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Abstract

This paper develops a broad theme about policy choice under ambiguity through study of a particular
decision criterion.  The broad theme is that, where feasible, choice between a status quo policy and an
innovation is better framed as selection of a treatment allocation than as a binary decision.  Study of the static
minimax-regret criterion and its adaptive extension substantiate the theme.  When the optimal policy is
ambiguous, the static minimax-regret allocation always is fractional absent large fixed costs or deontological
considerations.  In dynamic choice problems, the adaptive minimax-regret criterion treats each cohort as well
as possible, given the knowledge available at the time, and maximizes intertemporal learning about treatment
response.

This research was supported in part by National Science Foundation grant SES-0549544.  This paper
substantially revises and supercedes an earlier working paper “Fractional Treatment Rules for Social
Diversification of Indivisible Private Risks,” NBER Working Paper W11675, September 2005.  I have
benefitted from the opportunity to present this work in a seminar at Universitat Pompeu Fabra.



1. Introduction

Problems of choice between a status quo policy and an innovation occur often.  In medicine, the

status quo may be the prevalent treatment for a disease and the innovation a new treatment proposed by

researchers.  In criminal justice, the status quo may be existing guidelines for sentencing convicted offenders

and the innovation a new sentencing proposal.  In education, the status quo may be the present system for

evaluating teachers and the innovation an alternative.  In tax policy, the status quo may be the present

personal income tax schedule and the innovation a different schedule.

In these and many other settings, it is common to have only partial knowledge of policy impacts,

particularly concerning the innovation.  The better policy choice may then be ambiguous.  Formally,

ambiguity occurs when there are multiple feasible states of nature and both treatments are undominated.

That is, one policy is superior in some states of nature and the other is superior in other states.

There are myriad sources of ambiguity, many deriving from identification problems that are prevalent

in empirical research; see Manski (2007) for exposition.  Perhaps the most fundamental identification

problem arises from the unobervability of counterfactual policy outcomes.  At most one can observe the

outcomes that occur under realized policies.  The outcomes of unrealized policies are logically unobservable.

Yet determination of an optimal policy requires comparison of all feasible policies.

Suppose that a planner must act with partial knowledge of the welfare achieved by the status quo and

the innovation.  How should he cope with ambiguity?  The Bayesian prescription is to assert a subjective

probability distribution over the feasible states of nature and choose an action that maximizes subjective

expected welfare.  However, a subjective probability distribution is itself a form of knowledge, and the

planner may have no credible basis for asserting one.  My research program on planning under ambiguity

has studied problems of this type; see Manski (2005; 2006; 2007, Chapter 11) and the references contained

within.  In particular, I have explored application of the minimax-regret (MR) criterion to problems of

treatment choice.  This paper builds on my earlier work.
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To begin, observe that choice between a status quo and an innovation is commonly framed as a

binary decision.  Either the status quo will continue in force or the innovation will replace it, becoming the

new status quo.  When the decision is made with partial knowledge, two types of errors may occur.  A Type

I error occur when an innovation that actually is worse than the status quo is judged superior with the

available information.  A Type II error occurs when an innovation that is actually better than the status quo

is judged inferior with the available information.

This paper argues that, where feasible, choice between a status quo policy and an innovation should

be framed as selection of a treatment allocation rather than as a binary decision.  Selection of a treatment

allocation is feasible when a planner chooses treatments for each member of a population and can treat

different members differentially.  In these settings, the planner need not make a singleton allocation,

assigning all persons to the same treatment.  He can instead choose a fractional allocation, assigning positive

fractions of the population to both the status quo treatment and the innovation.

Fractional allocations cope with ambiguity through diversification.  Whereas singleton allocations

offer a stark choice between possible commission of a Type I or Type II error, fractional allocations make

both types of errors but reduce their magnitudes.  Depending on the criterion used to make decisions under

ambiguity, a planner may find an interior solution preferable to a corner solution.  In particular, this occurs

when a planner uses the minimax-regret criterion to choose a treatment allocation.  The MR criterion places

equal weight on Type I and Type II errors and chooses an allocation that balances their potential welfare

effects.

When considering fractional treatment allocations, it is important to distinguish differential treatment

of persons who vary in observable respects from differential treatment of persons who are observationally

identical.  It is well known that enabling treatment choice to vary systematically with observed covariates

of population members can improve utilitarian welfare if treatment response varies with these covariates;

see, for example, Manski (2005, Sec. 1.2).  My concern here is with differential treatment of persons who
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are observationally identical.  Differential treatment of this type necessarily is random, not systematic.

For example, a physician could in principle assign some observationally identical patients to the

status quo treatment and others to the innovation.  A judge could apply the existing sentencing guidelines

to some convicted offenders and a new sentencing proposal to others.  A school district could use the status

quo system to evaluate some teachers and apply an alternative system to others.  The federal government

could apply the present personal income tax schedule to some persons and a different schedule to others.

Why might fractional treatment allocations be beneficial?  I develop three reasons in Sections 2

through 4 respectively.  First, fractional allocations enlarge the set of feasible policy choices by convexifying

the singleton allocations.  Second, such allocations are advantageous for learning because they generate

randomized experiments that yield informative outcome data on both treatments.  Third, fractional allocations

enable better results when policy is determined by non-cooperative decision processes.  I elaborate below

and then call attention to a possible ethical objection to fractional allocations.

Convexifying the Set of Policy Choices

Binary choice between the status quo and the innovation is an all-or-nothing decision.  Fractional

allocations convexify the singleton allocations, thereby greatly enlarging the set of feasible policy choices.

