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Abstract

A thorough understanding of the joint default behavior of credit-risky
securities is essential for credit risk measurement as well as the valuation
of multi-name credit derivatives and Collateralized Debt Obligations. In
this paper we study a simple and tractable intensity-based model for cor-
related defaults, in which unpredictable default arrival times are jointly
exponentially distributed. Since all critical results are given in closed-
form, the model can be easily implemented. The efficient simulation of
dependent default times for pricing and risk management purposes is
straightforward as well. Parameter calibration relies on readily available
market data as well as data and figures provided by rating agencies and
credit risk management solutions.
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1 Introduction

Credit risk refers to the risk of incurring losses due to unexpected changes
in the credit quality of a counterparty or issuer. Based on the dependence of
issuers on general economic factors or direct firm inter linkages, credit quality
changes of several issuers are often correlated. Investors holding positions with
numerous counterparties, such as financial institutions, are therefore exposed
to the aggregated risk of losses due to correlated credit events arrivals.

The effective measurement and management of this aggregated credit risk
is one of the core businesses of a financial institution. Credit risk measurement
involves estimating the distribution of aggregated losses. Credit derivatives,
which allow to isolate and trade credit risk by providing a payoff upon a credit
event arrival with respect to a reference entity, allow the active management of
credit risk. In the portfolio context of credit a significant role is played by multi-
name credit derivatives, which have payoffs contingent on the credit quality
of a number of reference entities. Collateralized Debt Obligations (CDO’s)
allow to restructure portfolios of credit-risky securities. They involve prioritized
tranches whose cash flows are linked to the performance of a pool of debt
instruments.

The estimation of aggregated loss distributions in credit risk measurement
and the valuation of multi-name credit derivatives and CDO’s requires a model
for the joint default behavior of numerous credit-risky securities such as bonds
or loans. In the class of intensity based models, where the stochastic struc-
ture of default is prescribed by an (exogenous) intensity or conditional default
arrival rate, single-name approaches have been successfully extended to multi-
firm settings. Duffie & Garleanu (2001) assume that an individual firm’s default
intensity is composed of some idiosyncratic component and some systematic
component affecting all considered firms. Duffie & Singleton (1998) present
several computationally efficient models relying on intensity processes which
exhibit common and/or correlated jumps. Schönbucher & Schubert (2001) im-
pose the assumed default dependence structure directly on a generic stochastic
intensity model for individual firms. Giesecke (2002) underpins a multi-firm
intensity model with a structural asset based model, where firms’ assets and
default thresholds are correlated.

In this paper we study a simple and tractable intensity-based model for
correlated default times, which is in the spirit of the approach of Duffie &
Garleanu (2001). The model is based on the idea that a firm’s default is driven
by idiosyncratic as well as other regional, sectoral, industry, or economy-wide
shocks, whose arrivals are modeled by independent Poisson processes. In this
approach a default is governed again by a Poisson process and default times
are jointly exponentially distributed. Various important statistics, such as mo-
ments, default correlations, conditional default probabilities, and joint default
probabilities can be calculated explicitly. A closely related approach is studied
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in Lindskog & McNeil (2001), who consider default losses of different types.
The complete non-linear default dependence structure can be described by

the copula of the default times. In the exponential model the exponential copula
arises naturally. This explicitly available copula facilitates the calculation of
non-linear default correlation measures and lends itself to flexible and efficient
simulation algorithms for correlated default arrival times for pricing and risk
management purposes. In particular, these algorithms can be used to generate
default times with exponential dependence structure but arbitrary marginal
default distribution. That means that one can combine any given single-name
default probability model with the exponential correlation model discussed
here.

The parameters of the model can be calibrated from single-name default
swap or bond price data (for pricing purposes) as well as data provided by
rating agencies (e.g. Moody’s Diversity Score) and often implemented credit
risk management solutions (e.g. KMV’s CreditMonitor).

