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Abstract

The market for derivatives with payoffs contingent on the credit qual-
ity of a number of reference entities has grown considerably over recent
years. The risk analysis and valuation of such multi-name structures
often relies on simulating the performance of the underlying credits. In
this paper we discuss the simulation of correlated unpredictable default
arrival times. Our algorithm is based on the compensator of default. We
construct this compensator explicitly in a multi-firm structural model
with correlated defaults and imperfect asset and default threshold ob-
servation. It is shown how the model parameters can be estimated from
readily available equity and single-name credit derivatives market data.
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1 Introduction

Credit risk refers to the risk of incurring losses due unexpected changes in

a counterparty’s credit quality. Credit derivatives allow to isolate and trade

that risk by providing a payoff upon a credit event arrival with respect to a

reference entity, such as rating downgrade, failure to pay, or bankruptcy. Multi-

name or basket credit derivatives have payoffs contingent on the credit quality

of a number of reference entities. They provide a means to reduce or gain

credit risk exposure related to a basket of debt securities. Popular products

include first-to-default swaps, in which the contingent payment by the protec-

tion selling party is triggered by the first-to-occur default event. More complex

multi-name instruments include Collateralized Debt Obligations, which are

structured fixed income transactions. They involve prioritized tranches whose

cash flows are linked to the performance of a pool of debt instruments.

The risk analysis and valuation of complex multi-name structures often

relies on simulating the performance of the reference entities. In credit risk

management applications, where one is concerned with the aggregated credit

risk associated with some portfolio of credit-risky securities, simulation of event

arrivals is often essential to estimate the distribution of aggregated losses due

to credit event arrivals.

One existing approach to the simulation of correlated and unpredictable

default times is based on the default intensity. The intensity process directly

prescribes the stochastic structure of default; it can be interpreted as the con-

ditional arrival rate of default. To model default dependence, one can intro-

duce correlation between the intensities [Duffie & Singleton (1998)], impose

the default dependence structure directly [Schönbucher & Schubert (2001)],

or introduce joint shock events which lead to simultaneous defaults of several

firms [Giesecke (2002)]. While individual intensity process parameters might

be calibrated from market data, the calibration of the correlation structure is

difficult. This is in part due to the ad-hoc nature of this approach, in which

the default event is not causally modeled.

We propose an alternative structural approach to the simulation of cor-

related and unpredictable default times. Taking as given the asset dynamics,

a default event is explicitly defined in terms of a firm’s assets and liabilities.

This facilitates the calibration of the model, in particular with respect to the

correlation structure.

Our simulation methodology involves a recursive algorithm which is based

on the compensator of default. This compensator counteracts the jump in the

default indicator such that the difference between compensator and indica-
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tor becomes a martingale. In that sense the compensator can be viewed as

the fair fixed rate premium for a default insurance payment of one unit of

account upon the default incidence. While the compensator always uniquely

exists, the existence of an intensity as the density of the compensator is not

always granted. We construct the compensator of the kth default explicitly in

a multi-firm structural model with correlated defaults. Taking as given a firm’s

asset dynamics, we define a default event as the first time the assets fall to

some lower threshold relative to liabilities. In practice, however, it is typically

difficult to directly observe a firm’s assets and default threshold. We take this

into account and suppose that assets and default thresholds are not publicly

known, cf. Duffie & Lando (2001) and Giesecke (2001b). In this situation one is

always uncertain about the nearness of the assets to the threshold. Therefore

defaults are surprise events; they are completely unpredictable. This is realis-

tic and implies credit spread term structure properties that match empirical

observations. In particular, bond prices are subject to surprise jumps upon

default and credit spreads are bounded away from zero even if maturities are

going to zero. In the usual structural approach with a continuous asset process

and perfect information, bond prices converge continuously to their default-

contingent values and spreads go to zero with maturity going to zero. This

behavior is however empirically not plausible.

Following Giesecke (2001a), dependence between default events is intro-

duced through correlation of firms’ assets and correlated default thresholds.

The former can be thought of as arising from firms’ common dependence of

general (macro-) economic factors, while the latter corresponds to direct firm

inter-linkages, such as parent-subsidiary relationships or substantial mutual

capital holdings. Either ’correlation mechanism’ potentially induces the full

range of possible default dependence, from perfect negative to perfect positive

default correlation.

The parameters of our multi-firm model (asset volatilities, asset corre-

lations, and default thresholds or their distribution) can be estimated from

readily available equity and single-name credit derivatives market data.

The remainder of this paper is organized as follows. In Section 2, we

introduce our basic algorithm for the simulation of an individual default time.

The underlying structural model and parameter estimation is discussed in

some detail. In Section 3, we extend to the practically relevant case of first-

to-default simulation. The modeling of default correlation is emphasized. A

general algorithm for simulating successive correlated event times is provided

in Section 4. Section 5 concludes.
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2 Single-Entity Default Simulation

In this section we discuss an algorithm for default arrival time simulation.

