ratio.
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1 Introduction

A bank which wants to decide whether a credit applicant will get a credit or not
has to assess if the applicant will be able to redeem the credit. Among other
criteria, the bank requires an estimate of the probability that the applicant will
default prior to the maturity of the credit. At this step, a rating of the applicant
is a valuable decision support. The idea of a rating system is to identify criteria
which separate the ”good” from the ”bad” creditors, as for example liquidity
ratios or ratios concerning the capital structure of a firm. In a more formal sense
a rating corresponds to a guess of the default probability of the credit. Obviously,
the question arises how a bank can identify a sufficient number of selective criteria
and, especially, what selectivity and discriminatory power means in this context.
In the following sections we try to make a first step to a rigorous treatment of
this subject which is rarely addressed in literature.

Apart from the theoretical attractiveness this issue is of highly practical impor-
tance. This is due to the fact that the Basel Committee on Banking Supervision
is working on a New Capital Accord (Basel II) where default risk adjusted cap-
ital requirements shall be established. In this context ratings and the design
of ratings play an important role. Clearly, the committee wants the banks to
identify factors which ”have an ability to differentiate risk [and] have predictive
and discriminatory power” (Banking Committee on Banking Supervision, 2001,
p. 50). Unfortunately, they do not give any formal definition of ”predictive” or
”discriminatory power”.

The paper is organized as follows: In Section 2 we discuss how to measure dis-
criminatory power of a score (a numerical value that reflects the rating of a credit
applicant). We introduce a criterion that is based on the difference between the
distributions of the score conditioned on default or non-default and is simple to
compute. Section 3 discusses the consequences of the typical censoring in credit
data due to the fact that not all credit applicants are accepted. This implies
that we do have default or non-default information only for a restricted set of
applicants. To keep things simple we first discuss discriminatory power using a
parametric setting. In Section 4 we consider the nonparametric case and show
how to find lower and upper bounds for the proposed criterion. Finally, Section 5
extends our approach to lower and upper bounds for the Gini coefficient and the
accuracy ratio (AR).

2 Discriminatory Power of a Score

Let us start with the following classification problem: Consider random variables
X1, . . . , Xp and a group indicator Y ∈ {0, 1}. A score S (used to rate applicants
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for a loan) is an aggregation of the variables X1, . . . , Xp into a single number.
Hence, we can consider any real valued function S(X1, . . . , Xp) to be a score. For
the sake of brevity we will use S to denote the random variable S(X1, . . . , Xp).
In the following we will only study the relation between S and Y .

There exists a variety of criteria to assess the quality of a score. A reasonable
score function for credit rating should assign higher score values to credit appli-
cants who have higher probabilities of default (PDs). Therefore the capability to
separate the two groups of observations corresponding to Y = 1 (default) and
Y = 0 (non-default) is a basic feature of a credit score function. A measure for
the discriminatory power can consequently be used as a performance measure for
a credit score.

A straightforward approach to assess discriminatory power is the comparison of
the conditional distributions of S given default or non-default. We will first focus
on the ”difference” of these two conditional distributions. The methodology that
is derived here can however be used for other measures of performance as well.

Overlapping of Normal Densities
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Figure 1: Overlapping area U for two normal densities

In the case of a normal distribution the conditional densities of S given Y = j,
j = 0, 1 are easy to visualize and to compute. Denote f0, f1 the probability
densities of S|Y = 0 and S|Y = 1, further F0, F1 their cumulative distribution
functions. Consider first the special case that f0 and f1 have exactly one point
of intersection, cf. Figure 1. (A condition for this property will be given in a
moment.) Let s be the horizontal coordinate of this intersection. Assuming a
normal distribution means that both densities f0 and f1 are determined by their
expectations µ0, µ1 and standard deviations σ0, σ1. We suppose (w.l.o.g.) in the
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following that µ1 > µ0. Then the region of overlapping U for the two densities
can be calculated as

U = F1(s) + 1− F0(s). (1)

If in the normal case both standard deviations are identical (σ0 = σ1), there is
exactly one point of intersection which is given by

s =
µ0 + µ1

2
.

