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Abstract

We provide a framework for the analysis of term structures of credit
spreads on corporate bonds in the presence of informational asymme-
tries. While bond investors observe default incidents, we suppose that
they have incomplete information on the firm’s assets and/or the thresh-
old asset level at which informed equity investors liquidate the firm. As a
natural tool for the characterization of conditional default probabilities,
prices of default-contingent claims, and credit spreads, we construct
the compensator of default in terms of investors’ threshold prior and
the conditional running minimum asset distribution. With perfect as-
set observation, a new phenomenon appears: the default compensator is
singular. Here an arrival intensity for default does not exist even though
the default is completely unpredictable. In a setting where the assets of
the firm follow a geometric Brownian motion, we show that the term
structure of credit spreads is decreasing or hump-shaped, depending on
the level of the current asset value. Spreads for maturities going to zero
are only positive if the assets are at an historic low and the firm is quite
risky. With imperfect asset observation, an arrival intensity for default
does exist. This intensity is characterized through the compensator. In
the geometric Brownian motion setting, the spread term structure is al-
ways decreasing with strictly positive spreads. Key words: incomplete
information, credit spreads, compensator, intensity. JEL Classifica-
tion: G12; G13
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1 Introduction

In the secondary bond market, it is typically difficult for investors to observe
all parameters needed to assess the credit quality of an issuer. Investors are
instead forced to estimate the financial health of an issuer based on the im-
perfect information which is publicly available. In this paper, we provide a
new framework for studying the term structure of default risk and credit yield
spreads on corporate bonds in such a situation.

The analysis of default-risky corporate debt is central to corporate finance,
both from a theoretical and an empirical point of view. The so-called structural
approach to model corporate default and corporate bond prices has its roots
in the seminal work of Black & Scholes (1973); it has been fully developed
by Merton (1974). These contributions shared the fundamental insight that
corporate liabilities can be considered as contingent claims on the firm’s as-
sets. Subsequent research based on this contingent claims approach has aimed
mainly at relaxing various restrictive assumptions concerning for example in-
terest rates [e.g. Longstaff & Schwartz (1995)] and capital structure [Geske
(1979)]. While in Merton (1974) the firm can default at debt maturity only,
Black & Cox (1976) assumed that the firm may default at any time before
the bond’s maturity. This is described by defining the default event as the
first time the firm’s assets fall to some lower threshold level. This threshold
can be imposed exogenously by bond safety covenants [Black & Cox (1976)]
or endogenously by having the shareholders optimally liquidate the firm [e.g.
Leland (1994), Leland & Toft (1996), and Anderson & Sundaresan (1996)].

In all these contributions public bond investors are assumed to be perfectly
informed. But in practice there are informational asymmetries. While equity
investors as firm insiders have complete information, for bond investors it is
typically difficult if not impossible to directly observe the assets of an issuer and
the threshold asset level at which equity investors liquidate the firm. Imperfect
asset information is for instance due to (possibly intentional) noise and delays
in accounting reports. Equity investors are likely to refrain from disclosing
the chosen liquidation asset level to the public market in order to exploit this
inside firm information. Their goal is to maximize the value of their own stake
in the firm by extracting value from bond investors’ stake.

Only recently Duffie & Lando (2001) addressed the issue of imperfect asset
information. They supposed that investors know the firm’s default threshold
but cannot directly observe the issuer’s assets. Instead, they receive noisy as-
set reports at discrete points in time. Duffie & Lando (2001) showed that in
this case credit yield spreads are strictly positive and that an intensity process
exists. Prior to default, the intensity can be interpreted as the conditional de-
fault arrival rate. They characterized this intensity in terms of the conditional
asset density, given past accounting reports and survivorship. With perfect
asset information however, investors can observe at any time the nearness of



the assets to the default threshold level. Consequently, if assets follow some
continuous process they are warned in advance when a default is imminent.
Therefore credit spreads go to zero with maturity going to zero and an intensity
does not exist. Bond prices converge continuously to their default-contingent
values — there is no surprise jump in prices upon default. These properties
are empirically not plausible, cf. Sarig & Warga (1989) and Beneish & Press
(1995).

The existence of an arrival intensity for default means that a structural
model with imperfect asset observation is consistent with the so-called reduced-
form or intensity based approach to corporate default. In this ad-hoc approach,
the default occurs completely unexpectedly, by surprise so to speak. The de-
fault event is not causally modeled in terms of the firm’s assets and liabilities,
but is typically given exogenously. The stochastic structure of default is directly
prescribed in terms of some arrival intensity process [e.g. Duffie & Singleton
(1999), Duffie, Schroder & Skiadas (1996), Artzner & Delbaen (1995), Lando
(1998), and Jarrow & Turnbull (1995), to mention a few]. Such an approach
leads to empirically plausible results, as it implies surprise jumps in bond prices
around default and strictly positive spreads. Defaultable security prices can be
represented in terms of the intensity, leading to tractable valuation problems
very similar to those arising in ordinary default-free term structure modeling.

In this paper, we present a new framework for studying the term structure
of credit spreads with incomplete information on the issuer’s default threshold
level and/or assets in structural models. Our primary methodological contri-
bution consists in considering the compensator of the default indicator process
(the process that jumps from zero to one upon default) in its relation to bond
prices and credit spreads. This compensator counteracts the jump in the de-
fault indicator such that the difference between compensator and indicator
becomes a martingale. In that sense the compensator can be viewed as the
fair fixed rate premium for a default insurance payment of one unit of account
upon the default incidence. While the compensator always uniquely exists,
the existence of an intensity as the density of the compensator is not always
granted. In fact, we will provide a first example in which the compensator is
singular and admits no intensity. In such situations the well-known intensity
based representations of defaultable security prices and credit spreads break
down.

We show that the properties of the compensator are intimately related to
the extent of available information. With complete information the default is
a predictable event and the compensator is trivial. We demonstrate that this
implies that credit spreads go to zero with maturity going to zero, regardless
of how the default is modeled. But with incomplete information the default
is an unpredictable surprise event and the compensator is non-trivial. In that
case conditional default probabilities and prices of default-contingent claims
can be represented in terms of the compensator. Our price characterizations



are similar in spirit to those obtained in the reduced-form approach, but re-
main valid for a singular compensator which admits no intensity at all. This
generalization of classic intensity based results will indeed be critical.

For general observation schemes with incomplete information on the is-
suer’s default threshold level and/or assets, we construct the compensator.
Based on this compensator, credit spreads can be calculated for any chosen
asset observation scheme. We then distinguish two specific situations: perfect
and imperfect asset observation. In case of perfect asset observation, the com-
pensator is characterized in terms of investors’ threshold prior and the running
minimum asset value. Although the default occurs completely unpredictably,
the compensator is singular and an arrival intensity for default does not exist
at all. While hence a structural model based on incomplete default thresh-
old observation is not consistent with a classic reduced-form representation of
spreads, it is consistent with our compensator based representation. In a set-
ting where the assets of the firm follow a geometric Brownian motion, we show
that the spread term structure is decreasing or hump-shaped, depending on
the level of the current asset value. But the short spread is only positive if the
firm is quite risky, which is the case when its asset value is at an historic low.
This suggests that incomplete threshold information loses its effect on credit
spreads with increasing credit quality, since then the spread term structure
approaches that with complete information.

The situation changes if, instead of or in addition to threshold uncertainty,
investors have also imperfect asset information. In this case the compensator
admits an intensity, meaning that in this case our structural model is consis-
tent with a compensator based and a classic intensity based representation of
spreads (both are equivalent here). The intensity is characterized through the
compensator in terms of investors’ threshold prior and the conditional distribu-
tion of the running minimum asset value, given all available asset information.
This provides an alternative approach to Duffie & Lando’s (2001) result, who
calculate the intensity directly when the default threshold is observable. In a
setting where the assets of the firm follow a geometric Brownian motion, we
show that the spread term structure is always decreasing. Regardless of the
riskiness of the firm, spreads are always strictly positive and short spreads are
given by the intensity. This is empirically plausible.

