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Abstract

In this paper I analyse the effects of ignoring level shifts in the data generating process

(DGP) on systems cointegration tests that do not accommodate level shifts. I consider two

groups of Likelihood Ratio tests based on procedures suggested by Johansen (1988, 1995)

and Saikkonen & Lütkepohl (2000b). The Monte Carlo analysis reveals that ignoring

level shifts reduces the tests’ sizes to zero and causes an important drop in the small

sample power for increasing shift magnitudes. These observations are also reflected in

two empirical applications in such a way that the tests find a cointegrating rank smaller

than one suggested by procedures which accommodate the shifts.

Keywords: Systems cointegration tests, Level shifts, Monte Carlo study

JEL classification: C32, C15

∗This paper is adapted from a chapter of my PhD thesis. I would like to thank Christian Müller, Ralf
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1 Introduction

After the introduction of the cointegration concept by Granger (1981) and Engle &

Granger (1987) it is now common practice to test for the cointegrating rank of a sys-

tem of economic time series because it has an important impact on the further modelling

strategy. Other inference tools, for example causality tests, impulse-response or fore-

casting analysis, depend on the cointegrating rank, i.e. on the number of cointegration

relations. However, when analysing economic time series the researcher is often faced with

structural breaks that effect these time series. Examples are German macroeconomic time

series that exhibit a level shift due to the German unification or time series describing

the development of macroeconomic variables of Central and Eastern European Countries

which have undergone a transition process from a centrally planned to a market economy.

The question arises whether the occurrence of structural changes has an influence on

the inference about the cointegrating rank.1 This question refers to the decision problem

of whether one may use standard cointegration tests which ignore structural changes in

order to avoid possible power losses and size distortions caused by modelling structural

shifts or whether it is recommended to use cointegration tests that take such breaks

into account. The latter strategy should be pursued if the presence of structural breaks

distorts the inference about the cointegrating rank, i.e. if the standard tests would no

longer be a valid inference tool. Such a strategy would be necessary because an incorrect

cointegrating rank can lead to a wrong economic interpretation of the behaviour of the

system analysed and, furthermore, it may have a negative impact on other inference tools

some of which are mentioned above.

Within the univariate framework the presence of structural changes is regarded as

very important when testing for a unit root. Perron (1989) has shown for the Augmented

Dickey Fuller test that the null hypothesis of a unit root is clearly underrejected if a break

in the linear trend term or shift in the level of a time series occur. Maddala & Kim (1998)

and Yin & Maddala (1997) have found that depending on the way the structural break

is modelled overrejection of the null hypothesis of a unit root can also occur. Hence, no

matter which certain kind of a structural break is modelled the overall message is that

the presence of structural changes may distort the inference about a unit root.

Thus, if the presence of changes distorts the inference in the univariate framework

we may expect similar effects in the multivariate framework when testing for the number

of cointegration relations. This expectation is further supported by evidence from small

sample studies conducted by Gregory & Hansen (1996) and Gregory, Nason & Watt

1I regard the terms breaks and changes as equivalent.
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(1996) who have found that breaks in the cointegration relation reduces the power of

single-equation cointegration tests.

In line with the foregoing discussion this paper analyses whether structural changes

distort the inference of systems cointegration tests ignoring such breaks. To be more

precise, I consider a shift in the level of the time series as a special kind of structural

breaks. This analysis is conducted on the basis of a Monte Carlo study and reviewing two

empirical examples. I consider two groups of Likelihood Ratio tests. The first group of

tests has been suggested by Johansen (1991) and Johansen (1992, 1994, 1995). The former

test allows for a mean term and the latter for a linear trend term as well.2 Both tests

are based on a procedure proposed by Johansen (1988). Therefore, these proposals are

referred to as Johansen tests which have become the most popular systems cointegration

tests in applied work. The second group of tests has been proposed by Saikkonen &

Lütkepohl (2000b). These authors also introduce two test versions allowing for a mean

term and a linear trend. They are denoted as Saikkonen-Lütkepohl tests. Note again that

the aforementioned procedures do not take account of any kind of structural breaks.

The focus on level shifts is regarded as a starting point for a more general analysis

of the effects of structural changes. Moreover, it is expected that if the inference of the

tests is distorted by the presence of such a simple break type the properties of the tests

are even worse if more complicated breaks are considered.

The paper is organized as follows. In the next section I present the theoretical frame-

work and the cointegration tests. Findings of previous related simulation studies relevant

for my analysis are reviewed in Section 3. The tests’ small sample size and power proper-

ties based on my Monte Carlo simulations are described in Section 4. Section 5 contains

the empirical examples referring to the Polish crawling peg system and a German money

demand system respectively. In both models some of the time series exhibit a level shift.

Summarizing and concluding remarks are given in Section 6.

2 Theoretical Framework

In general, the considerations are based on a n-dimensional times series yt = (y1t, . . . , ynt)
′

(t = 1, . . . , T ) which is generated by

yt = µ0 + µ1t + δdt + xt, t = 1, 2, . . . , (2.1)

where µi (i = 0, 1) and δ are unknown (n×1) parameter vectors. Hence, the deterministic

part consist of a mean term µ0, a linear trend term µ1t and a level shift term δdt where

2The test due to Johansen (1991) has also been considered by Johansen & Juselius (1990).
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dt is a shift dummy variable defined as

dt =





0, t < T1

1, t ≥ T1

. (2.2)

This shift dummy allows to take into account a sudden change in the mean or the level

of the process. To simplify the exposition I consider only one level shift. It is possible to

generalize the framework by including further shift dummy or impulse dummy variables.

The term xt is an unobservable stochastic error process which is assumed to follow a

vector autoregressive process of order p (VAR(p)):

xt = A1xt−1 + · · ·+ Apxt−p + εt, (2.3)

where Aj, (j = 1, . . . , p − 1) are (n × n) coefficient matrices and εt ∼ N(0, Ω). The

assumption of normally distributed error terms is made to simplify the establishment of

a common framework for comparing the different test procedures (compare e.g. Trenkler

2002). The initial values x−p+1, . . . , x0 are assumed to be from some fixed probability

distribution which does not depend on the sample size. The usual vector error correction

model (VECM) form is

∆xt = Πxt−1 +

p−1∑
j=1

Γj∆xt−j + εt, t = 1, 2, . . . , T, (2.4)

where Π = −(In − A1 − · · · − Ap) and Γj = −(Aj+1 + · · · + Ap) (j = 1, . . . , p − 1) are

(n×n) matrices. It is assumed that xt is at most I(1) and cointegrated with a rank r.

This implies that yt is also at most I(1) and cointegrated with a rank r. Moreover, it

follows that the matrix Π can be written as

Π = αβ′, (2.5)

where α and β are (n×r) matrices of full column rank. When testing for the cointegrating

rank one tests for the rank of the matrix Π. There exist two variants of the considered

systems tests with respect to the rank specified under the alternative hypothesis. The

maximum eigenvalue variant tests against a cointegrating rank that is larger by one than

the rank specified under the null hypothesis. In contrast, the trace variant tests against

a more general alternative which states that the rank is larger than the one in the null

hypothesis. For a situation of no level shifts Lütkepohl, Saikkonen & Trenkler (2001) have

compared these two test versions for various Johansen-type and Saikkonen-Lütkepohl

proposals by means of a local power and a small sample analysis. They have found that
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the properties of both versions are similar in general. Therefore I only consider the trace

test version assuming that the findings also hold in a set-up with level shifts. To be

specific, the pair of hypotheses

H0(r0) : rk(Π) = r0 vs. H1(r0) : rk(Π) > r0. (2.6)

is tested. In fact, limited simulation evidence has shown that both test versions perform

similarly if level shifts are ignored.

To present the tests it is useful to write (2.1) in a VECM representation using (2.4):

∆yt = ν0 + ν1t + Πyt−1 +

p−1∑
j=1

Γj∆yt−j +

p−1∑
j=0

γ∗j ∆δt−j + δΠdt + εt,

t = p + 1, p + 2, . . . ,

(2.7)

where ν0 = −Πµ0 + (In + Π−∑p−1
j=1 Γj)µ1, ν1 = −Πµ1, δΠ = −Πδ and

γ∗j =





(In + Π)δ, j = 0

−Γjδ, j = 1, . . . , p− 1
. (2.8)

Note that ∆dt−j is an impulse dummy which has the value one at t = T1 + j and is zero

elsewhere.

As we know the structure of ν1 and δΠ we may restrict the linear trend and the lagged

shift dummy to the cointegration relations and write (2.7) as

∆yt = ν + α[τ(t− 1) + φdt−1 + β′yt−1] +

p−1∑
j=1

Γj∆yt−j +

p−1∑
j=0

γj∆dt−j + εt

= ν + Π+y+
t−1 +

p−1∑
j=1

Γj∆yt−j +

p−1∑
j=0

γj∆dt−j + εt, t = p + 1, p + 2, . . . ,

(2.9)

with ν = ν0 + ν1, τ = −β′µ1, φ = −β′δ, Π+ = α[τ : φ : β′], y+
t−1 = [(t − 1) : dt−1 : y′t−1]

′

and

γj =





δ, j = 0

−Γjδ, j = 1, . . . , p− 1
. (2.10)

The expression Π+y+
t−1 is the error correction term which comprises the cointegration

relations with the restricted deterministic terms.