The relative desirability of fractional and singleton allocations solutions depends on the criterion used for

decision making under ambiguity.  In previous work studying static planning problems, I have shown that

the minimax-regret criterion always yields a fractional allocation when there are two undominated

treatments, outcomes are bounded, and welfare increases linearly with the population mean outcome

(Manski, 2007, Complement 11A).  Moreover, the MR allocation has a simple explicit form.

Section 2 reviews this finding and uses the sentencing of convicted offenders to illustrate.  I then

extend the analysis to a broader class of welfare functions than I have considered previously.  In particular,

I permit monotonic transformations of the welfare function, address planning problems with non-additive
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cost of treatment, and consider deontological welfare functions.

Learning Treatment Outcomes

The convexification argument for differential treatment of observationally identical persons applies

equally to static and dynamic planning problems.  The learning argument pertains specifically to dynamic

problems.  Suppose that, in each period, a planner chooses treatments for the current cohort of a population.

Then learning may be possible, with observation of treatment outcomes in earlier periods informing treatment

choice in later periods.  Fractional treatment allocations randomize persons into treatment and, hence, are

particularly informative.

Section 3 considers dynamic planning under ambiguity from the minimax-regret perspective.  I

suggest use of the nicely tractable adaptive minimax-regret (AMR) criterion, which treats each cohort as well

as possible in the static minimax-regret sense, using the information available at the time.  The result is a

fractional treatment allocation whenever the available knowledge does not suffice to determine which

treatment is better.  The criterion is adaptive because knowledge of treatment response accumulates over

time, so successive cohorts may receive different fractional allocations.  I use medical treatment to illustrate

application of the AMR criterion.  I explain how the AMR criterion differs from the current practice of

randomized clinical trials in medicine.

Improving Non-Cooperative Decisions

Sections 2 and 3 are written from the perspective of a planner with the power to dictate policy.

Section 4 considers situations in which polices are determined by non-cooperative decision processes.  Just

as convexification of the set of policy choices can be beneficial to a planner, it can also improve non-

cooperative decisions.  I examine a two-agent setting where the agents may have different welfare functions

and beliefs about the feasible states of nature.  If both agents face ambiguity and use the AMR criterion to
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compare allocations, then there exist fractional allocations that both prefer to the singleton allocations.  I use

an educational policy choice to illustrate.

Equal Treatment of Equals

A possible ethical objection to fractional treatment allocations is that they violate one interpretation

of the normative principle calling for “equal treatment of equals.”  Fractional allocations are consistent with

this principle in the ex ante sense that all observationally identical people have the same probability of

receiving a particular treatment.  They violate the principle in the ex post sense that observationally identical

persons ultimately receive different treatments.

The ex post sense of equal treatment expresses a deontological consideration that is absent from the

consequentialist welfare functions usually asssumed in economic analysis of planning.  I formalize this

consideration in Section 2.4 and show how it affects the treatment allocation of a planner who uses the

minimax-regret criterion.

2. Static Planning Problems

Section 2.1 reviews relevant elements of my previous analysis of planning under ambiguity.  Sections

2.2 through 2.4 extend the analysis in several new directions.

2.1.  Treatment Allocation with Linear Welfare

Basic Concepts and Notation

There are two treatments, labeled a and b; the set of feasible treatments is T / {a, b}.  Treatment a
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is the status quo and b is the innovation.  The semantic distinction between the status quo and the innovation

plays no role in the general analysis described here, which broadly concerns choice between two treatments.

The distinction becomes meaningful when the analysis is applied.  In particular, more may be known about

the status quo treatment than about the innovation.

jEach member j of a population denoted J has a response function y (@): T 6 Y that maps treatments

j jt 0 T into outcomes y (t) 0 Y.  The subscript j in y (@) indicates that treatment response may vary across the

j jpopulation.  Let u (t) / u [y(t), t] denote the net contribution to social welfare that occurs if person j receives

j j j j1treatment t and realizes outcome y (t).  For example, u (t) may have the “benefit-cost” form u (t) = y (t) !

j2 j1 j2y (t), where y (t) is the benefit of treatment t and y (t) is its cost.

I assume for simplicity that all members of the population are observationally identical.  In practice,

persons may have observable covariates, and a planner may be able to differentially treat persons with

different covariates.  In such cases, the present analysis can be applied separately to each sub-population of

persons who share the same covariates.

Let P[y(@)] denote the population distribution of treatment response.  I suppose that the population

is large in the formal sense of being atomless; that is, P(j) = 0 for all j 0 J.  This idealization implies that if

the planner randomly assigns a positive fraction of the population to a treatment, the sub-population of

persons who receive this treatment is infinite.  This eliminates sampling variation as an issue when

comparing alternative treatment allocations and analyzing treatment response.

The planner’s task is to allocate the population between the two treatments.  A treatment allocation

is a number ä 0 [0, 1] that randomly assigns a fraction ä of the population to treatment b and the remaining

1 ! ä to treatment a.  I assume that the planner wants to choose a treatment allocation that maximizes mean

welfare in the population.  Let á / E[u(a)] and â / E[u(b)] be the mean welfare that would result if a

randomly drawn person were to receive treatment a or b respectively.  Social welfare with allocation ä is
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(1)       W(ä)  =  á(1 ! ä) + âä  =  á + (â ! á)ä.

W(@) is a consequentialist social welfare function that additively aggregates individual contributions to

welfare.  If the function u(@) expresses private preferences, then W(@) is the utilitarian social welfare function

usually assumed in research on welfare economics.

Treatment Choice Under Ambiguity

The optimal treatment allocation is obvious if (á, â) are known.  The planner should choose ä = 1

if â > á and ä = 0 if â < á.  All allocations yield the same welfare if â = á.  The problem of interest is

treatment choice when (á, â) is partially known.