In Sections 3 and 4, we will extend this basic algorithm to multi event time

simulation.

2.1 Basic Algorithm

We fix a probability space (Ω,G, P ) equipped with a right-continuous and

complete filtration (Gt)t≥0 describing the information flow over time. In risk

analysis applications, P is the physical probability; for derivatives valuation

purposes P is taken to be some risk-neutral probability.

The default time of some given firm is a random variable τ taking values

in (0,∞]. We assume that P [τ > t] > 0 for all t ≥ 0. The default indicator

process is denoted N = (Nt)t≥0, where Nt = 1{t≥τ}. We assume that

Gt = σ(Ns : s ≤ t). (1)

In accordance with empirical observations, we suppose furthermore that the

default event occurs completely unexpectedly; by surprise, so to speak. That

means τ is a totally inaccessible stopping time.

Our goal is to simulate an inaccessible (0,∞]-valued stopping time which

is equal in conditional distribution to τ . This conditional distribution can be

characterized through the default compensator, i.e. the unique, increasing, and

predictable process K = (Kt)t≥0 with K0 = 0 and such that the difference

process N −K is a martingale. The default compensator can be calculated in

terms of the survival function L(t) = P [τ > t] as follows:

Kt = −
∫ t∧τ

0

dL(s)

L(s−)
, (2)

cf. Dellacherie (1970). If τ is inaccessible, then L is continuous and the con-

tinuous compensator is given by

Kt = − ln L(t ∧ τ). (3)

In this case, on the set {t < τ} the default probability satisfies

P [τ ≤ T | Gt] = 1− L(T )

L(t)
= 1− eKt−KT , t ≤ T. (4)

Now let some continuous increasing function A with A(0) = 0 be given.

By means of the following algorithm we can construct an inaccessible stopping
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time τ having default compensator Aτ = A(· ∧ τ). Interpreting Aτ as the com-

pensator of some given event time, according to (4) the simulated τ is equal

in distribution to that event time.

Basic Algorithm.

(1) Simulate a standard uniform random variable U .

(2) Set τ = inf{t ≥ 0 : e−A(t) ≤ U}.

From Step (2) we obtain immediately

L(t) = P [U < e−A(t)] = e−A(t), (5)

so that L is continuous. In view of (3), it follows that the simulated stopping

time τ has indeed compensator Aτ = K where Aτ
t = A(t ∧ τ) = − ln L(t ∧ τ).

2.2 Constructing the Survival Function

Having established our basic single entity default simulation algorithm, we need

a default model which can be easily calibrated to observable market variables

and for which the default compensator can be tractably calculated. We will

insist on a model such that the survival function L is continuous, so that the

default event is unpredictable and the default compensator is given by (3). We

then simply put A(t) := − ln L(t) in Step (2) of our basic algorithm.

Our default model belongs to the structural class. That is, we take as given

the dynamics of the firm’s asset value V and assume that the firm defaults when

the assets fall below some threshold D for the first time. We assume V to be

continuous and without loss of generality we normalize V0 = 0. The running

minimum asset process is denoted M = (Mt)t≥0 with

Mt = min{Vs | 0 ≤ s ≤ t}.

In the classical structural approach investors are assumed to have complete

information on assets and threshold. In this case the default occurs never

unexpectedly, because investors can observe the nearness of the assets to the

default threshold, and therefore, they are warned in advance when a default

is imminent. In practice, however, it is typically difficult if not impossible to

directly observe the assets of an issuer and the threshold asset level at which

the firm will be liquidated, cf. Duffie & Lando (2001) and Giesecke (2001b).
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Taking this into account, in (1) we assume that default events are publicly

observable but the firm’s assets V and its default threshold D are unknown.

Note that in this case one is always uncertain about the nearness of the assets

to the default threshold, so that a default occurs completely unexpectedly.

This is in accordance with empirical observations.

Let D have density g on (−∞, 0) and suppose throughout that D is inde-

pendent from assets V . We then have for the survival probability

L(t) = 1− P [Mt ≤ D] = 1−
∫ 0

−∞
H(t, x)g(x)dx, (6)

where H(t, ·) is the distribution function of Mt. Clearly, L is continuous as soon

as H(t, x) is continuous in t for fixed x. Now suppose the default threshold D

is a priori known, D ∈ G0. We then have simply

L(t) = P [D < Mt] = 1−H(t,D). (7)

Obviously the efficiency of default arrival time simulation depends on the

structure of the functions H(t, ·) and g. While the former is determined by

the assumed asset dynamics, the latter can be specified ’more freely’. If these

functions are in closed-form, then simulation using our basic algorithm is very

efficient, especially when D is known.