However, in the simulation study tests are applied that ignore level shifts. That means,

the tests are actually based on (2.1) with δ = (0, . . . , 0)′. Hence, γj = 0 and δΠ = 0. Then,

we can write the restricted VECM (2.9) of yt as

4



∆yt = ν + α[τ(t− 1) + β′yt−1] +

p−1∑
j=1

Γj∆yt−j + εt

= ν + Π+y+
t−1 +

p−1∑
j=1

Γj∆yt−j + εt, t = p + 1, p + 2, . . . ,

(2.11)

with ν = ν0 + ν1, Π+ = α[τ : β′] and y+
t−1 = [(t− 1) : y′t−1]

′.

If we assume µ1 = 0, i.e. making no allowance for a linear trend, then ν0 = −Πµ0,

ν1 = 0, and hence ν = ν0. So, (2.11) can be written as

∆yt = α[τ0 + β′yt−1] +

p−1∑
j=1

Γj∆yt−j + εt

= Π0y+
t−1 +

p−1∑
j=1

Γj∆yt−j + εt, t = p + 1, p + 2, . . . ,

(2.12)

with τ0 = −β′µ0, Π0 = α[τ0 : β′] and y0
t−1 = [1 : y′t−1]

′.

The Johansen tests are performed by a maximum likelihood estimation of the parame-

ters in (2.11) and (2.12) respectively leading to a generalized eigenvalue problem. For µ1 6=
0 the procedures works as follows. ∆yt and y+

t−1 are regressed on (1, ∆yt−1, . . . , ∆yt−p)

to obtain the residuals R0t and R1t, respectively. Next, consider Sij = T−1
T∑

t=1

RitR
′
jt

(i, j = 0, 1). Solving det(λS11 − S10S
−1
00 S01) = 0 we obtain the ordered generalized eigen-

values λ1 ≥ · · · ≥ λn. Then the LR test statistic for the pair of hypothesis in (2.6)

is

LRJoh(r0) = −T

n∑
j=r0+1

log(1− λj). (2.13)

The test statistic for the case µ1 = 0 can be derived accordingly by regressing ∆yt

and y0
t−1 on (∆yt−1, . . . , ∆yt−p) and proceed otherwise as above. The ordered generalized

eigenvalues are denoted by λ0
1 ≥ · · · ≥ λ0

n and the test statistic is

LR0
Joh(r0) = −T

n∑
j=r0+1

log(1− λ0
j). (2.14)

The limiting distributions of LRJoh(r0) and LR0
Joh(r0) are nonstandard and functions of

(n− r0)-dimensional standard Brownian motions. Interestingly, the limiting distributions

depend on (n− r0), the number of common stochastic trends under the null hypothesis,

but not on n and r0 separately. Furthermore, they are not affected by the actual values of
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the mean and trend parameter µ0 and µ1 respectively. Critical values and further details

can be found, for example, in Johansen (1995, Chapter 15).

As suggested by Johansen (1991) and Perron & Campbell (1993) it is also possible

to formulate test statistics based on unrestricted VECM models analogous to (2.7) by

setting the shift parameter to zero. However, in (2.7) the terms ν0 and ν1t may generate a

quadratic trend, what is ruled out by the assumptions underlying the DGP (2.1). There-

fore, I apply the tests that impose the proper restrictions on the deterministic terms by

confining these terms to the long-run relationship.

Finally, there exists a Johansen test version which assumes that the variables have a

linear trend but the trend is orthogonal to the space spanned by the cointegrating vectors

(see Johansen 1991, Johansen & Juselius 1990). The latter assumption means that the

trend parameter vector µ1 is orthogonal to the cointegration matrix β′, i.e. β′µ1 = 0.

Despite the popularity of this test version in applied work we have to be aware of its

disadvantages. First of all, it is questionable whether the assumption of an orthogonal

trend can be verified easily for real data sets. This is important, however, because if the

trend is not orthogonal to the cointegration space the test version is inappropriate. More-

over, the limiting distribution under the null hypothesis depends on whether the linear

trend is present in the data or not. Johansen (1995, Chapters 11 & 12) gives a detailed

discussion on that issue. In fact, if the linear trend is absent the limiting distribution has

broader tails. Hence, using critical values which are derived from the distribution based

on the existence of a trend may result in overrejection of the null hypothesis. Indeed,

the excessive size distortion turned out to be important in small samples if data without

a linear trend are used (compare Hubrich, Lütkepohl & Saikkonen 2001). For all these

reasons, the test version assuming an orthogonal trend is not considered in the following.

The test proposal made by Saikkonen & Lütkepohl (2000a) allowing for a linear trend

refers to the process (2.1) with δ = (0, . . . , 0). Their idea is to estimate the deterministic

terms in a first step by a feasible generalized least squares (GLS) procedure and adjust

yt by these estimated terms. In a second step, a Johansen-type test is performed on

the adjusted time series. More precisely, defining A(L) = In − A1L − · · · − ApL
p =

In∆− αβ′L− Γ1∆L− · · · − Γp−1∆Lp−1 and

a0t =

{
1 for t ≥ 1

0 for t ≤ 0
and a1t =

{
t for t ≥ 1

0 for t ≤ 0

we obtain by multiplying (2.1) by A(L)

A(L)yt = H0tµ0 + H1tµ1 + εt, t = 1, . . . , T, (2.15)
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where Hit = A(L)ait (i = 0, 1), and εt = A(L)xt. Furthermore, defining Q such that

QQ′ = Ω−1 and multiply (2.15) by Q′, we have

Q′A(L)yt = Q′H0tµ0 + Q′H1tµ1 + ηt, t = 1, . . . , T, (2.16)

where ηt = Q′εt. Hence, the error term ηt has a zero mean and a unit covariance matrix as

it is required for a GLS transformation. To make the GLS estimation feasible Saikkonen

& Lütkepohl (2000a) propose to use the ML estimators α̃, β̃, Γ̃j (j = 1, . . . , p − 1) and

Ω̃ obtained by a reduced rank (RR) regression of (2.11) applying the rank r0 which is

specified under the null hypothesis of the cointegration test. Using these estimators one

can compute the estimators Q̂, Â(L), and Ĥit (i = 0, 1). Thus, feasible GLS estimators

µ̂0, µ̂1, and δ̂ of µ0, µ1, and δ are obtained by a multivariate least squares (LS) estimation

of the model

Q̂′Â(L)yt = Q̂′Ĥ0tµ0 + Q̂′Ĥ1tµ1 + η∗t , t = 1, . . . , T. (2.17)

Since the cointegrating rank under the null hypothesis r0 is used in estimating the

parameters in (2.9), the deterministic terms are also estimated under H0(r0). Having

estimated the deterministic terms one can adjust yt by these terms and form a sample

analog x̂t = yt−µ̂0−µ̂1t of xt. Then, as already mentioned, a LR-type test is performed on

x̂t. Since x̂t is adjusted by the deterministic terms a test version without any deterministic

terms like in Johansen (1988) is applied. However, the generalized eigenvalue problem

as formulated in Saikkonen & Lütkepohl (2000b) has a different structure. Consider first

the feasible VECM of the sample analog x̂t

∆x̂t = Πx̂t−1 +

p−1∑
j=1

Γj∆x̂t−j + et, t = p + 1, . . . , T (2.18)

where et is an error term. Let Π̂ be the LS estimator of Π in (2.18) and Ω̂ be the

corresponding estimated covariance matrix of the error terms. Furthermore, define Ŝ11 =

T−1
T∑

t=1

R̂1tR̂
′
1t where R̂1t are the residuals obtained from regressing x̂t−1 on (∆x̂′t−1, . . . ,

∆x̂′t−p)
′. Then, the LR-type test statistic is derived by solving the generalized eigenvalue

problem det(Π̂Ŝ11Π̂ − λΩ̂) = 0. Using the resulting eigenvalues λ̂1 ≥ · · · ≥ λ̂n the test

statistic for the pair of hypotheses in (2.6) is

LRS&L(r0) = T

n∑
j=r0+1

log(1 + λ̂j). (2.19)

Note that the two kinds of generalized eigenvalue problems described here and applied

for the Johansen tests can be transformed into each other by an appropriate redefinition
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of the respective eigenvalues. Hence, the LR statistics based on the two different sets of

eigenvalues are identical apart from minor numerical differences.

If we assume that the linear trend is absent, we set µ1 = 0 in the above procedure.

Accordingly, the ML estimators are derived from (2.12) and a LR-type test is applied on

the series x̂t = yt − µ̂0. The resulting test statistic is named LR0
S&L(r0).

The limiting distributions under the null hypothesis and further details of the test

procedures are given in Saikkonen & Lütkepohl (2000b). The limiting distribution of

LRS&L(r0) is a function of (n−r0)-dimensional Brownian bridges. Replacing these Brow-

nian bridges by (n− r0)-dimensional standard Brownian motions gives the corresponding

limiting distribution for LR0
S&L(r0). Like the null distributions of the Johansen tests

those of LRS&L(r0) and LR0
S&L(r0) depend on n−r0, not on n and r0 separately and they

are independent of the actual values of µ0 and, regarding LRS&L(r0), independent of µ1.

Critical values are tabulated in Lütkepohl & Saikkonen (2000).