To formalize the problem, let S index the feasible states of nature.  Thus, the planner knows that

s s(á, â) lies in the set [(á , â ), s 0 S].  I assume that this set is bounded and denote the extreme feasible values

L s 0 S s L s 0 S s U s 0  S s U s 0 S sof á and â as á  / min  á , â  / min  â , á  / max  á , and â  / max  â .  Partial knowledge is

s s s sunproblematic for decision making if (á  $ â , s 0 S) or if  (á  # â , s 0 S); choosing ä = 0 is optimal in the

former case and ä = 1 in the latter.  The planner faces ambiguity if both treatments are undominated; that is,

s s s sif á  > â  for some values of s and á  < â  for other values.  I assume that the planner faces ambiguity.

There is no optimal treatment allocation under ambiguity.  Yet the planner must somehow choose

an allocation.  To accomplish this, decision theorists have proposed various ways of transforming the original

optimization problem, which cannot be solved, into another one that can be solved.

Bayesians recommend that the planner assert a subjective distribution on the states of nature and

choose an allocation that maximize subjective mean welfare with respect to this distribution.  The maximin

and the minimax-regret criteria do not use a subjective distribution.  Instead they choose allocations that, in

different senses, perform uniformly well over all states of nature.

I briefly discuss the Bayes and maximin criteria and then consider the minimax-regret criterion more
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fully.  It turns out that the minimax-regret criteria yields a qualitatively different allocation than do the Bayes

and maximin criteria.  Bayesian and maximin treatment allocations are generally singleton, assigning all

persons to the same treatment.  In contrast, the minimax-regret allocation under ambiguity is always

fractional, assigning positive fractions of the population to both treatments.

Bayes Rules

A Bayesian planner places a subjective probability distribution ð on the states of nature, computes

the subjective mean value of social welfare under each treatment allocation, and chooses an allocation that

maximizes this subjective mean.  Thus, the planner solves the optimization problem

ð ð ð(2)       max     E (á) + [E (â) ! E (á)]ä,
          ä 0 [0, 1]

ð s ð swhere E (á) = Iá dð and E (â) = Iâ dð are the subjective means of á and â.  The Bayes decision assigns

ð ð ð ðeveryone to treatment b if E (â) > E (á) and everyone to treatment a if E (á) > E (â).  All treatment

ð ðallocations are Bayes decisions if E (â) = E (á).  Thus, a Bayesian planner behaves as would a planner who

knows that the population means in (1) have the values in (2).

Although Bayesian planning is conceptually straightforward, it may not be straightforward to form

a credible subjective distribution on the states of nature.  The allocation chosen by a Bayesian planner

depends on the subjective distribution used.  Here, as always, the Bayesian paradigm is appealing only when

a decision maker is able to form a subjective distribution that really expresses his beliefs.

The Maximin Criterion

To determine the maximin allocation, one first computes the minimum welfare attained by each

allocation across all states of nature.  One then chooses an allocation that maximizes this minimum welfare.
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Thus, the criterion is

s s s(3)       max       min   á   +  (â  ! á )ä.
         ä 0 [0, 1]    s 0 S

L LThe solution has a simple form if (á , â ) is a feasible value of (á, â).  Then the maximin allocation is ä =

L L L L L L0 if á  > â , ä = 1 if á  < â , and all ä 0 [0, 1] if á  = â .

The Minimax-Regret Criterion

By definition, the regret of treatment allocation ä in state of nature s is the difference between the

maximum achievable welfare and the welfare achieved with this allocation.  The maximum welfare

s s s s s s sachievable in state of nature s is max (á , â ).  Hence, allocation ä has regret max (á , â ) ! [á  + (â  ! á )ä].

The minimax-regret rule computes the maximum regret of each allocation over all states of nature and

chooses an allocation to minimize maximum regret.  Thus, the criterion is

s s s s s(4)       min      max    max (á , â ) ! [á  + (â  ! á )ä].
        ä 0 [0, 1]    s 0 S

Let S(a) and S(b) be the subsets of S on which treatments a and b are superior.  That is, let S(a) /

s s s s s 0 S(a) s s s 0 S(b) s s{s 0 S: á  > â } and S(b) / {s 0 S: â  > á }.  Let M(a) / max  (á  ! â ) and M(b) / max  (â  ! á ).

Define M(a) = 0 if S(a) is empty and M(b) = 0 if S(b) is empty.  Manski (2007, Complement 11A) proves

that the MR criterion always makes a fractional treatment allocation when both treatments are undominated.

The result is

                             M(b)

MR(5)    ä    =   ————— .
                      M(a) + M(b)
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The proof is short and straightforward, so I reproduce it here.

Proof: The maximum regret of rule ä on all of S is max [R(ä, a), R(ä, b)], where 

s s s s s(6a)     R(ä, a)  /   max  á  ! [(1 ! ä)á  + äâ ]  =   max  ä(á  ! â )  =  äM(a),
                             s 0 S(a)                                       s 0 S(a)

s s s s s(6b)     R(ä, b)  /   max  â  ! [(1 ! ä)á  + äâ ]  =   max  (1 ! ä)(â  ! á )  =  (1 ! ä)M(b),
                             s 0 S(b)                                       s 0 S(b)

are maximum regret on S(a) and S(b).  Both treatments are undominated, so R(1, a) = M(a)  > 0 and R(0, b)

= M(b) > 0. As ä increases from 0 to 1, R(@, a) increases linearly from 0 to M(a) and R(@, b) decreases linearly

from M( b) to 0. Hence, the MR rule is the unique ä 0 (0, 1) such that R(ä, a) = R(ä, b).  This yields (5).   ~

L U U LExpressions M(a) and M(b) simplify when (á , â ) and (á , â ) are feasible values of (á, â).  Then

U L U LM(a) = á  ! â  and M(b) = â  ! á .  Hence,

U L                                   â  ! á

MR(7)    ä    =   ————————— .