2.3 Estimating Parameters

To implement our basic algorithm, we need to specify the asset dynamics,

estimate the parameters of the assumed process, and estimate the threshold

value D or its distribution G, respectively.

In line with the majority of structural approaches, let us specify a Brow-

nian motion with drift µ and volatility σ for assets V . Then the distribution

function H(t, x) of Mt is continuous in (t, x) and for x ≤ 0 and t > 0 given by

H(t, x) = 1− Φ

(
µt− x

σ
√

t

)
+ exp

(
2µx

σ2

)
Φ

(
x + µt

σ
√

t

)
, (8)

where Φ is the standard normal distribution function. Of course, if we work

under some risk-neutral probability P , the drift equals the riskless short rate.

Estimates for the volatility σ can be obtained from standard credit risk man-

agement software packages such as KMV’s Credit Monitor. Their default mod-

eling approach and ours are consistent; both are based on similar structural

arguments. For an exposition of the estimation methodology we refer to Cros-

bie (1997) or Crouhy, Galai & Mark (2000). In case the name to be simulated
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is not monitored, one can easily infer estimates from monitored competitors

or take average industry values.

Alternatively, the asset volatility σ can be calibrated from market data,

for example (liquid) credit default swap prices or corporate bond prices. Our

default model is then consistent with observed prices. Once a (risk-neutral)

survival probability L(T ) for the fixed horizon T is implied out from a price

quote, σ can be found (numerically) via (6) or (7).

Balance-sheet data can be the basis for estimating the default threshold

value D. Based on extensive empirical observations, KMV advocates to set

D equal to the face value of short term (up to one year) liabilities plus some

fraction of the face value of longer term liabilities (see Crosbie (1997)). Alter-

natively, given some market-implied survival probability, D can be calibrated

via (7), cf. Hull & White (2000), for example.

In case reliable data for the estimation of D is not available, one has

to specify some possibly parametric distribution G for D (the parameter can

again be calibrated from market data). A pragmatic choice of G can be based

on tractability considerations. For example, one can set G(x) = g(x) = ex for

x ≤ 0, which would correspond to a uniformly distributed threshold if we start

off with a geometric Brownian motion for assets. In order to exploit the closed-

form solution for L in (7) when D is known, one can also easily simulate D by

drawing an additional independent W ∼ U [0, 1] and setting D = G−1(W ) for

continuous and strictly increasing G.

In Figure 1, we plot the term structure of survival probabilities L based

on (6) for varying asset volatility. We set µ = 6% (the riskless rate) and

g(x) = ex. Clearly, the higher the business risk of the firm, the higher are

default probabilities for a given time horizon.

3 Simulating the First-to-Default

We now extend our basic one-name setup to n correlated names, where we focus

on first-to-occur default event simulation, which is instructive and practically

relevant. A general algorithm for simulating successive defaults is provided in

Section 4.

3.1 Basic Algorithm

The default time of firm i ∈ {1, 2, . . . , n} is denoted τi with indicator process

N i. We assume that the probability of two defaults occurring simultaneously
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Figure 1: Term structure of survival probabilities, varying as-

set volatility.

is zero. The public information flow is defined by

Gt = σ(N i
s : s ≤ t, i = 1, . . . , n). (9)

The ordered sequence of default times is denoted by (Ti) and we set

Nt =
∑

i 1{t≥Ti}. In analogy to Section 2, the distribution of the first-to-default

time T1 can be characterized through the first-to-default compensator. Letting

L1(t) = P [T1 > t] be continuous, the process K1 given by

K1
t = − ln L1(t ∧ T1) (10)

is the compensator of T1, cf. Chou & Meyer (1975). On the set {t < T1}, the

conditional first-to-default probability is then given by

P [T1 ≤ T | Gt] = 1− L1(T )

L1(t)
= 1− eK1

t−K1
T , t ≤ T.

We wish to simulate an inaccessible stopping time which is equal in dis-

tribution to T1. Our algorithm proceeds in two steps: Given some continuous

increasing function A1 with A1(0) = 0, we first construct an unpredictable

stopping time T1 having compensator AT1 = A1(· ∧ T1). The second step con-

sists of simulating the identity of the first-to-defaulter given T1.

First-to-Occur Event Algorithm.

(1) Simulate a standard uniform random variable U .
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(2) Set T1 = inf{t ≥ 0 : e−A1(t) ≤ U}.

