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Abstract

This paper develops inference and statistical decision for set-identi�ed parameters from

the robust Bayes perspective. When a model is set-identi�ed, prior knowledge for model

parameters is decomposed into two parts: the one that can be updated by data (revisable prior

knowledge) and the one that never be updated (unrevisable prior knowledge.) We introduce a

class of prior distributions that shares a single prior distribution for the revisable, but allows

for arbitrary prior distributions for the unrevisable. A posterior inference procedure proposed

in this paper operates on the resulting class of posteriors by focusing on the posterior lower

and upper probabilities. We analyze point estimation of the set-identi�ed parameters with

applying the gamma-minimax criterion. We propose a robusti�ed posterior credible region for

the set-identi�ed parameters by focusing on a contour set of the posterior lower probability.

Our framework o¤ers a procedure to eliminate set-identi�ed nuisance parameters, and yields

inference for the marginalized identi�ed set. For an interval identi�ed parameter case, we

establish asymptotic equivalence of the lower probability inference to frequentist inference for

the identi�ed set.
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1 Introduction

The conditionality principle claims that statistical inference and decision making should be con-

ditional on what has been actually observed. The Bayesian method is one of the inference

procedures that stand on the conditional viewpoint. In a situation where the data (likelihood

function) is not informative about the parameter of interest, a speci�cation of prior distribution

can have signi�cant in�uence to the posterior distribution, and the subsequent posterior analysis

may largely depend upon the researcher�s prior knowledge. We encounter such situation in the

partially identi�ed model put forward by the sequence of seminal work by Manski (1989, 1990,

2003, 2008). Accordingly, some may claim that in the absence of credible prior information the

Bayesian analysis is less suitable in partially identi�ed model especially when the goal of analysis

is to obtain the conclusion that is robust to empirically unveri�able assumptions.

To remedy this lack of robustness, but without giving up the conditionality principle, this

paper develops a robust Bayesian procedure of inference and decision for partially identi�ed

models. When the parameters are not identi�ed, or, more precisely, the likelihood is �at over

some region in the parameter space, a prior distribution of the parameters is decomposed into two

components: the one that can be updated by data (revisable prior knowledge) and the one that

never be updated by data (unrevisable prior knowledge). We claim that the lack of posterior

robustness is due to the unrevisable prior knowledge, and aim to make posterior probabilistic

judgement free from it. For this purpose, we introduce a class of prior distributions that shares

a single prior distribution for the revisable, but allows for arbitrary prior distributions for the

unrevisable. We use the Bayes rule to update each prior in the class in order to form the class of

posteriors. The posterior inference proposed in this paper operates on thus constructed class of

posteriors by focusing on its lower and upper envelopes, so called the posterior lower and upper

probabilities.

For each subset in the parameter space, the posterior lower and upper probabilities are de�ned

by the lowest and highest probabilities allocated on the subset among those multiple posteriors.

The lower and upper probabilities originate from Dempster (1966, 1967a, 1967b, 1968) in his

�ducial argument of drawing posterior inference without specifying a prior distribution. Shafer

(1976, 1982) extends the Dempster�s analysis to develop the belief function analysis: a system

of probabilistic judgement and learning that can deal with both partial prior knowledge and

set-valued observations. Walley (1991) introduces the lower and upper probabilities into the

Bayesian subjectivism in order to model the degree of prior ignorance and coherent indecision

of a decision maker. Our use of lower and upper probabilities is motivated by the robust

Bayes analysis considered in DeRoberts and Hartigan (1981), Wasserman (1989, 1990), and

Wasserman and Kadane (1990). These authors consider a class of priors as a set of probability

distributions bounded below and above by the lower and upper probabilities, and derive the
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updating rules of the lower and upper probabilities so as to obtain the posterior class. In

econometrics, the pioneering work of using multiple priors are Chamberlain and Leamer (1976)

and Leamer (1982), who obtain the bounds for the posterior mean of regression coe¢ cients when

a prior varies over a certain class. All of these previous works do not explicitly consider non-

identi�ed models, and let a prior class be formed by the researcher�s imprecise prior knowledge

or simply by analytical convenience. This paper, in contrast, focuses on non-identi�ed models,

and proposes an unambiguous way to construct the prior class with which the posterior inference

embodies the notion of robustness pursued in Manski�s partial identi�cation analysis. The

main contributions of this paper are therefore (i) to clarify how the early idea of lower and

upper probability analysis can �t to the recent issue on inference and decision for partially

identi�ed parameters, and (ii) to demonstrate that by designing the prior class to include arbitrary

unrevisable prior knowledge, we can obtain analytically tractable posterior lower and upper

probabilities, and they are useful for robust posterior inference and decision in the partially

identi�ed models in econometrics.

The inference procedure proposed in this paper retains some of coherent features in Bayesian

inference: inference and decision are made conditional on data without involving large sample

approximation. On the other hand, unlike the standard Bayesian procedure, our procedure does

not need a complete speci�cation of a prior distribution, and this makes our inference di¤erent

from the existing Bayesian analysis of set-identi�ed parameters (Bollinger and van Hasselt (2009),

Gustafson (2009, 2010), Moon and Schorfheide (2010), and Liao and Jiang (2010)). This paper

does not provide normative discussion on whether we should proceed with a single prior or

multiple priors for inferring the non-identi�ed parameters. We believe judgement on this should

depend on to what extent the researcher wants to make inference "robust" and in which manner

he wants to incorporate the attitude for being "agnostic" about the non-identi�ed parameters

into statistical inference. This paper clari�es that the multiple prior approach provides one way

to make the posterior inference explicit about such notion of robustness and agnosticism inherited

in the partial identi�cation analysis.

When the model is not identi�ed, the resulting posterior lower and upper probabilities become

supadditive and subadditive measures respectively. Speci�cally, we show that the posterior lower

(upper) probabilities on a subset in the parameter space is given by the posterior probability

that the subset contains (hits) the identi�ed set, which is a posteriori random sets with its source

of randomness coming from the posterior probability distribution of the identi�ed components

in the model. Beresteanu and Molinari (2008) and Bereseanu, Molchanov, and Molinari (2010)

show usefulness and wide applicability of the random set theory to the partially identi�ed model

by viewing an observation as a random set and de�ning the true identi�ed set by its Aumann

expectation. Galichon and Henry (2006) proposed a use of Choquet capacity in de�ning and
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inferring the identi�ed set in their framework of incomplete model. We obtain the identi�ed

set as a random object whose probability law is represented by the posterior lower and upper

probabilities, and in this sense, our analysis conceptually di¤ers from these frequentist ways of

obtaining the identi�ed set.

From the statistical decision viewpoint, the robust Bayes formulation o¤ers a convenient

framework to formulate statistical decision. We de�ne a point estimator for the set-identi�ed

parameter by adopting the gamma-minimax criterion (Berger (1985)), which leads us to reporting

an estimate that minimizes the posterior risk formed under the most pessimistic prior within the

class. The gamma-minimax decision problem often becomes challenging and its analysis is often

limited to rather simple parametric models with a certain choice of prior class (see, e.g., Betro

and Ruggeri (1992) and Vidakovic (2000)). Our speci�cation of prior class, however, o¤ers

a simple solution for the gamma-minimax decision problem in a general class of non-identi�ed

models. The closed form expression of the point estimator is not available in general, but it can

be computed by applying the standard Bayesian computing such as Markov Chain Monte Carlo.

As a summary of the posterior uncertainty of the set-identi�ed parameters, we develop a

procedure to construct a posterior credible region by focusing on contour sets of the posterior

lower probability. We propose the posterior lower credible region with credibility �, which is

de�ned as the smallest subset in the parameter space on which we place at least probability �

irrespective of the unrevisable prior knowledge. An algorithm to construct such credible regions

is provided for interval identi�ed parameter cases. We also analyze the large sample property

of the volume minimizing posterior lower credible region, and establish Bernstein-von Mises type

asymptotic equivalence between the lower probability inference and frequentist inference for the

identi�ed set.

1.1 An Overview of the Main Results

To illustrate the main results of this paper, we present how to implement our posterior inference

procedure for the mean of a binary random variable when some observations are missing. Let

Y 2 f1; 0g be a binary outcome of interest and let D 2 f1; 0g be an indicator of whether Y
being observed (D = 1) or not (D = 0). Data is given by a size N random sample, xN =

f(Yi �Di; Di) : i = 1; : : : ; Ng.
The starting point of our analysis is to specify a parameter vector � that can determine the

distribution of data as well as the parameter of interest. Here, � can be speci�ed by (�yd) where

�yd � Pr (Y = y;D = d), y = 1; 0, d = 1; 0. The observed data likelihood for � is written as

p(xN j�) = �n1111 �
n01
01 [�10 + �00]

nmis

where n11 =
PN
i=1 YiDi; n01 =

PN
i=1(1 � Yi)Di; nmis =

PN
i=1(1 � Di). Clearly, this likeli-

hood function depends on � only through the three probability masses, � = (�11; �01; �mis) �
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(�11; �01; �10 + �00), implying that the likelihood for � has �at regions and each of them can be

expressed by a set-valued map of �,

�(�) � f� : �11 = �11; �01 = �01; �10 + �00 = �misg :

Note that the mean of Y is written as a function of �, � � Pr(Y = 1) = �11 + �10, and the

identi�ed set of � notated by H (�) is constructed as the range of � when the domain of � is

� (�) : In the missing data model, H (�) becomes the bounds of Pr(Y = 1) obtained in Manski

(1989),

H(�) = [�11; �11 + �mis]:

In order to obtain a posterior distribution for � in the standard Bayes procedure, we have to

specify a prior distribution for �. Due to the fact that the likelihood for � has �at regions, some

part of prior cannot be updated, and, as a result, the posterior inference for � is sensitive to a

speci�cation of prior no matter how large the sample size is.

To make the posterior inference free from such sensitivity issue, we consider the following

posterior inference procedure. First, we specify a prior distribution for �, preferably, a reasonably

noninformative prior such as Je¤reys�s prior.1 Next, we introduce a class of prior distributions

of � that consists of any probability distributions of � that are compatible with the prior of � and

the set valued mapping � (�). Every prior of � in the class is updated by the Bayes rule and is

marginalized to �. As a result, we obtain the class of posteriors for �.

We summarize the class of posteriors of � by their lower and upper envelopes, and use them

for point estimation and set estimation of �. Speci�cally, our lower probability inference proceeds

as follows.

1. Specify a reasonably noninformative prior for � and update it by the Bayes rule.

2. Let f�s : s = 1; : : : ; Sg be random draws of � from the posterior. The mean and median

of the posterior lower probability of � can be approximated by

argmin
a

1

S

SX
s=1

sup
�2H(�s)

(a� �)2 and argmin
a

1

S

SX
s=1

sup
�2H(�s)

ja� �j ;

respectively.