U L U L                        (á  ! â ) + (â  ! á )

Result (7) simplifies further if á or â is fully known.  Full knowledge for the innovation is rarely realistic,

but one may have full knowledge for the status quo from observation of past experience.  Thus, suppose that

L Uá  = á  = á. Then (7) becomes

U                     â  ! á

MR(8)    ä   =  ——— .

U L                     â  ! â
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Choosing Sentences for Convicted Juvenile Offenders

To illustrate, consider the problem of choosing sentences for a population of convicted offenders.

I apply findings reported in Manski and Nagin (1998), who studied the sentencing and recidivism of male

youth in the state of Utah who were convicted of offenses before they reached age 16. 

In this illustration, the planner is the state of Utah and the population are males under age 16 who

are convicted of an offence.  The status quo policy is a decentralized system where judges have discretion

to choose between residential confinement and a sentence that does not involve confinement.  I take the

innovation to be a policy of mandatory confinement for all convicted offenders.  I take the outcome of

interest to be a binary measure of recidivism.  Specifically, y(t) = 1 if an offender who receives treatment t

is not convicted of a subsequent crime in the two-year period following sentencing, and y(t) = 0 if the

offender is convicted of a subsequent crime.  Let u(t) = y(t).  Then á = P[y(a) = 1] and â = P[y(b) = 1].

Analyzing data on outcomes under the status quo policy, Manski and Nagin (1998) find that á = 0.61.

The data do not fully identify â.  In the absence of knowledge of how judges choose sentences or how

juveniles respond to their sentences, the data reveal only that â 0 [0.03, 0.92].  Thus, the innovation may be

much better or worse than the status quo.  Manski and Nagin (1998) argue that this “worst-case” bound on

â is germane to policy making because criminologists have found it difficult to learn how sentencing affects

recidivism.  Researchers have long debated the counterfactual outcomes that offenders would experience if

they were to receive other sentences.

Consider policy choose when the state of Utah knows that á = 0.61 and â 0 [0.03, 0.92].  If the state

ðapplies the Bayesian paradigm, it fully adopts the innovation of mandatory confinement if E (â) > 0.61 and

ðleaves the status quo of judicial discretion in place if E (â) < 0.61.  If the state applies the maximin criterion,

Lit leaves the status quo in place because â  = 0.03 < 0.61.  If the state applies the minimax-regret criterion,

U U Lit randomly sentences to confinement (â  ! á)/(â  ! â ) = (0.92 ! 0.61)/(0.92 ! 0.03) = 0.35 of the offenders

and leaves judicial discretion in place for the remaining fraction 0.65.
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2.2. Monotone Transformations of the Welfare Function

The planning problem described in Section 2.1 has many extensions that warrant analysis.  Section

3 will study its extension from static to dynamic settings.  Before that, Sections 2.2 through 2.4 perform three

extensions within the static context. 

A monotone generalization of welfare function (1) is

(9)       W(ä)  =  f[á + (â ! á)ä],

where f(@) is strictly increasing in its argument.  The specific shape of f(@) is immaterial to treatment choice

when one treatment is superior in all states of nature.  Whatever monotone function f(@) may be, ä = 0 is

s s s soptimal if (á  $ â , s 0 S) and ä = 1 if (á  # â , s 0 S).  However, shape matters when a planner faces

ambiguity.

It is tempting to say that the shape of f(@) expresses social risk preferences, with linear f(@) conveying

risk neutrality and concave f(@) implying risk aversion.  This language has a clear interpretation in Bayesian

planning, where linear f(@) implies indifference between mean-preserving spreads of a gamble and concave

f(@) implies a preference for gambles with smaller spreads.  However, the Bayesian definition of risk

preferences does not carry over to maximin and minimax-regret planning, which do not use a subjective

probability distribution.  Hence, I do not associate the shape of f(@) with risk preferences here.

Bayes Rules

A Bayesian planner with welfare function (9) solves the optimization problem

s s s(10)       max    If[á  + (â  ! á )ä]dð.
            ä 0 [0, 1]
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The solution is generically singleton if f(@) is convex, but it may be fractional if f(@) has concave segments.

Manski and Tetenov (2007, Proposition 5) consider the special case where the planner knows á and is

ðuncertain only about â.  They show that the Bayes allocation is ä = 0 if f(@) is concave and E (â) < á.

ðHowever, it is fractional if f(@) is continuously differentiable, E (â) > á, and If(â)dð < f(á).

The Maximin Criterion

The maximin problem

s s s(11)       max       min   f[á   +  (â  ! á )ä]
           ä 0 [0, 1]    s 0 S

has the same solution for all strictly increasing f(@).  Thus, the shape of f(@) does not affect the maximin

allocation.

The Minimax-Regret Criterion

The shape of f(@) does affect the solution to the minimax-regret problem

s s s s(12)         min        max   max [f(á ), f(â )]  !  f[(1 ! ä)á  + äâ ].
              ä 0 [0, 1]     s 0 S 

Nevertheless, the central qualitative finding of Section 2.2 continues to hold with almost complete generality.