(3) Simulate the identity of the first defaulter, i.e. simulate an {1, . . . , n}-
valued random variable I having given conditional distribution

P [I = i |σ(T1)] =
q1(i, T1)

q1(1, T1) + . . . + q1(n, T1)
,

where the quantities q1(i, t) are given by

q1(i, t)dt = P [T1 = τi, T1 ∈ (t, t + dt)]

= P [τi ∈ (t, t + dt), τj > t (j 6= i)]. (11)

3.2 Constructing the First-to-Default Survival Function

For first-to-default simulation we need a multi-firm default model for which the

first-to-default compensator can be efficiently calculated. In analogy to Section

2.2, we insist on a model such that the survival function L is continuous, so

that the defaults are inaccessible and we can put A1(t) := − ln L1(t) in our

algorithm.

Given the dynamics of its asset value V i, we assume that firm i defaults

when assets fall to the threshold Di for the first time. We assume V i to be

continuous and without loss of generality we normalize V i
0 = 0. Throughout,

we suppose that the threshold vector D = (D1, . . . , Dn) is independent of

assets V = (V 1, . . . , V n). We denote by G the joint distribution function of D

on (−∞, 0]n, and we assume that G is continuous. Letting M i be the running

minimum asset process of firm i, we have for the survival function

L1(t) = P [min
i

(τ1, . . . , τn) > t]

= P [M1
t > D1, . . . , M

n
t > Dn]

=

∫

(−∞,0]n
G(x) h(t, x) dx, (12)

which is continuous as soon as the density h(t, x) of Mt = (M1
t , . . . , Mn

t ) is

continuous in t for fixed x ∈ (−∞, 0)n. In view of (11), for the first-to-default

identity probability we get

q1(i, t) =

∫

(−∞,0]n
Gzi

(x) h(t, x) dx, (13)
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where Gzi
(z1, . . . , zn) denotes the partial derivative of G with respect to its ith

argument. Now suppose that the thresholds Di are known a priori: D ∈ G0.

Denoting by H̄(t, ·) the joint survival function of Mt, from (12) we obtain

L1(t) = H̄(t,D), (14)

which is continuous as soon as H̄(t, x) is continuous in t for fixed x ∈ (−∞, 0)n.

Likewise, we have for the first-to-default identity probability

q1(i, t) = −H̄zi
(t,D). (15)

The efficiency of first-to-default simulation depends critically on the struc-

ture of the density h and the survival function H̄ under the assumed asset

dynamics, to which we turn next.

3.3 Default Correlation and Estimation

In order to implement our n-name structural model, we need to specify/estimate

individual firm parameters (asset dynamics, default threshold). This proceeds

as discussed in Section 2.3. Additionally, we have to specify the correlation

between individual firms.

Our structural model allows for two natural and intuitive ways of incor-

porating correlation between individual firms. The first is via the correlated

evolution of firms’ assets and the second is via dependence of firms’ default

thresholds, cf. Giesecke (2001a). These ’mechanisms’ can be imposed simul-

taneously or alternatively, depending on what correlation characteristics is

needed, which data as a basis for estimation is available, or simply on compu-

tational tractability.

Asset value correlation corresponds to an indirect interrelation between

firms arising from the dependence of firms on common macro-economic fac-

tors. Assuming that assets V follow an n-dimensional Brownian motion, this

is formally represented by the correlation matrix Σ = (ρij)n×n, where ρij de-

notes the (constant) linear correlation coefficient between V i and V j. There

are well-established methods for estimating Σ from equity market data. For

an exposition, see Kealhofer (1998) and Crouhy et al. (2000). These meth-

ods are implemented in standard software packages (KMV, CreditMetrics).

Given the joint asset dynamics, for the calculation of L1 and q1 we need

the running minimum asset density h(t, ·) or the survival function H̄(t, ·).
Iyengar (1985) provides these functions in case n = 2; see also Zhou (2001).

He, Keirstead & Rebholz (1998) calculate the 2-dimensional distribution func-

tion H(t, ·, ·) of Mt in terms of modified Bessel functions. Then H̄(t, x, y) =
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1 − H(t, x, 0) − H(t, 0, y) + H(t, x, y). Unfortunately, results for the general

multi-dimensional case n ≥ 3 have not yet been worked out, to our knowledge.

Default threshold dependence corresponds to direct inter-firm linkages such

as parent-subsidiary relationships or mutual substantial capital holdings. We

can separate the threshold dependence structure from their marginal behavior

by means of their copula C, satisfying

G(x1, . . . , xn) = C(G1(x1), . . . , Gn(xn)), xi ≤ 0, (16)

where Gi is the distribution function of the default threshold Di of firm i.

The copula function C captures the complete dependence between the ran-

dom thresholds D1, . . . , Dn. While Gi is determined by idiosyncratic factors,

C represents threshold determinants which are due to the direct links between

firms. Suppose we have fixed the Gi (see Moraux (2001) for a related problem).