For different standard deviations (σ0 6= σ1), there may be one or two points of in-
tersection (as in quadratic discriminance analysis) and the horizontal coordinates
are determined by f0(s) = f1(s) i.e. as solutions of the quadratic equation

s2(σ2
1 − σ2

0) + 2s(µ1σ
2
0 − µ0σ

2
1) + µ2

0σ
2
1 − µ2

1σ
2
0 + σ2

1 log(σ0)− σ2
0 log(σ1) = 0.

The definition of U can be easily generalized to the nonparametric case when no
distributional assumption for S is made:

U =

∫
min{f0(s), f1(s)} ds . (2)

This definition allows any number of intersection points of f0 and f1. Alterna-
tively, assuming a monotone relationship between the score S and the default
probability, a variant of the definition can be given by

U = min
s
{F1(s) + 1− F0(s)} . (3)

This definition is based on the idea that only one optimal intersection point should
exist in this case. As for the normal case, we assume that f1 is right of f0. An
analogous definition could be formulated for a monotone decreasing relationship.

It is obvious that for densities f0, f1 on completely different supports (perfect
separation) the region of overlapping U is zero. If both densities are identical (no
separation) then U equals one. In all other cases U will take on values between
0 and 1. An indicator of discriminatory power is now given by

T = 1− U. (4)

As U , the discriminatory power indicator T takes on values in the interval [0, 1].

In practice we have observations S(i) for the scores and Y (i) for the groups (de-
faults and non-defaults in credit scoring). Under the assumption of a normal
distribution U (and hence T ) can be computed using the empirical moments µ̂0,
µ̂1, σ̂0, and σ̂1.

Under more general assumptions on the distribution, U and T can be computed
for example by nonparametric estimates of the densities (histograms, kernel den-
sity estimators). In the monotone case it is sufficient to have nonparametric
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estimates of the cumulative distribution functions F0, F1. Those estimates can
be easily found by the empirical distribution functions

F̂j(s) =

∑
i I(S(i) ≤ s, Y (i) = j)∑

i I(Y (i) = j)
, j = 0, 1 . (5)

We remark that the distribution of T is related to the Kolmogorov-Smirnov test
statistics, which checks the hypothesis F0 = F1. Hence, this test can be applied
to find out if the score influences the PD at all.

3 Credit Scoring & Unobservable Areas

Consider now a sample of n credit applicants, for which a set of variables is given
(e.g. age of the applicant, amount and duration of the loan, income etc.). As
above we assume that a real valued score S is calculated from these variables at
time t = 0 and the default (Y = 1) or non-default (Y = 1) is observed at time
t = 1.

The particular problem of credit scoring is that we observe defaults and non-
defaults only for a subsample of applicants. In more detail, this means that the
bank computes scores for N applicants but only n of them (n < N) are accepted
for a loan. Hence, default and non-default observations are preselected by a
condition, which we denote by A. This type of sample preselection is usually
described as censoring or sample selection.

The problem of sample selection has been mainly studied in the (econometric)
literature with a focus on the estimating regression coefficients and PDs. Greene
(1998) for example uses a Heckman two-step procedure (see Heckman, 1979) for
estimating probit and count data models for credit data. Gourieroux and Jasiak
(2001, Ch. 7) consider maximum-likelihood probit and a Bayesian approach
whereas a rather general approach is introduced by Horowitz and Manski (1998).

We consider the problem of estimating discriminatory power in the censored case
under very general distributional assumptions. This will lead to upper and lower
bounds for the performance criteria rather than classical point estimates.

To illustrate the effect of censoring (or sample selection) for estimating U and
T assume again that both densities f0, f1 have exactly one intersection point.
Assume also that the censoring condition is

A = {S ≤ c} , (6)

where c is a threshold such that no credit applicants are accepted for a loan
when their score S is larger than c. Figure 2 shows this modified situation in
comparison to Figure 1. The distribution right to the black line (here c = 2)
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Overlapping for Credits
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Figure 2: Truncated overlapping area for credit data

cannot be observed but needs in fact to be considered for a correct assessment of
the performance of the score.