I show here that the MR allocation is fractional whenever f(@) is continuous.

s s s sProof: Recall that S(a) / {s 0 S: á  > â } and S(b) / {s 0 S: â  > á }.   Let

s s s(13a)                R(ä, a)  /    max   f(á ) ! f[(1 ! ä)á  + äâ ],
                                           s 0 S(a)
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s s s(13b)                R(ä, b)  /    max   f(â ) ! f[(1 ! ä)á  + äâ ],
                                           s 0 S(b)

be the maximum regret of allocation ä on S(a) and S(b) respectively.  The maximum regret of ä on all of S

is max [R(ä, a), R(ä, b)].  As ä increases from 0 to 1, R(@, a) strictly increases from 0 to R(1, a) > 0 and R(@, b)

s sstrictly decreases from R(0, b) > 0 to 0.  Continuity of  f(@) and boundedness of [(á , â ), s 0 S] imply that

R(@, a) and R(@, b) are continuous functions of ä.   Hence, there exists a unique ä 0 (0, 1) such that R(ä, a) =

R(ä, b).   This is the MR allocation.    ~

Logarithmic Welfare

Section 2.2 showed that the minimax-regret allocation has the simple form (7) when f(@) is linear and

L U U L{á , â ), (á , â )} are feasible values of (á, â).  The MR allocation typically must be determined numerically

L U U Lwhen f(@) is nonlinear.  However, a simple form emerges when f(@) is the log function and {(á , â ), (á , â )}

are feasible values of (á, â).  Then

s s s U U L(14a)        R(ä, a)  =    max   log{[á /[(1 ! ä)á  + äâ ]}  =  log{[á /[(1 ! ä)á  + äâ ]},
                                  s 0 S(a) 

s s s U L U(14b)        R(ä, b)  /    max   log{â /[(1 ! ä)á  + äâ ]}  =  log{â /[(1 ! ä)á  + äâ ]}.
                                    s 0 S(b) 

Hence, the MR allocation solves the equation

U U L U L U(15)   á /[(1 ! ä)á  + äâ ]  =  â /[(1 ! ä)á  + äâ ].

The solution is
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U U L                                      á (â  ! á )

MR(16)    ä    =  ——————————— .

U U L U U L                         á (â  ! á ) + â (á  ! â )

Comparison of (7) and (16) shows that the MR allocations under linear and logarithmic welfare

U Ucoincide when â  = á , but they otherwise generally differ from one another.  In particular, the two

allocations differ when the planner knows á and has partial knowledge of â.  Then (16) reduces to

U                                   á(â  ! á)

MR(17)    ä    =  ————————— .

U U L                        á(â  ! á) + â (á ! â )

UBy assumption â  > á.  Hence, the fraction of the population allocated to the innovation when welfare is

logarithmic is smaller than when welfare is linear.  For example, in the sentencing illustration of Section 2.1,

the MR allocation with logarithmic welfare is 0.26 rather than the 0.35 found with linear welfare.

2.3. Non-Additive Cost of Treatment

Treatment may be costly.  The foregoing analysis covers settings where the aggregate cost of a

treatment allocation is the sum of individual treatment costs.  This was alluded to in Section 2.1, where I

j j j1 j2 j1observed that u (t) may have the benefit-cost form u (t) = y (t) ! y (t), where y (t) is the benefit when person

j2j receives treatment t and y (t) is the cost.  There are many ways in which cost might be non-additive.  This

section considers the polar cases of capacity constraints and fixed costs.

Capacity Constraints

I have thus far assumed that all treatment allocations ä 0 [0, 1] are feasible.  Capacity constraints may
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place an upper bound on the fraction of the population who receive each treatment.  A capacity constraint

is a cost that equals zero when the fraction of persons who receive a treatment is below the upper bound and

infinity thereafter.

Let the maximum fractions of the population who may receive treatments a and b be ç(a) and ç(b)

respectively.  Then the feasible allocations are ä 0 [1 ! ç(a), ç(b)].  A constrained Bayesian, maximin, or

minimax-regret allocation solves the relevant extremum problem over the feasible ä.  I focus on the MR

allocation when welfare has form (9) and f(@) is continuous.

MR CMRLet ä  denote the unconstrained MR allocation and ä  the constrained MR allocation.  As shown

MR MRin Section 2.3, maximum regret at any allocation ä equals R(ä, b) for ä # ä  and R(ä, a) for ä $ ä , where

R(@, b) is strictly decreasing in ä and R(@, a) is strictly increasing.  It follows that the constrained MR

allocation is the feasible allocation closest to the unconstrained MR allocation.  That is,

CMR MR(18)     ä   =  1 ! ç(a)  if  ä  < 1 ! ç(a),

MR MR                         ä           if  ä  0 [1 ! ç(a), ç(b)],

MR                         ç(b)        if  ä  > ç(b).

Fixed Costs

A fixed cost is a cost component that equals zero when no one receives a treatment and takes a

constant positive value when any positive fraction of the population receives the treatment.  Fixed costs give

singleton allocations an advantage relative to fractional ones.  Suppose that treatments a and b have non-

negative fixed costs C(a) and C(b) respectively.  Then allocations ä = 0 and ä = 1 have fixed costs C(a) and

C(b), but any ä 0 (0, 1) bears the larger fixed cost C(a) + C(b).  I show here that the MR allocation is

fractional if the fixed costs are small but is singleton if they are large.

For simplicity, I suppose that the welfare function is linear and that the fixed costs have known
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values that do not vary with the state of nature.  Thus, the welfare function is

(19)       W(ä)  =  á + (â ! á)ä !C(a)@1[ä < 1] ! C(b)@1[ä > 0].

Allocation ä = 0 is optimal if á ! C(a) $ â ! C(b) and ä = 1 is optimal if á ! C(a) # â ! C(b).