The remainder of this paper is organized as follows. In Section 2, we
present a structural default model with incomplete information. In Section 3,
we work out the relation between the compensator, default time properties,
default probabilities, default-contingent claim prices, and credit spreads. In
Section 4, we characterize the default compensator. Settings with perfect and
imperfect asset information are studied in some detail. In Section 5, the term
structure of credit spreads is examined in a situation where investors’ threshold
prior is uniform and the issuer’s assets follow a geometric Brownian motion.
The Appendix contains all proofs.



2 Assets, Default, and Information

Uncertainty in the economy is modeled by a fixed probability space (2, H, P),
equipped with a filtration® (H;);> describing the information flow over time.
Let us consider some given firm which has issued bonds on the financial market.
We take as given some R-valued stochastic process V = (V;)¢>0, where V; is a
sufficient statistic for the expected discounted future cash flows of the firm as
seen from time t. We will therefore call V' asset process. V' is Markovian and
continuous, and without loss of generality we normalize V5 = 0. We denote

by (Fi)i>o the filtration generated by V. The running minimum asset process
(My)s>0 is defined by

M; = min{V; | 0 < s < t}.

The firm is financed by equity and debt. Debt is modeled as a non-callable
consol bond, paying coupons at some constant rate as long as the firm operates.
When the firm stops servicing its contractual agreed obligations, we say it
defaults. The firm then enters financial distress and some form of corporate
reorganization takes place. Equityholders govern the firm and decide whether
and when to stop debt service payments and to liquidate the firm. We suppose
that shareholders choose to default if the firm’s expected future cash flows are
sufficiently low. The optimality of this policy has been verified by Duffie &
Lando (2001). Thus we assume that there exists a random default threshold
D € Hy, which is independent of (F;), such that the shareholders liquidate the
firm at the moment the asset value V' falls for the first time to the threshold
D < Vi =0. The firm’s default time T is therefore given by

7 =1inf{t > 0|V, < D}. (1)

Let us denote the default indicator process by N = (V)i with Ny = 1>q.
That is, N is zero before default and jumps to one upon default. We obtain
immediately

{r <t} ={M, < D}. (2)

In our model, corporate claimants’ access to inside firm information varies
according to their role in governing the firm: equity and bond investors are
asymmetrically informed. Shareholders govern the firm; they are assumed to
have complete information about the firm’s default threshold and assets. Their
information flow is modeled by the filtration (H;);>o generated by?

Ht :ft\/O'(D). (3)

IHere and in the sequel, any filtration will be assumed to satisfy the usual conditions of
right-continuity and completeness, see Brémaud (1980, II1.5) for example.

2Here and in the sequel, we pass from the o-algebras defined in (3) to the induced filtration
(H:) without changing the notation.



Bond investors are outside investors and their access to inside firm informa-
tion is limited. While bond investors observe the publicly announced default
incident, the firm’s default threshold cannot be directly observed in general.
Equity investors aim at maximizing the value of their own stake in the firm by
extracting value from bond investors’ stake. Shareholders will therefore refrain
from disclosing the default threshold value to the public bond market; they
will rather use this inside firm information in their own interest. The issuer’s
assets are typically not traded publicly; as a result a direct observation of as-
sets can be difficult for bond investors. We model the publicly available asset
information by the filtration (A;);>o. In the following examples we describe
some realistic choices for this filtration.

Example 2.1. Bond investors observe assets perfectly and we set
At - ft.

This would be a reasonable assumption for a public firm, which allows to infer
information on the firm’s assets from the price of its shares.

Example 2.2. The issuers’ assets may not be perfectly transparent to the
secondary market. Duffie & Lando (2001) suggest that bond investors may
instead recetve at times t; < ty < ... < t,, a noisy accounting report Y;, =
Vi, + Uy, where Uy, is some independent noise random variable. We set

At:J(K,SSt,SE {tl,,tm})

The variance of Uy, can be interpreted as a measure of the degree of accounting
noise at time t. The U, can be serially correlated, reflecting persistence of
accounting noise in time, or correlated with the asset value Vi, .

Example 2.3. Instead of receiving noisy asset reports at discrete points in
time, bond investors may receive such reports continuously through time. In-
vestors may be able to observe some auziliary process Y whose drift u is mod-
ulated by the asset process V' in that u = f(Vi,t) for some smooth function f,
cf. Kusuoka (1999). We now set

Ay =0(Ys, s <t).

Example 2.4. Bond investors have no asset information at all. In this case
the filtration (A;) is trivial: Ay = {Q, 0} for all't > 0. Prior to the first noisy
observation, this situation also holds in Fxample 2.2.

Let us summarize. While public bond investors witness the default event,
they cannot observe the issuer’s default threshold and may have only incom-



plete information on the firm’s assets. We thus model bond investors’ informa-
tion flow by a filtration (G;);>0 given by?®

gt = U(Nsa s < t) \ At' (4)

Let us observe that the default time 7 is a (G;)-stopping time, meaning that
the (0, co]-valued random variable 7 is such that for each time ¢ > 0 the event
{r <t} is G;-measurable (loosely, at each time bond investors know whether a
default has occurred or not).* In lack of default threshold information, public
investors form a common prior distribution G on D, which we take as given.
We assume that G is twice continuously differentiable with density g.

We maintain the following additional assumptions throughout. Sharehold-
ers are not permitted, say by insider legislation, to trade in the bond market.
Otherwise shareholders could control the firm so as to maximize the value of
their debt investments. Also, bond transactions could reveal inside firm infor-
mation, for example on the true threshold or asset value. Finally, all agents
are assumed to be risk-neutral. Hence we do not need to specify the market
price of default risk for valuation purposes, which would be beyond the scope
of this work. We refer to El Karoui & Martellini (2001) for an analysis of this
issue in an (intensity based) equilibrium model with default.

3 Compensator, Prices, and Credit Spreads

In this section we will introduce the notion of the compensator of the default
indicator process N. We will show that this compensator is the natural tool to
study default probabilities, default-contingent claims, and credit yield spreads.
We shall start by deriving general results that are then interpreted in the
context of the model described in Section 2.

The probabilistic properties of the default stopping time 7 given by (1)
will play a central role in the sequel. Let us therefore recall that 7 is called
predictable if there is an increasing sequence of stopping times (7)) such that
7 > T, and lim,, T,, = 7. Intuitively, one can foretell the default event by ob-
serving a succession of 'forerunners’. We also say that (7,) announces 7. The

3Observe that 7 is not an (A;)-stopping time: having information A; allows not to deduce
whether the default has occurred by time ¢ or not. We therefore assume that (G;) is the
progressive enlargement of (A;) with the random variable 7. That is, (A;) is such that (G;)
is the smallest filtration that includes (A;) such that 7 is a (G;)-stopping time.

4We remark that with respect to the filtration (H;), the bond market is complete as
soon as a riskless security and the assets of the firm are traded. But, due to the uncertainty
regarding the threshold and/or assets, the bond market is incomplete with respect to the
smaller filtration (G;): there may be no perfect default hedge and the defaultable bond carries
intrinsic risk. We refer to Follmer & Schweizer (1990) for a characterization of hedging
strategies which minimize the remaining risk in a general contingent claim model, in which
incomplete information may lead to market incompleteness.



stopping time 7 is called totally inaccessible if Pt =T < oo] = 0 for all pre-

dictable times 7. Here an announcing sequence does not exist. An inaccessible
event is the probabilistic concept of a completely unpredictable phenomenon.

Noting that the default indicator process N is a submartingale, the Doob-

Meyer decomposition theorem states that there exists a unique right-continuous,
increasing, and predictable process A = (A;)i>0 with Ay = 0 and such that

the difference process N — A is a (G;)-martingale. The process A is called the

compensator of the one-jump point process N with respect to (G;). The prop-

erties of the compensator are closely related to the probabilistic properties of
the default time: A is continuous if and only if 7 is totally inaccessible. If A is

absolutely continuous with respect to Lebesgue measure, i.e. if

tAT
A = / Asds, (5)
0

for some bounded progressively measurable process A = (\¢):>0, then we say
that 7 admits the intensity X\. Thus 7 must be an inaccessible stopping time if
an intensity exists. On the other hand, 7 being inaccessible is not sufficient for
an intensity to exist. If the intensity is predictable, it is essentially unique. By
using the martingale property of the process N — A, it follows from (5) that
on {7 >t} the intensity satisfies

1 .1
)\t = 1}5{)1 EE[NH_h — Nt | gt] = 1}5{)1 EP[T € (t, t+ h] | gt] a.s. (6)

Hence A\; can be interpreted as the conditional event arrival rate at time ¢,
given G; and that 7 > ¢. For more details we refer to Brémaud (1980, Ch. 2.3).