It then remains to specify C, which is much more difficult than estimating asset

correlations Σ. If sufficient historical default data is available, one can directly

estimate the empirical copula Ĉ of D, cf. Nelsen (1999) for a definition. Dur-

rleman, Nikeghbali & Roncalli (2001) review approximation methods for the

empirical copula. In lack of appropriate default data, one can specify some

parametric copula family Cθ. Many parametric families with different proper-

ties are available, see Lindskog (2000) for some. A choice can be led by desired

mathematical properties (for tractability, say), or by the desired statistical

properties. The parameter vector θ might then be estimated from risky bond

prices or credit swap spreads. Durrleman et al. (2001) discuss some suitable

estimation methods. Jouanin, Rapuch, Riboulet & Roncalli (2001) show how

to calibrate θ from Moody’s Diversity Score.

3.4 Threshold Copula

In order to examine the effects of the threshold copula on the distribution of

the first-to-default time T1, we consider a homogeneous first-to-default basket

with n = 5 names. Assume that issuers’ assets follow a standard 5-dimensional

Brownian motion. This means that assets are independent and we can focus

on the effects of threshold dependence.1 The density of Mt is then given by

1For an analysis of the joint default behavior with respect to asset correlation under
perfect information we refer to Frey & McNeil (2001).

11



h(t, ·) = h1(t, ·) · · ·h5(t, ·), where

hi(t, x) =
1

σi

√
t
φ

(−x + µit

σi

√
t

)

+ exp

(
2µix

σ2
i

) [
2µi

σ2
i

Φ

(
x + µit

σi

√
t

)
+

1

σi

√
t
φ

(
x + µit

σi

√
t

)]
, (17)

is the density of M i
t , which is straightforwardly derived from (8) by differenti-

ation. φ is the standard normal density function.

The threshold dependence structure is modeled by the parametric Clayton

copula family. As is not uncommon for first-to-default baskets, we suppose that

the correlation structure in the basket is symmetric. We can therefore choose

the one-parameter version of the Clayton family, which is given by

CC
θ (u1, . . . , u5) = (u−θ

1 + · · ·+ u−θ
5 − 4)−

1
θ , ui ∈ [0, 1], θ > 0. (18)

The parameter θ controls the degree of threshold dependence: θ →∞ reflects

perfect positive dependence, and θ → 0 corresponds to independence. The de-

gree of monotonic threshold dependence can be expressed in terms of Kendall’s

pairwise rank correlation ρK ∈ [−1, 1]. We have ρK = −1 iff the thresholds are

perfectly negatively related, ρK = 1 iff they are perfectly positively related,

and ρK = 0 in case of independence. In contrast to linear correlation, ρK is

defined on copula level. For the Clayton family we have ρK = θ/(θ + 2) (with

θ > 0 ρK is positive as well and (18) expresses positive dependence). Assuming

that the default threshold of firm i has distribution function Gi(x) = ex, from

(16) the joint threshold distribution is

GC(x1, . . . , x5) = (e−θx1 + · · ·+ e−θx5 − 4)−
1
θ , xi ≤ 0. (19)

In Figure 2, we plot the term structure of risk-neutral first-to-default

survival probabilities L1 for varying degrees of rank threshold correlation ρK

(we set µ = 6%, the riskless rate). The asset volatility σi is set to 20% for

all names (this is the average volatility of a conservative low-risk S&P 500

firm). In a high quality basket individual default probabilities are low, and

with a positive firm association the probability of some default in the basket

is small. The better the basket quality and the higher the firm correlation, the

lower are first-to-default probabilities. In other words, for a given horizon L1 is

increasing in the degree of firm correlation, cf. Figure 3, which shows L1(1) as

a function of rank threshold correlation ρK for varying asset volatility σ = σi.

This observation is also consistent with the price behavior of a first-to-default

contract paying off upon the the first default in the basket: with increasing
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Figure 2: Term structure of first-to-default survival probabili-

ties, varying rank threshold correlation.

firm dependence, the survival probability of T1 increases, the payoff probability

decreases, and the contract price decreases. In line with intuition, the higher the

correlation in the basket, the less value has the contract’s insurance capability

for the holder. If the first default occurs, the defaults of the other names is

likely as well, but the contract aims at covering the first default only. As for

asset volatility, the lower the quality of the basket, the lower L1, and the higher

the premium for the first-to-default insurance contract.

So far we have examined the sensitivity of the survival probability with

respect to threshold correlation and asset volatility for the Clayton family. The

survival probability is however also sensitive to the choice of the family itself.