3. The posterior lower credible region of � at credibility level �, which can be interpreted as

a contour set of the posterior lower probability of �, is constructed by the smallest interval

that contains H (�) with posterior probability �.

1See Kass and Wasserman (1996) for a survey on "reasonably" noninformative priors.
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We verify that the point estimator of � in Step 2 yields the optimal decision under the gamma-

minimax criterion and the posterior lower credible region of � in Step 3 asymptotically coincides

with the frequentist con�dence intervals for the identi�ed set.

1.2 Plan of the Paper

The rest of the paper is organized as follows. In Section 2, we introduce the likelihood based

framework of the set identi�ed model. In Section 3, we discuss which part of prior can be seen

as unrevisable prior knowledge. We introduce the class of prior distributions that represents

arbitrary unrevisable prior knowledge, and derive the posterior lower and upper probabilities.

The point estimation problem with the multiple priors are examined in Section 4. In Section

5, we investigate how to construct the posterior credible region based on the posterior lower

probability. Its large sample behavior is also examined in an interval identi�ed parameter case.

Proofs and lemma are provided in Appendix A.

2 Likelihood and Set Identi�cation

2.1 The General Framework

Let (X;X ) and (�;A) be measurable spaces of a sample X 2 X and a parameter vector � 2 �,
respectively. Our analytical framework up to Section 4 only requires the parameter space � to

be a Polish (complete separable metric) space, and it covers both a parametric model � = Rd,
d <1, and a nonparametric model where � is a separable Banach space. We make the sample
size implicit in our notation until the large sample analysis in Section 5. Let �� be a marginal

probability distribution on the parameter space (�;A) referred to as a prior distribution for �.
We assume that the conditional distribution of X given � has the probability density p(xj�) at
every � 2 � with respect to a �-�nite measure on (X;X ). We call p(xj�) the likelihood for �.

Parameter vector � consists of parameters that determine behaviors of economic agents as

well as those that characterize the distribution of unobserved heterogeneities in the population.

In the context of missing data or the counterfactual causal model, � indexes the distribution of

the underlying population outcomes or the potential outcomes (see Example 2.1 and 2.2 below).

In all of these cases, the parameter � should be distinguished from the parameters that are used

solely to index the sampling distribution of observations. The identi�cation problem of � arises

in this context: If multiple values of � can generate the same distribution of data, then we

claim that these ��s are observationally equivalent and identi�cation of � fails. In terms of the

likelihood function, the observational equivalence of � and �0 6= � means that the values of the

likelihood at � and �0 are equal for every possible observations, i.e., p(xj�) = p(xj�0) for every
x 2 X (Rothenberg (1971), Drèze (1974), and Kadane (1974)). We represent the observational
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equivalence relation of ��s by a many-to-one function g : (�;A)! (�;B);

g(�) = g(�0) if and only if p(xj�) = p(xj�0) for all x 2 X:

The equivalence relationship partitions the parameter space � into equivalent classes on each of

which the likelihood of � is "�at" irrespective of observations, and � = g(�) maps each of these

equivalent classes to a point in another parameter space �. In the language of structural model in

econometrics (Hurwicz (1950) and Koopman and Reiersol (1950)), � = g(�) is interpreted as the

reduced form parameter that carries all the information for the structural parameters � through

the value of the likelihood function. In the literature of Bayesian statistics, � = g(�) is referred

to as the minimally su¢ cient parameters (su¢ cient parameters for short), and the range space

of g(�), (�;B), is called the su¢ cient parameter space (Barankin (1960), Dawid (1979), Florens
and Mouchart (1977), Florens, Mouchart, and Rolin (1990), and Picci (1977)).2

In the presence of su¢ cient parameters, the likelihood depends on � only through the function

g(�) and there exists a B-measurable function p̂(xj�) such that

p(xj�) = p̂(xjg(�)) 8x 2 X and � 2 �, (2.1)

holds (Lemma 2.3.1 of Lehmann and Romano (2005)).

Denote the inverse image of g(�) by �,

�(�) = f� 2 � : g(�) = �g .

Since g(�) is many-to-one, �(�) and �(�0) for � 6= �0 are disjoint, and f�(�) ; � 2 �g constitutes
a partition of �. In the structural model of econometrics, �(�) can be seen as a set of observa-

tionally equivalent ��s that share the same value of the reduced form parameter �. We assume

that g(�) is onto; g(�) = �; so that �(�) is assumed to be nonempty for every � 2 �.3

We de�ne set identi�cation of � and the identi�ed set of � as follows.

De�nition 2.1 (Identi�ed set of �) (i) The identi�ed set of � is de�ned by the inverse image
of g(�), �(�).

(ii) The model is point-identi�ed at � 2 �, if � (�) is a singleton. The model is set-identi�ed
at �, if � (�) is not a singleton.

Our de�nition of set identi�cation given above is in fact a paraphrase of the classical de�nition

of non-identi�cation of the structural model. The identi�ed set � (�) is seen as a multi-valued map
2The su¢ cient parameter space is unique up to one-to-one transformation (Picci (1977)).
3 In an observationally restrictive model in the sense of Koopman and Reiersol (1950), p̂(xj�) the likelihood

function for the su¢ cient parameters is well de�ned for a domain larger than g(�), e.g., see Example 2.3 in Section

2.2. In this case the model possesses the refutability property, and � (�) can be empty for some � 2 �. We do

not consider such refutable model in this paper.
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from the reduced form parameter to the structural parameter space �, and point-identi�cation

means this mapping is a single-valued map. The identi�cation of � only relies on the likelihood

p(xj�) and its de�nition does not change before and after observing data. Furthermore, the

notion of identi�cation stated above does not require a hypothetical argument of availability of

in�nite number of observations.

In the set-identi�ed model, the parameter of interest is typically a subvector or a transfor-

mation of �. We denote parameters of interest by a measurable transformation of �, � = h(�),

h : (�;A)! (H;D). We de�ne the identi�ed set of � by the projection of �(�) onto H through

h(�).

De�nition 2.2 (Identi�ed set of �) (i) The identi�ed set of � is de�ned by H(�) � fh(�) : � 2 �(�)g :
(ii) The parameter � = h(�) is point-identi�ed at � if H(�) is a singleton, while � is set-identi�ed

at � if H (�) is not a singleton.

The task of constructing the sharp bounds of � in the partially identi�ed model is equiva-

lent to �nding the expression of H(�). As seen in the examples given below, it is often the case in

partially-identi�ed models that set-identi�cation is an almost sure event, i.e., f� : H(�) is a singletong
is a measure zero set in �. This contrasts with so called weakly identi�ed models where point-

identi�cation is an almost sure event in �. Although our framework of lower and upper probabil-

ities do not distinguish these two cases, our analytical development focuses on partially identi�ed

models rather than weakly identi�ed models.

2.2 Examples

We now give some examples, both to illustrate the above concepts and notations and to provide

a concrete focus for later development.

Example 2.1 (Bounding Distribution of Causal E¤ects) Consider the Neyman-Rubin po-
tential outcome model with a randomized experiment. Let D 2 f1; 0g be an indicator of a binary
treatment status, and (Y1; Y0) 2 Y � Y be a pair of treated and control outcomes. Let Y be an

observed outcome Y = DY1+(1�D)Y0. Data is a size N random sample of X = (Y;D) denoted

by xN = f(yi; di) : i = 1; : : : ; Ng. We assume D is independent of (Y1; Y0). Accordingly, para-

meters in the model can be speci�ed by � = (fY1;Y0 ; p) where fY1;Y0 represents the joint probability

density of (Y1; Y0) and p � Pr(D = 1).

The observed data likelihood is

p(xN j�) = pn1 (1� p)n0
NY
i=1

[fY1(yi)]
di [fY0(yi)]

1�di
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where fY1 and fY0 are the marginal distributions of Y1 and Y0 respectively, and n1 =
PN
i=1 di and

n0 = N � n1. It can be seen that the likelihood is a function of fY1, fY0, and p, so that the

su¢ cient parameters are � = (fY1 ; fY0 ; p) and g : � 7! � maps the joint distribution fY1;Y0 to each

marginal of Y1 and Y0. The identi�ed set �(�) is written as

�(�) =

�
(fY1;Y0 ; p) :

Z
fY1;Y0dy0 = fY1 ;

Z
fY1;Y0dy1 = fY0

�
.

Consider the average treatment e¤ect (ATE), E (Y1) � E(Y0), as a parameter of interest.
Clearly, ATE is pinned down by fY1 and fY0, so H(�) of De�nition 2.1 is a singleton for every

�; implying that ATE is identi�ed.

On the other hand, � = FY1�Y0(0) the cumulative distribution function of the individual causal

e¤ects evaluated at zero can be a parameter of interest if the researcher wants to know how much

fraction of the population can be bene�tted from the treatment. Now, H(�) is de�ned as the range

of FY1�Y0(0) under the constraint that the joint distribution fY1;Y0 has �xed marginals (fY1 ; fY0).

It is known that H(�) is typically an interval and the closed-form expression of H(�) is given by

the Makarov�s bounds (Makarov (1981)). Hence, � is set-identi�ed. For further discussions on

bounding FY1�Y0(�), see Heckman Smith, and Clemens (1997), Fan and Park (2010), and Firpo
and Ridder (2009)).