In Section 2, we consider the model first in the instructive two-firm case
and extend then to the general multivariate case. The flexible copula-based
simulation of correlated default arrival times is discussed in Section 3. Param-
eter estimation is considered in Section 4. Two applications of the model are
presented in Section 5.

2 The Exponential Model

2.1 Bivariate Case

We begin by deriving the basic properties of the model in the instructive
bivariate case with two firms labeled 1 and 2; in the following section we
extend to the general case. The idea of the approach is to let defaults of firms
be driven by firm-specific as well as economy-wide shock events. Suppose there
are Poisson processes1 N1, N2, and N with respective intensities λ1, λ2, and λ.
We interpret λi as the idiosyncratic shock intensity of firm i, while we think of
λ as the intensity of a macro-economic or economy-wide shock affecting both
firms simultaneously. We define the default time τi of firm i by

τi = inf{t ≥ 0 : Ni(t) + N(t) > 0},

meaning that a default takes place completely unexpectedly if either an id-
iosyncratic or a systematic shock (or both) strikes the firm for the first time.
Note that there is a positive probability of a simultaneous default of both firms.

1All random variables are defined on a fixed probability space (Ω,F , P ). Depending on
the specific application, P is the physical probability (risk management setting) or some risk
neutral probability (valuation setting).
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Thus firm i defaults with intensity λi + λ and we have

si(t) = P [τi > t] = P [Ni(t) + N(t) = 0] = e−(λi+λ)t.

The expected default time and the default time variance are given by

E[τi] =
1

λi + λ
, Var[τi] =

1

(λi + λ)2
.

The joint survival probability is found to be

s(t, u) = P [τ1 > t, τ2 > u] = P [N1(t) = 0, N2(u) = 0, N(t ∨ u) = 0]

= e−λ1t−λ2u−λ(t∨u)

= e−(λ1+λ)t−(λ2+λ)u+λ(t∧u)

= s1(t)s2(u) min(eλt, eλu). (1)

This bivariate exponential distribution is well-known in reliability modeling,
cf. Marshall & Olkin (1967). s has an absolutely continuous and singular com-
ponent, which can be calculated explicitly. The moment generating function
of s is available analytically as well.

There exists a unique function Cτ : [0, 1]2 → [0, 1], called the survival
copula of the default time vector (τ1, τ2), such that joint survival probabilities
can be represented as

s(t, u) = Cτ (s1(t), s2(u)),

cf. Nelsen (1999) for background reading. The copula Cτ describes the com-
plete non-linear default time dependence structure. As Cτ couples exponential
marginals si with the exponential joint survival function s, we will call Cτ the
exponential copula (in the reliability literature this copula is also known as
the Marshall-Olkin copula). Letting s−1

i denote the inverse function of si and
defining

θi =
λ

λi + λ

as the ratio of joint default intensity to default intensity of firm i, we obtain

Cτ (u, v) = s(s−1
1 (u), s−1

2 (v)) = min(vu1−θ1 , uv1−θ2).

The parameter vector θ = (θ1, θ2) controls the degree of dependence between
the default times; we write Cτ = Cτ

θ . If the firms default independently of each
other (λ = 0 or λ1, λ2 → ∞), then θ1 = θ2 = 0 and we get Cτ

θ (u, v) = uv,
the product copula. If the firms are perfectly positively correlated and the
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firms default simultaneously (λ → ∞ or λ1 = λ2 = 0), then θ1 = θ2 = 1 and
Cτ

θ (u, v) = u ∧ v, the Fréchet upper bound copula. Hence,

uv ≤ Cτ
θ (u, v) ≤ u ∧ v, θ ∈ [0, 1]2, u, v ∈ [0, 1], (2)

meaning that in our model defaults can only be positively related.
Besides the survival copula Cτ there exists also a unique function Kτ :

[0, 1]2 → [0, 1] such that the bivariate distribution function p of τ can be
represented as

p(t, u) = P [τ1 ≤ t, τ2 ≤ u] = Kτ (p1(t), p2(u))

where pi(t) = P [τi ≤ t] = 1 − si(t) is the distribution function of τi. The
(’usual’) copula Kτ and the survival copula Cτ describe in an equivalent way
the dependence between the default times. Noting that s(t, u) = 1 − p1(t) −
p2(u) + p(t, u), we see that these copulas are related via

Kτ (u, v) = Cτ (1− u, 1− v) + u + v − 1

= min([1− v][1− u]1−θ1 , [1− u][1− v]1−θ2) + u + v − 1.

