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Efficient hedging for a complete jump-diffusion
model

Michael Kirch* R.N. Krutchenkof A.V. Melnikov'
First version June 7, 2000. This Version: March 6, 2002

Abstract.

This paper is devoted to the problem of hedging contingent claims in the frame-
work of a complete two-factor jump-diffusion model. In this context, it is well
understood that every contingent claim can be hedged perfectly if one invests the
unique arbitrage-free price. Based on the results of H. Follmer and P. Leukert [4]-
[5] in a general semimartingale setting, we determine the unique hedging strategies
which minimize a suitably defined shortfall risk under a given cost constraint. We
derive explicit formulas for this so-called efficient or quantile hedging strategy for
a European call option. We then compare the performance of the optimal strategy
for different degrees of the investor’s risk-aversion.

Key words: Efficient hedging, Quantile Hedging, jump-diffusion, martingale
measure.

JEL classification: G10, G12, G13, D81.

Mathematics Subject Classification (1991): 60H30, 62F03, 62P05, 90A09.

1.Introduction.

The problem of hedging a contingent claim with probability one is well under-
stood in a complete financial market. In this situation, every contingent claim can
be replicated perfectly by investing the unique arbitrage-free price. However, by
eliminating the risk completely the investor also takes away the chance of making a
profit. Recent work studies the question what an investor who is short the option
can do if he is unwilling to invest the price of the option completely in the hedg-
ing strategy. Under this constraint, the investor is not able to eliminate the risk
completely. Instead, no matter which admissible strategy the investor chooses, he is
faced with a strictly positive probability that he will incur a nontrivial shortfall (the
difference between the value of his portfolio and the value of the option at time 7).
Hence, some optimality criterion on the shortfall is needed in order to determine
the most efficient hedging strategy. In [4], Féllmer and Leukert studied strategies
that successfully hedge the option with mazimal probability in the class of all self-
financing strategies with restricted cost. They called the optimal hedging strategy
in this class a quantile hedging strategy and showed how the determination of the
quantile hedging strategy can be reduced to computing the optimal success set by
means of the Neyman-Person Lemma

In [5], Follmer and Leukert developed a more general approach to hedge an option
in the most effective way given the capital constraint: They replaced the criterion of
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maximizing the probability of "no shortfall” by the demand to minimize the expected
size of the shortfall weighted by some loss function [. The optimal strategy with
respect to this demand is then called an efficient hedging strategy. They showed
that the efficient hedging strategy is given by the perfect hedging strategy for some
modified option. In a second step, they demonstrated how this modified option
can be computed by means of the unique equivalent martingal measure and the
derivative of the loss function. The quantile hedging strategy appears as a special
case of an efficient hedging strategy for a suitably defined loss function [. Hence we
use the term “efficient” in the sequel with the understanding that the quantile case
is also included.

In the present paper, we apply the results of Follmer and Leukert in [4] and
[5] to derive explicit formulas for the efficient hedging strategy in a jump-diffusion
model given by equations (1),(2) and (5). We show how the efficient hedge can be
derived from an ordinary partial differential equation where the boundary condition
is given by the modified option. In the special case of a FEuropean call option, we
demonstrate how the modified option can be constructed by computing the root of
a rather simple equation. We then compare the performance of the optimal strategy
for different degrees of the investor’s risk-aversion.

2.Description of the Model and Auxiliary results.

Let (2, F,F = (Fi)i>0, P) be a standard stochastic basis. We assume there are
two risky assets S' and S? whose price-processes are described by the following
stochastic differential equations

dS; = S} (p'dt + o"dW, — v'dIlL,),i = 1,2, (1)

where W is a standard Wiener process and II is a Poisson process with positive
intensity A. Suppose also that W and II are independent and that the filtration F
is generated by W and 11, ' € R, 0" > 0,1/ < 1.