3 Previous Simulation Studies

So far, we know from a number of studies dealing with single-equation cointegration

tests in the presence of structural breaks that neglecting breaks may result in distorted

inference. Campos, Ericsson & Hendry (1996) analyse within a bivariate system the

effects of a level shift in the stationary marginal process on different cointegration tests

performing a Monte Carlo study. The tests’ size is only influenced a little. Furthermore,

tests based on estimated error correction models are generally more powerful than the

two-step testing procedure suggested by Engle & Granger (1987). The latter procedure

is often called the Augmented Dickey-Fuller (ADF) test for cointegration. The findings

of Campos et al. (1996) contrasts with results of Gregory et al. (1996) and Gregory &

Hansen (1996) for the ADF test for cointegration. Gregory et al. (1996) analyse a break

in the coefficients of the cointegrating vector in bivariate systems. Gregory & Hansen

(1996) use a bivariate system like in Engle & Granger (1987) to study level shifts and

trend breaks in the cointegrating relation. They all observe a clear underrejection of the

null of no cointegration in their Monte Carlo study. For example, in the experiment of

Gregory & Hansen (1996) the ADF test for cointegration with a mean term loses about

two third of its original power of 80% if a level shift with a magnitude of three times the

standard deviation of the error terms is introduced to the DGP. The power of the test

variant allowing for a linear trend decreases by about one third of its original level of 70%.

In case of a trend break the power reduction is even more severe.
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Performing different Monte Carlo experiments Doornik, Hendry & Nielsen (1998) and

Inoue (1999) have shown that this observation may carry over to Johansen-type tests

when breaks are not taken into account properly. Inoue (1999) uses exactly the same

data generating process as Gregory & Hansen (1996). He analyses the test versions

suggested by Johansen (1991) and Perron & Campbell (1993) which I do not consider.

Using a level shift of the same magnitude like in Gregory & Hansen (1996), Inoue (1999)

reports a reduction in power from about 95% to approximately 70% when a level shift is

ignored. Again, a trend break has an even more distortionary effect.

In one of their experiments that is relevant for the analysis presented here Doornik

et al. (1998) add an unrestricted impulse dummy to two components of a VECM process

like (2.11) with two cointegration relationships and a restricted linear trend. The dummy

variables have a magnitude of five and three times the standard deviation of the error

terms respectively. The Johansen test without any dummy variables has still reasonable

small sample size and power.3 Unfortunately, the authors do not present results for the

situation of no dummy variables in the DGP. Therefore, we cannot assess the change in

the test’s size and power caused by the introduction of a dummy variable. The experiment

was repeated with dummies of larger magnitudes approximately equal to fifty and thirty

times the standard deviation of the error terms respectively. In this case one can observe

a slight reduction in the size and a fall in the small sample power from 50% to 35%

compared to the case of small dummies if a sample size of T = 100 is considered. Thus,

it seems that ignoring unrestricted impulse dummies causes only minor problems.

Depending on the true parameters, however, an unrestricted impulse dummy variable

within a VECM may have, like other unrestricted deterministic terms, an ambiguous

relationship to corresponding variables in the level representation of the time series. An

unrestricted impulse dummy may have been generated by a shift in the level of the time

series but it can be produced by simple outliers in the levels as well. Note that the DGPs

used by Gregory & Hansen (1996) and Inoue (1999) refer to breaks in the cointegration

relation. In contrast to all these studies I specify a shift in the levels of the individual time

series and separate the shift from the stochastic part of the process. The advantage of

this way of modelling is that the different effects of the shift in the VECM representation

can be clearly seen. From (2.9) we find that the level shift in (2.1) produces a shift in

the cointegration relations and a set of lagged unrestricted impulse dummy variables in a

VECM. In fact, in the simulation study I use a DGP that enables us to easily distinguish

the situation where a shift occurs in the cointegration relations from the case where only

3Doornik et al. (1998) just consider the test variant allowing for a trend (LRJoh).
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unrestricted impulse dummies are generated in the corresponding VECM. The ability to

distinguish these two situations will help to relate my findings with the results of the

other studies cited before.

The framework used in Doornik et al. (1998) is the one that is most closely related to

my study. I extend, however, the analysis of Doornik et al. (1998) with respect to certain

aspects which refer to the dimensionality of the DGPs, the correlation between the error

terms, the sample length, the cointegrating rank, the timing and the magnitude of the

level shifts. Moreover, I consider cointegration tests which allow for a linear trend as well

as those which assume no trend.

So far we have just discussed small sample results. In fact, there are no results about

the asymptotic behaviour of the standard cointegration tests available if structural breaks

in the DGP are ignored. We have results, however, regarding the ADF unit root test in

case of neglecting a level shift. Yin & Maddala (1997) state that for a fixed size of the

level shift the null distribution of the test does not change but they expect an additional

small sample bias due to the level shift. In contrast, for a shift magnitude that increases

proportional to the square root of the sample size or even faster, Doornik et al. (1998)

have shown that the null distribution is affected by the shift. These findings correspond

to results in Perron (1989, 1990) with respect to the test’s asymptotic behaviour under

the alternative hypothesis. Under the alternative, the autoregressive parameter of the

first lag in the corresponding univariate time series model is overestimated. But only for

a shift magnitude increasing at least proportional to the square root of the sample size the

estimated value asymptotically approaches one, which means that the process is regarded

as nonstationary. Hence, in this case the ADF test cannot reject a wrong null hypothesis

asymptotically. On the other hand, for a fixed shift size there is some chance that a wrong

null hypothesis is rejected. Nevertheless, one should be cautious when comparing these

asymptotic results for the univariate case with the outcome of the Monte Carlo analysis

presented in the next section since the situation for cointegrated systems with a nonzero

cointegrating rank can be much more complicated.

4 Monte Carlo Simulations

4.1 The DGP and Simulation Details

The simulations are based on the following DGP:

yt = δdt + xt, (4.1)

10



where δ is a (n × 1) vector with δ = (δ1, . . . , δn)′ measuring the magnitude of the level

shift in the respective components of yt, dt is a shift dummy variable as defined in (2.2).

Hence, I only consider a single shift at one point in time. This is done in order to simplify

the analysis. It is expected that the existence of more than one level shift worsens the

situation for the standard cointegration tests. The component xt is a VAR(1) process

that was already used and analysed by Toda (1994, 1995):

xt =A1xt−1 + εt =

[
Ψ 0

0 In−r

]
xt−1+ εt, εt ∼ iid N

([
0

0

]
,

[
Ir Θ

Θ′ In−r

])
, (4.2)

where Ψ = diag(ψ1, . . . , ψr) is an (r × r) diagonal matrix and Θ is a (r × (n − r))

matrix describing the correlation between the stationary and nonstationary components.

Other VAR(1) processes of interest can be obtained from (4.2) by linear transformations

which leave the analysed LR tests invariant (see Toda (1994, 1995). Specifically, I will

consider bivariate and four-dimensional processes. For instance, in the bivariate case, if

r = 0, Ψ and Θ vanish and the process consists of two nonstationary components. If

the cointegrating rank is 1, Ψ = ψ1 with |ψ1| < 1. In that case Θ = θ is a scalar which

represents the instantaneous correlation between the two components. In the simulations

the parameter values of the constant and the linear trend are zero, i.e. µi = 0 (i = 0, 1)

throughout. This is done because the test results are invariant to specific parameter values

of the deterministic components they allow for. Thereby I can use one DGP for all tests

no matter which assumptions are made regarding a constant or a linear trend.

According to (2.7) and (2.9), (4.1) has the following VECM representation:

∆yt = α[φdt−1 + β′yt−1] + δ∆dt + εt

= [δΠdt−1 + Πyt−1] + δ∆dt + εt = Πdyd
t−1 + δ∆dt + εt,

(4.3)

with δΠ = αφ = −αβ′δ = −Πδ, Π = αβ′ = −(In − A1), Πd = [δΠ : Π] and yd
t−1 = [dt−1 :

y′t−1]
′. Hence, for δΠ we have

δΠ = (In − A1)δ =

[
(Ir −Ψ) 0

0 0

][
δs

δn

]
=

[
(Ir −Ψ)δs

0

]
, (4.4)

where δs = (δ1, . . . , δr) and δn = (δr+1, . . . , δn) are (r × 1) and ((n − r) × 1) vectors

representing shifts in the r stationary and (n− r) nonstationary components of the DGP

respectively.

Obviously, it matters whether the shift occurs in a stationary or in a nonstationary

component. A level shift in a nonstationary component leads only to an unrestricted

impulse dummy (∆dt) in the VECM representation (4.3) since the respective coefficient

11



in δΠ is zero according to (4.4). This latter fact means that the parameter vector δ is

orthogonal to the space spanned by the cointegrating vectors contained in β′. The vector δ

has to be orthogonal to the cointegration space because the respective coefficients in δΠ =

−Πδ = −αβ′δ are zero although α, β and δ are nonzero parameter vectors or matrices.4 In

contrast, a shift in a stationary component of yt also results in a shift in the cointegration

relations or in the error correction term Πdyd
t−1. Generalizing this observation I can

state that a shift in the level of a time series only generates a shift in a cointegration

relation if the corresponding parameter vector of the level shift is nonorthogonal to the

cointegration space. This property is analogous to other deterministic terms as e.g. to

a linear trend (compare the discussion in Section 2 regarding the Johansen test version

with an orthogonal trend).

In line with the foregoing remarks, I will refer to the level shifts generating a shift in the

cointegration relations as nonorthogonal shifts whereas shifts leading only to unrestricted

impulse dummies in the VECM representation will be named as orthogonal level shifts.

In this respect, we may interpret the unrestricted impulse dummies used in Doornik et al.

(1998) as being generated by an orthogonal level shift. In the Monte Carlo simulations

the relative importance of nonorthogonal and orthogonal level shifts is analysed. On the

other hand, the unrestricted impulse dummies may still correspond to simple outliers in

the level or VAR representation of the DGP. Such dummy variables, however, are not

considered in the current framework. Accordingly, the level shift in the cointegration

relation studied by Gregory & Hansen (1996) and Inoue (1999) may be interpreted as a

nonorthogonal level shift. Nonetheless, the resulting lagged impulse dummies are ignored

in this way of modelling.