Denote S̃ = (S|A) und Ỹ = (Y |A) the observed part of the score and the group

variable. Hence, we have only observations for S̃j = (S̃|Ỹ = j), j = 0, 1 while
we are interested in Sj = (S|Y = j). Under the assumption (6), the relation

between S̃j and Sj is given by

P (S̃j ≤ s) =
P (S̃ ≤ s, Ỹ = j)

P (Ỹ = j)
=
P (S ≤ s, Y = j|A)

P (Y = j|A)

=
P (S ≤ s, Y = j)

P (S ≤ c, Y = j)
if s ≤ c.

Since P (Sj ≤ s) = P (S ≤ s|Y = j) = P (S ≤ s, Y = j)/P (Y = j) it follows that

P (S̃j ≤ s) =
P (Sj ≤ s)P (Y = j)

P (S ≤ c, Y = j)
=
P (Sj ≤ s)

P (Sj ≤ c)
,

which shows

F̃j(s) =
Fj(s)

Fj(c)
. (7)

Here F̃j denotes the cumulative distribution functions of S̃j. Under the assump-
tion that Sj has a continuous distribution, (7) results in an equivalent rescaling

of the densities by Fj(c). These densities and their region of overlapping Ũ for
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Overlapping of Truncated Densities
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Figure 3: Observed overlapping area Ũ

the normal case are shown in Figure 3. Note the difference to Figure 2 on the
vertical scale, since f̃j(s) ≥ fj(s).

We will now examine the difference between Ũ and U , the regions of overlapping
for the censored (observed) and the non-censored (partially unobserved) sample.
In the following we will consider the monotone version of the overlapping region:

U = min
s
{F1(s) + 1− F0(s)} .

Computing the overlapping region Ũ in the same way and using (7), would hence
give

Ũ = min
s

{
F̃1(s) + 1− F̃0(s)

}
= min

s

{
F1(s)

F1(c)
+ 1− F0(s)

F0(c)

}
. (8)

This shows that the naive calculation of the overlapping from incompletely ob-
served data is usually different (biased) from the objective overlapping region U .

The difference in Ũ and U (or T and T̃ ) can be considerably important as a
small Monte Carlo simulation shows. We have simulated 100 data sets, each of
N = 500 observations. The scores S(i) are generated only once and come from a
normal distribution with expectation −3 and variance 2.25. The simulated PDs
are obtained from a Logit model, i.e.

p(s) =
1

1 + exp(−s)

and the Y (i) are Bernoulli random variables with probability parameter p(S(i)).
The threshold is chosen as c = −0.5, this gives here n = 483.
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Discriminatory Power T
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Figure 4: Boxplots for T (upper) and T̃ (lower)

Figure 4 shows boxplots for the realized distributions of the estimated T̃ = 1− Ũ
(lower boxplot) and T = 1− U (upper boxplot). The graphic shows that in our

simulated example T̃ is typically smaller than T . In particular, both mean and
median of the 100 estimated T s are as large as the upper quartile of the estimated

T̃ s. A closer inspection of the data shows that in 95 cases
̂̃
T < T̂ and in 5 caseŝ̃

T > T̂ . So using T̃ at the place of T can mislead in assessing the performance of
the score in both directions (over- and under-estimation).

Under the assumption that the types of the distributions of Sj are known a

correction for Ũ can be easily calculated. Let us outline this for the example
of normal distributions: Here the moments of S̃j, j = 0, 1, can be calculated
(Greene, 1993, Theorem 22.2) by

E(Sj|Sj ≤ c) = µj + σjλ(αj), (9)

V ar(Sj|Sj ≤ c) = σ2
j [1− λ(αj){λ(αj)− αj}], (10)

with µj and σj denoting the moments of the unconditional distributions,

αj =
c− µj
σj

and λ(α) =
−φ(α)

Φ(α)

denoting the inverse Mills ratio. The expectations µj = E(Sj) and variances
σ2
j = V ar(Sj) can hence be calculated from the credit data using the empirical

moments of S̃j and by solving the system of equations (9)–(10). Estimates of
fj and Fj are then obtained by plugging µ̂j, σ̂j into the density and cumulative
distribution function of the normal distribution.