(2) suggests a partial ordering on the set of copulas as function-valued
default correlation measures. A scalar-valued measure such as rank correlation
can perhaps provide more intuition about the degree of stochastic dependence
between the defaults. Spearman’s rank correlation ρS is simply the linear cor-
relation ρ of the copula Kτ given by

ρS(τ1, τ2) = ρ(p1(τ1), p2(τ2)) = 12

∫ 1

0

∫ 1

0

Kτ (u, v)dudv − 3

=
3θ1θ2

2θ1 + 2θ2 − θ1θ2

=
3λ

3λ + 2λ1 + 2λ2

(3)

showing that ρS is a function of the copula Kτ only. Notice that the same
result obtains when we compute ρS with Cτ instead of Kτ . While Spearman’s
ρS(τ1, τ2) measures the degree of monotonic default dependence, linear default
time correlation given by

ρ(τ1, τ2) =
λ

λ + λ1 + λ2

(4)

measures the degree of linear default time dependence only. Clearly ρ ≤ ρS

and linear default correlation underestimates the true default dependence, cf.
Figure 1, where we plot both measures as functions of the joint shock intensity
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Figure 1: Rank and linear default correlation.

λ. We fix λ1 = λ2 = 0.01, which corresponds to a one-year default probability
of about 1% when firms are independent. If λ is zero, then firms default inde-
pendently and ρ = ρS = 0. With increasing λ, the joint shock component of
the default risk dominates the idiosyncratic component, and the default cor-
relation increases. The relationship between ρS, idiosyncratic intensities, and
joint shock intensities is shown in Figure 2, where ρS is plotted as a func-
tion of λ1 = λ2 for varying λ. Quite intuitive, (rank) default correlation is
decreasing in idiosyncratic default risk, because with increasing λ1 = λ2 the
idiosyncratic risk component dominates the joint shock component of default
risk. If λ1 = λ2 = 0, then only the joint shock matters; if this shock occurs
firms default simultaneously and the rank default correlation is one. Summa-
rizing, we have ρS, ρ ∈ [0, 1], where ρS = ρ = 0 if λ = 0 or λ1, λ2 → ∞ (Cτ

is the product copula) and ρS = ρ = 1 if λ → ∞ or λ1 = λ2 = 0 (Cτ is the
Fréchet upper bound copula).

Another commonly used default correlation measure is the linear correla-
tion of the default indicator variables,

ρ(1{τ1≤t}, 1{τ2≤t}) =
s(t, t)− s1(t)s2(t)√
p1(t)s1(t)p2(t)s2(t)

. (5)

Figure 3 shows ρ(1{τ1≤t}, 1{τ2≤t}) over time for varying degrees of joint shock
intensities λ (again we set λ1 = λ2 = 0.01). In our model, default indicator
correlation is decreasing in time. This is partly in contrast to the structural
model of Zhou (2001), where indicator correlation is hump-shaped.

The conclusions drawn on the basis of linear default time correlation
ρ(τ1, τ2) and linear default indicator correlation ρ(1{τ1≤t}, 1{τ2≤t}) should how-
ever be taken with care. Both are covariance-based and hence are only the nat-
ural dependence measures for joint elliptical random variables, cf. Embrechts,
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Figure 2: Rank default correlation as a function of idiosyn-
cratic shock intensity, varying joint shock intensity.