As a submartingale, the default indicator process IV tends to rise on aver-
age. The idea of compensation via A involves the counteraction of this tendency
in a predictable way such that the residual process N — A follows a martingale.
Now consider a simple default insurance contract that stipulates a payment of
one unit of account upon the default. Since E[dN;] = E[dA,], the compensator
can be viewed as the fair fixed rate premium for the contract. If an intensity
exists, it can be thought of as the variable rate default insurance premium paid
continuously through time up to the default event.

Let us emphasize that we do not assume the existence of a default arrival
intensity in the sequel. This is essential as we shall see when we characterize the
compensator in our model of Section 2. We are able to represent conditional
default probabilities in terms of the compensator as follows.

Proposition 3.1. Let the default stopping time T be totally inaccessible. If the
process Y defined by Y, = Ele A7 |G| is continuous at T, then for t < T
conditional default probabilities are given by

Pir<T|G]=1-E[eM47|G], t<T.



Let us now consider the relation between the compensator and prices of
default-contingent claims. A default-contingent claim is a security specified by
a tuple (7', X'), which promises to pay at some fixed horizon 7" an amount given
by the random variable X € Gpr. If the security issuer defaults before T the
security pays nothing; its payoff at 7" is thus given by X1,~7y. The canonical
example of such a default-contingent claim is a defaultable zero-coupon bond
maturing at 7', for which X = 1. We take as given some adapted short rate
process (r;);>0 and assume that it is possible to invest in a locally riskless
bank account with a value of exp( fot rsds) at time t. We recall that agents are
assumed to be risk-neutral. In Appendix B we consider the compensator under
a change of probability measure, which is required in the valuation problem
when we pass from the current risk-neutral world to a risk-averse one.

Proposition 3.2. Let the default stopping time T be totally inaccessible. If the
T

process Y defined by Y, = E[Xe~Jv rsdstA=Ar | G s continuous at T, then the

default-contingent claim (T, X) has at t < 7 a value of

Bl I X110y |G = B[Xe J mdstAar gl < T

This price representation is remarkable because it does not involve the
default time any more. Proposition 3.2 shows that the valuation of a default-
contingent claim can be reduced to that of an ordinary contingent claim
by simply adjusting discount factors for the prevailing default risk. Instead
of discounting with respect to the locally riskless bank account with value
exp( f(f reds) at t, we discount with respect to the default-risky bank account
having value exp( [, r.ds) exp( [, dA,) = exp(f, rsds + A;) at time .

The problem of representing prices of default-contingent claims is not new.
Elliott, Jeanblanc & Yor (2000) consider a similar problem in connection with
the so called hazard process of 7, which is equal to the compensator under some
conditions. Bélanger, Shreve & Wong (2001) work in a closely related frame-
work and provide a price representation which does not require the default
to be unpredictable. Both papers distinguish between some initial filtration
and the one enlarged by the default time. Other contributions focusing on a
price representation with an inaccessible default always assume additionally
the existence of a default intensity. While they require the compensator A of
T to be absolutely continuous, we presume continuity only. If an intensity does
in fact exist, we can write A; = g " X\yds and Proposition 3.2 leads under the
no-jump condition to

Ele JErsds X1y | Gi] = E[Xe™ i s G, t<T (7)

which is consistent with the results in the intensity-based literature, for ex-
ample Lando (1998), Duffie & Singleton (1999), and Duffie et al. (1996) (the
latter also relax the continuity condition). Hence in the valuation problem

9



the possibility of default requires an adjustment of interest rates: rather than
discounting under the risk-free short rate r, one discounts under the default-
adjusted rate R defined by R; = r; + A;.

Our next goal will be to relate the properties of the compensator to credit
spreads on zero coupon bonds issued by the considered firm.? The credit yield
spread S(t,T') is the difference between the yield at time ¢ on a credit risky zero
bond and that on a credit risk-free zero bond, both maturing at 7. Assuming
that defaults are independent of riskless rates, we have

S(t,T)=— ImnP[r>T|Gl], t<T, t<r. (8)

T—1
The term structure of credit yield spreads at ¢ is the schedule of S(t,7") against
the horizon T'. Of particular interest is the short credit spread, defined by

0
] = — < .
gﬁlS(t,T) 8TP[T <T|G] i t<T 9)
The short spread is the excess yield over the risk-free yield demanded by bond
investors for assuming the default risk of the bond issuer over the infinitesimal
time period (¢, ¢+ dt]. Its relation to the probabilistic properties of the default
time is elaborated in the following result.

Theorem 3.3. The following holds true for the default stopping time 7.

(1) If T is totally inaccessible then limy | S(t,T) > 0 fort < 7. Assume that
T admits moreover a right-continuous and bounded intensity A and that
the process Y defined by Y; = Ele” I Asds | Gi] is continuous at 7. Then
fort < 7 short spreads satisfy

1

111_‘11121 S(t, T) = ljl_vIﬁl E(AT — At) = )\t a.s.

(2) Let T be predictable. Defining Z,, := {k2™" |k =0,1,...} forn > 1, then
for t < 1 short spreads satisfy

lim Z S(ti,ti+1) 1{ti<t§ti+l} =0 a.s.

nloo
ti€2n

Empirical studies indicate that a default is inaccessible rather than pre-
dictable. Sarig & Warga (1989) find that credit spreads remain in general

5In our model described in Section 2, the capital structure of the firms is based on consol
bonds having no fixed maturity and paying out a constant coupon to the bond investors.
We can strip the consol coupon into a continuum of zero coupon bonds with recovery being
pro-rata based on the default-free market value that the strips contribute to the consol. As
for the analysis of the consol bond, it is therefore enough to consider zero bonds.

10



bounded away from zero. Also, we observe jumps in bond prices at or around
the bankruptcy announcement, cf. Beneish & Press (1995) and Duffie, Pedersen
& Singleton (2000), who consider sovereign bonds. If the default was a pre-
dictable event, prices would converge continuously to their default-contingent
values; there would be no sudden drop in the value upon default.

Theorem 3.3 shows that the properties of the short spread derive only
from the probabilistic properties of the default time. Since there is a one-to-
one correspondence between default time and compensator properties, we can
also say that the spread is determined by the compensator. How a default
event is constructed plays a role only insofar as it determines the default time
properties. This concerns in particular the asset process. By direct calculation,
Duffie & Lando (2001) argue that short spreads are zero for a default being
defined by first hitting of a Brownian motion to some constant boundary.
Theorem 3.3 proves that this is in fact due to the default being predictable in
this case. In any default model where the default time is predictable, the short
spread is zero.

Theorem 3.3 has significant implications for the modeling of default, both
in general and in particular for the model described in Section 2. First of all,
on the basis of this result we can distinguish the essence of the two default-
modeling paradigms, the structural and the intensity based approach. In the
intensity based approach, one starts right away by assuming that the default
time is totally inaccessible and admits some intensity A. Short spreads are
now positive by construction, since by Theorem 3.3 A constitutes the short
spread. While this leads to empirical plausibility, the intensity based approach
lacks economic intuition since the default time is typically taken as exogenously
given; it is usually not explicitly specified why a firm defaults. In the structural
approach, the default event is defined as the first time the firm’s asset process
hits some lower threshold. This makes sense from an economic point of view,
because the asset process is a sufficient statistic for the firm’s future cash flows.
The resulting probabilistic properties of the default time and thus the short
spread properties vary with the available information.