There is a non-risky asset B which follows the equation

dBt = TBtdt, BO = 1,7' € R. (2)

Every predictable process 7 = (m)iz0 = ((B17%,7%))i0 can be regarded as
trading strategy or portfolio. The value of such a portfolio at time t equals

X7 = BBy + 7 S) + 77 (3)

Xﬂ'
‘B

toq ]
Xr X7 / (S

20 > vd (2t ) (P —as. 4
Bt BO +0 — 711, (Bu ( a..S), ( )

then 7 is called self-financing. A self-financing strategy with non-negative value at
any time is called admissible.

The market (1)-(2) is complete if the following conditions are fulfilled (see, for
instance Melnikov and Shiryaev [8], Volkov and Kramkov [6])

If the discounted value of a strategy m can be represented in the form

(p' —r)o® — (p* —r)o

o2l — gly2

o?vt — ol £ 0,

> 0. (5)



Under condition (5), there exists a unique equivalent martingale measure P* with
local density

dP* *2
dp 2

where the pair(a*, A*) is given by the unique solution of the equation

Zy = Fi=exp(a™Wy — —t+ (A = X)t + (In X" — In MIT,), (6)

1 51 % 1yx*
{u r ot +rA 0. (7)

pr—r= —ocla* + 12\

Under the measure P*, W} = W, — a*t is a Wiener process, Il is a Poisson
process with intensity A* > 0, and W* is independent of I1.

A non-negative Fr-measurable function fp is called contingent claim. For a
perfect hedge, we have to find a self-financing strategy m that eliminates the risk
completely in the sense that

PIXT > fi] =1

and requires minimal initial capital X over all such strategies. This minimal initial
capital is also called the fair price of the option.

We consider classical options of the form fr = f(S%). We will demonstrate that
the efficient hedging strategy for such an option coincides with the perfect hedging
strategy for a modified option fr < fr of the form

fT = 9(871“7 872“)

for a measurable function g : R — R, i.e., the modified option is a basket option.
For this reason we first study hedging strategies for basket options. According to
the general theory of perfect hedging (see [1], [2], [3], [9] and [10]), the unique fair
price of a basket option is given by

C(T, Sy, S3) = E*[g(St, S7)e™™],

where E* denotes expectation with respect to P*.
By the Ito-formula we obtain

. ) . . 1 . .
Si = Shexp{o W+ (4t — 50 )1 - b)Y

= Syexp{o'W; + (¢’ +o'a* — 5(01)2)t}(1 — )

Loty - iy (8)

= Spexp{a'W; + (r + v'\* — 5

and ,
Bt

The basic observation is that the independence of W* and II and (8) imply the
general pricing formula for basket options:

Y} = =L = Y] exp{oW; + (v'\* — 5(01)2)75}(1 — )

C T S(%"S’2 anTE nT SnT)eirT] 3 (9)



where

e A"
pn,T =€ ’I'L'

are the weights of the poisson distribution and sfl’T are lognormally distributed
random variables under P*:

In(s), ;) ~ N (111[56(1 — V" 4+ [r — %(O’i)Q + V' NT, O’iﬁ> : (10)

In the special case of a European call option with payoff f(S}) = (S; — K)* for
some strike K > 0, we obtain from (9) and (10) the unique fair price (which is
independent of S3):

C(T,S5) = > CO(S§nz, K. T)ppr (11)

n=0
where CP% denotes the Black-Scholes price formula

CB5(Sy, K, T) = So®(dy(So, K)) — Ke ™ ®(d_(So, K)), (12)
~ In(Sp) —In(K) + (r £ ()T
di(SOaK) - Ul\/T 3 (13)

®(x) is the standard normal distribution function and the constants ¥,, 1 are defined
by means of

ﬁn’T = (1 _ Vl)neul)\*T, n € N. (14)

The value of an European option can also be computed by means of the following
partial differential equation.
Theorem 1. Let some basket option gr = g(S+, S2) be given. Then the value of the
perfect hedging strategy at time t is given by a function C(S}, S%,t) of the current
asset prices and time that satisfies the partial differential equation