Example 2.2 (Bounding ATE by Linear Programming) Consider the treatment e¤ect model
with incompliance and a binary instrument Z 2 f1; 0g as considered in Imbens and Angrist (1994)
and Angrist, Imbens, and Rubin (1996). Assume that the treatment status and the outcome of in-

terest are both binary. Let Y 2 Y be the observed outcome and (Y1; Y0) be the potential outcomes
as de�ned in Example 2.1. We denote by (D1; D0) 2 f1; 0g2 the potential selection responses
to the instrument with the observed treatment status D = ZD1 + (1� Z)D0. Data consists of a
random sample of (Yi; Di; Zi). Following Imbens and Angrist (1994), we partition the population

into the four subpopulations de�ned in terms of potential treatment selection responses,

Ti =

8>>>><>>>>:
c if D1i = 1 and D0i = 0 : complier,

a if D1i = D0i = 1 : always-taker,

n if D1i = D0i = 0 : never-taker,

d if D1i = 0 and D0i = 1 : de�er.

where Ti is the indicator for the type of selection responses that is latent since we cannot observe

both (D1i; D0i). ]

We assume a randomized instrument, Z ? (Y1; Y0; D1; D0). Then, the distribution of observ-
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ables and the distribution potential outcomes satisfy the following equalities: for y 2 f1; 0g ;

Pr(Y = y;D = 1jZ = 1) = Pr(Y1 = y; T = c) + Pr(Y1 = y; T = a); (2.2)

Pr(Y = y;D = 1jZ = 0) = Pr(Y1 = y; T = d) + Pr(Y1 = y; T = a);
Pr(Y = y;D = 0jZ = 1) = Pr(Y0 = y; T = d) + Pr(Y1 = y; T = n);
Pr(Y = y;D = 0jZ = 0) = Pr(Y0 = y; T = c) + Pr(Y1 = y; T = n):

With ignoring the marginal distribution of Z, a full parameter vector of the model can be speci�ed

by a joint distribution of (Y1; Y0; T ) that consists of 16 probability masses,

� =
�
Pr(Y1 = y; Y0 = y

0; T = t) : y = 1; 0; y0 = 1; 0; t = c; n; a; d
�
:

Let ATE be the parameter of interest,

� � E(Y1 � Y0) =
X

t=c;n;a;d

[Pr(Y1 = 1; T = t)� Pr(Y0 = 1; T = t)]

=
X

t=c;n;a;d

X
y=1;0

[Pr(Y1 = 1; Y0 = y; T = t) + Pr(Y1 = y; Y0 = 1; T = t)]

� h(�):

The likelihood conditional on Z depends on � only through the distribution of (Y;D), so the

su¢ cient parameter vector consists of 8 probability masses,

� = (Pr(Y = y;D = djZ = z) : y = 1; 0; d = 1; 0; z = 1; 0) :

The set of equations given in (2.2) characterizes the observationally equivalent set of distribu-

tions of (Y1; Y0; T ) ; �(�); when the distribution of data is given at �. Balke and Pearl (1997)

derive the identi�ed set of ATE, H(�) = h(�(�)); by maximizing or minimizing h(�) subject to �

being in the probability simplex and satisfying the constraints (2.2). Since the objective function

and the constraints are all linear, this optimization can be solved by linear programming and,

consequently, H(�) is obtained as the connected intervals whose lower and upper bound are the

achieved minimum and maximum of the linear optimization (see Balke and Pearl (1997) for a

closed-form expression of the bounds and Kitagawa (2009) for an extension to general support of

Y ).

Note that, In this model, special attention is needed to the su¢ cient parameter space � in order

to ensure that the identi�ed set of �, �(�), is nonempty. Pearl (1995) shows that the distribution

of data is compatible with the instrument exogeneity condition, Z ? (Y1; Y0; D1; D0) ; if and only
if

max
d

X
y

max
z
fPr(Y = y;D = d)jZ = zg � 1: (2.3)
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This implies that in order to guarantee � (�) 6= ;, a prior distribution for � must be supported
only on the distributions of data that ful�lls (2.3).

Example 2.3 (Linear Moment Inequality Model) Consider the model where the parameter
of interest � 2 H is characterized by linear moment inequalities,

E(m(X)�A�) � 0;

where the parameter space H is a subset of RL, m(X) is a J-dimensional vector of known func-
tions of an observation, and A is a J�L known constant matrix. By augmenting the J-dimesional
parameter � 2 [0;1)J , these moment inequalities can be written as the J-moment equalities,4

E(m(X)�A� � �) = 0:

We let the full parameter vector � = (�; �) 2 H � [0;1)J .
To obtain a likelihood function for the moment equality model, we employ the exponentially

tilted empirical likelihood for � that is considered in the Bayesian context in Schennach (2005).

Let xN be a size N random sample of observations and let g(�) = A� + �. If the convex hull of

[i fm(xi)� g(�)g contains the origin, then, the exponentially tilted empirical likelihood is written
as

p(xN j�) =
Y
wi(�)

where

wi(�) =
exp f(g(�))0 (m(xi)� g(�))gPN
i=1 exp f(g(�))0 (m(xi)� g(�))g

;

(g(�)) = arg min
2RJ+

(
NX
i=1

exp
�
0 (m(xi)� g(�))

	)
:

Thus, the parameter � = (�; �) enters in the likelihood only through g(�) = A� + �, so we take

� = g(�) as the su¢ cient parameters. The identi�ed set for � is given by,

�(�) =
�
(�; �) 2 H � [0;1)L : A� + � = �

	
If we consider the coordinate projection of �(�) onto H, we obtain H(�) the identi�ed set for �.

Example 2.4 (Bounding Regression Coe¢ cients with Errors in Regressors) One of early
developments of the partially identi�ed model appears in the linear regression model with errors

4The Bayesian formulation of the moment inequality model shown here owes to Tony Lancaster, who suggested

this to us in 2006.
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in regressors. Frisch (1934) considers the single regressor case and Klepper and Leamer (1984))

extend it to the case with multiple regressors. These authors derive the identi�ed sets of the

regression coe¢ cients under a weak set of assumptions on errors in variables.5 Here, we present

how to formulate the analysis of Klepper and Leamer within our framework. For simplicity,

consider a case where there are only two regressors.

Let

Y = X�
1�1 +X

�
2�2 + �

be the regression equation of Y onto two regressors (X�
1 ; X

�
2 ), and the parameter of interest here

is � = (�1; �2)
0. The means of Y and (X�

1 ; X
�
2 ) can be normalized to zero without a¤ecting the

construction of the identi�ed set. We assume normality of � and (X�
1 ; X

�
2 ) with variance �

2
� and

�. In data, precise measurement of (X�
1 ; X

�
2 ) is not available, while their noisy measurement

(X1; X2) is available. We introduce the classical measurement error assumption, X1 = X�
1 + v1

and X2 = X�
2 + v2 with (v1; v2)

0 � N (0; V ) independent of (�;X�
1 ; X

�
2 ) and V is a diagonal

variance matrix.6 The model parameter is speci�ed as � �
�
�; �2� ;�; V

�
and the distribution of

data is written in terms of � as0B@ YX1
X2

1CA � N
 
0;

 
�2� + �

0�� �0�

�� �+ V

!!
: (2.4)

With a random sample of (Y;X1; X2), the value of likelihood function varies only with the sec-

ond moments of (Y;X1; X2), so the reduce form parameter � consists of the second moments of

(Y;X1; X2), � �
�
s2y; r;


�
where s2y = E

�
Y 2
�
, r = E (Y; (X1; X2)0), and 
 = E

�
(X1; X2)

0 (X1; X2)
�
:

From (2.4), the relationship between the reduced form parameter � and the model parameter �

are obtained as

s2y = �2� + �
0��;

r �
 
r1

r2

!
� ��;


 �
 
!21 !12

!12 !22

!
� �+ V:

With �xing the left hand side variable � =
�
s2y; r;


�
, these equalities de�nes � (�) the identi�ed

set of � =
�
�; �2� ;�; V

�
. In particular, the identi�ed set for � consists of the values of � for each

5They refer to the identi�ed set as "the set of maximum likelihood estimates."
6As Klepper and Leamer (1984) noted, the normality assumptions of � and (v1; v2) are not necessarily as long

as we are concerned with identifying the coe¢ cients using the �rst and second moments of the data.
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of which there exist nonnegative �2� and positive semide�nite matrices for � and V satisfying the

above equations.

Let b1 =
�
b11; b

1
2

�
be the coe¢ cient vector of linear projection of Y onto (X1; X2), b2 be the

coe¢ cient vector for (X1; X2) obtained by regressing X1 onto (Y;X2) and solving for Y , and

b3 be obtained by regressing X2 onto (Y;X1) and solving for Y . Note that all b1 through b3

are expressed in terms of the reduced form parameters � =
�
s2y; r;N

�
. The elegant analysis

in Klepper and Leamer (1984, Theorem 1 - 3) shows that if b1, b2, and b3 all lie in the same

orthant the identi�ed set of � is given by their convex hull, and otherwise, it is an unbounded set.

Speci�cally, if our interest is in the �rst coe¢ cient �1, application of Theorem 1-4 in in Klepper

and Leamer (1984) provides the following closed-form expression of the marginalized identi�ed

set for �1,(
min

�
b11; b

2
1; b

3
1

	
� �1 � max

�
b11; b

2
1; b

3
1

	
if sgn

�
b11
�
sgn

�
b12
�
= sgn

�
r1r2 � s2y�12

�
(�1;1) otherwise

This identi�ed set can be unbounded depending on the distribution of data. The inferential

framework of this paper can deal with unbounded identi�ed sets like this.

3 Multiple-Prior Analysis and the Lower and Upper Probability

3.1 Posterior of � in the Presence of Su¢ cient Parameters

Let �� be a prior of � and �� be the marginal probability measure on the su¢ cient parameter

space (�;B) implied by �� and g(�), i.e.,

��(B) = ��(�(B)) for all B 2 B.

Let x 2 X be sampled data, and assume that �� has a dominating measure with respect to which

its Radon-Nykodim derivative exists, d��=d� = ~��. We denote the indicator function on set A

by 1A(�). The posterior distribution of � denoted by F�jX (�) is obtained as, for A 2 A,

F�jX(A) =

R
� p(xj�)1A(�)d��R
� p (xj�) d��

=

R
�E[p(xj�)1A(�)j�]d��R

�E[p(xj�)j�]d��

=

Z
�
E(1A(�)j�)

p̂(xj�)~��(�)R
� p̂(xj�)d��

d�

=

Z
�
��j�(Aj�)f�jX(�)d�; (3.1)
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where the second equality follows by the de�nition of conditional expectation and the transfor-

mation of random variables from � to �, and the third equality follows because p(xj�) = p̂ (xj�).
��j�(Aj�) denotes the conditional distribution of � given � that satis�es

��(A \ �(B)) =
Z
B
��j�(Aj�)d�� for all A 2 A, B 2 B.

f�jX(�) is the posterior density of �;

f�jX(�) =
p̂(xj�)~��(�)R
� p̂(xj�)d��

:

The expression of the posterior of � (3.1) highlights the fundamental feature of the non- or

set-identi�ed model: the posterior of � is the average of the conditional prior ��j�(Aj�) weighted
by the posterior density of the su¢ cient parameter f�jX(�). This result is well known in the

literature (Barankin (60), Florens and Mouchart (74), Picci (77), Dawid (1979), Poirier (1998),

among many others), and it can be interpreted that the data only allows us to revise belief on

the su¢ cient parameters �, while it does not for the conditional prior of � given �.

3.2 The Class of Unrevisable Prior Knowledge

The posterior distribution of � given in (3.1) implies that we are incapable of updating the

conditional prior information of � given � due to the �at likelihood on the equivalence classes

�(�) � �. Accordingly, we can consider the prior information marginalized to the su¢ cient

parameter �� as the revisable prior knowledge and the conditional prior of � given �, ��j�, as the

unrevisable prior knowledge.