The problem of interest is treatment choice under ambiguity.  Let S(a) and S(b) be the subsets of S

s son which treatments a and b are superior.  That is, S(a) = {s 0 S: á  ! C(a) > â  ! C(b)} and S(b) = {s 0 S:

s sâ  ! C(b) > á  ! C(a)}.  The planner faces ambiguity if S(a) and S(b) are non-empty.  

s 0 S(a) s s s 0 S(b) s sAs earlier, let M(a) / max  (á  ! â ) and M(b) / max  (â  ! á ).  Recall from (5) that the MR

MR FMRallocation in the absence of fixed costs is ä  = M(b)/[M(a) + M(b)].  Let ä  denote the MR allocation in

the presence of fixed costs.  The result is

(20)

FMR MR MR MRä   =  0   if   M(b) + C(a) !C(b)  # min {M(a) ! C(a) + C(b),  ä M(a) + C(a)[1 ! ä ] + C(b)ä },

                          C(a) ! C(b)

FMR MRä   =  ä   +   —————            
                          M(a) + M(b)

MR MR MR                  if   ä M(a) + C(a)[1 ! ä ] + C(b)ä  # min {M(a) ! C(a) + C(b),  M(b) + C(a) ! C(b)},

FMR MR MR MRä   =  1   if   M(a) ! C(a) + C(b)  #  min {M(b) + C(a) ! C(b),  ä M(a) + C(a)[1 ! ä ] + C(b)ä }.

Proof: For any ä 0 [0, 1], the maximum regret of ä on all of S is max [R(ä, a), R(ä, b)], where 

s s s s(21a)     R(ä, a)  /   max á  ! C(a) ! {á  + ä(â  ! á ) !C(a)@1[ä < 1] ! C(b)@1[ä > 0]}
                                s 0 S(a)

                          =   äM(a) ! C(a)@1[ä = 1] + C(b)@1[ä > 0]
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s s s s(21b)     R(ä, b)  /   max â  ! C(b) ! {á  + ä(â  ! á ) !C(a)@1[ä < 1] ! C(b)@1[ä > 0]}
                                s 0 S(b)

                          =   (1 ! ä)M(b) + C(a)@1[ä < 1] ! C(b)@1[ä = 0].

are maximum regret on S(a) and S(b).

Application of (21) at ä = 0 and ä = 1 gives the maximum regret values

                                max [R(0, a), R(0, b)]  =  M(b) + C(a) !C(b),

                                max [R(1, a), R(1, b)]  =  M(a) ! C(a) + C(b).

Application of (21) at ä 0 (0, 1) gives

                                max [R(ä, a), R(ä, b)]  =  max [äM(a) + C(b), (1 ! ä)M(b) + C(a)].

The minimum of maximum regret over ä 0 (0, 1) solves the equation

                                              äM(a) + C(b)  =  (1 ! ä)M(b) + C(a).

Hence, the minimax regret allocation on ä 0 (0, 1) is

                            M(b) + C(a) ! C(b)                   C(a) ! C(b)

MR                            ————————  =  ä   +  ————— 
                                   M(a) + M(b)                       M(a) + M(b)

MR MR MRand the minimax regret value on ä 0 (0, 1) is ä M(a) + C(a)[1 ! ä ] + C(b)ä .  The final step is to

minimize maximum regret over ä 0 (0, 1), ä = 0, and ä = 1. This yields (20).      ~

Equation (20) simplifies if there is equal fixed cost associated with use of each treatment.  Let C /

C(a) = C(b).  Then (20) reduces to

FMR MR(22)              ä   =  0         if   M(b)  #  min {M(a),  ä M(a) + C},

FMR MR MR                     ä   =  ä       if   ä M(a) + C  #  min {M(a), M(b)},

FMR MR                     ä   =  1         if   M(a)  #  min {M(b),  ä M(a) + C}.
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MRThus, a common fixed cost smaller than min {M(a), M(b)} ! ä M(a) has no effect on the minimax-regret

allocation.  However, a larger fixed cost makes the allocation singleton.

2.4. Deontological Welfare Functions

Sections 2.1 through 2.3 maintained the traditional consequentialist assumption that policy choices

matter only for the outcomes they yield.  Deontological ethics supposes that choices may have intrinsic value,

apart from their consequences.

In Section 2.3, the fixed costs C(a) and C(b) made the treatment allocation affect welfare directly,

regardless of the resulting outcomes.  Although I then described C(a) and C(b) in ordinary economic

language as fixed costs, welfare function (19) can be interpreted as expressing the deontological idea that

any use of treatment a or b is normatively bad per se, with C(a) and C(b) expressing the respective welfare

losses.  A more general class of deontological welfare functions is

(23)       W(ä)  = f[á + (â ! á)ä + g(ä)],

where g(@) is a specified function of ä.

Equal Treatment of Equals

When considering fractional treatment allocations, a particularly salient deontological idea is the

normative principle calling for “equal treatment of equals.”  Fractional allocations are consistent with this

principle in the sense that observationally identical persons have equal probabilities of receiving particular

treatments.  They are inconsistent with the principle in the sense that observationally identical persons do

not actually receive the same treatment.  Thus, equal treatment holds ex ante but not ex post.  
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A dramatic illustration of the difference between the ex ante and ex post senses of equal treatment

occurs in this hypothetical problem of treatment choice considered in Manski (2007, Section 11.7).

Choosing Treatments for X-Pox: Suppose that a new viral disease called x-pox is sweeping the world.

Medical researchers have proposed two mutually exclusive treatments, t = a and t = b, which reflect

a b talternative hypotheses, say H  and H , about the nature of the virus.  If H  is correct, all persons who receive

treatment t survive and all others die.  It is known that one of the two hypotheses is correct, but it is not

a bknown which one; thus, there are two states of natures, s = H  and s = H .  Let welfare be the survival rate

of the population.  If a fraction ä of the population receives treatment b and the remaining 1 ! ä receives

a btreatment a, the fraction who survive is (1 ! ä)@1[s = H ] + ä@1[s = H ].