7



We remark that this idea can be generalized to any monotone transformation
of the normal distribution. For example, many variables used for credit scoring
have a skewed distribution. This typically transfers to scores which are linearly
weighted sums of these variables. The log-normal distribution, which can model
such a skewed score, has a direct relation to the normal distribution: Assume Sj
is log-normal with parameters µj, σj, then for the log-score

log(Sj) ∼ N(µj, σ
2
j ). (11)

Since the logarithm is monotone

Fj(s) = P (Sj ≤ s) = P (log(Sj) ≤ log(s)). (12)

The computation for log-normal scores is therefore completely determined by
the normal case. An even wider class of distributions is covered by using any
monotone distribution as e.g a Box–Cox transformation.

A correction of Ũ is also possible if the censoring is determined by another score
function S?, i.e.

A = {S? ≤ c}. (13)

This is a more realistic assumption since in practice S? can be considered as the
score function from a previous credit rating system. If the credit rating system
is redesigned, the performance of the new score function S needs to be assessed.
Under the very restrictive assumption of a joint normal distribution of Sj and S?j
with moments µj, σj, µ

?
j , σ

?
j and correlation ρj it is known that

E(Sj|S?j < c) = µj + ρjσjλ(αj), (14)

V ar(Sj|S?j < c) = (σj)
2[1− ρ2

jλ(αj){λ(αj)− αj}], (15)

see e.g. Greene (1993, Theorem 22.4). Here

αj =
c− µ?j
σ?j

and λ denotes the inverse Mills ratio as before. In addition we have

F̃ ?
j (x) = Φ2

(
x− µ?j
σ?j

,
c− µj
σj

, ρj

){
Φ

(
c− µj
σj

)}−1

. (16)

The moments of S?j could be estimated from equations analogous to (9)–(10).
With these estimates for µ?j , σ

?
j , the system of equations (14)–(16) could be used

to find estimates of the unconditional moments µj, σj and ρj.

This technique could again be generalized to monotone transformations as the
logarithm or the Box-Cox transformation. However, apart from the restrictive
distributional assumptions this approach requires that observations for both score
functions S? and S given A = {S? ≤ c} are available.
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4 Inequalities for the Nonparametric Case

As we have seen in Section 3, the computation of U from S̃j requires specific
assumptions on the distributions of Sj and their relations to the censoring condi-
tion A. In the case of completely unknown distributions there is no possibility to
estimate these distributions beyond A. This is a relevant problem when a bank
redesigns its credit rating system, since data on rejected applicants are normally
not available.

A possible remedy to this problem is the calculation of upper and lower bounds
for the discriminatory power T . The general assumption throughout this section
is that we know the percentage of rejected loans, i.e. the full number of credit
applicants. Denote this number of all credits (accepted or rejected) by N . Under
the assumption that the percentages of both rejected applicants and defaults are
small, relatively narrow bounds can be found for T . We want to stress that N
typically does not contain applicants who are rejected without being rated.

Recall that the computation of U requires the cumulative distribution functions
Fj(s) of Sj = (S|Y = j). However, we only observe F̃j(s), the cumulative

distribution function of S̃j = (S|Y = j,A). Therefore we consider now the

relation between Fj(s) and F̃j(s) in this general case. We have

Fj(s) = P (S ≤ s|Y = j)

= P (S ≤ s,A|Y = j) + P (S ≤ s,A|Y = j)

= P (S ≤ s|A, Y = j)P (A|Y = j) + P (S ≤ s,A|Y = j),

hence
Fj(s) = F̃j(s)P (A|Y = j) + P (S ≤ s,A|Y = j) (17)

where A denotes the complement of A. We find an upper bound for Fj(s) by
using that {S ≤ s} ∩ A ⊆ A in the second term of (17), i.e.

Fj(s) ≤ F̃j(s)P (A|Y = j) + P (A|Y = j)

= 1− P (A|Y = j){1− F̃j(s)}. (18)

A lower bound for Fj(s) is given by omitting the second term of (17) completely,
such that

Fj(s) ≥ F̃j(s)P (A|Y = j). (19)

Both inequalities (18) and (19) involve P (A|Y = j) which can not be directly
estimated, since the distribution of Y in A is unknown. However, we can describe
the range of P (A|Y = j).