If we want to obtain posterior uncertainty of � in the form of a probability distribution on

(�;A) as desired in the Bayesian paradigm, we need to have a single prior distribution of �,
and this requires us to specify the unrevisable prior knowledge ��j�. No matter how we specify

��j�, the speci�cation of ��j� always carries an assumption on � in the form of a probability

distribution, and no speci�cation of ��j� is able to represent the lack of prior knowledge. If the

researcher could justify his choice of ��j� by any credible prior information, the standard Bayesian

updating (3.1) would yield a valid posterior distribution of �: From the robustness point of view,

however, a statistical procedure that requires us to specify the unrevisable prior knowledge may

be less desirable when the researcher cannot or is not willing to translate his vague or vacuous

prior belief into a probability distribution about �.

One way to deal with such lack of prior knowledge in statistical inference is to introduce a

class of prior distributions in the Bayesian framework. LetM be the set of probability measures

on (�;A) and �� be a prior on (�;B) speci�ed by the researcher. Consider the class of prior
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distributions of � de�ned by

M(��) =
�
�� 2M : ��(�(B)) = ��(B) for every B 2 B

	
:

M(��) consists of prior distributions of � whose marginal for the su¢ cient parameters coincides

with the prespeci�ed ��. In other words, we accept specifying a single prior distribution for

the su¢ cient parameters � while we allow for arbitrary conditional priors ��j� as far as ��(�) =R
� ��j�(�j�)d�� is a probability measure on (�;A).
There are several reasons for considering this class. First, our goal is to make inference

and decision on the parameter of interest essentially the same for any of empirically unrevisable

assumptions. The given choice of prior class contains any ��j� so that we can achieve it by

considering an inference procedure that operates on the class of posteriors induced by the prior

classM(��). Second, as we shall show below, if we have a closed-form expression of H(�) or at

least are able to compute H(�); the prior class M(��) yields analytically tractable form of the

posterior lower probability for � and enables us to implement the lower probability inference by

the standard Bayesian computing of Markov Chain Monte Carlo.

As the �nal remark of this section, we comment that existing selection rules for "noninfor-

mative" or "recommended" prior for �nite dimensional � are not applicable if the model lacks

identi�cation. First of all, Je¤reys�s general rule (Je¤reys (1961)), which takes the prior density

to be proportional to the square root of the determinant of the Fisher information matrix, is not

well de�ned if the information matrix for � is nonsigular at almost every � 2 �.
The empirical Bayes type approach of choosing a prior for � (Robbins (1964), Good (1965),

Morris (1983), and Berger and Berliner (1986)) breaks down if the model lacks identi�cation. To

see why, consider �nding a prior within the class that maximizes the marginal likelihood of data,

i.e., we want to choose �� so as to maximize

m(xj��) =
Z
�
p(xj�)d��

in �� 2M(��). If the likelihood involves su¢ cient parameters, the marginal distributionm(xj��)
depends only on ��, becauseZ

�
p(xj�)d�� =

Z
�
p̂(xj�)d�� � m(xj��): (3.2)

Hence, the empirical Bayes approach fails to pick a prior for � out ofM(��).

It is also worth noting that we cannot obtain the reference prior of Bernardo (1979), which

is selected to maximize the conditional Kullback-Leibler distance between the posterior density

f�jX(�) and a prior density d��(�),Z
�
log

�
f�jX(�)

d��(�)

�
dF�jX(�):

15



It can be shown that this objective function again depends only on ��.

These prior selection rules are useful only for choosing a prior for the su¢ cient parameters

��, but not at all for selecting �� out ofM(��). In the analysis given below, we shall not discuss

how to select ��, and treat �� as given. As discussed already, the existing prior selection rule is

potentially useful to de�ne objective or noninformative ��. Moreover, the in�uence of �� to the

posterior of � diminishes as the sample size increases, so the sensitivity issue of the posterior of

� is not so severe when the sample size is moderate or large.

3.3 Posterior Lower and Upper Probabilities

The prior classM(��) results in yielding the class of posterior distributions of �. We summarize

the posterior class by the posterior lower probability F�jX�(�) and the posterior upper probability
F ��jX(�), which are de�ned as, for A 2 A,

F�jX�(A) � inf
��2M(��)

F�jX(A);

F ��jX(A) � sup
��2M(��)

F�jX(A):

Note that the posterior lower probability and the upper probability have a conjugate property,

F�jX�(A) = 1� F ��jX(A
c), so it su¢ ces to focus on one of them in deriving their analytical form.

For the lower and upper probabilities to be well de�ned, we assume the following regularity

conditions.

Condition 3.1 (i) A prior for �, ��, is a proper probability measure on (�;B), and it is ab-
solutely continuous with respect to a �-�nite measure on (�;B) :
(ii) g : (�;A)! (�;B) is measurable and its inverse image �(�) is a closed set in �, ��-almost
every � 2 �.
(iii) h : (�;A) ! (H;D) is measurable and H (�) = h (�(�)) is a closed set in H, ��-almost
every � 2 �:

The �rst condition is imposed in order for the prior classM
�
��
�
to be analytically tractable.

Although the inference procedure proposed in this paper can be implemented as long as the

posterior of � is proper, we do not know how to accommodate an improper prior for � in our

development of the analytical results. The second and the third conditions are required for

identi�ed sets �(�) and H (�) to be interpreted as random closed sets in � and H induced by a

probability law on (�;B). A su¢ cient condition for closedness of � (�) is, for instance, continuity
of g(�). Under these conditions, we can guarantee that for each A 2 A, f� : �(�) \A = ;g and
f� : �(�) � Ag are supported by a probability measure on (�;B) :
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Theorem 3.1 Assume Condition 3.1.
(i) For each A 2 A,

F�jX�(A) = F�jX(f� : �(�) � Ag); (3.3)

F ��jX(A) = F�jX (f� : �(�) \A 6= ;g) ; (3.4)

where F�jX(B) is the posterior probability measure of �, F�jX(B) =
R
B f�jX(�)d� for B 2 B.

(ii) De�ne the posterior lower and upper probabilities of � = h (�) by for each D 2 D,

F�jX�(D) � inf
��2M(��)

F�jX(h
�1(D));

F ��jX(D) � sup
��2M(��)

F�jX(h
�1(D)):

They are given by

F�jX�(D) = F�jX(f� : H(�) � Dg);
F ��jX(D) = F�jX(f� : H(�) \D 6= ;g):

Proof. For a proof of (i), see Appendix A. For a proof of (ii), see equation (3.5) below.

The expression of F�jX�(A) given above implies that the posterior lower probability on A

calculates the probability that the random set �(�) is contained in subset A in terms of the

posterior probability law of �. On the other hand, the upper probability is interpreted as the

posterior probability that the random set �(�) hits the subset A. Since the probability law of

random sets is uniquely characterized by the containment probability as in (3.3) or the hitting

probability as in (3.4), these results show that the posterior lower and upper probabilities for

� and � with our speci�cation of the prior class represents the posterior probability law of the

identi�ed sets of � and �.

The result of Theorem 3.1 (i) can be seen as a special case of Wasserman (1990)�s general

construction of the posterior lower and upper probabilities. In the general set-up of Wasserman

(1990), the posterior lower and upper probabilities do not necessarily represent the distribution

of random sets. The reason that we can a posteriori obtain probability laws of the random sets

is due to the special way of constructing the prior class. Our proof given in Appendix A is

not restricted to �nite dimensional �, and the results hold even for in�nite dimensional � (e.g.,

Example 2.1) as long as � is a complete separable metric space.

As is well known in the literature, the lower and upper probabilities of a set of prob-

ability measure do not necessarily satisfy additivity, i.e., for disjoint subsets A1 and A2 in

A, F�jX� is supadditive, F�jX�(A1 [ A2) � F�jX�(A1) + F�jX�(A2), and F ��jX is subadditive

F ��jX(A1 [ A2) � F ��jX(A1) + F
�
�jX(A2). Note that if the model is identi�ed in the sense of

17



�(�) being a singleton f�jX -almost surely, then F�jX�(�) = F ��jX(�) holds and they become an
identical probability measure.

The second statement of the theorem provides a procedure to transform or marginalize the

lower and upper probabilities of � into the ones of the parameter of interest �. The expressions

of F�jX�(D) and F ��jX(D) are simple and easy to interpret: the lower and upper probabilities of

� = h(�) are the containment and hitting probabilities of the random sets obtained by projecting

�(�) through h(�). This marginalization rule of the lower probability follows from

F�jX�(D) = F�jX�(h
�1(D))

= F�jX(
�
� : �(�) � h�1(D)

	
)

= F�jX(f� : H(�) � Dg). (3.5)

and, the marginalization rule for the upper probability is obtained similarly. Analogous to the

lower and upper probabilities of �, F�jX�(�) and F ��jX(�) are non-additive measures on (H;D)
(supadditive and subadditive measures respectively) if the model lacks identi�cation of �.

4 Point Decision of � = h(�) with Multiple Priors

In the standard Bayes posterior analysis, the mean or median of a posterior distribution of � is

often reported as a point estimate of �. If we summarize posterior information of � in terms

of its posterior lower and upper probabilities instead of a posterior distribution, how should we

construct a reasonable point estimator for �?

Being motivated by such question, we consider the point decision problem for the parameter

of interest � = h(�) under several risk criteria. In Section 4.1, we consider the decision problem

under the posterior gamma-minimax criterion (Berger (1985, p205)). In the presence of multiple

priors, it is known that a priori optimal decision may di¤er from a posteriori optimal action

(dynamic inconsistency problem, Vidakovic (2000).) Hence, we examine in Section 4.2 whether

the posterior gamma-minimax action obtained in Section 4.1 coincides with the unconditional

gamma-minimax decision (Kudo (1967), Berger (1985, p213-218), Vidakovic (2000)).

4.1 Posterior Gamma-minimax Action

We �rst consider point estimator of � = h(�) 2 H that is a posteriori optimal in the sense of the

posterior gamma-minimax criterion. Let a 2 Ha be an action where Ha � H is an action space.

Here, action is interpreted as reporting a particular point estimate for �. Given action a to be

taken and �0 being the true state of nature, a loss function L(�0; a) : H�Ha ! R+ yields how
much cost the decision maker owes by taking such action.
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Given ��, prior for �, the posterior risk is de�ned by,

�(��; a) �
Z
H
L(�; a)dF�jX(�) (4.1)

where the �rst argument �� represents the dependence of the posterior of � on the speci�cation of

prior on (�;A). Our posterior analysis involves the multiple posterior distributions of �, so the
class of posterior risks

�
�(��; a) : �� 2M(��)

	
is considered. The posterior gamma-minimax

criterion7 ranks actions in terms of the worst case posterior risk (upper posterior risk),

��(��; a) � sup
��2M(��)

�(��; a).