McNeil & Straumann (2001). Neither the default times nor default events are
joint elliptical, and hence these measures can lead to severe misinterpretations
of the true default correlation structure. ρS is in contrast defined on the level
of the copula Cτ and therefore does not share these deficiencies.

2.2 General Multivariate Case

We now extend the default model discussed in the previous section to the gen-
eral multivariate case with n ≥ 2 firms. The default of an individual firm is
driven by some idiosyncratic shock as well as other sectoral, industry, country-
specific etc., or economy-wide shocks. These m =

∑n
k=1

(
n
k

)
shocks are governed

by independent Poisson processes which are numbered consecutively. To indi-
cate whether a non-firm-specific shock leads to a default of some given firm, we
introduce a matrix (aij)n×m, where aij = 1 if shock j ∈ {1, 2, . . . , m}, modeled
through the Poisson process Nj with intensity λj, leads to a default of firm
i ∈ {1, 2, . . . , n}, and aij = 0 otherwise. For example, for n = 3 firms a full
specification of the model would involve

(aij) =




1 0 0 1 1 0 1
0 1 0 1 0 1 1
0 0 1 0 1 1 1


 .

Other specifications can be adapted to the case at hand. For example, if
economy-wide shock events can be excluded, one would set ai7 = 0 for i =
1, 2, 3, which corresponds to bivariate dependence only.
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Figure 3: Default indicator correlation over time, varying joint
shock intensity.

According to this default specification, we get

τi = inf{t ≥ 0 :
m∑

k=1

aikNk(t) > 0},

meaning that firm i defaults with intensity
∑m

k=1 aikλk and

si(t) = exp
(
−

m∑

k=1

aikλkt
)
.

Arguments similar to those leading to (1) yield the joint survival function

s(t1, . . . , tn) = P [τ1 > t1, . . . , τn > tn]

= exp
(
−

m∑

k=1

λk max(a1kt1, . . . , anktn)
)
. (6)

Joint default probabilities p and the associated copula Kτ can be obtained by
standard arguments from s:

p(t1, . . . , tn) =
2∑

i1=1

· · ·
2∑

in=1

(−1)i1+···+ins(v1i1 , . . . , vnin), (7)

where vj1 = tj and vj2 = 0. The exponential survival copula associated with s
can be found via Cτ (u1, . . . , un) = s(s−1

1 (u1), . . . , s
−1
n (un)). Fixing some i, j ∈

{1, 2, . . . , n} with i 6= j, the two-dimensional marginal copula is given by

Cτ (ui, uj) = Cτ (1, . . . , 1, ui, 1, . . . , 1, uj, 1, . . . , 1)

= min(u1−θi
i uj, uiu

1−θj

j )
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where we define, analogously to the bivariate case,

θi =

∑m
k=1 aikajkλk∑m

k=1 aikλk

, θj =

∑m
k=1 aikajkλk∑m

k=1 ajkλk

as the ratio of joint default intensity of firms i and j to default intensity of
firm i or j, respectively. In analogy to (3), we can now compute Spearman’s
rank default time correlation matrix (ρS

ij)n×n by

ρS
ij =

3θiθj

2θi + 2θj − θiθj

. (8)

2.3 Extensions

Let us briefly mention two extensions of the basic setup. Instead of assuming
that shock incidents lead to immediate default events, we may suppose that
shocks are not necessarily fatal. In the bivariate case, suppose an idiosyncratic
shock leads to a default of firm i only with a pre-specified probability qi. An
economy-wide shock leads to a default of both firms with probability q11, to
a default of firm 1 only with probability q10, and to a default of firm 2 only
with probability q01. Arguments very similar to those put forward in Section
2.1 lead us again to the exponential default time distribution

s(t, u) = e−γ1t−γ2u−γ(t∨u),

where γ1 = λ1q1 + λq10, γ2 = λ2q2 + λq01, and γ = λq11. Of course, with
q1 = q2 = q11 = 1 we obtain model (1). The general case is analogous: we
can simply re-interpret the indicator elements of the shock impact matrix (a)ij

as shock impact probabilities, i.e. aij ∈ [0, 1] would specify the probability
of firm i suffering a default when shock j occurs. Note, however, that in the
non-fatal model interpretation the number of model parameters is quite high,
which makes the model calibration very challenging.