We start with a first approximation. Let us introduce the notation

αj = P (A|Y = j),

9



such that (18) and (19) can be written as

αjF̃j(s) ≤ Fj(s) ≤ 1− αj + αjF̃j(s). (20)

From P (Y = j) = P (A, Y = j) + P (A, Y = j) we conclude that

P (A, Y = j) ≤ P (Y = j) ≤ P (A, Y = j) + P (A). (21)

Thus from

αj = P (A|Y = j) =
P (Y = j|A)P (A)

P (Y = j)
=
P (Ỹ = j)P (A)

P (Y = j)

it follows that

α?j ≤ αj ≤ 1, where α?j =
P (Ỹ = j)P (A)

P (Ỹ = j)P (A) + P (A)
. (22)

Equation (20) together with (22) yields

α?1 F̃1(s) + α?0{1− F̃0(s)}
≤ F1(s) + 1− F0(s) ≤ 2− α?1 {1− F̃1(s)} − α?0 F̃0(s) . (23)

As a consequence we obtain upper and lower bounds for the discriminatory power
indicator T = 1− U = 1−min{F1(s) + 1− F0(s)} which are given by

1−min
s

[
2− α?1 {1− F̃1(s)} − α?0 F̃0(s)

]
≤ T ≤ 1−min

s

[
α?1 F̃1(s) + α?0{1− F̃0(s)}

]
. (24)

We want to stress that in the special case where all credit applicants are accepted
we have A = Ω and α0 = α1 = 1. As a consequence (24) reduces to

T = 1−min
s
{F1(s) + 1− F0(s)} ,

which is exactly the definition introduced in Section 2.

More sophisticated bounds for F1(s) + 1− F0(s) can be obtained as follows. We
use the additional abbreviations

βj = P (A, Y = j), pj = P (Y = j),

such that

αj =
βj
pj
.

10



Consider the lower bound first. From (18) and (19) we have

F1(s) + 1− F0(s) ≥ α1F̃1(s) + α0{1− F̃0(s)}

=
β1

1− p0

F̃1(s) +
β0

p0

{1− F̃0(s)} (25)

In the last term every probability can be estimated from the observed data except
for p0. Hence, for given s the last term has to be minimized with respect to p0.
For this minimization one has to consider the three cases β1F̃1(s) = β0{1−F̃0(s)},
β1F̃1(s) > β0{1− F̃0(s)}, and β1F̃1(s) < β0{1− F̃0(s)}, which all lead to the same
result:

p?0 =


β0 if γs < β0,
β0 + P (A) if γs > β0 + P (A),
γs, otherwise,

(26)

and

γs =

√
β0{1− F̃0(s)}√

β0{1− F̃0(s)}+

√
β1F̃1(s)

. (27)

The upper and lower thresholds in (26) are consequences of the bounds in (21).

To derive an upper bound of F1(s) + 1− F0(s) we conclude from (18) and (19)

F1(s) + 1− F0(s) ≤ 2− α1{1− F̃1(s)} − α0F̃0(s)

= 2− β1

1− p0

{1− F̃1(s)} − β0

p0

F̃0(s). (28)

Maximization of the last term with respect to p0 leads to a similar result as
before:

p•0 =


β0 if δs < β0,
β0 + P (A) if δs > β0 + P (A),
δs, otherwise,

(29)

and

δs =

√
β0F̃0(s)√

β0F̃0(s) +

√
β1{1− F̃1(s)}

. (30)

Combining the results we obtain

β1

1− p?0
F̃1(s) +

β0

p?0
{1− F̃0(s)}

≤ F1(s) + 1− F0(s) ≤ 2− β1

1− p•0
{1− F̃1(s)} − β0

p•0
F̃0(s) (31)

11



and as in (24)

1−min
s

[
2− β1

1− p•0
{1− F̃1(s)} − β0

p•0
F̃0(s)

]
≤ T ≤ 1−min

s

[
β1

1− p?0
F̃1(s) +

β0

p?0
{1− F̃0(s)}

]
. (32)

All quantities in the inequalities (24) and (32) can be estimated. For the ob-
served scores under default and non-default we have their empirical distribution
functions as in (5). To estimate α?j , βj, p