De�nition 4.1 A posterior gamma-minimax action a�x is an action that minimizes the upper

posterior risk, i.e.,

��(��; a
�
x) = inf

a2Ha

��(��; a) = inf
a2Ha

sup
��2M(��)

�(��; a).

The gamma-minimax decision approach involves a favor for a conservative action that guards

against the least favorable prior within the class, and it can be seen as a compromise of the

Bayesian decision principle and the minimax decision principle. To establish an analytical result

for the gamma-minimax action, we introduce the following regularity conditions.

Condition 4.1 (i) For each a 2 Ha, loss function L(�; a) is D-measurable and nonnegative.
(ii) Given a prior for �, the upper posterior probability for �; F ��jX(�) obtained in Theorem 3.1 is

regular, i.e., for each A 2 A,

F ��jX(A) = sup
n
F ��jX(K) : K � A, K compact

o
= inf

n
F ��jX(G) : A � G, G open

o
:

Regularity of the upper posterior probability stated in Condition 4.1 (ii) is satis�ed if no

particular realizations of the random closed set �(�) occurs with a strictly positive probability

(see Graf (1980)), which, in turn, demands �� not to have a probability mass. Under these

conditions, the next proposition shows that the upper posterior risk ��(��; a) is written in a

more analytically tractable form.

7 In the robust Bayes literature, the class of prior distributions is often notated as �, and this is why it is called

(conditional) gamma-minimax criterion. Unfortunately, in the literature of belief function and the lower and

upper probabilities, � often denotes a set-valued mapping that generates the lower and upper probabilities. In

this article, we adopt the notational convention of the latter, while still refer to the decision criterion as the gamma

minimax criterion.
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Proposition 4.1 Under Condition 3.1 and Condition 4.1, the upper posterior risk satis�es

��(��; a) =

Z
L(�; a)dF ��jX(�) =

Z
�
sup

�2H(�)
L(�; a)f�jX(�jx)d�, (4.2)

where
R
L(�; a)dF ��jX(�) is in the sense of Choquet integral, i.e.,Z
L(�; a)dF ��jX(�) =

Z 1

0
F�jX (f� 2 H : L(�; a) � tg) dt:

Accordingly, a�x exists if and only if E�jX
�
sup�2H(�) L(�; a)

�
has a minimizer in a 2 Ha.

Proof. See Appendix A.

The third expression in (4.2) shows that the posterior gamma-minimax criterion is written as

the expectation of the worst-case loss function sup�2H(�) L(�; a) with respect to the posterior of

�. The supremum part stems from ambiguity of �: given �, what the researcher knows about

� is only that it lies within the identi�ed set H (�) ; so the researcher forms loss by supposing

that the worst case would happen. On the other hand, the expectation in � represents posterior

uncertainty of the identi�ed set H (�). The gamma minimax criterion with class of priors

M
�
��
�
combines such ambiguity of � with posterior uncertainty of the identi�ed set to yield a

single objective function to be minimized.

Although a closed form expression of a�x is not in general available, this proposition suggests

a simple numerical algorithm to approximate a�x using a random sample of � from its posterior

f�jX(�jx). Let f�sgSs=1 be S random draws of � from posterior f�jX(�). We will approximate

a�x by

â�x � arg min
a2Ha

1

S

SX
s=1

sup
�2H(�s)

L(�; a).

4.2 Gamma-minimax Decision

In this section, we consider a decision rule when an optimal decision is made in prior to observing

data. Let � (�) be a decision rule that maps each x 2 X to the action space Ha � H and let �

be the space of decisions (the set of functions: X! Ha.) The Bayes risk is de�ned as usual,

r(��; �) =

Z
�

�Z
X
L(h(�); �(x))p(xj�)dx

�
d��: (4.3)
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Given the prior class M(��), the gamma-minimax criterion ranks decisions in terms of the

supremum of the Bayes risk, r�(��; �) � sup��2M(��)
r(��; �). Accordingly, the optimal decision

under this criterion is de�ned as follows.8

De�nition 4.2 A gamma-minimax decision �� 2 � is a decision rule that minimizes the upper

Bayes risk, i.e.,

r�(��; �
�) = inf

�2�
r�(��; �) = inf

�2�
sup

��2M(��)
r(��; �).

In the standard Bayes decision problem with a single prior, the Bayes rule that minimizes

r(��; �) coincides with the posterior Bayes action for every possible data x 2 X, and either

being unconditional or conditional on data does not matter for the actual action to be taken.

With multiple priors, however, the decision rule that minimizes r�(��; �) in general does not

coincide with the conditional gamma minimax action (see, e.g., Betro and Ruggeri (1992)). This

phenomenon can be easily understood by writing the Bayes risk as the average of the posterior

risk with respect to the marginal distribution of data: interchanging the order of integrations in

(4.3) gives

r(��; �) =

Z
X
�(��; �(x))m(xj��)dx. (4.4)

Given � 2 � and the class of priors, �� that maximizes r(��; �) does not necessarily maximizes

the posterior risk �(��; �(x)) since the Bayes risk r(��; �) depends on �� not only through the

posterior risk �(��; �(x)) but also through the marginal distribution of data m(xj��). Recall,

however, that the marginal distribution of data depends only on �� (see (3.2)) and our class of

priors admits only one speci�cation of ��. As a result, the supremum of the Bayes risk can be

written as the supremum of the posterior risk averaged by m(xj��);

sup
��2M(��)

r(��; �) =

Z
X

sup
��2M(��)

�(��; �(x))m(xj��)dx:

Hence, the unconditional gamma-minimax decision that minimizes the left hand side should

coincide with the posterior gamma-minimax action at m(xj��)-almost every x.

Proposition 4.2 (No Dynamic Inconsistency) If (4.4) holds, ��(x) = a�x, m(xj��)-almost
surely.

8A decision criterion similar to the one considered here appears in Kudō (1967), Manski (1981), and Lambert

and Duncan (1986). These literatures considered the model where the subjective probability distribution on the

state of nature can be elicited only up to the class of coarse subsets of the parameter space. Our decision problem

shares a similar feature to theirs since the posterior upper probability of � can be viewed as a posterior probability

distribution over the coarse collection of subsets fH(�) : � 2 �g � H.
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Proof. A proof is given above.

As an alternative to the (posterior) gamma-minimax criterion considered above, it is possible

to consider the gamma-minimax regret criterion (Berger (1985, p218) and Rios Insua, Ruggeri,

and Vidakovic (1995)), which is seen as an extension of the minimax regret criterion of Savage

(1951) to the multiple prior Bayes context. In Appendix B, we provide some analytical results

of the gamma minimax regret analysis where the parameter of interest � is a scalar and the

loss function is quadratic, L(�; a) = (� � a)2, and demonstrate that the gamma minimax regret
decision does not di¤er much from the gamma minimax decision derived above, and they coincide

with a large sample.

5 Set Estimation of �

This section discusses how to use the posterior lower probability of � to conduct set estimation

of �. In the standard Bayesian inference, set estimation is done by reporting contour sets of the

posterior probability density of �. If the posterior information for � is summarized by the lower

and upper probabilities, how should we conduct set estimation of �?

5.1 Posterior Lower Credible Region

Consider subset C� � H such that the posterior lower probability F�jX�(C�) is equal or greater

than �,

F�jX�(C�) = F�jX(H(�) � C�)) � �.

In words, C� is interpreted as "a set on which the posterior credibility of � is at least � irrespective

of the unrevisable prior knowledge." If we drop the italicized part from this statement, we obtain

the usual interpretation of the posterior credible region, so C� de�ned in this way seems to be a

natural way to extend the Bayesian posterior credible region to our analysis of the posterior lower

probabilities. Analogous to the Bayesian posterior credible region, there are also multiple C��s

that satis�es this requirement.9 In what follows, we focus on constructing the smallest posterior

credible region among these C��s, which we refer to it as a posterior lower credible region with

9For instance, given a posterior credibility region of � with credibility �, say B�, the subset in H de�ned by

[�2B�H (�) can be also interpreted as C�. Moon and Schorfheide (2010) interpret thus constructed credible

region as a Bayesian credibility set for the identi�ed set. In our analysis, our object of interest is parameter � and

the posterior lower credible region C� can be interpreted as a robusti�ed posterior credible region for �.
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credibility �,

C�� � argmin
C2C

Leb(C) (5.1)

s.t. F�jX(H(�) � C)) � �;

where Leb(C) is the volume of subset C in terms of the Lebesgue measure and C is a family of
subsets in H over which the volume minimizing lower credible region is searched.

Finding C�� is di¢ cult if � is multi-dimensional and no restriction is placed on the class of

subsets C. In what follows, we restrict C to the class of closed balls and propose a method to
calculate C��. Note that, for scalar �, the class of closed balls contains any connected intervals,

and even when � is a vector, we can construct the marginal posterior lower credible region for

each element in � based upon the projected identi�ed set of �.

Let Br(�c) be a closed ball in H centered at �c 2 H with radius r: If C is constrained to the
class of closed balls, the constrained minimization problem of (5.1) is reduced to

min
r;�c

r (5.2)

s.t. F�jX (H(�) � Br(�c)) � �:

This optimization problem can be solved by focusing on the �-th quantiles of the posterior

distribution of the directed Hausdor¤ distance measured from �c 2 H to a random set H(�).

Proposition 5.1 Let
�!
d : H�D ! R+ be

�!
d (�c;H(�)) � sup

�2H(�)
fk�c � �kg .

For each �c 2 H, let r�(�c) be the �-th quantile of the distribution of
�!
d (�c;H(�)) induced by the

posterior distribution of �, i.e.,

r�(�c) � inf
n
r : F�jX

�n
� :
�!
d (�c;H(�)) � r

o�
� �

o
.

Then, the solution of the constrained minimization problem (5.2) is given by (r��; �
�
c) where

r�� = r�(�
�
c) where ��c = arg min

�c2H
r�(�c).

Proof. See Appendix A.

Given random draws of � from its posterior, this proposition suggests a straightforward way

to compute an approximate of the posterior lower credible region. Let f�s : s = 1; : : : ; Sg be
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random draws of � from its posterior. At each �c 2 H, we �rst calculate r̂�(�c) the empirical �-
th quantile of

�!
d (�c;H(�)) based on the simulated

�!
d (�c;H(�s)), s = 1; : : : ; S. Provided that the

posterior distribution of
�!
d (�c;H(�)) is continuous, the obtained empirical �-th quantile r̂�(�c)

should be a valid approximate for the underlying �-th quantile r�(�c), so we can approximate

(r��; �
�
c) by searching the minimizer and the minimized value of r̂�(�c).