The computations for the simulation study are performed by using programs written

in GAUSS 3.2 for Windows. The RNDNS function with a fixed seed has been used

to generate standard normally distributed random numbers. Samples of sizes 100 and

200 plus 50 presample values starting with initial values of zero are generated and the

presample values are discarded afterwards. The rejection frequencies given in Tables 1 -

5 and Figures 1 - 10 are based on asymptotic critical values for a significance level of 5%.

The number of replications is 10000, i.e. I generate 10000 different sets of multivariate

random numbers. Note that I produce these random numbers only once. Hence, for each

set of parameter values I use the same random numbers. This also means that the test

statistics are applied to the same time series for a given set of parameter values. Thus, the

4The matrices or vectors α and β are only nonzero if the cointegrating rank r is larger than zero.
Accordingly, if r = 0 the cointegration space is a null space and, thus, only shifts orthogonal to the
cointegration space exist.
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rejection frequencies reported in the analysis are not independent. However, they can be

compared directly. In order to evaluate the results it may be helpful to use the standard

error of an estimator of a true rejection probability P which is sP =
√

P (1− P )/10000

if 10000 replications are considered. Hence, for P = 0.05 we obtain s0.05 = 0.0022 and

the corresponding two-standard-error confidence interval is [0.0456, 0.0544]. Furthermore,

the tests were not performed sequentially in the simulations. Thus, the results for testing

H0(1) : rk(Π) = 1 are not conditioned on the outcome of the test of H0(0) : rk(Π) = 0

etc..

Doornik et al. (1998) suggest to scale the shift magnitude in order to be able to evaluate

the shift’s impact in a meaningful way. For the univariate case they introduce the scaled

parameter δ∗ = δ/(
√

Tσ) where σ is the standard deviation of the error term in the

respective DGP. This scaling formula is motivated by the asymptotic results of Doornik

et al. (1998) for the ADF unit root test mentioned in Section 3.1. If the parameter δ is

fixed and the sample size T increases, the scaled parameter δ∗ approaches zero. In this

case the level shift is asymptotically negligible. On the other hand if δ increases with a

rate proportional to the square root of the sample size, δ∗ remains constant and the level

shift has an effect on the asymptotic distribution of the ADF test.

However, it is not obvious whether the scaling formula suggested by Doornik et al.

(1998) should also be a applied in the multivariate framework with respect to the coin-

tegration tests. For example, the formula is not able to capture the correlation between

different error terms of a multivariate process. Nevertheless, as I set σ2 = 1 for all com-

ponents of the DGPs one should take the scaling rule δ∗ = δ/
√

T into account when

comparing the results for the sample sizes T = 100 and T = 200. In the present context,

δ∗ and δ refer to parameter vectors instead of single parameters. Consider, for exam-

ple, a bivariate parameter vector δ = (1 1)′ regarding a sample size T = 100. Then,

δ∗ = (1 1)′/
√

100 = (0.1 0.1)′. If we want to keep δ∗ constant for T = 200 we have to set

δ =
√

T δ∗ =
√

200 (0.1 0.1)′ = (
√

2
√

2)′.

Without using δ∗ explicitly, these computations are generalized for any two sample

sizes by applying the normalization formula

δ(2) =
√

T2/T1δ
(1), (4.5)

where Ti (i = 1, 2) are the sample sizes and δ(i) (i = 1, 2) are the respective parameter

vectors which assure that the level shifts have the same scaled shift magnitude in both

sample sizes. In other words, δ(2) is normalized with respect to δ(1) and T1 such that

the same scaled magnitude is used for T2 as for T1. Therefore, (4.5) is referred to as

normalization formula and δ(2) may be named as a normalized shift vector.
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To asses the influence of the magnitude of the level shift I use the parameter values

δi = 0, δi = 1, δi = 5, δi = 10, and δi = 20 (i = 1, . . . , n) for both sample sizes T = 100

and T = 200. Of course, if δi = 0 there occurs no shift and this case is regarded as a

reference for evaluating the effects of a shift. Since the shift magnitudes are fixed for

T = 100 and T = 200 the entries in the scaled parameter vector δ∗ will decrease for

T = 200 in line with the discussion of the scaling issue. In order to analyse the effects of

increasing the sample size in case of level shifts that have the same scaled magnitude I

also consider δi =
√

2, δi =
√

50, δi =
√

200, and δi =
√

800 (i = 1, . . . , n) for T = 200.

These normalized quantities are obtained by applying formula (4.5) with T1 = 100 and

T2 = 200. The vector δ(1) contains the parameter values δi = 1, δi = 5, δi = 10, and

δi = 20 (i = 1, . . . , n) respectively. Note that I will report the results with respect to

T = 200 only in terms of some of the mentioned shift magnitudes.

To gauge the impact of the timing of the level shift three different relative break points

are studied: t1 = 0.25, t1 = 0.50, and t1 = 0.75 with t1 = T1/T . Relative shift dates

very close to the beginning or the end of the sample are not considered in detail because

the sample could be trimmed for the cointegration analysis by cutting off only a few of

the first or last data points. Thus, one loses only a few observations. Nevertheless, I

briefly comment on the effects of very early or very late shifts on the small sample size

and power.

4.2 Size in Small Samples

In a first step the tests’ sizes in small samples are analysed. I will use the term size for the

frequency of rejecting the null hypothesis H0(r0) : rk(Π) = r0 when the true cointegrating

rank of the DGP is, in fact, r0. This use of the term size does not coincide with the

exact definition of the size of a test. The definition would require to maximize the power

function over the whole parameter space associated with the null hypothesis with respect

to the nuisance parameters contained in the test statistics’ small sample distributions.

This is not done in my simulation framework.

As a point of departure I consider bivariate processes as described by (4.1) with r = 1,

i.e. to evaluate the sizes of the tests the null hypothesis is H0(1) : rk(Π) = r0 = 1.

In Table 1 the results for ψ1 = 0.7 and a shift in both components are shown for

different shift magnitudes (δ) and values of the error term correlations (θ). As can be

clearly seen the sizes of all tests approach zero if the magnitude of the shifts increases.

Usually, a significant size reduction is observed for values equal to or larger than δ1 =

δ2 = 5. Significant differences are indicated by bold type entries. Significance refers
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to differences that are equal to or larger than twice the standard error s0.05 = 0.0022

described above. The tests suggested by Saikkonen & Lütkepohl are slightly less affected

by the size distortion in the sense that they lose less size than the Johansen tests given

the same shift magnitude.

Comparing the different proposals concerning the deterministic terms it is seen that no

test variant has an overall advantage over the other one. With respect to the various break

points t1, significant differences for some δ are observed. Such significant differences also

occur for the other DGPs considered in the following. But they do not exhibit a systematic

pattern in the sense that specific break points generally cause a high or low size reduction.

With respect to shift dates at the end of the sample I have observed similar results as for

the other break points. For shifts at the very beginning of the sample, however, the size

reduction is clearly less pronounced when the Johansen-type tests are considered. In fact,

the size remains unchanged if the shift occurs, say, within the first 5% of the observations.

In a next step the simulations are repeated for DGPs where a shift only occurs in

the nonstationary or stationary component respectively in order to compare the relative

importance of these breaks. In Table 2 the results for a break in the stationary component

display only some significant differences to the case of breaks in all time series of the DGP.

The number of positive and negative deviations are approximately the same. Hence, the

same conclusions as above apply. However, if a break occurs only in the nonstationary

part all tests generally have a significantly larger size for shift magnitudes of δ2 = 5 or

δ2 = 10 compared to the situation of a break in all components (compare Tables 1 and 3,

bold type entries highlight significant differences). Accordingly, significant size reductions

relative to the case of no shifts are rarely observed for shift magnitudes lower than δ2 = 10

or, in some cases, than δ2 = 20 when the tests suggested by Saikkonen & Lütkepohl are

considered. Hence, a shift in the stationary part has a much more distortionary effect on

the tests’ size. This was also observed for higher dimensional processes. However, the

size seems to approach zero for both types of level shifts. Still, one might argue that the

rate at which the size reduces to zero is higher for shifts in the stationary part since the

reduction is more pronounced given a certain shift magnitude. Interestingly, if a level shift

is already present in the stationary part adding a shift to the nonstationary component

does not cause further important size distortions.

Generalizing, one can conclude that level shifts which translate to shifts in the cointe-

gration relations are much more important in terms of size distortion than nonorthogonal

level shifts leading to outliers in a VECM only.
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Table 4. Rejection Frequencies of Tests for Bivariate DGPs with True Cointegrating
Rank r = 1 (ψ1 = 0.7), θ = 0.8, VAR Order p = 1, Sample Size T = 200, Nominal
Significance Level 0.05, H0(1) : r0 = 1, Level Shift in all Components

δ = δ = δ = δ = δ = δ = δ =

0ι2
√

2ι2 5ι2
√

50ι2 10ι2
√

200ι2
√

800ι2

t1 = 0.25

LRJoh 0.0537 0.0528 0.0467 0.0393 0.0262 0.0127 0.0027

LRS&L 0.0365 0.0348 0.0217 0.0163 0.0086 0.0031 0.0007

LR0
Joh 0.0538 0.0534 0.0470 0.0375 0.0240 0.0129 0.0055

LR0
S&L 0.0539 0.0522 0.0487 0.0445 0.0285 0.0160 0.0052

t1 = 0.50

LRJoh 0.0537 0.0538 0.0484 0.0417 0.0298 0.0150 0.0022

LRS&L 0.0365 0.0356 0.0256 0.0185 0.0109 0.0063 0.0008

LR0
Joh 0.0538 0.0516 0.0385 0.0232 0.0114 0.0050 0.0016

LR0
S&L 0.0539 0.0542 0.0504 0.0436 0.0274 0.0168 0.0085

t1 = 0.75

LRJoh 0.0537 0.0514 0.0423 0.0345 0.0215 0.0093 0.0018

LRS&L 0.0365 0.0332 0.0190 0.0102 0.0039 0.0013 0.0002

LR0
Joh 0.0538 0.0532 0.0384 0.0235 0.0107 0.0050 0.0012

LR0
S&L 0.0539 0.0532 0.0512 0.0480 0.0420 0.0344 0.0175

Note: ι2 = (1 1)′. Bold entries indicate significant size differences with respect to
the results for δ = (0 0)′.