Another extension concerns the variability of intensities over time. In our
Poisson setup, with risk-neutrality the term structure of model-implied credit
yield spreads is flat (the yield spread is in fact given by the constant inten-
sity itself). However, in practice credit spreads vary often substantially over
time. To capture these effects, in a first step the Poisson framework can be
generalized to deterministically varying intensities i.e. to inhomogeneous Pois-
son shock arrivals. The intensity function may for example assumed to be
piece-wise constant, which is a reasonably flexible approximation in certain
applications. In the bivariate case, si(t) = exp(

∫ t

0
(λi(r) + λ(r))dr) and

s(t, u) = e−
R t
0 λ1(r)dr−R u

0 λ2(r)dr−R t∨u
0 λ(r)dr.

In a second step, we can extend to general stochastic intensities. Such mod-
els would capture, in a realistic way, the stochastic variation in the term
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structure of credit spreads. One needs, however, a large and reliable data
base to calibrate the parameters of such a stochastic intensity model. Now
si(t) = E[exp(

∫ t

0
(λi(u) + λ(u)))] and

s(t, u) = E[e−
R t
0 λ1(r)dr−R u

0 λ2(r)dr−R t∨u
0 λ(r)dr].

For an extensive study of various correlation models with stochastic intensities
we refer to Duffie & Singleton (1998).

3 Simulating Correlated Defaults

Based on the model of Section 2.2, we now discuss the flexible simulation of
correlated default arrival times. Let us consider the following four-step algo-
rithm, which generates default arrival times with an exponential dependence
structure Cτ while allowing for arbitrary marginal default time distributions,
which we take as given.

(1) Simulate an m-vector (t1, . . . , tm) of independent exponential shock ar-
rival times with given parameter vector (λ1, . . . , λm) where λk > 0. This
is done by drawing, for k ∈ {1, 2, . . . , m}, an independent standard uni-
form random variate Uk and setting

tk = − 1

λk

ln Uk.

Indeed, P [tk > T ] = P [− ln Uk/λk > T ] = P [Uk ≤ e−λkT ] = e−λkT .

(2) Simulate an n-vector (T1, . . . , Tn) of joint exponential default times by
considering, for each firm i ∈ {1, 2, . . . , n}, the minimum of the relevant
shock arrival times:

Ti = min{tk : 1 ≤ k ≤ m, aik = 1}.

(3) Generate a sample (v1, . . . , vn) from the (survival) default time copula
Cτ by setting, for i ∈ {1, 2, . . . , n},

vi = si(Ti) = exp
(
− Ti

m∑

k=1

aikλk

)
.

(4) In order to generate an n-vector Z = (Z1, . . . , Zn) of correlated default
arrival times with given marginal survival function qi and exponential
default dependence structure Cτ , set, for i ∈ {1, 2, . . . , n},

Zi = q−1
i (vi)

provided that the inverse q−1
i of qi exists.
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Let us emphasize that we can base our default time simulation on sur-
vival marginals qi from a model completely different from the exponential shock
model of Section 2. For example, one may use a general stochastic intensity-
based model or a structural model for qi, or use some estimated survival func-
tion. To account for different types of idiosyncratic default risk, we can also
choose different survival marginals qi for different firms. The above algorithm
then generates correlated default times Zi with these given qi and exponential
dependence structure, i.e.

P [Z1 > t1, . . . , Zn > tn] = Cτ (q1(t1), . . . , qn(tn)).

In the special case where qi = si for all i, the simulated default time vector
Z is jointly exponentially distributed, i.e. Z has exponential marginals, an
exponential copula Cτ , and its joint survival function is given by (6). In that
case Zi = Ti, and we have to perform steps 1 and 2 only.