5.2 Asymptotic Properties of the Posterior Lower Probability

This section examines the large sample behavior of the posterior lower probability and the pos-

terior lower credible region C�� constructed above. We make the sample size explicit in our

notation: XN denote size N observations generated from p̂(xN j�0) where �0 denotes the su¢ -
cient parameter value that corresponds to the true data generating process. A limiting sampling

sequence is denoted byX1 and its distribution is denoted by p̂(x1j�0). We denote the maximum
likelihood estimator for � by �̂.

For ease of analysis, we restrict our analysis to the case where the su¢ cient parameter space

� is �nite dimensional (e.g., Example 2.2 - 2.4.) and we assume the following two sets of the

regularity conditions.

Condition 5.1 (i) H (�0) is a bounded subset of H.
(ii) Let dH (�; �) be the Hausdor¤ metric de�ned by

dH (D1; D2) = max

(
sup
�12D1

d (�1; D2) ; sup
�22D2

d (�2; D1)

)
; D1; D2 � H;

where d (�;D) = inf�02D k� � �0k. The identi�ed set H (�) is continuous at �0 in terms of the
Hausdor¤ metric, i.e., for arbitrary � > 0, there exists an open neighborhood G of �0 such that

dH (H (�) ;H (�0)) < � holds for every � 2 G.
(iii) Posterior of � is consistent in the sense that for every open neighborhood G of �0,

limN!1 F�jXN (N) = 1 holds p̂ (x1j�0)-almost surely.

Condition 5.2 (i) The parameter of interest � is a scalar and the identi�ed set H(�) is ��-

almost surely a nonempty and connected interval, H (�) = [�l(�); �u(�)], �1 � �l(�) � �u (�) �
1. H (�0) = [�l(�0); �u(�0)] is a bounded interval.

(ii) De�ne random variables LN (�) =
p
N
�
�l(�)� �l(�̂)

�
and UN (�) =

p
N
�
�u(�)� �u(�̂)

�
whose distribution is induced by the posterior distribution of �. There exists bivariate ran-

dom variables (L;U) distributed according to the bivariate normal with mean zero and variance-

covariance � such that, for each W a subset in R2,

F�jXN ((LN (�) ; UN (�)) 2W )! Pr ((L;U) 2W )
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in probability under p̂ (x1j�0).
(iii) Let (L;U) be the bivariate normal random variables as de�ned in (ii). The sampling

distribution of
p
N
�
�l(�0)� �l(�̂)

�
and

p
N
�
�u(�0)� �u(�̂)

�
converges in distribution to the

probability distribution of (L;U) :

Condition 5.1 (i)-(iii) are used to establish consistency of the posterior lower probability and

these conditions allow for multi-dimensional �. Condition 5.1 (ii) impose continuity of the set-

valued mapping H (�) in terms of the Hausdor¤ metric, In case of an interval identi�ed case,
i.e., H (�) = [�l(�); �u(�)], this condition is implied by continuity of �l(�) and �u(�) in �. If

H (�0) is a singleton, this continuity condition is equivalent to upper-hemicontinuity of H (�)
at �0. Condition 5.1 (iii) states posterior consistency for � in the form of Theorem 7.80 in

Schervish (1995). While posterior consistency for � requires the set of higher level conditions

for the likelihood of �, we omit to list it up here for the sake of brevity (see, e.g., Section 7.4 of

Schervish (1995).)

Condition 5.2 (i)-(iii) are used to demonstrate that the volume minimizing posterior lower

credible region has the correct coverage probability of H (�0). Condition 5.2 (i) assumes the

parameter of interest � to be a scalar and its identi�ed set is convex. Condition 5.2 (ii) and (iii)

imply that the estimator for the lower and upper bounds of H (�) satisfy the Bernstein-von Mises�

type of asymptotic equivalence between Bayesian estimation and maximum likelihood estimation.

These asymptotic normality conditions can be implied from more primitive assumptions: (i)

regularity of the likelihood of �, (ii) �� puts a positive probability on every open neighborhood

of �0 and ���s density is smooth at �0; and (iii) applicability of the delta method to �l (�) and
�u (�) given asymptotic normality of

p
N
�
�� �̂

�
.10

Note that the asymptotic normality conditions of Condition 5.2 (ii) and (iii) preclude possible

values of �0 where the sampling distribution of the point estimators of the lower and upper bounds

is non-Gaussian. For instance, in the class of models where �l (�) and �u (�) involve the maximum
or minimum operation such as in the intersection bound analysis (Manski (1990)), the asymptotic

distribution of the maximum likelihood estimator for �l (�) and �u (�) is not normal when the
arguments in these maximum or minimum happen to be equal at �0. See Chernozhukov, Lee,

and Rosen (2009) for more examples and a general frequentist treatment in such situation.

The next proposition provides the large sample property of the posterior lower probability of

�.

10For more rigorous statements of the former two of these three assumptions, see, e.g., Schervish (1995, Sec.

7.4).
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Proposition 5.2 (i) Assume Condition 3.1 and 5.1. Let dH (H (�) ;H (�0)) be the Hausdor¤

distance between H (�) and H (�0) as de�ned in Condition 5.1 (ii). Then, for every � > 0,

lim
N!1

F�jXN (f� : dH (H (�) ;H (�0)) > �g) = 0; p̂ (x1j�0) -almost surely:

(ii) Assume Condition 3.1 and 5.2. Let C�� be the volume minimizing posterior lower

credible region as de�ned above. C�� can be interpreted as the frequentist con�dence interval for

the true identi�ed set H (�0) with the asymptotic coverage coverage probability �, i.e.,

lim
N!1

PXN j� (H (�0) � C��j�0) � �;

where PXN j� (�j�0) is the probability law of sample XN when � = �0.

Proof. See Appendix A.

The �rst statement in the proposition establishes posterior consistency of the lower probability

in the sense that the random sets H (�) represented by the posterior lower probability converges

to the deterministic set H (�0) in terms of the Hausdor¤ metric.

The second result shows that, for interval identi�ed �, asymptotic equivalence holds between

the posterior lower probability inference and the frequentist inference for the identi�ed set con-

sidered in Horowitz and Manski (2000), Chernozhukov, Hong, and Tamer (2007), and Romano

and Shaikh (2010). Note that the posterior lower credible region C�� cannot be interpreted as

the frequentist con�dence interval for the parameter of interest considered in Imbens and Manski

(2004). We conjecture that a multiple-prior Bayesian analogue of the frequentist con�dence

intervals for � with coverage � can be obtained by forming the union of the posterior credible

regions with credibility � over each posterior generated from M
�
��
�
. Bayesian interpretation

of such union of the multiple credible regions, however, does not seem as lucid as that of the

posterior lower credible region.

It is worth noting that the asymptotic coverage probability presented above is in the sense

of pointwise asymptotics rather than the asymptotic uniform coverage probability over �0. The

literatures has stressed importance of the uniform coverage property in order to ensure that the

con�dence intervals can have the correct coverage probability in the �nite sample situation(Imbens

and Manski (2004), Romano and Shaikh (2010), Stoye (2010), and Andrew and Soares (2010).).

We do not know whether or not our posterior inference procedure attains uniformly valid coverage

probability, and leave it for future research.
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6 Conclusion

This paper proposes a framework of robust Bayes analysis for the set-identi�ed models in econo-

metrics. In order to obtain statistical inference and decision procedure that is insensitive to the

empirically unrevisable prior knowledge, we introduce the class of prior distributions and propose

the use of the posterior lower and upper probabilities for posterior inference. We demonstrate

that the posterior lower and upper probabilities corresponding to prior classM
�
��
�
can be in-

terpreted as the posterior probability law of the identi�ed set (Theorem 3.1). This robust-Bayes

way of generating the identi�ed set as a random object is novel in the literature of the partially

identi�ed model, and it provides a seamless link between the random set theory and a likelihood

based statistical inference in the set identi�ed model.

We employ the gamma-minimax criterion to develop a conservative point decision for the

set-identi�ed parameter. The objective function of the gamma-minimax criterion integrates

ambiguity associated with set-identi�cation and posterior uncertainty for the identi�ed set into

the single objective function. We clarify it is feasible to calculate the gamma-minimax decision

as long as we can simulate the identi�ed sets H (�) from the posterior of �. Being di¤erent from

the standard gamma-minimax decision rule, a non-standard �nding with our speci�cation of

prior class is that the gamma-minimax optimal action is invariant no matter whether the optimal

decision is computed before and after observing data (Proposition 5.2), which is potentially useful

insight for extending the analysis to a sequential decision problem.

The posterior lower probability is a nonadditive measure so that one drawback of the lower

probability analysis is that we cannot plot it as we do for the posterior probability densities. As

a way to visualize it, we develop the way to compute the posterior lower credible region as an

analogue to the posterior credible region in the standard Bayes procedure. We show that, for the

interval identi�ed parameter case, the posterior lower credible region with credibility � can be

easily computed and can be interpreted as asymptotically valid frequentist con�dence intervals

for the identi�ed set with coverage �.

In this article, we preclude observationally restrictive models and assume throughout that

the identi�ed set is nonempty. If we would like to incorporate possibility of obtaining empty

identi�ed set, we would expand the su¢ cient parameter space � to a larger one as long as the

likelihood p̂(xj�) is well de�ned, and modify the de�nition of the lower and upper probabilities of
� to be the conditional lower and upper probabilities given �(�) 6= ;. Research on applicability
of the lower probability analysis to this context is in progress (Kitagawa (2011)).
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Appendix

A Lemma and Proofs

In this appendix, we �rst demonstrate that set-valued mappings � (�) and H (�) de�ned in the

main text are random sets (measurable set valued mappings) induced by a probability measure

on (�;B).

Lemma A.1 Assume (�;A) and (�;B) are complete separable metric spaces. Under Condition
3.1, � (�) and H (�) are random closed sets induced by a probability measure on (�;B), i.e., � (�)
and H (�) are closed and for A 2 A and D 2 H,

f� : � (�) \A 6= ;g 2 B for A 2 A;
f� : H (�) \D 6= ;g 2 B for D 2 H:

Proof. Closedness of � (�) and H (�) is implied directly from Condition 3.1 (ii)-(iii). To prove

measurability of f� : � (�) \A 6= ;g, we use Theorem 2.6 in Molchanov, which states that, given

(�;A) as Polish, f� : � (�) \A 6= ;g 2 B holds if and only if f� : � 2 � (�)g 2 B is true for every
� 2 �. Since �(�) is an inverse image of the many-to-one and onto mapping, g : � ! �, a

unique value of � 2 � exists for each � 2 �, and f�g 2 B since � is a metric space. Hence,

f� : � 2 � (�)g 2 B holds.
To verify measurability of f� : H (�) \D 6= ;g, we note

f� : H (�) \D 6= ;g =
�
� : � (�) \ h�1 (D) 6= ;

	
.