In the structural models presented in the literature the information be-
tween corporate claimants is typically symmetric: the secondary market has
complete information. In our structural model proposed in Section 2, this would
mean that bond investors can observe the issuer’s assets, default threshold, and
default event; their information at time ¢ would be given by G; = H;. In this
case investors would always be certain about the distance of the firm to de-
fault, i.e. the nearness of the asset value to the default threshold. Then, for
shareholders and for bond investors alike, a default would not come as a sur-
prise. There is in fact no separate 'timing risk’ of default, since this timing risk
is actually the risk of asset price changes. Indeed, given the continuity of the

11



(03]
o

2]
o

Credit Spread in bp
8 &

Time to maturity in months

Figure 1: Term structure of credit spreads with completely in-
formed bond investors, varying current asset value.

asset process, for all ¢ > 0 we would get

{r(w) <t} ={inf Vi(w) <D} ={lim _inf Vi(w)<D}€G-,
meaning that the default is predictable with respect to (G;). This has three
consequences. First, the market is complete and the default can be perfectly
hedged given the asset value is a traded security. Second, since N is predictable,
its decomposition is trivial. The compensator of N is A = N itself and an
intensity does not exist. Proposition 3.2 does then not hold anymore. Third,
by Theorem 3.3 credit spreads go to zero with maturity going to zero. Based
on default probabilities given by

Plr <T|G]=P[My < D|V]=P[Mr_, <D -V,

Figure 1 shows the term structure of credit spreads for varying current asset
values in this situation (we set D = —0.3, all other parameters are those of
Section 5). Indeed, regardless of the riskiness of the firm, spreads are zero for
maturities up to approximately 2 months. In a structural model with complete
information and a continuous asset process, investors do not demand a default
risk premium on zero coupon debt whose maturity approaches zero. But this
is not supported by empirical observations.

The probabilistic properties of the default time and thus the properties of
the spread change if bond investors have only incomplete information on the
characteristics of firms. Here investors are not able to observe the nearness of
the assets to the default threshold, so that the default comes as a complete
surprise event: 7 is totally inaccessible. The consequences are as follows. First,
the default timing risk is not incorporated in asset price risk. That means
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that even if assets are perfectly observed, the corporate bond market is in-
complete. Second, by Theorem 3.3 short spreads are not necessarily zero as
with complete information. Third, Proposition 3.2 provides a representation
of default-contingent claim prices, irrespective of the existence of an intensity.

It appears that a structural approach based on incomplete information
shares with an intensity based approach a fundamental property: the inacces-
sibility of defaults. This particular property leads on one hand to empirical
plausibility with respect to bond price movements and credit spread term
structures. On the other hand, by this property both approaches are inte-
grated in the sense that they both admit a continuous default compensator.
The two approaches are fully consistent as soon as there exists also an intensity
in our structural model. This depends critically upon the extent of available
information, as we will see in the next section.

4 Characterizing the Compensator

In the previous section we have shown that the default compensator charac-
terizes credit spreads, and if it is continuous, default probabilities and prices
of default-contingent claims. In this section we construct the compensator in
terms of threshold prior and/or asset distribution for our structural default
model of Section 2. Though the (continuous) compensator exists in any case,
we will see that imperfect default threshold observation alone is not sufficient
for an intensity to exist. In those cases where an intensity does exist, it is
characterized through the compensator.

4.1 General Incomplete Information Case

In this section we consider the default compensator for general situations of
incomplete information, where bond investors information filtration is given
by G, = 0(Ns,s < t) V A, cf. (4). While default incidents are observable,
thresholds are unknown and the asset information A; may be complete or
incomplete. In this case defaults are completely unpredictable and the default
compensator is non-trivial.

Let us introduce the conditional survival probability L, for time ¢, given
all available asset information at ¢,

L= Plr > t| A (10)

The process L = (L)1 is called the survival process. Note that Ly = 1
by (1) and assume that L; > 0 for all ¢ > 0. We let L, = limg; L and set
Lo_ = 1. We observe that L is a supermartingale; according to the Doob-Meyer
decomposition theorem there is a unique increasing (\A;)-predictable process
K such that K + L is a (A;)-martingale. K is called the compensator of L,
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not to be confused with the default compensator A of the default indicator
process N. As in Yor (1994), Elliott et al. (2000), and Jeanblanc & Rutkowski
(1999), the latter can be represented in terms of the former.

Theorem 4.1. Let K denote the (A;)-compensator of L. The (G;)-default
compensator A is given by

tAT sz
At — / L 3 t Z 0
0 S—

If L is decreasing and continuous, then we have in particular Ay = —In L.

The characterization of the default compensator provided above holds for
general situations of incomplete information on thresholds and assets. Given
specific assumptions on investors’ information structure, such as those made
in Examples 2.1 — 2.4, more explicit representations can be obtained. In the
following subsections we shall vary the structure of the filtration (A;), where
we distinguish in particular between situations with perfect and imperfect asset
observation.

4.2 Perfect Asset Observation

Let us assume that the issuer’s assets are perfectly observable, while the de-
fault threshold is not (Example 2.1). The auxiliary filtration (A;) coincides in
this case with the asset filtration: A; = F;. Noting that the threshold D is
independent of assets, the survival process L can be written as

Lt:P[T>t|E]:P[D<Mt|Ft]:G(Mt),

where G is the (given) prior distribution of D. The running minimum asset
process M is continuous and decreasing, and so is the survival process L. In
view of Theorem 4.1, we have thus shown the following.

Theorem 4.2. If the issuer’s assets are perfectly observable but its default
threshold is not, then the (G;)-default compensator A is given by

At =—In G(Mt/\T)a t Z 0.

Using the fact that the quadratic variation of M is zero, by [to’s formula
we can obtain the following alternative compensator characterization:

tAT
9M)
! /0 G (M) ¥ 20,

where ¢ is the prior density of D (this can as well be derived from the first
part of Theorem 4.1 by noting that K = 1 — L and hence dK; = —g(M;)dM,).
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If the default threshold is not observable by public bond investors, they
can calculate the compensator in terms of their threshold prior and the observ-
able running minimum asset value. The asset distribution does not enter the
characterization of A, i.e. the compensator does not depend on the choice of the
underlying asset process.® Default probabilities and prices of default-contingent
claims can then be characterized in terms of this continuous compensator, as
shown in Propositions 3.1 and 3.2. The continuity of the compensator provides
a formal proof that with incomplete threshold observation the default is in fact
a completely unpredictable surprise event for the bond investors.

But what can we say about the default arrival intensity” Because the
Lebesgue measure of the set

{t>0:V, =M}

is zero, the measure induced by the continuous process M is not absolutely
continuous with respect to Lebesgue measure. It follows that the default com-
pensator is not absolutely continuous either. Although the default is an un-
predictable event, an arrival intensity process for default does not exist. That
means that a causal structural default model in which the default threshold is
nonobservable is not consistent with an intensity based approach to default, in
which prices of defaultable claims can be represented in terms of an intensity
process.

Now consider the implied credit spread term structure properties. By The-
orem 3.3 (1), the spread S(¢,T') remains non-negative for 7" — ¢. But we can say
even more in view of our compensator characterization. On the set {V; = M,},
when the asset value is at a "historic low’, we have S(¢,7) > 0 for T — t. On
the other hand, on {V; > M,}, we have S(¢,T7) = 0 for T" — t, despite the
fact that 7 is inaccessible. This means that, depending on the firm’s current
asset value, the credit spread term structure with incomplete information as
in Example 2.1 can be very similar to the one which appears in the case of
complete information. This property corresponds to the fact that, whenever
assets V; > M; and 7 > t, bondholders are, loosely spoken, in a relieved po-
sition which is similar to that with complete information. Having incomplete
information G; allows to deduce that D < M;; hence the firm cannot default
immediately if the assets V' follow a continuous process. This results in zero
short term default probabilities and thus zero spreads. If in contrast V; = M;,
then the firm can default immediately and short term default probabilities are
strictly positive.

Credit spreads with perfect asset observation are further studied in Sec-
tion 5. We will show that, depending on the current asset value, incomplete

In the model of Duffie & Lando (2001) where the default threshold is observable but
assets are not, the opposite holds: the compensator that would be obtained is determined
by the asset process only, cf. (13) below.
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threshold information can lead to decreasing and hump shaped term structures
of credit spreads.