From the methodology, this approach bears some interesting similarities to
the approach followed by Schönbucher & Schubert (2001). In their approach
the survival marginals are given by some stochastic intensity model, while
one is free to choose the default copula joining marginals and joint default
distribution (the copula is not directly prescribed by their single-name intensity
model). In our approach, the copula of the default times is prescribed by the
model structure, while one is free to choose a appropriate marginals. The
exponential marginals would only be a particular choice, though a natural
one.

4 Estimating Shock Intensities

In this section we discuss how the model parameters can be estimated. A first
step consists of the specification of the shock impact matrix (aij). In a sec-
ond step the relevant (at most m =

∑n
k=1

(
n
k

)
) shock intensities have to be

estimated. Here one may be interested in risk-neutral intensities for deriva-
tives pricing purposes, or real-world objective intensities for risk management
purposes.

In order to cope with the lack of appropriate data available for the esti-
mation of higher order shock intensities, it might be reasonable to confine to
a model specification (aij) with bivariate (trivariate) dependence only, i.e. a
model where at most two (three) simultaneous defaults are possible. Another
assumption to account for the lack of data is to set higher order shock in-
tensities equal for shocks leading to more than one (two, three, etc.) defaults.
The simplest model which yet accounts for default correlation in a credible
way would then rely on bivariate dependence with equal intensities for joint
defaults of two firms (we refer to this as bivariate symmetric dependence). We
would then have to estimate n + 1 intensities.
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4.1 Risk Neutral Intensities

Liquid bond price or single-name credit default swap quotes can be used to
back out risk-neutral survival probabilities s′i(t) of each firm i for some fixed
horizon t (see, for example, Hull & White (2000) for the basic procedure). We
then have the relations

−1

t
ln s′i(t) =

m∑

k=1

aikλk, i = 1, 2, . . . , n. (9)

If quotes for a range of different bond or swap maturities t are available, we can
obtain a system of m equations in the m unknown intensities λk. If this system
does not admit a unique solution, we can choose the λk via some least square
minimization procedure, for example. If price observations are only available
for some particular date t, the relations (9) alone are not sufficient to deter-
mine all intensities uniquely; higher-order survival probabilities are needed in
addition. If prices of appropriate multi-name products (such as first-to-default
swaps) are quoted, one can back out risk neutral higher order survival proba-
bilities s′. Liquid quotes are rarely available, however. Bivariate joint survival
probabilities s′ can be derived from single-name default swap values if the
protection selling swap counterparty is itself subject to default. In connection
with suitable assumptions on the model structure (aij) and the associated
shock intensities, we can then exploit the relation

− ln s′(t1, . . . , tn) =
m∑

k=1

λk max(a1kt1, . . . , anktn), ti ≥ 0

in addition to (9) in order to determine the shock intensities λk.

4.2 Objective Intensities

Real world (objective) survival probabilities si(t) of individual firms can be
estimated from historical default data. In lack of a proprietary data base, one
may use long-run average values of credit rating classes, which are commonly
provided by credit rating agencies. Equation (9) is then used with si in place
of s′i. Data on joint defaults is however much too sparse to obtain reliable
statistical estimates for joint default probabilities. Here one has to resort to
other sources of suitable information.

Suppose that Moody’s has supplied a Diversity Score d for the n firm
portfolio under consideration. This is most common if the underlying portfolio
is the collateral pool of some Collateralized Debt Obligation (CDO). That
is, the original portfolio of n correlated firms is considered to be equivalent
to a portfolio of d independent firms with the same default probability q(t)
but a notional of (n/d) times the original notional. The diversity score d is
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determined such that the first two moments of the distribution of the number
of defaults in these two portfolios

n∑
i=1

1{τi>t} and
n

d

d∑
i=1

1{σi>t} (10)

are equal for some fixed horizon t, say one year. The 1{σi>t} are iid Bernoulli
with success probability q(t). This yields the relations

nq(t) =
n∑

i=1

si(t)

n2

d
q(t)(1− q(t)) =

n∑
i=1

(
si(t)(1− si(t)) +

n∑

j=1,j 6=i

(sij(t, t)− si(t)sj(t))
)
.