Since h�1 (D) 2 A by measurability of h (Condition 3.1 (iii)), the �rst statement of this lemma

implies f� : H (�) \D 6= ;g 2 B.

A.1 Proof of Theorem 3.1

Given measurability � (�) and H (�) as proved in Lemma A.1, our proof of Theorem 3.1 utilizes

the following two lemma. The �rst lemma says that, for a �xed subset A 2 A in the parameter

space of � and every �� 2 M(��), the conditional probability ��j�(Aj�) can be bounded below
by the indicator function 1f�(�)\A6=;g(�). The second lemma shows that for each �xed subset

A 2 A, we can construct a probability measure on (�;A) that belongs to the prior classM(��)

and achieves the lower bound of the conditional probability obtained in the �rst lemma. Theorem

4.1 follows as a corollary of these two lemma.
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Lemma A.2 Assume Condition 3.1 and let A 2 A be an arbitrary �xed subset of �. For every

�� 2M(��),

1f�(�)�Ag(�) � ��j�(Aj�)

holds ��-almost surely.

Proof. For the given subset A, de�ne �A1 = f� : �(�) � Ag � �. Note that, by Lemma A.1,

�A1 belongs to the su¢ cient parameter �-algebra B. To prove the claim, it su¢ ces to showZ
B
1�A1

(�)d�� �
Z
B
��j�(Aj�)d�� (A.1)

for every �� 2M(��) and B 2 B.
ConsiderZ
B
��j�(Aj�)d�� �

Z
B\�A1

��j�(Aj�)d�� = ��(A \ �(B \ �A1 )).

By the construction of �A1 , �(B \ �A1 ) � A holds, so

��(A \ �(B \ �A1 )) = ��(�(B \ �A1 ))
= ��(B \ �A1 )

=

Z
B
1�A1

(�)d��:

Thus, the inequality (A.1) is proven.

Lemma A.3 Assume Condition 3.1. For each A 2 A, there exists ��� 2 M(��) whose condi-

tional distribution ���j� achieves the lower bound of ��j�(Aj�) obtained in Lemma A.2, ��-almost
surely.

Proof. Fix subset A 2 A throughout the proof. Consider partitioning the su¢ cient parameter

space � into three based on the relationship between � (�) and A,

�A0 = f� : �(�) \A = ;g ;
�A1 = f� : �(�) � Ag ;
�A2 = f� : �(�) \A 6= ; and �(�) \Ac 6= ;g ;

where each of them belongs to the su¢ cient parameter �-algebra B by Lemma A.1. Note that

�A0 , �
A
1 , and �

A
2 are mutually disjoint and constitute a partition of �.

Now, de�ne a function �A (�) that maps �A2 to � such that �A (�) 2 [� (�) \Ac] holds for
��-almost every � 2 �A2 . Note existence of such �A (�) is guaranteed by the construction of �A2
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and Theorem 2.13 in Chap.1 of Molchanov (2005). Let us pick a probability measure from the

prior class, �� 2M
�
��
�
, and construct another measure ��� by

���

�
~A
�
= ��

�
~A \ �

�
�A0
��
+ ��

�
~A \ �

�
�A1
��
+ ��

�n
�A (�) 2 ~A

o
\ �A2

�
; ~A 2 A:

It can be checked that ��� thus constructed is is a probability measure on (�;A), i.e., ��� satis�es
��� (;) = 0, ��� (�) = 1, and countable additivity. Furthermore, ��� belongs toM

�
��
�
because

for B 2 B,

��� (� (B)) = ��
�
� (B) \ �

�
�A0
��
+ ��

�
� (B) \ �

�
�A1
��
+ ��

��
�A (�) 2 � (B)

	
\ �A2

�
= ��

�
B \ �A0

�
+ ��

�
B \ �A1

�
+ ��

�
B \ �A2

�
= �� (B)

where the second line follows because � (�) 2 � (�) holds for almost every � 2 �A2 and � (�)�s are
disjoint.

With thus constructed ��� and an arbitrary subset B 2 B, consider

���(A \ �(B)) = ��(A \ �(B) \ �(�A0 )) + ��(A \ �(B) \ �(�A1 ))
+��

��
�A (�) 2 [A \ � (B)]

	
\ �A2

�
.

Here, by the construction of
n
�Aj

o
j=1;2;3

and �A (�), we have A \ �(�A0 ) = ;, �(�A1 ) � A, and

��
��
�A (�) 2 [A \ � (B)]

	
\ �A2

�
= 0. Accordingly, we obtain,

���(A \ �(B)) = ��(�(B) \ �(�A1 ))
= ��

�
B \ �A1

�
=

Z
B
1�A1

(�)d��.

Since B 2 B is arbitrary, this implies that ��� (Aj�) = 1�A1
(�); ��-almost surely. Thus, ���

achieves the lower bound obtained in Lemma A.2.

Proof of Theorem 3.1 (i). Under the given assumptions, the posterior of � is given by (see

equation (3.1))

F�jX(A) =

Z
�
��j�(Aj�)f�jX(�jx)d�:

Since f�jX(�jx) � 0 almost surely and monotonicity of the integral, F�jX(A) is minimized by

plugging the lower bound bound of ��j�(Aj�) into the integrand. From Lemma A.2 and Lemma

A.3, it is given by 1f�(�)�Ag(�), so

F�jX�(A) =

Z
�
1f�(�)�Ag(�)f�jX(�jx)d� = F�jX(f� : �(�) � Ag):
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The posterior upper probability is obtained by its conjugacy with the lower probability,

F ��jX(A) = 1� F�jX�(A
c) = F�jX(f� : �(�) \A 6= ;g):

A.2 Proof of Proposition 4.1

The next lemma is used to prove Proposition 4.1. It says that the class of posteriors induced by

prior class M(��) exhausts all the probability measures lying uniformly between the posterior

lower and upper probabilities. In the terminology of Huber (1973), this property is called repre-

sentability of the class of probability measures by the lower and upper probabilities. Wasserman

and Kadane (1990) calls it as that the posterior class is closed with respect to majorization.

Lemma A.4 Assume Condition 3.1. Let

G� =
n
G� : G� probability measure on (�;A) , F�jX�(A) � G�(A) � F ��jX(A) for every A 2 A

o
:

. Then, G� =
�
F�jX : F�jX posterior distribution on (�;A) induced by some �� 2M(��)

	
.

Proof of Lemma A.4. For each �� 2 M(��), F�jX�(A) � F�jX(A) � F ��jX(A) holds for every
A 2 A by the de�nition of the lower and upper probabilities. Hence,

G� =
n
G� : F�jX�(A) � G�(A) � F ��jX(A) for every A 2 A

o
contains

�
F�jX : �� 2M(��)

	
.

To show the converse, recall Theorem 3.1 (i) that shows that the lower and upper probabilities

are containment and capacity functional of the random closed set �(�). As a result, by applying

the Selectionability Theorem of the random set (Molchanov (2005), Theorem 1.2.20), it holds

that for each G� 2 G�, there exists a �-valued random variable �(�), so called a selection of �(�),
such that �(�) 2 �(�) holds for every � 2 � and G�(A) = F�jX (�(�) 2 A), A 2 A.

Let G� 2 G� be a �xed arbitrary distribution in G�. Let � (�) be the associated selection of

� (�) and let ��� be the probability distribution of such � (�) induced by the prior of �,

���(A) = �� (f� : �(�) 2 Ag) .

Note such ��� belongs toM(��) since for each subset B 2 B in the su¢ cient parameter space,

���(�(B)) = �� (f� : �(�) 2 �(B)g)
= ��(B)
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where the second equality holds because f�(�) : � 2 Bg are mutually disjoint and �(�) 2 �(�)
for every �.

Since the conditional distribution for ���(A) given �, A 2 A, is �
�
�j�(Aj�) = 1f�(�)2Ag(�), the

posterior distribution of � generated from ��� is, by (3.1),

~F�jX(A) =

Z
1f�(�)2Ag(�)f�jX(�jx)d�

= F�jX (�(�) 2 A)
= G�(A).

Thus, we have shown that, for each G� 2 G�, there exists a prior ��� 2 M(��) with which the

posterior of � coincides with the G�. Hence, G� �
�
F�jX : �� 2M(��)

	
.

Proof of Proposition 4.1. Let G� be the class of probability measures on (�;A) as de�ned
in Lemma A.4. Graf (1980, Proposition 2.3) showed that if F ��jX(�) is a subadditive alternating
capacity of order two and it is regular (Condition 4.1 (ii)), then for any nonnegative measurable

function k : �! R+Z
k(�)dF ��jX = sup

G�2G�

�Z
�
k(�)dG�

�
(A.2)

holds. Since F ��jX(�) is the capacity functional of the random closed set �(�), the Choquet Theo-
rem (see, e.g. ,Molchanov (2005, Sec. 1.1.2-1.1.3)) ensures that F ��jX(�) is a subadditive capacity
of in�nite alternating order. Furthermore, Lemma A.4 implies that supG�2G�

�R
� k(�)dG�

	
is

equivalent to sup��2M(��)

�R
� k(�)dF�jX

	
. Hence, setting k(�) = L(h(�); a) in (A.2) leads toZ

L(h(�); a)dF ��jX = sup
��2M(��)

�Z
�
L(h(�); a)dF�jX

�
= �(��; a). (A.3)

On the other hand, by the de�nition of Choquet integral and Theorem 4.1 (ii),Z
L(�; a)dF ��jX =

Z
F ��jX(f� : L(�; a) � tg)dt

=

Z
F ��jX (f� : L(h(�); a)g) dt

=

Z
L(h(�); a)dF ��jX : (A.4)

Combining (A.3) and (A.4) yields the �rst equality of the proposition.

Next, we show the second equality of the proposition. By Theorem 4.1 (ii),Z
L(�; a)dF ��jX(�) =

Z 1

0
F ��jX (f� : L(�; a) � tg) dt

=

Z 1

0
F�jX (f� : f� : L(�; a) � tg \H(�) 6= ;g) dt:
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Note that f� : L(�; a) � tg \ H(�) 6= ; is true if and only if
n
sup�2H(�) fL(�; a)g � t

o
, so we

obtainZ
L(�; a)dF ��jX(�) =

Z 1

0
F�jX

 (
� : sup

�2H(�)
fL(�; a)g � t

)!
dt.