4.3 Imperfect Asset Observation

We now study the default compensator when issuer’s assets can only be imper-
fectly observed (Examples 2.2 — 2.4). We continue to assume that the default
threshold is not observable; our results cover then also situations where the
threshold is in fact known. While with perfect asset information a default ar-
rival intensity does not exist, with imperfect asset observation an intensity can
be established under technical conditions.

For ¢t > 0, we denote by H(t,-,w) the regular conditional distribution
function of the running minimum asset value M, given the imperfect asset
information A;. We can then write for the survival process

Li=Plr>t|A4)=E[1—-H(t,D)]=1-— /0 H(t,z)g(z)dx. (11)

Now Theorem 4.1 leads immediately to the following result.

Proposition 4.3. Assume that bond investors cannot observe the issuer’s de-
fault threshold and have imperfect asset information. If the conditional distri-
bution H(t,-) is continuous and increasing in t on (0,00), then the (G;)-default
compensator A is given by

0
At:—ln(l—/ H(t/\T,x)g(x)d:p), t>0.

In case assets cannot be observed at all and investors have only survivor-
ship information (Example 2.4), the filtration (A4;) is trivial. Now H is a de-
terministic continuous and increasing function of time, and so L satisfies the
conditions of Proposition 4.3. This case is further studied in Section 5 under
explicit assumptions on the distribution of threshold and assets.

Let us now consider the intensity with imperfect asset observation.

Theorem 4.4. Assume that bond investors cannot observe the issuer’s default
threshold and have imperfect asset information. For t > 0 and almost every
w, let W E[H(t + h,x) — H(t,x)| A (w)| have an upper bound which is in-
tegrable with respect to g(x)dx. Assume furthermore that h *E[H(t + h,z) —
H(t,z)| A] — H(t,z) = S H(t,x). For allz <0 and all t > 0, let H(t,z,w)
and H(t,x,w) be bounded for almost every w. Let, for all x < 0, the pro-
cesses (H(t, )0 and (H(t,2))is0 be (Gi)-progressively measurable. Then the
(Gy)-default compensator admits an intensity A and is given by

Sl Htx) g(x) da

3 L 1>0
1—[C H(t,x)g(x)dx

tAT
At = / >\s ds with )\t =
0
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In a situation with nonobservable default threshold and imperfect asset
observation, the default arrival intensity can be calculated in terms of investors’
threshold prior and the conditional running minimum asset value distribution,
given the imperfect asset information available to the market.” What happens
if D € Gy and the threshold is a priori known to the bond investors? Under
the conditions of Theorem 4.4, an intensity does still exist:

H(t,D)

\ = )
" 1—H(t, D)’

t e (0,7).

A causal structural model with incomplete asset information, regardless of
whether the default threshold is observable or not, is therefore consistent with
an intensity based approach to default, where defaultable security prices can
be represented in terms of an intensity process, cf. (7). Equivalently, default
probabilities and prices can be represented in terms of the corresponding com-
pensator, cf. Propositions 3.1 and 3.2. Theorem 4.4 links investors’ beliefs,
fundamental firm variables, and arrival intensity. In that sense, a structural
model based on imperfect asset observation provides an economic underpin-
ning for the ad-hoc intensity based models in the literature, where intensities
are typically given exogenously.

In order to clarify the structure of the intensity, in the following we shall
provide an equivalent characterization of the compensator.

Proposition 4.5. Suppose that bond investors cannot observe the issuer’s de-
fault threshold and have imperfect asset information. Assume that H satisfies
the conditions of Theorem 4.4 and define for x < 0 andt >0

my() = lim +E[H(t + h,x) — H(t,z)| A _ H(t,x)
R AT 1— H(t,z) 1—-H(t,z)

For t < 7, suppose that D admits a conditional density g;(-,w) given G;. As-
sume that for all fivred v <0 and all t, g,(x,w) is bounded for almost every w.
Also, for all fized x < 0, suppose that the process (g:(x))i>o is (Gi)-progressively
measurable. Then the (Gy)-default compensator A admits an intensity A given

by

tAT 0
A = / A ds  with M\ = / my(z) g(x) dz, t > 0.
0

—00

In the vast majority of structural approaches to default, the assets of
the issuer are traditionally modeled as a Brownian motion. For this specific
distributional choice we now identify the processes (mq(x)):>o introduced in the
previous result. This allows to immediately apply our results to the particular

"Note that the intensity is (A;)-measurable.
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settings appearing in the structural literature. We show that at any time ¢
before default, m;(x) can be expressed in terms of the asset volatility and the
conditional density of the asset value V;, given the bond market information
G, and that D = z.

Proposition 4.6. Assume that bond investors cannot observe the issuer’s de-
fault threshold and have imperfect asset information. Suppose that the firm’s
asset value follows a Brownian motion with drift p € R and volatility o > 0,

where B is a standard Brownian motion. For t < T, suppose furthermore that
Vi admits a conditional density a(t,x,-,w) given G, and D := x with support
[x,00). We assume that, for each (t,z,w), a(t,x,-,w) = 0 on (—oo,x] and
a(t,z,-,w) is continuously differentiable on (x,00) and differentiable from the
right at x. Also, for almost every w, the derivative |a,(s, x, z,w)| is bounded on
sets of the form {(s,z,z): 0< s <t —co<ax <0,z <z<oo}. Then

my(z) = %JZQZ(t,x,x), t>0.

The asset density can be computed explicitly in some cases. Consider the
information structure described in Example 2.2 and assume that the firm’s
asset value V satisfies (12). Suppose that bond investors receive a noisy asset
report Y; = V; 4+ U at time ¢, where U is a noise variable independent of V' and
D, with given density ¢. First note that

Q(Y;f - Z) 90<t7 Y, Z) dy dz

P\M, € dy,V, € dz| Y| =
[ te Y, te Z‘ t] p(t,n) )

where ¢(t,y, ) is the joint density of (M, V;), which is available explicitly, cf.
Borodin & Salminen (1996). p(t, -) is the density of Y;, which can be obtained

via convolution of ¢ and density of V;, given by fi)oo o(t,y,)dy (explicit as
well, cf. Borodin & Salminen (1996)). For ¢ < 7 we get by Bayes’ rule

P[M; > x,V; € dz| Y]
P[M; > x| Y]
oY = 2) [ o(t,y, 2) dy dz

f f Y;—U (t,y,U)dUdy.

Now consider the information structure described in Example 2.4 and
assume again that the firm’s asset value V' satisfies (12). We get

[2o(t,y, 2) dydz
1—H(t,z) ~’

a(t,z,z)dz = P[V, € dz|Y;,, My > D :=x] =

a(t,z,z)dz = PV, € dz|M; > D :=x] =

which is also available explicitly, cf. Borodin & Salminen (1996).

18



4.4 The Intensity Result of Duffie & Lando

Recently Duffie & Lando (2001) established the existence of a default intensity
in a structural model with incomplete information on the firm’s assets only.
They assumed that assets V' satisfy (12) and that the default time is given by
7 = inf{t : V; < d} for some constant d. Bond investors receive noisy asset
reports at discrete dates t;, cf. Example 2.2. Duffie & Lando (2001) established
an intensity A for 7 via (6) and showed that®

L 1 _1 2 rd
A\ = l}ggl EP[T € (t,t+h]| G| = 57 fe(t,d), te(0,7), (13)

where f4(t,-) is the conditional density of V; given G; and survivorship. It is
easily seen that this result follows as well from our Proposition 4.6 by assuming
that the default threshold D is a priori known to the bond investors, D € G.
We then obtain for the intensity A, = ;o a.(t, D, D). Both results coincide
as soon as a(t,x,z) = f*(t,z) for all t < 7 and z € [x,00). For a single noisy
observation Y; = V; 4+ U, Duffie & Lando (2001) calculate the density f*(t, z)
for the a priori observable threshold D := x as follows:

qY; — 2)n(—x,z — x,t) PV, € dz]

filt 2y dz = [ q(Yy —v)m(—x,v — x,t)P[V; € dv]’

where, taking V; to be a Brownian bridge with Vo = x and V; =y, 7(z,y,t) is
the probability that min{V; : 0 < s <t} > 0. The equivalence between their
asset density characterization and ours is obvious:

n(—z,z —x,t) P[V; € dz] = P[OIEiEtVS >z |Vy=0,V, =z P[V; € dz]

= P[M, > z,V, € dz]

0
= / o(t,y, z) dy dz,

and thus a(t, x, z) = f*(t, z). Assuming normality of U, Duffie & Lando (2001)
compute the asset density explicitly in terms of the normal distribution func-
tion. Using this result, we can directly verify that a(¢, x,-) indeed satisfies the
conditions of Proposition 4.6.