[C(Stlf(l o Vl): St27(1 o UQ): t) - (C(Stlf* Stzfa t)] A"+ rStlf%(C(Stlf'/ Stgfv t)
+7SEZC(SE, SE 1) + 2C(SL, S2,1) + 3(0'SL)* 2 C(SE, SE, 1)

+5(0*S7 ) £ CSL, SE ) + (010 SLSE ) g2 C(SL. SF.1) — rC(SL, S 1)

+ 2 C(SL, S, WA SE + S.C(SL, S7, ) A*SE =0

(15)
with boundary condition
C(Sr. 57, T) = g(Sr, S7).
The components 3,41, v of the perfect hedging strateqy are given by
VoS + ot SE = SlLa' SC(SL, ST t) + S5, C(SL, S t)
16
WVISL + 8L = C(SL, 8L 1) — C(SL(L— 1), Se(1—w2)1), O
and C(Sl 5«2 ) 15«1 25«2
) ) t)— - —
8, = t—> Ot Tt Ot Ve Ot . (17)

B,



We have assembled the proofs to all theorems in the appendix.
Again, we consider the special case of a European call option. Here, the compo-
nents v/, 77 of the hedging strategy are the roots of

HolSE +920%SE = 5} ot 2C(S) 1)

WS +rASE = C(S),t) — C(Sp (1 —v1),1).

and the first component of the hedge can be determined from (11) and (17). Equa-
tion (15) simplifies to

[C(SE (1= 1), t) = C(Si, )] X + ZC(SE, 1) + 3(0' 1) 25 C(SL 1)
+7rSLZC(SE 1) = rC(S.,t) + ZC(SL_, ' A" S = 0.

So far, we have exposed the standard theory of pricing and hedging in the model
under consideration. We now turn to the problem of efficient hedging.
3.Efficient Hedging.

Given an upper bound X, < E*[e™"? fy] on the initial capital which is available for
hedging the option f7, the efficient hedging strategy 7 is defined as the solution of
the following problem:

El((fr — X7)")] = min (18)

T

where the minimum is taken over all admissible strategies that satisfy the cost
constraint

X7 < X, (19)

For the definition of the value process X7 cf. equations (3) and (4).
Concerning the solution of problem (18), we are going to consider two important
special cases:

(i) Quantile Hedging
The loss function is given by I(x) = [(gc0)(z). In this case, we obtain

E(l((fr = X7)")] = Ellpr>x5] = Plfr > X7

i.e. problem (18) is equivalent to mazximizing the probability of a successful
hedge P[fr < X7].

(ii) Lower partial moments
The loss function is given by I(z) = 2® for some p > 1.

Note that the risk-neutral case [(z) = z is not included in our analysis. However, us-
ing the results of [5] concerning the risk-neutral case and the methodology presented
below easily yields formulas similar to the quantile case.

Concerning the quantile case (i), Follmer and Leukert showed in [5] that the
quantile hedging strategy 7 for a European option of the form fr = f(S4) is given
by the perfect hedging strategy for the knockout-option ¢ fr defined by!

¢=1Iiar a1y, (20)

dpP*

!Here we have used the fact that the randomization part has zero measure, i.e.

P [jp= = const- f(St)] =0, cf. equation (45).




where the critical value a has to be computed by means of the capital constraint
E* [ dfr] = Xo. 21)

The maximal probability P[fr < X7J] of a successful hedge that can be achieved by
any admissible strategy 7 satisfying the cost constraint (19) is then given by

— Pl <)) (22)

In the risk averse case (i), Follmer and Leukert showed in [4] that the efficient
hedging strategy 7 is given by the perfect hedging strategy for the modified claim

Jr = fr— dZ;iil A fr (23)

where Zp was defined in (6) and the constant & has to be determined from the
capital constraint .
E*fre ™ = X,. (24)

Before we state the results concerning efficient hedging strategies, we have to intro-
duce some new objects. First, we define the constants