By interchanging the order of integrations by Tonelli�s theorem, we obtainZ
L(�; a)dF �� (�jx) =

Z 1

0

Z
�
1fsup�2H(�)fL(�;a)g�tg(�)dF�jXdt

=

Z
�

Z 1

0
1fsup�2H(�)fL(�;a)g�tg(t)dtdF�jX

=

Z
�
sup

�2H(�)
fL(�; a)g dF�jX . (A.5)

A.3 Proof of Proposition 5.1 and 5.2

Proof of Proposition 5.1. Let �c 2 H be �xed and Br(�c) be a closed ball centered at �c
with radius r. The event fH(�) � Br(�c)g happens if and only if

n�!
d (�c;H(�)) � r

o
. So,

r�(�c) � inf
n
r : F�jX

�n
� :
�!
d (�c;H(�)) � r

o�
� �

o
is the radius of the smallest closed ball

centered at �c that contains random sets H(�) with posterior probability at least �. Therefore,

�nding the minimizer of r�(�c) over �c is equivalent to searching for the center of the smallest

ball that contains H(�) with posterior probability �, and the attained minimum of r�(�c) gives

the radius of the smallest ball.

Proof of Proposition 5.2 (i). Let � > 0 be arbitrary. By Condition 5.1 (ii), there exists an

open neighborhood G of �0 such that dH (H (�) ;H (�0)) < � holds for every � 2 N . Consider

F�jXN (f� : dH (H (�) ;H (�0)) > �g) = F�jXN (f� : dH (H (�) ;H (�0)) > �g \G)
+F�jXN (f� : dH (H (�) ;H (�0)) > �g \Gc)

� F�jXN (Gc)

where the last line follows because f� : dH (H (�) ;H (�0)) > �g \ G = ; by the construction of
G. Posterior consistency of Condition 5.1 (iii) yields limN!1 F�jXN (Gc) = 0, p (x1j�0)-a.s., so
limN!1 F�jXN (f� : dH (H (�) ;H (�0)) > �g) = 0 holds p (x1j�0)-a.s.

Proof of Proposition 5.2 (ii). By denoting a connected interval as [l; u], we write the

optimization problem for obtaining C�� as

min
l�u

[u� l]

s.t. F�jXN (l � �l (�) and �u (�) � u) � �:
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In terms of the random variables LN (�) =
p
N
�
�l (�)� �l(�̂)

�
and UN (�) =

p
N
�
�u (�)� �u(�̂)

�
,

the above constraint becomes

F�jXN

�p
N
�
l � �l(�̂)

�
� LN (�) and UN (�) �

p
Nu� �u(�̂)

�
� �:

Therefore, by denoting cl = �
p
N
�
l � �l(�̂)

�
and cu =

p
N
�
u� �u(�̂)

�
; we can formulate the

optimization problem as

min [cl + cu]

s.t. F�jXN (�cl � LN (�) and UN (�) � cu) � �;

and denote its solution by (ĉl; ĉu) : The expression of the posterior lower credible region is obtained

as C�� =
h
�l(�̂)� ĉlp

N
; �u(�̂) +

ĉup
N

i
. Under Condition 5.2 (ii), (LN (�) ; UN (�)) converges in

distribution to bivariate normal for almost every X1, so the fact that their limiting distribution

has the probability density implies that, for almost every X1; (ĉl; ĉu) converges to

(c�l ; c
�
u) � argmin [cl + cu]

s.t. Pr (�cl � L and U � cu) � �:

With thus constructed C��, consider the coverage probability for the true identi�ed set

PXN j� (H (�0) � C��j�0)

= PXN j�

�
�l

�
�̂
�
� ĉlp

N
� �l (�0) and �u (�0) � �u(�̂) +

ĉup
N

�����0�
= PXN j�

�
�ĉl �

p
N
�
�l (�0)� �l(�̂)

�
and

p
N
�
�u (�0)� �u(�̂)

�
� ĉu

����0� :
By Condition 5.2 (iii), the sampling distribution of

p
N
�
�l (�0)� �l(�̂)

�
and

p
N
�
�u (�0)� �u(�̂)

�
converges in distribution to (L;U) ; and, as we demonstrated above, (ĉl; ĉu) converges to (c�l ; c

�
u)

for almost every sampling sequence. Therefore,

lim
N!1

PXN j� (H (�0) � C��j�0)

= lim
N!1

PXN j�

�
�ĉl �

p
N
�
�l (�0)� �l(�̂)

�
and

p
N
�
�u (�0)� �u(�̂)

�
� ĉu

����0�
= Pr (�c�l � L and U � c�u) � �

holds.

B Gamma Minimax Regret Decision

In this appendix, we consider the gamma-minimax regret criterion as an alternative to the (poste-

rior) gamma-minimax criterion considered in Section 4. In order to keep analytical tractability,

34



we consider the case where the parameter of interest � is a scalar and the loss function is quadratic,

L(�; a) = (� � a)2.
The statistical decision under the conditional and unconditional gamma-minimax regret cri-

terion are set up as follows.

De�nition B.1 De�ne the lower bound of the posterior risk given �� by �(��) = infa2H �(��; a).
The posterior gamma-minimax regret action aregx 2 H solves,

inf
a2Ha

sup
��2M(��)

�
�(��; a)� �(��)

	
:

De�nition B.2 De�ne the lower bound of the Bayes risk given �� by r(��) = inf�2� r(��; �).

The gamma-minimax regret decision �reg : X! Ha solves

inf
�2�

sup
��2M(��)

fr(��; �)� r(��)g .

Since the loss function is quadratic, the posterior risk �(��; a) for given �� is minimized at

�̂�� the posterior mean of � if it exists. Therefore, the lower bound of the posterior risk is simply

the posterior variance, �(��) = E�jX(
�
� � �̂��

�2
), and the posterior regret can be written as

�(��; a)� �(��) = E�jX

�
(� � a)2 �

�
� � �̂��

�2�
= E�jX

h
(a� �̂��)

2
i
.

Let
h
�
x
; ��x

i
be the range of posterior mean of � when �� varies over the prior classM(��), which

we assume is bounded, which can be implied if H (�) is bounded, ��-almost surely. Then, the

posterior gamma-minimax regret is simpli�ed to

sup
��2M(��)

�
�(��; a)� �(��)

	
=

8<: (��x � a)2 for a � �
x
+��x
2 ;�

�
x
� a
�2

for a >
�
x
+��x
2 ;

(B.1)

and, therefore, the posterior gamma-minimax regret is minimized at a =
�
x
+��x
2 . That is, the

posterior gamma-minimax regret action is simply obtained as the mid point of
h
�
x
; ��x

i
, which is

qualitatively similar to the local asymptotic minimax regret decision analyzed in Song (2009).

Proposition B.1 Let H � R and L(�; a) = (� � a)2. Assume that the posterior variance of �

is �nite for every �� 2M(��). Let �(�) � inf f� : � 2 H(�)g and ��(�) � sup f� : � 2 H(�)g.
(i) The posterior gamma-minimax regret action is

aregx =
E�jX(�(�)) + E�jX(��(�))

2
.
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(ii) The unconditional gamma-minimax regret decision with the quadratic loss satis�es �reg(x) =

aregx ; m(xj��)-almost surely.

Proof. (i) Given that the posterior variance of � is �nite for �� 2M(��), the posterior gamma-

minimax regret is well-de�ned and it is given by

�(��; a)� �(��) = E�jX
h
(a� �̂��)

2
i

where �̂�� is the posterior mean of � when prior of � is ��. Consider the bounds of �̂�� when ��
varies overM(��),

�
x
� inf

��2M(��)
�̂�� = inf

��2M(��)

Z
�
h(�)dF�jX ;

��x � sup
��2M(��)

�̂�� = sup
��2M(��)

Z
�
h(�)dF�jX .

By the same argument as used in obtaining (A.3), (A.4), and (A.5), �
x
and ��x thus de�ned are

equal to

�
x
= E�jX [inf f� : � 2 H(�)g] ;

��x = E�jX [sup f� : � 2 H(�)g] ,

which are assumed to be �nite by the �nite posterior variance assumption. Then, as already

discussed in (B.1), the posterior gamma-minimax regret action is obtained as
�
x
+��x
2 .

(ii) Note that the lower bound of the Bayes risk when �� 2M(��) is written as the average

of the posterior variance of � with respect to the marginal distribution of data,

r(��) = inf
�2�

Z
X
�(��; �(x))m(xj��)dx

=

Z
X
�(��)m(xj��)dx:

Therefore, the unconditional regret is written as

r(��; �)� r(��) =

Z
X
�(��; �(x))m(xj��)dx�

Z
X
�(��)m(xj��)dx

=

Z
X

�
�(��; �(x))� �(��)

�
m(xj��)dx:

Since the marginal distribution of data does not depend on �� once �� is �xed, the unconditional

gamma-minimax regret can be written as the average of the posterior gamma minimax regret

with respect to m(xj��),

sup
��2M(��)

fr(��; �)� r(��)g =
Z
X

sup
��2M(��)

�
�(��; a)� �(��)

	
m(xj��)dx:
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This implies that the optimal gamma-minimax regret decision �reg(x) coincides with the posterior

gamma-minimax regret action aregx , m(xj��)-almost surely.

Since the lower bound of the posterior risk �(��) in general depends on prior ��, the posterior

gamma-minimax regret action aregx di¤ers from the posterior gamma-minimax action a�x obtained

in Section 4.1. To illustrate the di¤erence, consider the posterior gamma-minimax action of

Proposition 4.1 when � is a scalar and the loss is quadratic. Let [�(�); ��(�)] be as de�ned

in Proposition B.1, and let m(�) = (�(�) + ��(�))=2 and r(�) = (��(�) � �(�))=2 � 0 be the

midpoint and the radius of the smallest interval that contains H(�). The objective function to

be minimized in the posterior gamma-minimax decision problem can be written as

E�jX

"
sup

�2H(�)
(� � a)2

#
= E�jX

�
max

�
(�(�)� a)2; (��(�)� a)2

	�
= E�jX

h
(m(�)� a)2

i
+ E�jX [r(�) jm(�)� aj] + E�jX

"�
r(�)

2

�2#
:

Note that aregx minimizes the �rst term, but it does not necessarily minimize the second term,

and, therefore, aregx can in general di¤er from the gamma minimax action. The gamma-minimax

regret decision with the quadratic loss depends only on the distribution ofm(�), while the gamma-

minimax decision depends on the joint distribution of m(�) and r(�). For large sample, this

di¤erence disappears and aregx and a�x converge to the same action. In general, when the loss

function is speci�ed to be a monotonically increasing function of a metric k� � ak, aregx and a�x
converges to the center of the smallest circle that contains H(�0).
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