Let us emphasize the difference in the applied methodologies. We char-
acterize the always existing default compensator, which in turn characterizes
the default arrival intensity, if it exists. Duffie & Lando (2001), in contrast,

8Using the fact that the intensity does not depend on the asset’s drift, Duffie & Lando
(2001) extend to the case where the asset value solves the SDE dV; = u(V;, t)dt+o(Vi, t)dWy

for 1 and o satisfying technical conditions. Then the intensity is for ¢t € (0,7) given by
>\t = %Uz(dat) fg(t7d)
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calculate the intensity directly as the limit (6). If an intensity does in fact ex-
ist, both approaches lead to equivalent results. The existence of an intensity is
however not granted in general. Here the generality of the compensator-based
framework pays off: the compensator exists in any case and is represented by
Theorem 4.1, irrespective of the existence of an intensity.

5 Empirical Implications

In this section we illustrate the significant empirical implications of incom-
plete information on the term structure of credit spreads. We specialize in the
general setup of Section 2 by placing explicit assumptions on prior threshold
distribution, asset distribution, and information structure.

We assume that the total market value Z of the firm follows a geometric
Brownian motion with constant drift m € R and volatility ¢ > 0. That is,
Z, = Zye" with initial value Z, > 0. Here V is a Brownian motion with drift
ph=m — %02, i.e., V; = ut + o B; with B being a standard Brownian motion.
In the sequel we take V' to be the ’asset process’ in the sense of Section 2.

We assume furthermore that the a-priori default threshold distribution
with respect to Z is uniform on (0, Zy). This choice corresponds to uninformed
investors not having any specific knowledge on the default barrier. That implies
that the a-priori distribution of D with respect to V is represented by

G(z)=g(x)=¢€", x€ (—00,0). (14)

5.1 Credit Spreads With Perfect Asset Observation

We start by assuming that the issuer’s assets are perfectly observable by bond
investors, while the default threshold is unknown (Example 2.1). Given this in-
formation structure and (14), Theorem 4.2 implies that the continuous default
compensator A is simply given by the asset’s running minimum:

Ay = —Mpr.

Clearly M, is not absolutely continuous and hence a default intensity does not
exist. According to Proposition 3.1, the conditional default probability at time
t < 7 for the horizon T' > t is then

Plr <T|G]=1-eE[M | F, M, > D]

M
- / e MiGPIMy_, < 1 — V]

o0

M,
- / MY (T —t, 2 — V,)d,

e}
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Figure 2: Term structure of conditional default probabilities,
varying asset volatility.

where we have used the (strong) Markov property of Brownian motion in the
second line. By ¥(t, -) we denote the unconditional distribution function of M;,

xy(t,x);:1—<1><“t_””)+exp (M—"”)@c”t), (15)
oVt o2 oVt
for x < 0 and t > 0. ® is the standard normal distribution function. Since
U(t,-) is continuous in ¢, the no-jump condition of Proposition 3.1 is satisfied.
Figure 2 plots the term structure of conditional default probabilities for vary-
ing asset volatilities. As expected, default probabilities are increasing in asset
volatility, or business risk. Unless noted otherwise, our base case parameter set
is as follows: asset drift u = 1%, asset volatility o = 5%, running minimum
asset level M; = —0.1, and asset level V; = —0.1.

Assuming zero recovery and that the default is independent of risk-free
interest rates, from (8) we have for the credit yield spread

M
tln<1_/ ex_Mt\If(T—t,x—‘/})d:E), t<T, t<T.

o0

1
S(.T) =~

In Figure 3 we graph the term structure of credit spreads for varying current
asset levels. Depending on the current asset value, two distinct term structure
shapes appear. If the asset value V; is currently at its historic low M;, then
the term structure is decreasing and the spread is strictly positive for maturi-
ties near zero. Compare this to the case of complete information displayed in
Figure 1. The downward-sloping shape of the term structure can be intuitively
explained as follows. Since assets ’test’ its historic lows, at time ¢ the bond is
fairly risky. In the short run negative shocks on the asset value can quickly
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Figure 3: Term structure of credit spreads, varying current
asset value.

lead to a default before time 17" > t. Due to the positive drift in the firm value,
there is however room for improvement over time and only less potential to
worsen. As a result, the spread decreases with the horizon T

As soon as the current asset value V; is increased above the level of the
minimum asset value to date M;, we witness a downward shift in the spread
curve towards a hump shaped term structure. That is, in case V; > M; the term
structure shape with incomplete information approaches that with complete
information, where short spreads are zero. Clearly, as the (unknown) default
threshold D must be below M, if the firm still operates, if the firm value cannot
jump higher firm values correspond to zero short-term default probabilities and
thus zero short spreads. There remains however a difference for intermediate
maturities of up to approximately 2 months, compare Figures 1 and 3 for these
maturities. In essence, the effect of incomplete threshold observation becomes
less important for firms with somewhat improved credit quality (firms whose
assets are traded over their historic lows). For high quality firms with significant
assets incomplete information hardly matters.

As Sarig & Warga (1989) report, a hump shaped term structure is typically
observed for junk quality. The shift of the term structure from hump shaped to
monotone decreasing can be considered as an increase in risk in the short run,
as the assets deteriorate towards their historic low. In this sense the decreasing
pattern is a characteristic for very high risk junk quality.

The spread term structure properties implied by this variant of our model
seem very similar to those obtained by Merton (1974) in his pioneering work
based on complete information. Merton finds that if the risklessly discounted
face value of the zero bonds financing a firm besides equity is larger than
the firm value, the term structure is decreasing; otherwise it is hump shaped.
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Thus the decreasing term structure corresponds to a very risky firm, as in our
setting.

In the model of Duffie & Lando (2001), where only the issuer’s assets are
imperfectly observed, the spread term structure appears to be hump shaped
with strictly positive short spreads. With unknown default threshold but com-
plete asset information, the term structure can be hump shaped or decreasing,
depending on current assets. Although the default time is unpredictable, short
spreads are only strictly positive if the asset value is at its running minimum.
This shows that incomplete information does only in certain cases lead to
empirically observed spread properties.

5.2 Credit Spreads With No Asset Observation

Let us now assume that bond investors have no information on the issuer’s
default threshold and assets at all and only survivorship information is avail-
able (Example 2.4). In this case the auxiliary filtration (A;) is trivial and the
Aj-conditional distribution function H(t,-) of M, is given by H(t,z) = V(t,x)
for U defined in (15). According to Proposition 4.3, the default compensator
is then

At:—ln<1—/0 \If(t/\T,x)e“‘"dx). (16)

—00

Letting ¢ denote the standard normal density function, the derivative Hof H
with respect to ¢ is given by H(t,x) = ¥(t,z) with

-2 (e ()50

S

so that we immediately obtain for the default intensity

\ fi]oo (t, x) e*da
o f?oo U(t, z)erdx’

t € (0,7), (17)

as expected in view of Theorem 4.4. The intensity is a deterministic continuous
function of time, asset drift and asset volatility only. A is therefore unique, cf.
Brémaud (1980, Theorem II T12). Figure 4 graphs A as a function of time;
this depicts the profile of short spreads over time, cf. Theorem 3.3. In line with
intuition, the default intensity is increasing in the degree of business risk, as
proxied by asset volatility o. With a positive asset value drift p, the intensity is
decreasing in time: conditional on survivorship, the local probability of hitting
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Figure 4: Default arrival intensity, varying asset volatility.

the default threshold decreases with the passage of time as assets increase on
average.