The impact of the parameters θ and ψ1 on the empirical size level is in general more

important than their effect on the way the size is distorted. For increasing δ, one may

observe that high correlation leads to a slower size reduction in case of LRS&L and LR0
S&L

and to a faster size reduction in case of LRJoh and LR0
Joh. However, this may be an

outcome of the different size levels caused by θ. Setting ψ1 = 0.9 produces lower empirical

sizes for all tests but the general conclusions regarding the size distortion remain largely

the same. Therefore, these results are not presented here.

Some further issues that relate to the dependency of the outcomes on the sample size,

the dimension of the DGP, and the number of time series affected by a level shift are

discussed in the following.

In Table 4 results for the case of T = 200 with a shift in all components are collected.

The parameters of the DGPs are the same as in Table 1 with the exception of the shift
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magnitudes.5 In Table 4 the corresponding magnitudes according to the normalization

formula (4.5) are used such that the scaled shift magnitude is the same for T = 100 and

T = 200. Additionally, the results for δ = (5 5)′ and δ = (10 10)′ are included in order

to enable a comparison with T = 100 for the case of a fixed shift magnitude. Mainly, the

tests’ size significantly fall for δ = (5 5)′ and higher values of δ. Again, the Saikkonen-

Lütkepohl proposals are slightly less affected by the size distortion. The magnitude of 5

corresponds to δ = (3.5 3.5)′ for T = 100 in line with (4.5). Above I have described that

the sizes fall significantly for δ = (5 5)′ or higher values if T = 100. This would mean that

a significant size reduction occurs for lower normalized shift magnitudes if the sample

size increases. But comparing the results for δ = (5 5)′ we can clearly see that the tests’

sizes are higher and the size reduction is lower if T = 200. We may also conclude that a

significant reduction would have occurred for shift magnitudes lower than five if T = 100

is considered. Hence, when taking into account the scaling issue the relative outcomes

are the same in case of the larger sample size. On the other hand, comparing the findings

for δ = (5 5)′ and δ = (10 10)′ it follows that a shift of a given magnitude may distort the

size less for increasing sample sizes. Nevertheless, if the magnitude of the shift increases

the empirical sizes still approach zero.

I have also performed simulation experiments for four-dimensional DGPs to check the

effects of ignoring level shifts in higher-dimensional and more complicated processes. As

an example the results for a DGP with a cointegrating rank r = 2 and a break in all

components are shown in Table 5. It can be seen that a significant size reduction occurs

for δ = (5 5 5 5)′ and that the size decreases to zero for higher values of δ. Note that in

two cases a significant fall of the size of LR0
Joh can already be observed for δ = (1 1 1 1)′.

Nevertheless, the differences concerning the various test proposals, the deterministic terms

and the relative break points are less marked than in the bivariate setup. Interestingly,

this can also be observed for other four-dimensional processes not shown here. However,

as in the bivariate setup a level shift in the stationary components is much more important

than a shift in the nonstationary part. If breaks are already present in the stationary time

series then adding a level shift to the nonstationary components does not exacerbate the

tests’ size properties. Since the findings are similar for both bivariate and four-dimensional

DGPs detailed results are not given here.

The last remark already refers to the issue whether it is important how many compo-

nents are affected by a shift. A first conclusion is that the type of the shift is of interest in

this respect, i.e. whether the break occurs in the nonstationary or stationary part. I can

5In Table 4 only the results for θ = 0.8 are shown.
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Table 6. Rejection Frequencies of Tests for Four-dimensional DGPs with Cointegrating
Rank r = 2 (ψ1 = ψ2 = 0.7), Θ = [(0.4 0.4)′ : (0.4 0.4)′], VAR Order p = 1, Sample Size
T = 100, t1 = 0.50, Nominal Significance Level 0.05, Level Shift in both Nonstationary
Components

δ3 = δ4 = 0 δ3 = δ4 = 1 δ3 = δ4 = 5 δ3 = δ4 = 10 δ3 = δ4 = 20

LRJoh 0.0473 0.0453 0.0281 0.0119 0.0050

LRS&L 0.0360 0.0353 0.0378 0.0310 0.0253

LR0
Joh 0.0494 0.0476 0.0342 0.0177 0.0086

LR0
S&L 0.0532 0.0533 0.0521 0.0435 0.0300

Note: Bold entries indicate significant size differences with respect to the
results for δ = (0 0 0 0)′.

conclude from simulation experience of which results are not presented here that it is of

less importance how many stationary components are affected by a shift. If one stationary

component includes a level shift introducing a shift to a previously unaffected stationary

component does not change the tests’ size properties significantly. In contrast, increasing

the number of affected nonstationary time series reduces the tests’ size significantly in

some cases.

Among the previous studies mentioned in Section 3.1 only Doornik et al. (1998) anal-

yse the small sample size properties in case of neglected breaks. Taking into account

that the level shifts in the nonstationary part are less important and interpreting the

unrestricted impulse dummies used by Doornik et al. (1998) as level shifts orthogonal to

the cointegration space it is not surprising that they report reasonable size properties for

breaks of a smaller magnitude. However, with respect to their large dummy variables

with a magnitude of fifty and thirty times the standard deviation of the error terms we

may expect a pronounced reduction in the tests’ sizes since these magnitudes are much

larger than the ones analysed in my study. In contrast, Doornik et al. (1998) found only

a slight size decrease.

I also observe rather low empirical size values, at least for the Johansen tests, when

examining a four-dimensional DGP comparable to the ones employed in Doornik et al.

(1998). The DGP has a true cointegrating rank of r = 2, strong error term correlation

(Θ = [(0.4 0.4)′ : (0.4 0.4)′]), t1 = 0.50 and the level shifts occurs in the two nonstationary

components, i.e. I consider nonorthogonal level shifts. The low size values displayed in

Table 6 are an outcome of clearly significant size reductions compared to δ = (0 0 0 0)′.

Therefore, one may conclude that the effects of ignoring shifts seem to be less important
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within the framework used in Doornik et al. (1998). This conclusion may point again

to the fact that unrestricted impulse dummies considered by Doornik et al. (1998) could

just be the result of simple one-time outliers in levels instead of being the outcome of

nonorthogonal level shifts. For one-time outliers we may expect a much lower distortionary

effect on the tests’ small sample sizes.

4.3 Small Sample Power

In the second part of the Monte Carlo study I examine the small sample power of the

cointegration tests. The small sample power is not size adjusted since such an adjustment

is usually not possible in applied work. Again, I start by analysing bivariate processes

with shifts in both components. The true cointegrating rank is r = 1 (|ψ1| < 1) and

the null hypothesis is H0(0) : r0 = 0. In Figure 1 the small sample power is depicted

depending on δ = (δ1 δ2) with δ1 = δ2 for T = 100 and different values of ψ1 and θ. I only

show the small sample power for the break point t1 = 0.50 since the power differences

caused by the various break dates are generally of minor importance. The same result

was also found by Inoue (1999) for the Johansen-type tests used in his analysis. However,

in line with the results for the size the small sample power of the Johansen tests is not

reduced for shifts occurring at the very beginning of the sample whereas shifts at the end

of the sample produce similar results as the break point t1 = 0.50.

For δ = (1 1)′ the power is almost identical to the situation of no level shifts (δ =

(0 0)′). Increasing the magnitude of the shifts to five reduces the power of the tests

clearly. The tests lose sometimes more than 50 percent of their original power and the

power decreases further if δi (i = 1, 2) is set to 10 or 20. However, there are differences

in the reduction among the tests indicated by the steepness of the power curves. For

example, LRS&L loses relatively less power compared to all other tests, especially in the

absence of innovation correlation. It also turns out that the tests allowing for a trend loses

less power compared to the test versions assuming µ1 = 0. As a result of this advantage

the tests accommodating a linear trend have a higher power for δi ≥ 5 (i = 1, 2) in

contrast to the situations of δ = (0 0)′ or δ = (1 1)′. This was also observed by Gregory

& Hansen (1996) for single-equation cointegration tests with and without a linear trend.6

The smaller power loss could be due to the trend term that may be able to capture some

effects of the level shift.

By and large, the parameters ψ1 and θ just affect the level of the power. Nevertheless,

for θ = 0 a higher value of ψ1 causes a steeper power curve between δ = (1 1)′ and

6As already mentioned, Doornik et al. (1998) analyse only the Johansen test with a trend and Inoue
(1999) applies only one Johansen-type test to the level shift case.
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δ = (5 5)′. But independent of ψ1 the power of all tests seem to converge to the same

power level for large values of δi (i = 1, 2). If δ = (20 20)′, the power varies around 5%

(θ = 0) and 10% (θ = 0.8).