To study this, let us introduce the Gumbel family with parameter θ ≥ 1:

CG
θ (u1, . . . , u5) = exp

(− [(− ln u1)
θ + . . . + (− ln u5)

θ]
1
θ

)
, ui ∈ [0, 1]. (20)

The value θ = 1 corresponds to independence, while θ → ∞ reflects perfect

positive dependence. For the Gumbel family the pairwise rank correlation is

ρK = 1− 1/θ. With Gi(x) = ex, we have for the joint threshold distribution

GG(x1, . . . , x5) = exp
(− [(−x1)

θ + . . . + (−x5)
θ]

1
θ

)
, xi ≤ 0. (21)

The choice of the copula family has indeed significant effects on the resulting

arrival probabilities. Figure 4 displays the (risk-neutral) 1-year first-to-default

survival probability L1(1) as a function of rank threshold correlation ρK for

both Clayton and Gumbel threshold copulas. The asset volatility σi is set

to 20% for all names. The differences in the survival probability for the two
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Figure 3: First-to-default survival probability as a function of

rank threshold correlation, varying asset volatility.

families are due to their tail dependence properties. The Gumbel copula ex-

hibits upper tail dependence, which refers to the pronounced generation of high

threshold values in all marginals simultaneously (for a formal definition we re-

fer to Nelsen (1999)). All else being equal, this implies in turn an increased

likelihood of joint defaults, which leads to higher survival probabilities L1 of

T1 (see Section 3.5 below for the structure of joint default probabilities and

their relation to the threshold copula). This can be easily seen in case n = 2:

L1(t) = 1− P [τ1 ≤ t]− P [τ2 ≤ t] + P [τ1 ≤ t, τ2 ≤ t].

The Clayton copula exhibits lower tail dependence, which leads to opposite

effects. Consequently, for a given horizon the first-to-default survival probabil-

ity with the Gumbel threshold copula is at least as high as with the Clayton

copula.

If we have evidence for such particular default characteristics in our bas-

ket, we can model them by choosing tail-dependent threshold copula families.

In view of the uncertainty surrounding the choice of a copula family, if such ev-

idence is not available it seems reasonable to confine on families which display

asymptotic independence in both tails. A simple closed-form family that sat-

isfies this property is the Frank family, which is in the one-parameter version

for θ > 0 defined by

CF
θ (u1, . . . , u5) = −1

θ
ln

(
1 +

(e−θu1 − 1) · · · (e−θu5 − 1)

(e−θ − 1)4

)
, ui ∈ [0, 1].
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Figure 4: First-to-default survival probability as a function of

rank threshold correlation for different copula families (solid

line: Clayton, dashed line: Gumbel).

For more families suitable for modeling the threshold copula, and methods to

construct copula families, we refer to Nelsen (1999).

3.5 Threshold Dependence vs. Asset Correlation

In general it seems much more difficult to estimate the threshold dependence

structure C than the asset correlation matrix Σ in the canonical Brownian mo-

tion case. On the other hand, using default threshold dependence instead of

asset dependence in order to induce default correlation leads to more tractabil-

ity in the calculation of the survival function L1 and the identity density q1.

This is due to the fact that for n ≥ 3 explicit results on the joint density h(t, ·)
of the running minimum asset vector Mt are hardly available. In this section

we discuss a way to resolve this trade-off.

Let us consider the pairwise joint default probability for horizon T > 0:

Fij(T ) = P [τi ≤ T, τj ≤ T ] = P [M i
T ≤ Di,M

j
T ≤ Dj] (22)

In case the default thresholds are independent,

Fij(T ) =

∫ 0

−∞

∫ 0

−∞
Hρij

(T, x, y) gi(x)gj(y)dxdy, (23)

where gk is the density of Dk and where we have used the independence of the

Dk. We have made the dependence of the joint law of (M i,M j) on the asset

15



correlation ρij explicit by the notation Hρij
. Since for planar Brownian motion

Hρij
is known [Iyengar (1985) and He et al. (1998)], Fij can be calculated by

numerical integration for general densities gk.

If assets are independent, joint default probabilities are given by

Fij(T ) =

∫ 0

−∞

∫ 0

−∞
Hi(T, x)Hj(T, y) g(x, y)dxdy, (24)

where Hk is the law of Mk given by (8) and g is the joint density of (Di, Dj).

Fixing some parametric copula family Cθ for the threshold vector D and as-

suming that Cθ admits a density cθ, we have for the joint threshold density

g(x, y) = cθij
(Gi(x), Gj(y))gi(x)gj(y), (25)

where θij is the copula parameter controlling the dependence between the

random thresholds Di and Dj. Setting T equal to the simulation horizon, we

are thus able to calculate θij from ρij, and vice versa.

The trade-off mentioned above can now be resolved as follows. We first

estimate an asset correlation matrix Σ. This is well-known and implemented

in standard industry software. Fixing some threshold family Cθ, the parameter

vector θ can be calculated element by element as shown above. Given Cθ to-

gether with the Gi, we can now compute L1 and q1 via (12) and (13) under the

hypothesis that thresholds are correlated according to Cθ while assets are in-

dependent. This is generally tractable because h(t, x, y) = h1(t, x) · · ·hn(t, y),

where the density hi(t, ·) of M i
t is given in (17) in closed-form. This auxiliary

procedure of ’converting’ asset correlation to threshold correlation for purposes

of computing L1 and q1 is purely technical. It can be justified since (pairwise)

joint default probabilities for the simulation horizon, including default corre-

lation of course, remain unchanged.