)\*
b = — > and (25)
A1 —p1)eT

a*

q = —m- (26)

We denote by c!(a;n) < c?(a;n) the roots of the equation

*

T

QH| Q

=b"a(zr — K). (27)

If —g—I < 1, equation (27) has only one solution which we denote by c(a;n). We
introduce auxiliary functions C, and C, as follows:

Ca(S,m,e,T) = [CP5(SV,0, K, T) — CP5(S0,,1, ¢, T)
—(c— K)e™™ - ®[d_(SVpr )] (28)

and

Cy(S.n,ct, A T) = CP(SV,r, K, T) — CP(SV, 1,4, T)
+CP5(S80p, A T) — (¢ = K)e™™ - ®[d_(SYp1, )]
+(? = K)e ™ - ®[d_(SYr, ?)).

We can express the number II; of jumps up to time ¢ in terms of (S}, S, t): From

St = Shexp(a'W; + (r + VA — = (a")?)t)(1 — v

2
I 3 (0')?
S ; o'
wrr = —|ln—> — [P A, | 2
D= g ey =) (29)



we obtain

0—11 (ln S MIn (1 —vh) — (r+ v\ — (01)2)t>
=% (ln— — I In (1 —v?) — (r + 2\ — @)t)
which implies the desired formula for II

I %lns_é_(wr”l)‘*_u)___lny+(7“+V2>\*—@);_2 T(S! 2.4
o %ln(l—yl)—pln(l_lﬂ) =: II(S;, St . ¢).
(30)

For quantile hedging in a jump-diffusion model see also [7].

Theorem 2. Consider a Furopean call option with strike K and maturity T on
the stock S* and some initial capital Xo < E*[e "1 (St — K)*]. Concerning the
structure of the quantile hedging strategy 7, we distinguish two cases:

a) —% <1andb) —% > 1

Case a. Let a denote the unique solution of the equation

XO = an,T@a(Sévnac(a;n)aT)' (31)

n=0

(al) The quantile hedging strategy is given by the perfect hedging strategy for the
modified claim

f(STa ST) (ST ) I{S%,,<¢(&;H(S%,75%,T))}' (32)

(a2) The probability of equation (22) that the hedge is successful equals

l—e=1- ’\TZ@[ (Sp(1—vh)™ c(d;n))+ul_rﬁ (/\T)n. (33)

ol n!
(a3) The value of the strategy at time t is given by

C(S},87.1) = pnriCal(S}.n.c(dsn +T1(S}, S2.1)), T — ).

n=0

(a4) The components v*, v* and (3 of the strategy can be computed by means of the
last equation, (16) and (17).

Case b.
Let a denote the unique solution of the equation

o0

Xy = Z [@b(Sé, n,c'(a;n), c*(a;n), T)| pur- (34)

n=0

(b1) The quantile hedging strategy is given by the perfect hedging strategy for the
modified claim

f(57,8%) = (S} — K)* [I{s;<c1(a;n(s§,,s§,,T))} T spse@n(st, sz} - (35)



(b2) The probability of equation (22) that the hedge is successful equals

o0 1

- = 1—26—”{@ {d_(Sé(l—yl)”,cl(d;n))+M _Tﬁ} (36)

ol

n=0
1

—® {d_(Sé(l — ) A n)) + Tﬁ} } (AD)"

ol n!

(b3) The value of the strategy at time t is given by

C(S}, 57.t) = puratCo(S),n, (@ nt11(S), S7, 1)), (@ nA11(S;), S, 1)), T—t).
n=0

(37)

(b4) The components v', v* and (3 of the strategy can be computed by means of the
last equation, (16) and (17).