For comparison, let us also consider the case when the issuer’s default
threshold D is observable, D € Gy. From (17) we then obtain explicitly

¥(t, D)

N ="
" 1-9(t,D)

t € (0,7). (18)

Figure 5 shows the intensity in this case for a varying asset volatility (we set
D = —0.1). In contrast to the decreasing pattern with nonobservable threshold,
here the intensity first sharply increases and then decreases with time (it is
hump-shaped). Up to a certain point in time, assets are likely to fall from
Vo = 0 to D and the local probability of hitting the threshold D, conditional
on survivorship, increases. With a positive asset drift, after that certain point
in time it is fairly unlikely that assets are close to D, given survivorship. It is
more likely that assets move further away from D, thereby leading to decreasing
intensities of default.

There are now several equivalent ways to calculate default probabilities.
With the deterministic continuous default compensator (16), by Proposition
3.1 we calculate the probability at time t < 7 of default before T' > t as

Plr<T|G]=1—et 47 =1 e_ffT/\st7

where the second equality follows from the existence of an intensity A\. We can
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Figure 5: Default arrival intensity with observable default
threshold, varying asset volatility.

also calculate the default probability directly:
Pt<7<T| P[Mr<D]—-P[M <D|

r<T]G] P[r > t] 1— P[M, < D]
ffoo(\I/(T, x) — U(t,z))e" dx 19)
a 1— ffoo U(t,x)erde
Noting that A; = — In L, for the continuous decreasing survival process L given

by (11), the equivalence between these characterizations is obvious:

| ear _q_ L _Pli<7<T]

L, Plr >t

Also note that the intensity (17) obtained from our compensator characteriza-
tion can be derived directly from (19) by calculating limy, o + P[r < ¢t + k| G,).
This suggests to interpret A\ as a conditional default arrival rate.

Assuming zero recovery and that the default is independent of risk-free
interest rates, with default probabilities credit spreads can be calculated using
(8). We plot the term structure of credit spreads in Figure 6, where we vary the
asset volatility. Spreads are bounded away from zero for all maturities: incom-
plete information on threshold and assets implies spreads properties consistent
with empirical observations. Short spreads S(t,T) for T | t are given by the
intensity )¢, cf. Theorem 3.3. Compare to the spreads with perfect information
in Figure 1.

From (19), for D € G, we obtain the conditional default probability ex-
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Figure 6: Term structure of credit spreads, varying asset
volatility.

plicitly in terms of the normal distribution function:

U(T,D)—¥(t, D)
1-V(t,D)

Pir<T|G]= <7, t<T.

For comparison, Figure 7 displays the term structure of credit spreads in that
case (we again set D = —0.1). As already verified by Duffie & Lando (2001),
incomplete asset information is sufficient for the ’generation’ of strictly positive
spreads. The implied term structure shapes are somewhat different to those
obtained with additionally imperfect threshold information. A variation in D
has a qualitatively similar effect on spreads as a variation in o.

A Proofs

We start by proving the following two general results, both of which are needed
to proof Propositions 3.1 and 3.2 as well as Theorem 3.3.

Proposition A.1. Let the default stopping time 7 be totally inaccessible. Let,
for a fized time T, Z be some bounded Gr-measurable random variable. If the
process Y defined by

Y, = B[ZeM 47 |G, t<T,
is continuous at T, then on the set {7 >t} we have a.s. that

E[Z(1 — Np)| G| = E[ZeM 47 |G,], t<T.
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PROOF OF PROPOSITION A.l. Letting K; = E[Ze 47| G;], we can write
Y, = e K,. Noting the continuity of A, by virtue of Itd’s product rule we have

dY, = eMdK, + Y, _dA,.

Denote by AZ, = Z, — Z;_ the jump of the process Z at t. Defining U, =
(1 — N,)Y;, we find again with the aid of the product rule that

dU; = —Y;_dN; + (1 — N,_)dY; + A(1 — Ny)AY,
= (1= N, )eMdK, — Y,_d(N, — A;) — N,._Y,_dA,, (20)

where we have used our assumption that Y is continuous at 7 to set A(1 —
N;)AY; = 0. Now integration of both sides of (20) yields

T T T
UT—Ut:/ (1—Nt_)eAtth—/ Yt_d(Nt—At)—/ Y,_N,_dA,. (21)
t t t

Note that (K;)o<i<r and N — A are martingales. Since the integrands are
bounded and predictable, the first two terms of the right hand side of (21) are
martingales. Using the fact that A is the compensator of N, we note that

T
@}ZE[/ Yi-Ni-dNy, %}
t

- E[l{t<T§T}}/T—NT— | gt]
=0

T
E [/ Y, N, dA,
t
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because N;_ = 1.4 = 0. Thus, taking conditional expectation of (21) yields
Ur=Yi(1=Ny) = E[Ur|G] = E[Z(1 = Nr) | G,

which is our assertion. O

Proposition A.2. Let 7 be predictable with respect to (G;). Defining Z, =
{k27" |k =0,1,...} forn > 1, on the set {T >t} we have P x dt a.s. that

' 1
lim Z QTHP[T < tiv1 | Ge] Lttty = 0.

nloo
ti€Zp

PROOF. Define the non-negative supermartingale M by M; := 1—N; = 1754.
To M corresponds a unique finite measure P on the o-field P of predictable
sets in © x (0, oco] such that

PM[B x (t,x]] = E[M;15], t>0, Be€G,
cf. Follmer (1972). Define furthermore a measure P* on P such that
PMBx (t,T)] = (T —t)P[B], 0<t<T, BE€G.

Note that on P the measure P has support S := {(w,t)|7(w) = t}. Since

P[S] z/P[dw] /Ooodtlg(w,t) 0,

the measures PM and P* are singular on P. In a general semi-martingale
setting, Airault & Follmer (1974) introduced the Radon-Nikodym density
dPM /dP* of the absolutely continuous part of P with respect to P*. Now
we have

dpM
2

P

The general results of Airault & Follmer (1974) imply that the predictable
density dPM /dP* can be identified as

dpPM ) 1
dP> (w’t> - }LlTﬁ Z QTnE[Mtz - Mti+1 |gtz](w> 1{ti<t§ti+1} P - as.

t, €2y

Since E[My, — My, | G,] = PlT < tit1|Gy] Lirs,y, our claim is proved. O

PrROOF OF PROPOSITION 3.1. Follows from Proposition A.1 for Z =1. [
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PROOF OF PROPOSITION 3.2. Follows directly from Proposition A.1 by setting
Z = XemJ st for X € Gr. 0

PrROOF OF THEOREM 3.3. (1) That the spread is non-negative follows trivially
from its definition (8). If 7 is totally inaccessible, then we can apply Proposition
A.1 to (9) to see that on the set {7 >t} a.s.

: _ 9 Ar—Ar
b S(,T) = — Bl 7 G |

T=t

By dominated convergence and the fact that A; = fot Asds, we have

lim S(t,T) = —E[i AT G ‘

T\t oT T=t

= [)\T eAt_AT | gt] ‘

T=t

= >\t7

which completes the proof of statement (1).