?
0 and p•0 we consider the probabilities of

the events {Ỹ = j}, A and A which can be estimated by their observed relative
frequencies

P̂ (Ỹ = j) =
nj
n
, P̂ (A) =

n

N
, P̂ (A) =

N − n
N

. (33)

Here n0 denotes the number of observed non-defaults (Y (i) = 0) and n1 the
number of observed defaults (Y (i) = 1). As before we use n for the sample size of
the observed credits (i.e. n = n0 + n1), and N for the number of all the credits.
This gives the estimates

α̂?j =
nj

nj +N − n
, β̂j =

nj
N
. (34)

Estimates for p?0 and p•0 can be found by plugging β̂j, P̂ (A) and
̂̃
F j(s) into (27)

and (30).

As before we use a Monte Carlo simulation to illustrate the effect of these esti-
mated bounds. The construction of the simulated data set is as above with one
modification: We use scores S(i) with a variance of 1.44. This yields a value of

n = 491 for the sample size of the observable scores. We find T̂ >
̂̃
T in 91 cases

and T̂ <
̂̃
T in 9 cases.

Figure 5 shows estimates for T (thick solid line), T̃ (thin solid line) and the
estimated upper and lower bounds according to (32) for all 100 simulated data
sets (sorted by the estimated T s). The bounds according to (24) are wider but
of very similar size, such that we omit them here. Recall that in practice the
estimation of T̂ could not have been carried out, this is only possible here for
simulated data. The simulation shows in particular, that in the mentioned 9 cases
T̃ as a replacement of T would have led to a too large value for the discriminatory
power of the score. The upper and lower bounds however (which cover both T̃

and T ) indicate a correctly specified range for T̂ .

We remark that the lower bound in Figure 5 seems to be quite far away from

both T̂ and
̂̃
T . This is a consequence of the fact that this bound does not require
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Discriminatory Power T and Bounds
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Figure 5: Estimated T (thick solid), T̃ (solid) and bounds (dashed)

any information about the structure of the censoring condition A. This bound
could be considerably improved if additional information as e.g. A = {S ≤ c} is
used.

5 Gini coefficient and Accuracy Ratio

An alternative and frequently used measure for the performance of a score is the
accuracy ratio AR which is based on the Lorenz curve and its Gini coefficient. In
the case of censored data, the accuracy ratio computed from the observed part
of the data is biased as well. As for T we can estimate bounds for the AR if the
distribution of the score is unknown.

Let us first introduce the relevant terms. The Lorenz curve visualizes scores by
means of comparing the distributions of S1 and S. Figure 6 shows the principle of
the Lorenz curve. On the horizontal and vertical scales, the percentages of appli-
cants are sorted from high to low scores. The Lorenz curve is also known as selec-
tion curve. Variants of the Lorenz curve are the receiver operating characteristic
(ROC) curve (Hand and Henley, 1997) and the performance curve (Gourieroux
and Jasiak, 2001, Ch. 4).
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To operate with cumulative distribution functions denote the negative score by

V = −S.

The Lorenz curve of S is then defined by the coordinates

{L1(v), L2(v)} = {P (V < v), P (V < v|Y = 1)} , v ∈ (−∞,∞) .

Since P (V < v) = 1− F (−v), this is equivalent to

{L1(s), L2(s)} = {1− F (s), 1− F1(s)} , s ∈ (−∞,∞).

A estimate of the Lorenz curve can be computed by means of the empirical
cumulative distribution functions F̂ and F̂1.

of Defaults
Percentage

(ordered from bad to good)
Percentage of Applicants

optimal curve

Lorenz curve

100%

100%

1−F(s)

1−F(s|Y=1)

Figure 6: Lorenz curve for Credit Scoring

Recall that scores should assign higher score values to credit applicants with
higher PDs. Such a credit score is obviously good if all vertical coordinates of the
Lorenz curve are large. The best (optimal) Lorenz curve corresponds to a score
that exactly separates defaults and non-defaults. This optimal curve reaches the
vertical 100% at a horizontal percentage of P (Y = 1), the probability of default.
A random assignment of credit applicants to score values corresponds to a Lorenz
curve identical to the diagonal.