Instead of prescribing the maximal initial capital available for the hedge, we could
as well have fixed a maximal shortfall probability € and determine the minimal initial
capital X (¢) such that there exists a strategy 7 that has a shortfall probability of
at most e. In view of the above theorem, this is easily achieved ?: Given a maximal
shortfall probability e, compute a(e) by means of equation (33). Substitute a = a(e)
in equation (31) and determine X(¢) as the unique solution of this equation for
Xo. Then, the strategy 7 given by (al), (a3) and (ad) with initial capital Xo(e)
successfully hedges the option with probability 1 — ¢ and )20(5) is the minimal
initial capital that is required to establish such a hedging strategy.

Concerning the efficient hedging strategy in the risk-averse case, let L(a;n) de-
note the unique root of

abv1 L7 = (L — K)* (38)
and define

Co(S,n, L, T) = CP5(Sr,L,T) +e "™ (L — K)®(d_ (9,75, L(a;n))) (39)
+LY(L — K)(SYy0) " %r®(d_ (0,15, L) — qo*VT),

Ky = 03(01)?Tq(1~q) p=rT(1+q) (40)

Theorem 3. Again, consider a Furopean call option with maturity T and strike K
on the stock S and some initial capital Xy < E*[e”™" (S} — K)*]. The structure
of the efficient hedging strategy with respect to the loss function l(x) = xP for some
p > 1 s the following: Let a denote the unique root of the equation

> par Co(S5, L(@; n), T) = Xo. (41)
n=0

(1) The efficient hedging strategy is given by the perfect hedging strategy for the
modified claim

fishosi) = [t ) - (L@t 53,784 (42)

x (L@ T(SE 83, 1) = K) | I gys pamspsn)

2For ease of exposition, we assume that case a holds, otherwise one has to use the respective
equations for case b




(2) The value of the strategy at time t is given by

n=0

(3) The components v+, v* and (3 of the strategy can be computed by means of the
last equation, (16) and (17).

4. Numerical Examples.

Consider the following set of parameters:

pt=0.12; ot =0.3; v1=005 \=1;
p?=0.102 02=0.3 v?=0.0L (44)
r=0.03 T=1; S =100; K =90.

For this set of parameters, we obtain A* = 0.45, —3—: = 0.75 and the price of the
call is C(T, S§) = 18.67. If there where no jumps, i.e., if A = 0, the Black-Scholes
price of the call would be 18.61.

Figure 1 shows the success probability of the quantile hedging strategy as a
function of the invested capital. As illustrated by the additional lines, the investor
can save 6.5 percent of the perfect-hedging price (respectively 26 or 43 percent) if he
is willing to accept a shortfall-probability of 1 percent (respectively 5 or 10 percent).

1 —
/

5 10 15 20

Figure 1: The success probability as a function of the invested capital

Now consider the case where the investor is risk-averse and seeks to establish
an efficient hedging strategy for p = 2. In this case, we propose to measure risk
associated to a nonnegative liability by the L?-norm which is of the same monetary
unit as the actual loss. The bold line in Figure 2 shows the L2norm of the shortfall as
a function of the invested capital if the investor uses the efficient hedging strategy for

9



p = 2. The dashed line corresponds to the L?-norm of the shortfall if the investor
uses the quantile-hedging strategy of Figure 1. The thin line shows the L?norm
of the shortfall if the investor establishes the hedging strategy that minimizes the
mazximum loss, i.e. if he hedges a call-option with a higher strike where the strike is
chosen such as to satisfy the capital constraint - a strategy popular with traders.

35!
30}
25¢
201
15+

10+

5 10 15 20

Figure 2: L?-norm of the shortfall as a function of the invested capital: Efficient
(thick) vs. Min-Max-Loss (thin) and Quantile-strategy (dashed)

The comparison of the three lines in Figure 2 demonstrates the increase in per-
formance of the efficient hedging strategy compared to the alternatives quantile- and
Min-Max-loss strategy for a moderately risk-averse investor (p = 2). The increase
in performance of the efficient hedging strategy over the quantile-hedging strategy
is more pronounced for larger p. On the other hand, the increase in performance
of the efficient hedging strategy over the Min-Max-loss strategy is more pronounced
for smaller p. For p T oo, the distance between the thick and the thin line vanishes
whereas the dashed line assumes the value +oo.
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Appendix.