The singleton allocations ä = 0 and ä = 1 provide equal treatment in both the ex ante and ex post

senses.  These allocations also equalize realized outcomes—the entire population either survives or dies.

The minimax-regret allocation is ä = ½.  Everyone is treated equally ex ante, each person having a 50 percent

chance of receiving each treatment, but not ex post.  Nor are outcomes equalized—to the contrary, half the

population lives and half dies.         ~

If one is concerned only with the ex ante sense of equal treatment, then all values of ä are

deontologically equivalent.  In terms of welfare function (23), the function g(@) is constant.  If one is

concerned with the ex post sense of equal treatment, singleton allocations have an advantage relative to

fractional ones.  In terms of (23), g(0) = g(1) > g(ä) for ä 0 (0, 1).

The equal fixed-cost case considered at the end of Section 2.3 has the form g(0) = g(1) = !C and g(ä)

= !2C for ä 0 (0, 1).  Thus, placing value C on the deontological consideration of equal ex post treatment

MRdoes not affect the minimax-regret allocation if C < min {M(a), M(b)} ! ä M(a).  However, it makes the

minimax-regret allocation singleton if C is larger.
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3.Dynamic Planning Problems

This section considers dynamic problems.  I suppose that, in each period, a planner must choose

treatments for the current cohort of a population.  The planner wants to maximize the welfare of each cohort.

The essential new feature of dynamic problems is that learning is possible, with observation of the

outcomes experienced by earlier cohorts informing treatment choice for later cohorts.  Fractional treatment

allocations are advantageous for learning because they generate randomized experiments yielding outcome

data on both treatments.  Sampling variation is not an issue when cohorts are large, so all fractional

allocations yield the same information.  Hence, the choice among fractional allocations may be based on

other grounds.

I suggest use of the adaptive minimax-regret (AMR) criterion.  In each period, the AMR criterion

applies the static minimax-regret criterion of Section 2, using the information available at the time.  In the

absence of large fixed costs or deontological considerations, the result is a fractional allocation whenever

both treatments are undominated.  The AMR criterion is adaptive because successive cohorts may receive

different allocations as knowledge of treatment response accumulates over time.

Section 3.1 formalizes the AMR criterion.  Section 3.2 illustrates its application to a hypothetical

problem of medical treatment.  Section 3.3 discusses how the AMR criterion differs from the current medical

practice of randomized clinical trials.

3.1. The Adaptive Minimax-Regret Criterion

To frame the dynamic planning problem we need to extend the concepts and notation used earlier.

Let n = 0, 1, . . . . , N denote the periods in which treatment allocations must be chosen.  In each period, the
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set of feasible treatments is T = {a, b}.  The planner’s problem is to allocate each cohort between the two

n ntreatments.  A treatment allocation is a vector ä / (ä , n = 0, . . . , N) that randomly assigns a fraction ä  of

ncohort n to treatment b and the remaining 1 ! ä  to treatment a.

nLet P [y(@)] denote the distribution of treatment response across cohort n.  I assume that all cohorts

nare large and have the same distribution of treatment response.  Thus, P [y(@)] = P[y(@)] for all n, where P[y(@)]

is a time-invariant distribution.  This assumption enables learning.  Observation of the outcomes experienced

by earlier cohorts yields information about P[y(@)] that can inform treatment choice for later cohorts.

As earlier, u(t) / u[y(t), t] denotes the net contribution to social welfare that occurs when a person

receives treatment t and realizes outcome y(t).  Moreover, á / E[u(a)] and â / E[u(b)] are the mean welfare

values that would result if all members of a cohort were to receive treatment a or b respectively.  Hence, the

n noptimal allocation in each period is ä  = 1 if â $ á and ä  = 0 if â # á.

nWith this background, consider planning under ambiguity.  Let S  index the feasible states of nature

n nN nNin period n.  The planner chooses an allocation ä  with knowledge of (ä , nN < n) and (S , nN # n), but without

nNknowledge of the information (S , nN > n) that he will possess later on.  It is conceptually subtle and

ncomputationally daunting to approach choice of ä  in a forward-looking manner, considering all logically

possible subsequent sequences of information sets and choices.  It is much simpler to proceed myopically,

nchoosing ä  as if n is the sole period of a static choice problem. 

The AMR criterion provides an appealing myopic decision rule.  The criterion in period n is

s s n s n s(24)          min        max   max [f(á ), f(â )]  !  f[(1 ! ä )á  + ä â ].

n n              ä  0 [0, 1]     s 0 S

n n s s nWhen f(@) is linear, the AMR allocation follows immediately from (5).  Let S (a) / {s 0 S : á  > â } and S (b)

n s s n s 0 Sn(a) s s n s 0 Sn(b) s s/ {s 0 S : â  > á }.  Let M (a) / max  (á  ! â ) and M (b) / max  (â  ! á ).  Then
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n                                 M (b)

nAMR(25)    ä   =  —————— .

n n                          M (a) + M (b)

All of the other findings in Section 2 extend in the same way.

The AMR criterion has practical and normative appeal.  The practical appeal is its simplicity.  The

static minimax-regret allocation has a particularly transparent form when welfare is linear.  The AMR

allocation (25) inherits this transparency.

The normative appeal is that the AMR criterion treats each cohort as well as possible, in the

minimax-regret sense, given the available knowledge.  It does not ask the members of one cohort to sacrifice

its own welfare for the benefit of future cohorts.  Nevertheless, the AMR criterion is informationally

beneficial to future cohorts in the broad class of settings where it yields a fractional treatment allocation

under ambiguity.  Unless large fixed costs or deontological considerations make the AMR allocation

singleton, application of the criterion maximizes cross-cohort learning about treatment response.