With the above described procedure and the hypothesis that thresholds

are correlated with Cθ while assets are independent, we can also exploit the

closed-form expressions for L1 and q1 arising from (14) and (15) for a given D.

For the survival function we then have

L1(t) = (1−H1(t,D1)) · · · (1−Hn(t,Dn)), (26)

where Hi(t, ·) is the distribution function of M i
t , given in closed-form in (8). In

analogy to the one-firm case, in order to exploit (26) we simply simulate the

vector D using the copula Cθ and the marginals Gi of D: given a realization

(W1, . . . ,Wn) from Cθ, the vector D = (G−1
1 (W1), . . . , G

−1
n (Wn)) has joint dis-

tribution G. For the generation of realizations from a copula several efficient
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algorithms are available, see Embrechts, McNeil & Straumann (2001) and De-

vroye (1986). Lindskog (2000) provides specialized algorithms for families Cθ

belonging to the class of Archimedean copulas (the families we introduced in

Section 3.4 belong to this class, for example).

4 Simulating Successive Default Arrivals

4.1 General Algorithm

In this section we extend our first-to-occur algorithm to general multi-event

time simulation. The setting is as in Section 3: the ordered sequence of default

times is denoted by (Ti) with T0 := 0 and we set Nt =
∑

i 1{t≥Ti}. Let us

consider the compensator of N , which characterizes the distribution of the Ti.

For the kth arrival time Tk, we define the survival function Lk by

Lk(t) = P [Tk > t |σ(Zk−1)], k ≥ 1, (27)

where Zk = (Ti, Ii)i≤k and Ik ∈ {1, . . . , n} is the identity of the kth defaulter.

Note that Lk(t) = 1 for all t ≤ Tk−1. From the results in Chou & Meyer (1975),

if Lk is continuous, then the process K given by

Kt =

{ − ln L1(T1)− . . .− ln Lk(t) : Tk−1 ≤ t < Tk

− ln L1(T1)− . . .− ln Ln(Tn) : Tn ≤ t
(28)

is the compensator of the process N . This implies that the compensator Kk

of the kth default is given by

Kk
t = − ln Lk(t ∧ Tk). (29)

Note that Kk
t = 0 for all t ≤ Tk−1.

Simulation of m ≤ n successive correlated arrival times T1, . . . , Tm is pos-

sible by iterating the first-to-occur algorithm. Given some continuous increas-

ing function A1 with A1(t) = 0, one starts by constructing an unpredictable

first-to-default stopping time T1 having compensator AT1 = A1(· ∧ T1). After-

wards the identity of the first-to-default is simulated. Given some continuous

increasing GT1-measurable function A2 with A2(t) = 0 for 0 ≤ t ≤ T1, one

next simulates the second-to-default time with identity, and so on. We let Rk

denote the set of surviving entities after the kth event arrival.

Multi-Event Algorithm.

(1) Initialize R0 = {1, . . . , n} and k = 1.
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(2) Simulate a standard uniform random variable Uk, which is independent

of the U1, . . . , Uk−1.

(3) Set Tk = inf{t ≥ 0 : e−Ak(t) ≤ Uk}.

(4) Simulate the identity of the kth defaulter, i.e. simulate an Rk−1-valued

random variable Ik having given conditional distribution

P [Ik = i | σ(Tk, Zk−1)] =
qk(i, Tk)∑

i∈Rk−1
qk(i, Tk)

,

where we define the density

qk(i, t)dt = P [τi ∈ (t, t + dt), τj > t (j ∈ Rk−1 − {i}) |σ(Zk−1)]. (30)

(5) Set Rk = Rk−1 − Ik.

(6) If k = m then stop, else set k = k + 1 and go back to Step (2).

From Steps (2) and (3) it follows immediately that

Lk(t) = P [Uk < e−Ak(t) |σ(Zk−1)] = e−Ak(t), (31)

which is continuous and equal to one for t ≤ Tk−1. In view of (29), the process

ATk = Ak(· ∧ Tk) is the compensator of Tk, as desired.

4.2 Constructing the Survival Function

The structural multi-firm default model introduced in Section 3.2 remains

unchanged. If Lk is continuous in this model, then defaults are inaccessible

and we can put Ak(t) := − ln Lk(t) in our multi-event algorithm. Without

loss of generality we assume that the first k default times have (simulated)

identities Ii = i for 1 ≤ i ≤ k. Then, from (27),

Lk(t) = P [τk > t, . . . , τn > t |σ(τ1, . . . , τk−1)].