Proof of Theorem 2:

We know from [4], that the quantile hedging stratey is given by the perfect hedging
strategy for the modified claim ¢ fy defined by equations (20) and (21). We first
paraphrase the risk neutral density in terms of S}, and IIy:

4 — exp(a*Wr — a;2T + A =A)T + (In A" —In M)

= (Sé exp {01WT + (pt — ”Tﬂ)T} (1— yl)HT> T x
x—1_exp <—"‘*’1‘1T+ datp oy () - ,\*)T)) X

*2
o 2 2

sior (45)
It
()
)\(l—ul)%
= g . (Sjl,)%r . bHT7

with b defined in equation (25) and a suitably defined constant g.
Using (45) we can represent ¢ in the form

¢:I{dP

~ p— I *
apP~ >a1fT} {5%7%>bHTa(S%_K)+}

where we have set a = a;9. We show how to compute a by means of the capital
constraint E* [e’TTgb ﬂ = Xj. It follows from the last equation that

E* [e_rTQbfT} — E*

-l gl + .
e (9 — K) I{s;fﬁwnm(s;z(ﬁ}]

n=0

—rT (1 _ + . .
e (ng = K) [{ 1 %1—>bn&(sylhT—K)+}] Pur- (46)

Sn,T

Case a, —3—: < 1:
In this case, the equation

ol =ba(z— K)*



has a unique root x = ¢(a;n). Thus, for any fixed n = 1,2, ..., the inequality

*

T

QH‘ Q

> b"a(z — K)*.
is equivalent to x < ¢(a;n). This implies
[ a* - [ .
{S%fai]>b"a(s%—K)+} {St<c(am) }

We combine the last equation and (46) to obtain

E* [e_er)fT} = ZO E* [G_TT(S% - K)+I{S%<C(G;TL)}:| " Pnr
_ i B [T (b = K)* — (shir — clain))*

~(e(@in) = K)I(y umy)] P

- anvT [CBS(Séﬁn,T: Ka T) - CBS(Séﬁn,T: C(G; TL), T)

n=0

—(c(a;n) — K)e™™ . P* [si’T > c(a; n)”

= > P | O (Si0n ., K. T) = CP5(S307, clai ), T)

n=0

~(e(a;n) = K)e ™" - Bld_ (S, cla; )]
= anyT@a(Sé, n,c(a;n),T)

where @a(Sol, n,c,T) has been defined in equation (28). Again refering to equations
(20) and (21), this proves item (al) of theorem 2.

Concerning assertion (a2), we proceed as follows: Observe that for a borel-
measurable function f,

Bl 5] = 3 e R g [, st ] (47)

n!
n=0

where 371va is lognormally distributed under P, cf. (8):
1 . .
st ) ~ A (IS} =) 4 [ = 50IT0VT ).

Hence, the probability of the hedge beeing succesfull can be computed using the
above results:

l—-¢ = 1-P {S}_g_l < b"rae (St — K)*]

(AT)"
n!

= _’\TZP > (@)

_ _)‘TZ(I)[ (SY(1 —vh)" c(d;n))+u1_rﬁ] (AT)n,

ol n!
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i.e. (a2) holds.
We already know that the quantile hedging strategy coincides with the perfect
hedge of the modified claim ¢ fr. We calculate the value of this strategy:

XF o= B [bfre R

- E*

e—r(T—t)(s% — K)+[{ _a* o K)+} |ft] .

S% ol >plTa(st.—

As above, we can simplify the last equation to

X7 = E*

—r(T—t) /ol +
e Sy —K)"1 a* Fi
( T ) {S%—ﬁ >g-bHT*th(S%’Stzﬁt)d(s%w—K)’F} | t

W T =)

n!