Lorenz curves can also be used to compare different score functions. Better
scores are more close to the optimal Lorenz curve. A quantitative measure for

14



the performance of a score is based on the area between the Lorenz curve and
the diagonal. The Gini coefficient G denotes twice this area, i.e.

G = 2

∫ 1

0

{1− F1(H(z))} dz − 1 = 1− 2

∫ 1

0

F1(H(z)) dz (35)

where H is the inverse of 1 − F . In practice the latter integral is estimated by
numeric integration of F̂1 over the range of F̂ .

To compare different scores, their accuracy ratios AR are defined by relating the
Gini coefficient of each score to the Gini coefficient of the optimal Lorenz curve.
The accuracy ratio is hence defined as

AR =
G

Gopt

=
G

P (Y = 0)
.

In the censored case we would compute G̃ and ÃR instead of G and AR. Note
that as for T̃ and T the Gini coefficients and accuracy ratios are biased. We will
now show how to obtain upper and lower bounds for G and AR in this censored
case, i.e. if observations for A are not available. As before let S̃1, S̃ denote the
observed scores and F̃1, F̃ their cumulative distribution functions. We use (18)

and (19) for F̃1 and derive similar inequalities for F̃ using the same ideas we used

for F̃j. Consider first

F̃ (s) =
P (S ≤ s,A)

P (A)
≤ P (S ≤ s)

P (A)
=

F (s)

P (A)
.

Also we have

F (s) = F̃ (s)P (A) + P (S̃ ≤ s|A)P (A)

= F̃ (s)P (A) + P ({S̃ ≤ s} ∩ A)

≤ F̃ (s)P (A) + P (A) = 1− P (A) {1− F̃ (s)}.

Together this gives

F̃ (s)P (A) ≤ F (s) ≤ 1− P (A) {1− F̃ (s)} . (36)

Using this together with (20) for F1, we find lower bounds

{L̂?1(s), L̂?2(s)} =

[
P (A)

{
1− ̂̃F (s)

}
, α?1

{
1− ̂̃F 1(s)

}]
and upper bounds

{L̂•1(s), L̂•2(s)} =

{
1− P (A)

̂̃
F (s), 1− α?1

̂̃
F 1(s)

}
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Accuracy Ratio AR and Bounds
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Figure 7: Estimated AR (thick solid), ÃR (solid) and bounds (dashed)

for the Lorenz curve. In practice we use the estimates α̂?1,
̂̃
F 1(s), P̂ (A) from

Section 4 and ̂̃
F (s) =

∑
i I(S(i) ≤ s)

n
.

The upper and lower bounds for the Lorenz curve obviously lead to upper and
lower bounds Ĝ• and Ĝ? for the Gini coefficient since integration preserves mono-
tonicity. For the accuracy ratio AR we need the additional estimate for P (Y = 0).
As we discussed before, a point estimate of P (Y = 0) is not available. However
(21) motivates upper and lower estimates

n0

N
≤ P̂ (Y = 0) ≤ N − n1

N
.

Hence, bounds for the estimated accuracy ratio can be found from

N

N − n1

Ĝ? ≤ ÂR ≤ N

n0

Ĝ• . (37)

As we have seen for T , in the special case that all credit applicants are accepted,
it holds A = Ω and α0 = α1 = 1. Hence, the upper and lower bounds for the
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Lorenz curve as well for Gini coefficient and accuracy ratio coincide with their
respective values in this fully observed case.

As an illustration, we use the data from the Monte Carlo simulation in Section 4.
Figure 7 shows the estimated AR (thick solid line) and ÃR (thin solid line) as
well as the estimated upper and lower bounds according for all 100 simulated

data sets (sorted by the estimated ARs). We find ÂR >
̂̃
AR in 97 cases and

ÂR <
̂̃
AR in 3 cases. As for T we can conclude that using ÃR as a replacement

of AR would have led to too large or small values for the discriminatory power
of the score, whereas the upper and lower bounds indicate a correctly specified
range for ÂR. We also remark that the resulting plot in Figure 7 is very similar
to that for T in Figure 5.
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