As for the tests’ sizes, the loss in small sample power depends on the component in

which the shift occurs. In Figures 2 and 3 the power is shown for a shift only occurring

in the stationary or the nonstationary component respectively. If the nonstationary com-

ponent is affected by a level shift in case of no error term correlation the power remains

almost unchanged independent of the shift magnitude. And even if the nonstationary

component is related to the stationary part via the error term correlation the loss in

power is less marked compared to the situation of a shift in the stationary component.

Furthermore, the power curves for the case of a break in the stationary component only

are almost identical to the those referring to shifts in both components. That means, if

the stationary component is affected by a shift, adding a shift to the nonstationary part

of the process does not change the power properties of the cointegration tests.

Also for a sample size of T = 200 shifts in both components lead to a dramatic fall in

the power (see Figure 4). Although the tests have now a higher power if δ = (0 0)′, the

small sample power reduces to approximately the same values as for T = 100 when using

the corresponding higher values of δ obtained from the normalization (4.5). Comparing

the rejection frequencies for δ = (5 5)′ and δ = (10 10)′, it is seen that for a given shift

magnitude the relative power loss is often less important if the sample size increases. As

in the case of T = 100 the test versions allowing for a linear trend are less affected by

the power reduction. Their power advantage is particularly pronounced for ψ1 = 0.8 or

ψ1 = 0.7.

I have also simulated four-dimensional DGPs with r = 1 and r = 2 for T = 100 with

a shift in all time series. For the DGPs with r = 1 one gets similar results as in the

bivariate setup. Therefore, the corresponding graph is not shown. However, testing the

null hypothesis r0 = 0 if r = 2 the tests still have a small sample power between 20% and

40% for δ = (20, 20, 20, 20) (see Figure 5). Hence, there is at least some chance of finding

a cointegration rank of one if there are two cointegration relations present. On the other

hand, finding a second cointegration relation, i.e. rejecting H(0) : r0 = 1, is very unlikely

as shown in Figure 6. In contrast to the bivariate DGPs the differences in the small

sample power with respect to the assumptions made about the deterministic terms are

less pronounced within the higher dimensional framework. The same is true regarding

the differences in the performance of the test proposals by Johansen and Saikkonen &

Lütkepohl.
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Figure 9. Small sample power of tests for H0(0) : r0 = 1 based on four-dimensional
DGPs with true cointegrating rank r = 2 (ψ1 = ψ2 = 0.7), Θ = [(0.4 0.4)′ : (0.4 0.4)′],
T = 100, t1 = 0.5, level shift in both nonstationary components.

Focusing on the DGPs with r = 2 I have analysed again the relative importance of

shifts occurring either in the stationary or nonstationary components. As in the bivariate

setup, shifts in the stationary part of the DGP that translate to shifts in the cointegration

relations are much more important in terms of power reduction than breaks in the nonsta-

tionary part that are orthogonal to the cointegration space (compare Figures 7 and 8). In

fact, the relative rejection frequencies in case of shifts in the two stationary components

and in case of breaks in all time series are almost the same. In contrast, shifts in both

nonstationary components lead to clearly less power reduction. These findings regarding

the relative importance of shifts in the stationary and nonstationary components may

explain why Gregory & Hansen (1996) and Inoue (1999) report a clear loss in the small

sample power of the single-equation and Johansen-type tests they consider in case of ig-

noring level shifts in the cointegration relations whereas Doornik et al. (1998) only observe

smaller power losses for large unrestricted impulse dummies compared to the situation of

small dummies. Again, it is assumed in this respect that a level shift in a cointegration

relation corresponds to a level shift in the time series which is orthogonal to the cointegra-

tion space, i.e. to a shift in a stationary component of the DGP I used. Accordingly, an

unrestricted impulse dummy is regarded to be equivalent to a nonorthogonal shift, i.e. to

a shift in a nonstationary component.

I observe, however, that the power loss reported in Doornik et al. (1998) is even lower

than for a comparable DGP with orthogonal level shifts in accordance with my framework.
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Analysing a four-dimensional DGP with r = 2 and an unrestricted impulse dummy in two

components and testing H0(r0) = 1 Doornik et al. (1998) find that the LRJoh test loses

only one third of its original small sample power when the magnitude of the unrestricted

impulse dummies is increased from three and five times to thirty and fifty times the

standard deviation of the error terms respectively. For the comparable DGP I consider

it can be seen in Figure 9 that the Johansen tests lose about two third, the Saikkonen-

Lütkepohl tests about one half of their original power when a shift magnitude of twenty

times the standard deviation is considered in comparison to the case of no level shifts.

But note again, that unrestricted impulse dummies could also be the effect of one-time

outliers. In the same way as for the tests’ small sample size we may expect that such

outliers are less important and this may explain the differences in the observed outcomes.

Using the four-dimensional setup with r = 2 I also examine whether it is important

how many time series are affected by a level shift. In contrast to the outcome for the small

sample size, it is crucial for the power how many stationary components are affected by

a shift. Comparing Figures 7 and 10 an obvious power decline can be observed when a

shift is additionally introduced to the second stationary component. On the other hand,

whether one or two nonstationary components are hit by a level shift is of minor relevance.

Therefore, the respective graphs are not shown here. Furthermore, if there already exist

breaks in the stationary part of the DGP additional shifts in the nonstationary part do

not exacerbate the tests’ small sample power.

5 Empirical Applications

From the previous simulation results we can clearly conclude that ignoring level shifts dis-

torts the inference about the cointegration rank of a system of variables. To be precise, it

is more difficult to find the true cointegrating rank. The following two empirical examples

demonstrate how these findings may affect applied work. First, I refer to a cointegration

analysis of the Polish crawling peg system performed by Trenkler (2000). Furthermore, a

German money demand system described by Lütkepohl & Wolters (1998) is used.

5.1 Polish Crawling Peg System

Trenkler (2000) has analysed the relationship between the Polish zloty and the basket

currencies within the crawling peg system Poland established on October 15, 1991. In

this system the zloty is tied to a currency basket and devalued with a preannounced

monthly rate (rate of crawl). The currencies comprising the basket were the U.S. dollar,

German mark, British pound, French franc and Swiss franc. Assuming that the monetary
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Figure 11. Logarithm of Polish zloty-U.S. dollar rate (zlt) and U.S. dollar per unit of
currency basket (cbt) between March 1, 1993 - February 28, 1994.

authorities can keep the actual zloty rate in line with the theoretical rate determined by

the crawling peg, Trenkler (2000) derives a long-run relationship between the logarithms

of the zloty - U.S. dollar rate (zlt) and the logarithm of the basket currencies denominated

in U.S. dollar (gmt, bpt, fft, sft) and a long-run relationship between the logarithms of the

zloty - U.S. dollar rate (zlt) and the logarithm of the basket’s value denominated in

U.S. dollar (cbt). Hence, he considers a five-dimensional model consisting of the single

currencies and a bivariate model combining the zloty - dollar rate and the basket’s value.

The former model is named currency model the latter one basket model. Trenkler (2000)

tests for these relationships within the cointegration framework using daily data from

March 1, 1993 to February 28, 1994. The number of observation is 249. However, this

period includes a discrete step devaluation of the Polish zloty by 7.4 % against the basket

on August 27, 1993 (see Figure 11). Thus, the shift occurs in the 125th period (t1 = 0.5).

This level shift is modelled by a shift dummy within a VAR system of order p = 3

consisting of a constant, a linear trend, and zlt, gmt, bpt, fft, sft (currency model) and

zlt, cbt (basket model) respectively. By introducing the dummy variable he allows for a

shift in all time series. Actually, the break only occurs in zlt. Therefore, one may expect

that the estimated coefficients of the dummy variable related to the other time series are

very small. Applying cointegration tests suggested by Saikkonen & Lütkepohl (2000a)

(LRSL) and by Johansen, Mosconi & Nielsen (2000) (LRJMN) which take the level shift
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Table 7. Cointegration Tests for Basket Model (zlt, cbt)

H0 LRJMN 5% c.v. LRJoh 5% c.v. LRSL LRS&L 5% c.v.

r0 = 0 68.26∗∗ 30.49 14.65 25.47 23.46∗∗ 6.45 15.92

r0 = 1 10.46 15.26 3.33 12.39 2.81 2.06 6.83

Note: ∗∗ denotes significance at a 1% level. Critical values (c.v.) for LRSL and LRS&L are
the same and taken from Lütkepohl & Saikkonen (2000). The critical values for LRJMN are
simulated with the program DisCo (Johansen & Nielsen 1993). Those for LRJoh are taken
from Johansen (1995).

Table 8. Cointegration Tests for Currency Model (zlt, gmt, bpt, fft, sft)

H0 LRJMN 5% c.v. LRJoh 5% c.v. LRSL LRS&L 5% c.v.

r0 = 0 233.69∗∗ 98.53 64.01 86.96 125.15∗∗ 39.72 65.69

r0 = 1 49.45 72.15 42.00 62.61 28.74 27.76 45.12

r0 = 2 32.23 49.38 26.24 42.20 10.63 11.26 28.47

r0 = 3 17.29 30.49 11.94 25.47 5.67 5.50 15.92

r0 = 4 4.39 15.26 4.27 12.39 1.65 2.44 6.83

Note: ∗∗ denotes significance at a 1% level respectively. Critical values (c.v.) for LRSL and
LRS&L are the same and taken from Lütkepohl & Saikkonen (2000). The critical values
for LRJMN are simulated with the program DisCo (Johansen & Nielsen 1993). Those for
LRJoh can be found in Johansen (1995).

into account, Trenkler (2000) finds a cointegrating rank of one for both models confirming

the existence of the postulated long-run relationships. These tests are based on (2.1) and

(2.9) and work similarly compared to the standard tests. For the Johansen test, y+
t−1

as defined in (2.9) is used instead of the definition in (2.11). Otherwise, the procedure

applies as described in Section 2. However, one has to keep in mind that the distribution

of the test statistic differs from the one for (2.13) and depends on the timing of the shift.