— ZE*

= Z Pur—+Ca(SE,n, c(a;n +11(S}, S2,1)),T —t).

n=0

Ttsl )[{ ok

: [
SL- oT S pnpll(sf,s ’t)a(S%w—Kﬁ}

This proves (a3) of theorem 2. The last assertion (a4) follows from theorem 1.
Case b, when —f:—? > 1.
Now the equation

-5 = bla(x — K)*

x
has two roots c'(a;n) < ¢*(a;n). Thus, the inequality
x> ba(e — K)*

is equivalent to either z < c'(a;n) or x > ¢*(a;n). This implies

I{S%f{»na(s%p—m*} = Ust<atm} T Hspocam}-

We can conclude as in case a to obtain
E* [e_TT(;fT} _ Z E* |:€_TT<8:L,T — K)+([{S}l T<cl(an } -+ I{ 1 >02 an)}:| . pn’T
n=0 ’
= Y E [ ((shyp — K)F = (shyp—c'(an) " + (shp — (a;n))

_(Cl (a; ?’L) - K)]{S}LTZ&(a;n)} +(62(a; n) - K)]{S}I,T>C2(am)}>] *DPn,T
- Z [CBS(Séf}n,T, K, T) — CP3(S;0,.r, c*(a;n), T)
n=0
FCIS (880, (i n), T) — (¢Han) — K™ Bld_(S3nr, (e 0))]
+(P(a;n) — K)e™™ - d[d_ (Séﬁn,T, c(a; n))H D1

o0

= [@b(Sol,n, cl(a; n), c2(a; n),T)} DT

n=0
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This proves item (bl). The assertions (b2) - (b4) can be obtained from (bl) as in
case a. H

Proof of Theorem 3:
We know from Equation (23), (26) and (45) that the modified claim is given by

Jr = fT—a1Z A fr
— (Sh— K)T —abr T (Sh) A (Sh— K)F

where the constant a has to be determined from the capital constraint. By definition,
L(a;n) denotes the unique root of

abr 1 L7 = (L — K)*.
Thus, we have
fro= (St =K' =L@y (L(asTy) = K)SD ™| I gopmyy  (49)
= g(S}.TIy) (49)

We can now compute the fair price of fr:

E* e fr] = > pur (V) - ¥3) (50)
n=0
1 . x | _—rT /.1 +
\Ifn = kK |:€ (Sn,T - K) ]{s}LTZL(a;n)}

2= B e Ll n) (Lain) = K)(sh) e s pn]

The quantities W¢ are easily computed:

2 dx

00
1 _ 77"T 1 ol T:r+(r7%(01)2)T . %
\Iln o / (S 19” € K)]{Séﬁn,q«e”lﬁl+(r—%("l)2)TZL(a;n)}e

= / SoVnre” e I —j;:_—/ eTTKex;\j;E_
T Tn T

On 0 S50(dy (9n,0 S5, L(a;n))) — e ™ Ko(d (90,1055, L(a;n)))

CP5(Sg0nr, L(a,n), T) + e (L — K)¢(d— (IS, L(a; n)))

5

where we have set
In L(a;n) — In(9,7S5) — (r — 3(cH)H)T
o\T '

To simplify the notation regarding the computation of W2, we denote y,, = L(a;n)?(L(a;n)—
K). Now we compute

Tn =

22 dx
\/ 27r

- l/ 1 19 oz ] . 1 2
T 1 _ (ztqo VT dl‘
n " (SO n ) qe%( 1)2 Q(l ‘1) riq / e %

o oz
= Yn (Se¥n) " Rrd(d_(VnrSs. L(a;n)) — qo'VT).

n
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where we have defined r7 in equation (40). Substituting ¥? in equation (50) yields

E* e fr] = pur Cy(Sy,n, L(a;n), T)

n=0

where C, was defined in (39). Substituting II; = II(Sk, S2,T) in equation (49),
yields item (1) of theorem 3.