Let ht1,...,tn denote the density of the vector (M1
t1
, . . . , Mn

tn) and g the density

of D. Using the structural definition of default, with an application of Bayes’

rule we obtain

Lk(t) =

∫
(−∞,0]n

∫ 0

xk
· · · ∫ 0

xn
hτ1,...,τk−1,t,...,t(x1, . . . , xk−1, yk, . . . , yn)g(x)dydx

∫
(−∞,0]n

∫ 0

xk
· · · ∫ 0

xn
hτ1,...,τk−1,...,τk−1

(x1, . . . , xk−1, yk, . . . , yn)g(x)dydx
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for t ≥ τk−1 and Lk(t) = 1 for t < τk−1. Lk is continuous if ht1,...,tn(x) is jointly

continuous in (t1, . . . , tn) for fixed x. Assuming, without loss of generality, that

i = k ∈ Rk−1, we have from (30) for the identity density

gk(k, t)dt = P [τk ∈ (t, t + dt), τk+1 > t, . . . , τn > t |σ(τ1, . . . , τk−1)].

Using the structural definition of default and Bayes’ rule, for t ≥ τk−1 we get

gk(k, t) =

∫
(−∞,0]n

∫ 0

xk+1
· · · ∫ 0

xn
hτ1,...,τk−1,t,...,t(x1, . . . , xk, yk+1, . . . , yn)g(x)dydx

∫
(−∞,0]n

∫ 0

xk
· · · ∫ 0

xn
hτ1,...,τk−1,...,τk−1

(x1, . . . , xk−1, yk, . . . , yn)g(x)dydx
.

For planar Brownian motion, ht,s is calculated in Iyengar (1985); the gen-

eral multi-dimensional case n ≥ 3 has not yet been worked out, to our knowl-

edge. If the threshold distribution is difficult to estimate, we therefore have to

rely on the procedure for ’converting’ estimated asset correlation into threshold

correlation (Section 3.5) when we want to calculate Lk and qk. We can then

work under the hypothesis of correlated thresholds and independent assets. In

this case we have simply
∫ 0

xk

· · ·
∫ 0

xn

ht1,...,tn(x1, . . . , xk−1, yk, . . . , yn)dyk · · · dyn

= h1(t1, x1) · · ·hk−1(tk−1, xk−1)(1−Hk(tk, xk)) · · · (1−Hn(tn, xn)), (32)

where hi(t, ·) is the density of M i
t and Hi(t, ·) is the associated distribution

function. In the Brownian motion case these quantities are given in closed-

form in (17) and (8), respectively. The efficiency of successive default time

simulation hinges then only on the ability to perform an n-dimensional nu-

merical integration.

As described in Section 3.5, once the joint threshold distribution has been

fixed, we can simulate a vector D from the copula Cθ and the marginals Gi.

Given D, we have for the survival function

Lk(t) =

∫ 0

Dk
· · · ∫ 0

Dn
hτ1,...,τk−1,t,...,t(D1, . . . , Dk−1, yk, . . . , yn)dy

∫ 0

Dk
· · · ∫ 0

Dn
hτ1,...,τk−1,...,τk−1

(D1, . . . , Dk−1, yk, . . . , yn)dy

and the identity density (again with i = k ∈ Rk−1)

qk(k, t) =

∫ 0

Dk+1
· · · ∫ 0

Dn
hτ1,...,τk−1,t,...,t(D1, . . . , Dk, yk+1, . . . , yn)dy

∫ 0

Dk
· · · ∫ 0

Dn
hτ1,...,τk−1,...,τk−1

(D1, . . . , Dk−1, yk, . . . , yn)dy
.

Successive default arrival time simulation using our general algorithm is very

efficient if these functions are in closed-form. This is the case if we work under

the hypothesis that assets are independent, i.e. if we induce default correlation

exclusively through default threshold dependence (we then exploit (32)).
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5 Conclusion

In this paper we describe an efficient algorithm for the simulation of successive

correlated and unpredictable default arrival times. The methodology is based

on the compensator of default. We construct this compensator explicitly in a

structural multi-firm model, where we suppose that a firm’s assets and default

threshold cannot be observed directly. This is realistic and leads to defaults

being unpredictable; the model-implied credit spread properties are empiri-

cally plausible. The structural interpretation of default greatly facilitates the

calibration of the model, in particular with respect to the correlation struc-

ture. In particular, there are two ways of inducing default correlation: through

correlation in firms’ assets and default thresholds. The former can be thought

of as arising from firms’ common dependence on general economic factors.

The latter corresponds to direct inter firm linkages, such as parent-subsidiary

relationships.

References

Chou, C. & P.A. Meyer (1975), Sur la représentation des martingales comme
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