Critical values can be calculated by using the simulation program DisCo (see Johansen &

Nielsen 1993) or by a response surface given in Johansen et al. (2000). For the Saikkonen-

Lütkepohl proposal, (2.9) is used to obtain first-stage estimators. Then all deterministic

terms in (2.1) including the level shift are estimated by a GLS procedure. The time

series yt is adjusted by these deterministic terms and an LR type test is performed on the

adjusted series x̂t = yt − µ̂0 − µ̂1t − δ̂dt. The limiting distribution of the resulting test

statistic is the same as in the case of no level shifts. Details of the test are described in

Saikkonen & Lütkepohl (2000a).
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Table 9. Estimation of Scaled Shift Parameters for Polish Crawling Peg System, March
1, 1993 - February 28, 1994, T = 249

Time Series δ̂ σ̂ δ̂∗100 δ̂∗200

Basket Model (zlt, cbt)

eZl
$ 0.07661 0.002012 24.13 34.12

Currency Model (zlt, gmt, bpt, fft, sft)

eZl
$ 0.07609 0.001665 28.96 40.95

Trenkler (2000) has also applied the standard cointegration tests LRJoh and LRS&L

analysed in the foregoing section and found no cointegration. The results are collected in

Tables 7 and 8.

In contrast to the simulation study we do not know the true cointegrating rank of

the systems under study. Therefore, we cannot asses the performance of the tests as we

have done in the previous section. Nevertheless, we have the results of the corresponding

cointegration tests accommodating a level shift. If we assume that these tests find the

true cointegrating rank, then one may take them as a reference. To gauge the test results

in an useful way it is also necessary to estimate the magnitude of the level shift. The

GLS procedure used by Saikkonen & Lütkepohl (2000a) provides an estimator δ̂ for the

parameter vector δ as well. In line with the results of LRJMN and LRSL I apply a

cointegrating rank of one since I assume that this is the true cointegrating rank. The

asymptotic properties of this estimator given in Theorem 3.1 of Saikkonen & Lütkepohl

(2000a) state that δ is consistently estimated in direction of β if T −T1 →∞, but is only

bounded in probability in the direction of β⊥. Therefore, one has to use some caution in

interpreting the estimated coefficient.

The estimation results for δ̂ for zlt are reported in Table 9. The estimated shift

parameters for the other series are equal to or less than 0.2 (currency model) and equal

to 0.5 (basket model) if normalized for T = 100. Therefore, these results are not shown

in detail in Table 9. The shift estimates are roughly equal for both models and close to

the actual devaluation rate of 7.4% or 0.074.

These estimates, however, have to be related to the sample size and the standard

deviation of the error term in the respective component according to the scaling problem

discussed in the foregoing sections. We can estimate the variance-covariance matrix of the

error terms by using the residuals from the reduced rank regression of (2.9) and thereby

extract estimators of the standard deviations (σ̂). In order to simplify a comparison with
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the results of the Monte Carlo study the estimated magnitudes δ̂ are scaled, or we may

say normalized, with respect to the sample sizes T = 100 and T = 200 used in the Monte

Carlo study. Including the estimated standard deviations in (4.5) I obtain for the current

sample size T = 249 the normalized shift magnitudes as

δ̂
(100)
i =

√
(100/249) δ̂i

σ̂i

and δ̂
(200)
i =

√
(200/249) δ̂i

σ̂i

where the index i corresponds to the estimated parameter values of the respective time

series in the basket and currency models. The resulting quantities for zlt are shown in

Table 9.

Since I have allowed the level shift to enter the long-run relationship according to (2.9)

we may interpret it as a level shift in the stationary part with respect to the simulation

study presented above, i.e. the shift is assumed to be not orthogonal to the cointegration

space. Then, taking the large magnitude of the level shift in the Polish zloty series

into account we should expect that the tests suffer from a high power loss since these

values are far above the magnitudes analysed in the foregoing section. Figure 4 shows

for comparable bivariate DGPs with T = 200, a cointegrating rank r = 1 and strong

innovation correlation that the power is relatively low in case of the largest magnitude

I have analyzed. Although a shift has occurred in both components of these DGPs it

is known from the results for T = 100 that the outcomes for a break in the stationary

part only are similar to breaks in all components.7 It was also stated that the results for

four-dimensional systems are equivalent to the ones for bivariate models if a cointegrating

of r = 1 is considered. In this respect it is not surprising that the standard tests cannot

find a cointegration relationship neither in the five-dimensional currency model nor the

bivariate basket model although the tests accommodating the level shift reject the null

hypothesis of no cointegration at a 1% level.

5.2 A German Macroeconomic System

Lütkepohl & Wolters (1998) aim to analyse the channels of the German monetary policy

by means of a small model for the monetary sector that comprises M3, GNP, an inflation

rate, an interest-rate spread variable measuring the difference between the average bond

rate and the own rate of M3, and import-price inflation. The center of the model is

a demand relation for M3, the target variable for the monetary policy of the Deutsche

Bundesbank. Within this relation GNP is used as a variable for the transaction volume,

7In the current example a level shift occurs only in one time series and, as mentioned above, this level
shift is assumed to correspond to breaks in the stationary part of the DGPs used in the Monte Carlo
study.
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Figure 12. Time series of German macroeconomic data, 1975:1 - 1998:4.

the inflation rate and the interest-rate spread are included to represent opportunity costs

of money holding and the import-price inflation accounts for the openness of the German

economy. Using the same data the unit root analysis conducted by Wolters, Teräsvirta &

Lütkepohl (1998) has found that the interest-rate spread and the import-price inflation

are stationary, whereas the other variables are I(1).

Like Saikkonen & Lütkepohl (2000a) I do not analyse this German money demand sys-

tem to derive detailed economic implications as Lütkepohl & Wolters (1998) and Wolters

et al. (1998) have done it but rather I am using the system to illustrate certain econometric

aspects that can be important for empirical work. Saikkonen & Lütkepohl (2000a) have

used the money demand system to apply their cointegration tests accommodating level

shifts to an actual economic system. Furthermore, they demonstrate that it is worthwhile

to apply cointegration tests allowing for level shifts to the whole sample period instead of

applying standard tests to a data set ending before the occurrence of the level shift. The

reason is that in the latter case one may find a lower cointegrating rank than the expected

one due to reduced power resulting from using a shorter sample period. I am interested,

however, in studying the effects of ignoring level shifts in the data set as mentioned before.

According to the cointegration analysis of the same system in Saikkonen & Lütkepohl

(2000a) I test for the number of cointegration relations between the nonstationary vari-
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Table 10. Cointegration Tests for German Macroeconomic Data (mt, gnpt, ∆pt), 1975:1
- 1998:4, T = 96

H0 LRJMN 5% c.v. LRJoh 5% c.v. LRSL LRS&L 5% c.v.

r0 =0 91.34∗∗ 49.63 84.59∗∗ 42.20 62.50∗∗ 45.47∗∗ 28.47

r0 =1 18.32 30.98 15.49 25.47 5.16 6.98 15.92

r0 =2 6.54 15.28 2.87 12.33 1.43 2.39 6.83

Note: ∗∗ denotes significance at a 1% level. Critical values (c.v.) for LRSL and
LRS&L are the same and taken from Lütkepohl & Saikkonen (2000). The critical
values for LRJMN are simulated with the program DisCo (Johansen & Nielsen
1993). Those ones for LRJoh are taken from Johansen (1995).

ables M3, GNP, and the inflation rate. In a second step the (stationary) interest-rate

spread is added in order to analyse whether a further cointegration relation is detected

the cointegration tests.

As in Lütkepohl & Wolters (1998) and Saikkonen & Lütkepohl (2000a) I use quarterly,

seasonally unadjusted data, but extend the original period 1975:1 -1996:4 to the fourth

quarter in 1998 which is the last period before the introduction of the euro. This period

has also been analysed by Lütkepohl & Wolters (2001). They consider a similar model

as Lütkepohl & Wolters (1998). The main difference between these two studies is that

Lütkepohl & Wolters (2001) use separate long-term and short-term interest rates instead

of an interest rate spread in order to examine the monetary policy of the Bundesbak

directly.