Now consider statement (2). If 7 is predictable, N is predictable as well
and its decomposition is trivial: the compensator of NV is A = N itself. A is
thus not absolutely continuous. Using the definition of the spread, on {7 > t}
we have a.s.

lim S(tistivn) Li<t<tiin
nToo tieZn

. 1
= — lim E (hlP[T >t | gtz]) 1{ti<t§ti+l}
nfoo liv1 — t;
ti€4n
1 1

nleo = 27" P[T > tig1 | Gy, ltiga=ts 7 <t |Gu] Lncesiiny

. 1
= lim Z 2TnP[T < tiv1 | Gl Li<i<tinys

nloo
ti €Zn

which is zero by Proposition A.2. O

Lemma A.3. Let K denote the (A;)-compensator of the survival process L,
defined in (10). For all bounded and (A;)-predictable processes Z we have

E[(N, - N) Z.| A = E [/t Z,dK,

.At:|, SZt.
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ProOF OF LEMMA A.3. Analogous to Lemma 2.4 in Rutkowski (2000). O

PROOF OF THEOREM 4.1. K is the (A;)-compensator of the supermartingale
L and thus by definition (\A;)-predictable, right-continuous, increasing, and has
Ky = 0. Hence A is right-continuous, increasing, (G;)-predictable (A; C G, for
all t and (L;—)s>0 is (A¢)-predictable as well), and satisfies Ayg = 0. It remains
to show that the process N — A is a (G;)-martingale. Letting Z; = (1 — N;)/ Ly,
for s > t we compute

E[NS—Nt‘gt] :E[NS—Nt|AtVU(T/\t)]

1-N
= —F—F|(Ng— N;)(1 — N,
P I = M) = N) Al
= Z,F[Ns — N; | Ay
— ZtE[Lt - LS | At],
where the last line follows from the definition of L, cf (10). On the other hand
SAT dKu
E[AS—At|gt]:(1—Nt)E / At\/O'(T/\t)
t u—
[ [SAT dKu
- ZtE _/; Lu_ At:|
r B dKu SAT dKu
= Z,F (1—Ns)/ +(N5—Nt)/ At]
| ¢ Ly ¢ Ly
r s dKu SAT dKu
=B Ls/ + (Ns — Nt)/ -At:| (22)
| " J: L. ¢ Ly
r s dKu s UNT de
_2E|L / + / / ooty — L) A (23)
L Je Lu- t Jt Lo
— ZF |Ly(A, — A) - / AudLy + A(L, — L) At] (24)
L t
= Z,B[K, — K, | A (25)
- ZtE[Lt - Ls | At], (26)

where (22) follows by iterated expectations, (23) follows by Lemma A.3 and
the fact that K = M — L for some (A;)-martingale M, and (24) is due to the
definition of A. For (25) we have used the fact that

/ AudLu - ASLS - AtLt - / Lu_dAu
t t

= AsLs - AtLt - K, + Kt7
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by virtue of the product formula (note that K is a process of bounded variation,
so that (A) = 0). (26) follows again from the fact that K = M — L for some
(A;)-martingale M. We have thus verified that

E[As _At|gt] = E[Ns - Nt|gt]> s > 1,

proving that N — A follows a (G;)-martingale.

Now consider the second statement. If L is continuous and decreasing,
then its (A;)-compensator K is given by K = 1 — L. In this case the default
compensator A is continuous as well and we can write

st/\T = _Lt/\’TdAt7
leading to the integrated form L\, = e=4. O]

PrROOF OF THEOREM 4.4. Under the assumed conditions on H, on the set
{7 >t} we have a.s.

.1 1
l}g{)l EE[KtJrh — Kt ’ At] = 1}1{8 EE[Lt — LtJrh ‘ At]

1
— l}il{g%(P[D < My| A — P[D < My | A) (27)

1
= 1’%1 EE[H(t +h,D)— H(t,D)| A
01
(28)

o0

_ /_ FH(t2) g(x) da, (29)

by dominated convergence. (27) is due to the definition of L. (28) follows from
the definition of H(t,-) as the A;-conditional distribution function of M;, and
the independence of D from A;. Since Aven’s (1985) conditions are satisfied,
K is absolutely continuous with respect to Lebesgue measure with a density
given by (29). Our claim is then implied by Theorem 4.1, taking into account
(11). O

PROOF OF PROPOSITION 4.5. The proof is analogous to that of Theorem 4.4.
Under the assumed conditions on H, on the set {7 >t} = {M; > D} we have
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a.s.

1 .. 1
E 1}5{)1 EE[KtJrh - K ‘ -At]
o1
= 1}1?01 EP[MH_}L S D ’ At, Mt > D] (30)

0

1
= lim — P[Myp, < x| Ay My > D = x]P[D € dx | G]dx

hio h J_

) 0 %E[H(t—i—h,x) — H(t,x)| A
= lim
hlo ) 1—H(t x)

gi(x)dx

-/ " () () d,

—00

by dominated convergence. (30) follows from Bayes’ rule. Since Aven’s (1985)
conditions are satisfied, our claim is implied by Theorem 4.1. O

PROOF OF PROPOSITION 4.6. We show that my(z) = 30%a.(t,z,z) for all
x <0 and t < 7. First observe that

+E[H(t+ h,x) — H(t,z)| A

hl0 1—H(t,x)

. P[Mt+h§$<Mt|At]
= lim
h10 Plz < M| Ay
1

= léll’gl EP[MtJrh <z ’ At, Mt > .’17]

On the set {r > t}, from the Markov property of Brownian motion and by
substituting y = = — z/0v/h we obtain

1 o0

my(z) = 1}%1 7 P[My, <z —zl|a(t,z, z)dz
0 1
= o'lg%l i P[M, < yU\/ﬁ]ﬁa(t, z,x — yovh)dy.

The probability P[M,; < z] = U(t, z) is explicitly given in (15) and we get

1’%1 P[M,, < yov/h]

(105 ) e (2o 7))

h10

= 29(y),
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where @ is the standard normal distribution function. Now, since a(t, z, x) = 0,
we obtain

1
l}%l ﬁa(t, z,z —yovh) = yoa.(t, z, z),

where the derivative is taken from the right. By dominated convergence,

my(z) = 202az(t,x,x)/ O(y) ydy

—00

2
=3 ztvv .
Qaa(xm)

To justify dominated convergence, note that for h < 1
|P[My < yoVh]| < M(y) =1 — &(—y) + exp(2|ulys )@ (y — |ulo™")

and M (y) goes to zero exponentially fast as y — —oo. Since a,(t,z,2) is
bounded, we have for some constant B that

1
|P[M, < yovVh]—=a(t,z,z —yovh)| < M(y) B,
Vh
providing an integrable upper bound for all A < 1. ]

B The Compensator and a Change of Measure

If our risk-neutrality assumption is relaxed, the valuation of contingent claims
by the no-arbitrage argument requires a change of the objective probability
measure P to some equivalent measure P ~ P under which all discounted
price processes are martingales (Harrison & Kreps (1979), Harrison & Pliska
(1981)). To apply Proposition 3.2 in this case, we need the compensator A
of 7 with respect to P. We now provide a characterization of A in terms of
the P-compensator A. Our result is analogous to that of Artzner & Delbaen
(1995, Appendix A1), who examine an intensity under a change of measure. If
a P-intensity does in fact exist, both results are essentially equivalent.

Proposition B.1. Let P be some probability measure equivalent to P and set
7 = dP/dP. Define a martingale (Z))>0 by Z, = E[Z|G)] and denote by
K. = E[Z|G,_] the predictable projection of Z. If T is totally inaccessible,
then the P-compensator A can in terms of the P-compensator A be written as

t
~ K
A = *dA,, t>0.
! /[)Zs— , _0
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PRrROOF. Clearly, A Is increasing, predictable, and satisfies Ay = 0. If the
process N — A is a P-martingale, then A is the P-compensator of 7. For all
non-negative and predictable process C' we have

E[C,] = E[ZC,] = E|E|Z|G._]C,] = E[K,C,].

Since KC' is predictable and A is the P-compensator of 7 (N — A is a P-
martingale and thus also ( fot Lyd(Ns — Ag))i>o0 for all non-negative and pre-
dictable L), we get

E[KTOT] - E |:/ Ktctht:| - E |:/ KtC'tdAt:| .
0 0

By Fubini’s Theorem and the definition of Z;,

E |:/ KtC'tdAt} :/ E[Ktct]dAt :/ E |:KtCt:| dAt
0 0 0 Z,

t

Now choose a cadlag -version of the martingale (Z;);>0; hence Z;(w) = Z;—(w).

Another application of Fubini’s Theorem and the definition of A then yields

0 0

t 0 Zt—

We have thus shown that for all predictable C

ElC)=E [/OOO Ctht] =E [/Ooo Ctd[ltl :

implying that the process N — Ais a P—martingale. . O
~ Note that if a predictable P-intensity A of 7 exists, then the P-intensity
A exists as well and is predictable. By virtue of Proposition B.1 we then have

~ Kt
A= —A
t Zt, 12

which is the result of Artzner & Delbaen (1995).
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