Given the diversity score d, one can now use these equations to obtain an
estimate of the sum of the pairwise joint survival probabilities sij for firms i
and j. Assuming a model (aij) with bivariate symmetric dependence, we are
then able to estimate the shock intensity leading to a simultaneous default of
two firms.

Credit risk management software packages such as KMV’s Portfolio Man-
ager often provide pairwise default event correlations in the form of (5). Rating
agencies provide default correlation matrices for industries. Nagpal & Bahar
(2001) and Erturk (2000) estimate these correlations using historical default
data from S&P. For estimates of rating category correlations from Moody’s
data, see Carty (1997). Such correlations allow to calibrate a model with (not
necessarily symmetric) bivariate dependence via (5). More consistent would
be the use of rank default correlations (3), for the mentioned reasons. Though
admittedly hardly available, a rank default correlation matrix in connection
with estimates on individual survival probabilities would allow to estimate a
model (aij) which is fully specified (i.e. a model beyond bivariate symmetric
dependence).

5 Applications

5.1 Default Distribution

In credit risk management, the exponential default model can be used to mea-
sure the aggregated default risk associated with some portfolio of credits. The
most comprehensive measure of that aggregated risk is the distribution of to-
tal losses due to defaults. In this section we consider such a loss distribution
under the simplifying assumption that there is zero recovery in case of default.
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The default loss Lt at some fixed horizon t is then equal to the number of the
defaulted firms Lt = n−Mt, where

Mt =
n∑

i=1

1{τi>t}

is the number of firms which still operate at t. The distribution of Mt can be
computed directly from the joint survival probabilities. By standard arguments
we find

P [Mt = k] =
n∑

i=k

(
i

k

)
(−1)i−k

∑

J⊂{1,...,n},|J |=i

P [
⋂
j∈J

{τj > t}],

where the |J |-dimensional marginal joint survival probability P [
⋂

j∈J{τj > t}]
is directly available from (6) for all J ⊂ {1, . . . , n}. This can be simplified if
the firms in the portfolio are homogeneous and symmetric, i.e. if the default
time vector is exchangeable:

(τ1, . . . , τn)
d
= (τz(1), . . . , τz(n))

for any permutation z(1), . . . , z(n) of indices (1, . . . , n) (by
d
= we mean equality

in distribution). Such a portfolio structure is a reasonable approximation for
a well-diversified retail or SME portfolio (or at least sub-portfolios of such
portfolios). We then denote by πk the kth dimensional survival probability

πk(t) = P [τi1 > t, . . . , τik > t], {i1, . . . , ik} ⊂ {1, . . . , n}, 1 ≤ k ≤ n,

which is the probability of survival of any arbitrarily selected subgroup of k
firms by horizon t. We then have simply

P [Mt = k] =
n−k∑
i=0

(−1)i n!

i!k!(n− k − i)!
πk+i(t).

To illustrate the effect of default correlation on the default distribution, let
us consider an exponential model (aij) with symmetric bivariate dependence,
where firms default individually with intensity λ, and shocks leading to a
default of any two firms simultaneously arrive with intensity λ̄. Then

πk(t) = exp(−(λk + λ̄[

(
k

2

)
+ k(n− k)])t).

Figure 4 graphs the distribution of the number of defaults P [Lt = k] = P [Mt =
n − k] for a ten year time horizon with n = 30 firms, where the joint shock
intensity λ̄ is varied. We hold the one-year default probability fixed at one
percent. It is clear that the expected number of defaults E[Lt] is increasing in
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Figure 4: Distribution of the number of defaults, varying joint
shock intensity.

the systemic shock probability. This effect is shown in Figure 5. It is interesting
that the variance of the number of defaults is hump-shaped: the variance is
increasing in λ̄ up to a certain point only; after that point it is decreasing in λ̄.
The joint shock intensity λ̄ starts to dominate the idiosyncratic risk component
λ after it has reached some critical level. Then a default is mainly due to a
systemic shock and the probability of a systemic default of all firms increases,
while the probability of few defaults vanishes. That means that for increasing
λ̄ all the default probability mass will be shifted towards the right end point of
the default distribution (see Figure 6 in that respect). For sufficiently high λ̄
it is almost certain that all firms default before the horizon, and the variance
vanishes.