The initial period 1975:1 represents the beginning of the Bundesbank’s policy of mon-

etary targeting. To be precise, the following variables are used: mt is the logarithm of real

M3, gnpt is the logarithm of real GNP, ∆pt represents the inflation rate as the first differ-

ence of the logarithm of the GNP deflator, and rdt is the difference between the average

bond rate and the own rate of M3 as described above. The data sources are given in the

Appendix A. The variables are displayed in Figure 12. Obviously, mt and gnpt exhibit

level shifts in 1990:3 due to the German reunification. In July 1990 the West and East

German time series have been aggregated. Saikkonen & Lütkepohl (2000a) model these

level shifts within a VAR system by introducing a shift dummy variable set to zero till the

second quarter of 1990 and one afterwards and an impulse dummy that is one in 1990:3

and zero elsewhere. Furthermore, a linear trend, a constant and seasonal dummy vari-

ables are added to meet the obvious properties of the time series. Saikkonen & Lütkepohl

(2000a) use a VAR order of two which is also suggested for the extended sample period by
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Table 11. Cointegration Tests for German Macroeconomic Data (mt, gnpt, ∆pt, rdt),
1975:1 - 1998:4, T = 96

H0 LRJMN 5% c.v. LRJoh 5% c.v. LRSL LRS&L 5% c.v.

r0 = 0 127.93∗∗ 72.30 107.12∗∗ 62.61 87.33∗∗ 77.13∗∗ 45.13

r0 = 1 54.56∗ 49.63 36.12 42.20 32.53∗ 24.24 28.47

r0 = 2 20.26 30.98 15.72 25.47 5.87 7.80 15.92

r0 = 3 9.57 15.28 3.42 12.33 0.57 2.02 6.83

Note: ∗∗ and ∗ denote significance at a 1% level and 5% level respectively. Critical values
(c.v.) for LRSL and LRS&L are the same and taken from Lütkepohl & Saikkonen (2000).
The critical values for LRJMN are simulated with the program DisCo (Johansen & Nielsen
1993). Those ones for LRJoh are taken from Johansen (1995).

the Schwarz (SC) and Hannan-Quinn (HQ) criteria (see Lütkepohl (1991, Chapter 4) for

definitions). Therefore, I apply this order as well. Thus, the tests allowing for level shifts

are based on the VAR(2) model including all mentioned deterministic terms whereas the

standard tests refer to a VAR(2) model without the shift dummy and impulse dummy

variable. Furthermore, performing a unit root analysis for the extended sample I obtain

the same results as Wolters et al. (1998), i.e. mt, gnpt, and ∆pt are I(1) whereas rdt is

stationary. The outcome for mt, gnpt, and ∆pt is in line with the one in Lütkepohl &

Wolters (2001) who also include these time series.

The results of the cointegration tests are summarized in Tables 10 and 11. Using the

tests that accommodate the level shift a cointegrating rank of one for the three-dimensional

system (mt, gnpt, ∆pt) is found. These tests also detect two cointegration relations in the

larger system (mt, gnpt, ∆pt, rdt) including the interest rate spread variable in accordance

with the stationarity of this variable. Applying the standard cointegration tests to the

smaller system one can see that ignoring the level shift does not change the inference

about the cointegrating rank although the values of the test statistics are lower for the

null hypothesis H0(0) : r0 = 0. However, if LRS&L and LRJoh are applied to the four-

dimensional system including the interest-rate spread variable only a cointegrating rank

of one is found. These tests could not reject the null of one cointegration relation neither

at a 5% nor at a 10% significance level.

To evaluate these findings the scaled magnitudes for the level shifts are estimated.

The GLS estimators δ̂ are computed as described for the Polish crawling peg system. The

results for δ̂, the standard deviation of the respective error term σ̂, and the normalized

parameters vectors δ̂
(100)
i and δ̂

(200)
i are reported in Table 12. Although the estimators for
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Table 12. Estimation of Scaled Shift Parameters for German Macroeconomic Data,
1975:1 - 1998:4, T = 96

Time series δ̂ σ̂ δ̂(100) δ̂(200)

Three-dimensional system (mt, gnpt, ∆pt)

mt 0.13744 0.00973 14.42 20.39

gnpt 0.10465 0.01302 8.20 11.60

∆pt −0.00309 0.00662 −0.48 −0.67

Four-dimensional system (mt, gnpt, ∆pt, rdt)

mt 0.13812 0.00941 14.98 21.18

gnpt 0.10539 0.01300 8.28 11.71

∆pt −0.00339 0.00658 −0.53 −0.74

rdt −0.00224 0.00447 −0.51 −0.72

the normalized level shift in mt differ depending on the two systems, they are approxi-

mately of the same order and similar to the largest values for the shift magnitudes I have

analysed in the simulation study. In contrast, the shift in the GNP series is of a medium

size. Furthermore, since the shifts in dpt and rt are very small one can assume that a shift

only occurs in two (mt, gnpt) of the three or four time series respectively.

Referring to the simulation results for bivariate and four-dimensional DGPs with r = 1

and strong error term correlation (θ = 0.8) one can see that the standard cointegration

tests have some power if scaled shift magnitudes (for T = 100) between 5 and 10 are

considered (compare Figure 1)8. This may explain why a cointegration rank of one is still

found in the small system. However, we have to keep in mind that the shift in mt is of

larger size.

We have learnt from the discussion of the simulation results related to four-dimensional

DGPs with r = 2 that there is some probability to find one of two cointegration relations

(compare also Figures 5-8). But it is very unlikely to detect a second relationship. In line

with these observations LRS&L and LRJoh find only a cointegrating rank of one for the

four-dimensional system, i.e. neither of the standard cointegration tests is able to infer

the cointegrating rank of two which is found by the tests taking account of level shifts.

Moreover, we can conclude from Tables 10 and 11 that both the Johansen and the

Saikkonen-Lütkepohl proposals are affected in a similar way when the level shift is ig-

nored. This observation is in line with the corresponding findings of the simulation study

8The findings for four-dimensional DGPs with r = 1 are similar.
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for the four-dimensional DGPs. The three-dimensional model within the illustration on

the German money demand system can be regarded as an empirical example for which

neglecting a level shift may lead to similar inference about the cointegrating rank as in

models where the shift is taken into account explicitly.

6 Summary

In this study I have analysed the effects of ignoring level shifts in the data generating

process on systems cointegration tests. This analysis is conducted using Monte Carlo

studies and reviewing two empirical examples. I have considered two groups of Likelihood

Ratio tests based on procedures suggested by Johansen (1991, 1992, 1994, 1995) and

Saikkonen & Lütkepohl (2000b). These procedures specify test versions allowing for a

mean term only and versions additionally including a linear trend.

With respect to the Monte Carlo results I can say that ignoring level shifts leads to

size distortions in such a way that the tests’ size approaches zero for increasing values

of the shift magnitude. Furthermore, level shifts in the stationary part of the process

resulting in shifts in the cointegration relations are much more important than shifts in

the nonstationary part which leads to unrestricted impulses in the VECM representation

only. To be more precise, the former kind of shifts produces significant size reductions for

lower values of the shift magnitude. Nevertheless, the sizes approach zero for both types

of breaks as the shift size increases.

For moderate shift magnitudes the Saikkonen & Lütkepohl tests are sometimes less

distorted than the Johansen proposals. On the other hand, the different allowance made

for the deterministic terms, the number of components exhibiting a shift and other char-

acteristics of the DGPs like the dimension or the error term correlation do not cause

important or systematic differences in terms of the size distortion. The same can be said

about the sample size if the magnitudes of the shifts are scaled by the sample size.

Obviously, the power of all tests is clearly reduced for increasing shift magnitudes. In

case of four-dimensional DGPs with r = 2 the tests still have some power (30 − 40%) if

the null hypothesis r0 = 0 is tested even if the size of the break is large. For the bivariate

DGPs we also observe that the tests allowing for a linear trend lose less power than the

tests assuming no trend resulting in an absolute power advantage for the former group

of tests. With respect to the Johansen and Saikkonen & Lütkepohl test proposals no

important differences in their relative performance are observed. In general, the values of

the other parameters characterizing the DGP, like the autoregressive eigenvalues or the

innovation correlation, seem to have just an impact on the level of the tests’ small sample
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power instead of determining how the power is reduced by the introduction of a level shift.

The timing of the level shift is in general of minor importance. However, shifts occur-

ring at the very beginning of the sample do not generate reductions in the size in small

samples or power of the Johansen test. In contrast, for shifts at the end of the sample I

dot not observe special effects neither for the Johansen nor for the Saikkonen-Lütkepohl

tests.

The analysis has been restricted to a single level shift at one point in time that may

affect all or only some of the components of the multivariate time series. It is expected

that the existence of more than one level shift distorts the tests’ inference even more,

i.e. it is even more difficult to detect the true cointegrating rank if more than one shift is

present.

We have to keep in mind that no asymptotical results on the effects of ignoring level

shifts on systems cointegration tests are available yet. Although, the size in small samples

approaches zero for increasing shift magnitudes, the test still have some small sample

power in different situations. Hence, one should be very careful in drawing conclusion

about the tests’ asymptotic properties. In this respect, the asymptotic results related to

corresponding unit root tests may only be guidelines.

The review of the empirical applications illustrates the main results of the Monte

Carlo study. Applying cointegration tests that ignore level shifts to systems that in fact

exhibit such shifts leads to a distorted inference about the cointegrating rank. To be

precise, a smaller cointegration rank than the one suggested by tests which accommodate

the shifts is found in general. However, in accordance with the simulation results there

may occur situations when ignoring level shifts does not affect the tests’ inference about

the cointegration rank. Moreover, as the small sample power analysis the application also

demonstrates that both LRS&L and LRJoh are affected in a similar way when shifts are

ignored.

Hence, the evidence from the Monte Carlo study and the empirical applications

strongly suggests to use systems cointegration tests that accommodate level shifts because

the distortionary effects of such shifts on the small sample properties of the standard tests

not allowing for shifts cannot be ignored. Systems cointegration tests that take level shifts

into account have been proposed by Johansen et al. (2000) and Saikkonen & Lütkepohl

(2000a). Their performance has been studied by Lütkepohl, Saikkonen & Trenkler (2000)

and Trenkler (2002) by means of local power and small sample analyses. In general, the

performance of the procedures allowing and not allowing for level shifts is rather similar

provided that both test groups are applied in appropriate situations. Therefore, tests
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taking level shifts into consideration are recommended for applied work if such shifts are

in fact present.
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