Now we compute the value of the efficient hedging strategy at time t: From
equation (49) we obtain f; = g(Sk, IIy) = g(Sk, Iy — IT, + T1,) which yields

Xp o= Bl | A

= > P B e g(Shn +11,) | F

n=0

= an,Tft@pQStl, n, L(a;n+11;),T — t)

n=0
where we can replace I, by TI(S}, S?,t). This proves item (2). The last assertion
follows from theorem 1. O

Proof of Theorem 1.
Let some basket option gr = ¢(S%, S%) with associated perfect hedging strategy
7 be given. From (29) and (30) we obtain (W;, 1I;) = (S}, S?) and (S}, S?) =
[, ' (W, 1I;). The markov property of (W,II) with respect to the filtration ()
implies
Xp = B [T g(Sp, 87) |17

- FE* [e—T(T—t) gOFt_l(Wt, Ht) |ft]

= B [e7 0 goly (W TL) |(We T

=: @t(Wt-/Ht)

~ Coly(s! 5

= C(S,,8/.1)
i.e. the value of the perfekt hedging strategy is a function C of the current values
of the assets and time. We study the representation

Xﬁ Xﬁ /Z ’d (51)

The dynamics of the discounted price processes Y} = % 1 = 1,2 are given by
dY! =Y\ (a"dW; — v'd(I1; — \*t)),i = 1, 2.
Substituting X™ by C and dY! by means of the last equation in (51) yields

1 2 1 t 1,1Q1 2Q2 t A1,,1Q1 2 Q2
C(St ) St ) t) _ (C(SO7 O) +/ ,Y 9 Su— —I— ’Y 9 Su dW* / 7 v Su— + ’Y v Su d(H )\* )
0 0

Bt N BO Bu Bu

(52)
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We are going to compare this representation with the representation we obtain by
applying the Ito-formula to C(S}, S?,t):

C(SE, 87.1) = C(S5,83,0) + Jy ZC(SL . 82, u)dS} + [; ZC(S}, 2, u)dS?

+ [y 2C(Si, S2 wydu + L [ 2 C(SE, S2_, u)d(S*, S*°)
+3 Jy 22C( ,u)d(S%,8%) + [§ 325, C(S)_, S2_, w)d(S™, 5*),

u—" uU—

u—" u—"

(53)

+ Y oeuct [C(s;,sg,) C(S1. 82 u) = 2C(SL, S2,u)ASL - ZC(SL, 52, u)As?]

where S denotes the continuous part of S?, see also (54). We can substitute
ASH = —v'S! AT,

C(Sus S ) =C(S,, Sy s u) = [C(S, (L —v"), Sy (1= v%),u) = C(S,,_, Sy, u) |- Al

and . . o . '
(S, 87 = (0'07)(S}_S)_)du,i,j = 1,2 (54)
to obtain
dC(S}, 57, 1) = 4C(SL, S7_,1)dS} + £C(SE, SE,1)dSE + §5C(Si, t)dt
+ 3(0'SL)2 (S, S2, tdt + (o287 )22 O C(SL, 82 t)dt

2

(010282 ) 2 OSSP )t + [C(SL(L— 1), S2(1—12).1) — C(SL. S2..1)] dII,

— ZC(S. S2, ) (~ S ), — £ C(SL, S, t)(—2S2.)dIl,.

The last equation yields
S (2C(SL, 87,050t + ZC(SL, 57 1) S0) Wy
+ [C(S(1 = v1), SE(1 — v?),t) — C(S, S2_,1)] e"’td(Ht — \*t)
e ([CSL( —91), SE (1 12).0) ~ C(SL. S2.0)] X' + rSL A C(SL. S2..1)

+ 7Sy OSSP 8) + FC(SL, S, 1) + 5(0" L) 22 C(SL, 57, 1)

+ 3(0257 )22 C(SL, SE, 1) + (0102552 ) 525, C(SL, SE.,t) — rC(SL, S, 1)
+LC(SL. 52, NS+ 2C(S), 52, t)VQA*sf,) dt

The comparison of this representation with equation (52) completes the proof. [
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