5.2 First-to-Default Baskets

The exponential model can also be applied to the valuation of multi-name
credit derivatives. Commonly traded are kth-to-default basket swaps, which
pay some specified amount if at least k defaults in the reference bond basket
occur before the maturity of the contract. As an example, let us consider a
binary first-to-default swap, which involves the payment of one unit of account
upon the first default in the reference portfolio in exchange for a periodic
payment (the swap spread). The swap spread is paid up to the maturity T of
the swap or the first default, whichever is first. The index set of the reference
portfolio is {1, 2, . . . , n}.
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Figure 5: Expected defaults and variance of total defaults as a
function of joint shock intensity.

Let us denote by τ = mini(τi) the first-to-default time. We have

P [τ > t] = exp
(
− t

m∑

k=1

λk max(a1k, . . . , ank)
)
.

Assuming that investors are risk-neutral (i.e. P is some risk-neutral probabil-
ity), the value c of the contingent leg of the swap is at time zero given by

c = E[e−
R τ
0 rsds1{τ≤T}]

where (rt)t≥0 is the riskless short rate. Supposing for simplicity that rt = r > 0
for all t, we get

c =

∫ ∞

0

e−ru1{u≤T}P [τ ∈ du] = Λ

∫ T

0

e−(r+Λ)udu =
Λ

r + Λ
(1− e−(r+Λ)T )

where Λ =
∑m

k=1 λk max(a1k, . . . , ank). If the (constant) swap spread R is paid
at dates t1 < t2 < . . . < tj = T , then the fee leg has a value of

f =
∑

i:ti≤T

E[e−
R ti
0 rsdsR1{τ>ti}]

= R
∑

i:ti≤T

e−(r+Λ)ti

where for the second line we invoke the assumption of constant short rates.
We neglect any accrued swap spread here. The value of the fee leg paid by
the protection buyer compensates the protection seller for paying one unit of

16



0 5 10 15 20 25 30
Number

0

0.2

0.4

0.6

0.8

1

Pr
ob

ab
ili

ty 0.05
0.01
0.0075

Figure 6: Distribution of the number of defaults, varying joint
shock intensity.

account upon the first default in the reference portfolio. The swap spread R is
therefore such that c = f at inception of the contract (t = 0).

For illustration, we assume that the reference portfolio has a bivariate
symmetric dependence structure with idiosyncratic shock intensity λ and joint
shock intensity λ̄. Symmetry and homogeneity are quite realistic for first-to-
default baskets. Then Λ = λn + λ̄

(
n
2

)
. Supposing that n = 5, r = 0, T = 1,

t1 = 0.5, and t2 = 1 (i.e. semi-annual coupon payments), in Figure 7 we plot
the swap spread R as a function of the joint shock intensity λ̄ for varying
one-year default probabilities (while increasing λ̄, we decrease λ such that the
default probability remains constant). Since the likelihood of a payment by
the protection seller is increasing in individual firms’ default probabilities, the
spread is increasing in these default probabilities. The spread is decreasing in
λ̄, which is also intuitively clear: for increasing (positive) default correlation the
probability of multiple defaults increases and the degree of default protection
provided by a first-to-default swap is diminished. With zero correlation the
premium is at its maximum, because the likelihood of multiple defaults is at
its minimum (given that negative correlation is excluded).

Finally note that we can use the distribution of the number of defaults
derived in the last subsection to analyze general k-th-to-default baskets.
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