3.2. Treating a Life-Threatening Disease

This section illustrates application of the AMR criterion.  I present a hypothetical treatment-choice

problem in which the outcome of interest unfolds over multiple periods.  As empirical evidence accumulates,

the AMR treatment allocation changes accordingly.

Consider treatment of a life-threatening disease.  The planner may be an independent physician, a

private health maintenance organization (HMO), or a government agency such as the Veterans Health

Administration in the United States or the National Health Service in England.  The outcome of interest may

be the number of years that a patient survives within some time horizon.  For this illustration, I take the

horizon to be five years and I define y(t) to be the number of years that a patient lives during the five years
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following receipt of treatment t.  Thus, y(t) has the time-additive form

                                K

j jk(26)         y (t)  =     3  y (t),
                             k = 1

jk jkwhere y (t) = 1 if patient j is alive k years after treatment, y (t) = 0 otherwise, and K = 5.

jThe outcome gradually becomes observable as time passes.  At the time of treatment, y (t) can take

any of the values [0, 1, 2, 3, 4, 5].  A year later, one can observe whether patient j is still alive and hence can

j jdetermine whether y (t) = 0 or y (t) $ 1.  And so on until year five, when the outcome is fully observable.

Table 1 presents hypothetical data on annual death rates following treatment by the status quo and

the innovation.  The entries show that 20 (10) percent of the patients who receive the status quo (innovation)

die within the first year after treatment.  In each of the later years, the death rates are 5 and 2 percent

respectively.  Overall, the mean numbers of years lived after treatment are á = 3.5 and â = 4.3.  The former

value is known at the outset from historical experience.  The latter gradually becomes observable.

Table 1: Treating a Life-Threatening Disease

cohort
or year
(n or k)

death rate in k  year afterth

treatment
bound on â

for
cohort n

AMR
allocation

for cohort n

maximum
regret of

AMR
allocation for

cohort n

mean life
span

achieved by
cohort n

Status Quo Innovation

0 [0, 5] 0.30 1.05 3.74

1 0.20 0.10 [0.90, 4.50] 0.28 0.72 3.72

2 0.05 0.02 [1.78, 4.42] 0.35 0.60 3.78

3 0.05 0.02 [2.64, 4.36] 0.50 0.43 3.90

4 0.05 0.02 [3.48, 4.32] 0.98 0.02 4.28

5 0.05 0.02 [4.30, 4.30] 1 0 4.30
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Assume that the planner measures welfare by a patient’s length of life; thus, u(t) = y(t).  Also assume

that the planner has no initial knowledge of â.  That is, he does not know whether the innovation will be

disastrous, with all patients dying in the first year following treatment, or entirely successful, with all patients

L0 U0living five years or more.  Then the initial bound on â is [â , â ] = [0, 5].  Applying (8), the initial AMR

0treatment allocation is ä  = 0.30.

In year 1 the planner observes that, of the patients in cohort 0 assigned to the innovation, 10 percent

died in the first year following treatment.  This enables him to deduce that P[y(b) $ 1] = 0.90.  The planner

L1 U1 1uses this information to tighten the bound on â to [â , â ] = [0.90, 4.50].  It follows that ä  = 0.28.

In each subsequent year the planner observes another annual death rate, tightens the bound on â, and

2 3 4computes the treatment allocation accordingly.  The result is that ä  = 0.35,  ä  = 0.50, and ä  = 0.98.  In year

55 he knows that the innovation is better than the status quo, and so sets ä  = 1.  The final two columns of

Table 1 give the maximum regret and mean life span of each cohort, both computed using the AMR treatment

allocation.

3.3. The AMR Criterion and the Current Practice of Randomized Clinical Trials

The illustration of Section 3.2 exemplifies a host of settings in which a medical planner must choose

between a well-understood status quo treatment and an innovation whose properties are only partially known.

When facing situations of this kind, it has been common to commission randomized clinical trials (RCTs)

to learn about the innovation.  The fractional allocations produced by the AMR criterion are randomized

experiments, so it is natural to ask how application of the AMR criterion differs from the current practice

of RCTs.  There are many major differences, described below.
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nAMRFraction of the Population Receiving the Innovation: The AMR treatment allocation ä  can take any value

in the interval [0, 1].  In contrast, the sample receiving the innovation in current RCTs is typically a very

small fraction of the relevant population, with sample size determined by conventional calculations of

statistical power.  For example, in trials conducted to obtain Food and Drug Administration approval of new

drugs, the sample receiving the innovation typically comprises two to three thousand persons, whereas the

relevant patient population may contain hundreds of thousands or millions of persons.  Thus, the value of

ä in an RCT is generally less than 0.01 and often less than 0.001.

Group Subject to Randomization: Under the AMR criterion, the persons receiving the innovation are

randomly drawn from the full patient population.  In contrast, present clinical trials randomly draw subjects

from pools of persons who volunteer to participate.  Hence, a trial at most reveals the distribution of

treatment response within the sub-population of volunteers, not within the full patient population.

Measurement of Outcomes: Under the AMR criterion, one observes the health outcomes of real interest as

they unfold over time and one uses these data to inform subsequent treatment decisions.  In contrast, current

RCTs typically have short durations of two to three years at most.  For example, a three-year trial on the

disease described in Table 1would only reveal that â 0 [2.64, 4.36].  Attempting to learn from trials of short

duration, researchers often measure surrogate outcomes rather than health outcomes of real interest.  For

example, treatments for heart disease may be evaluated using data on patient cholesterol levels and blood

pressure rather than heart attacks and life span.  Extrapolation from surrogate outcomes to outcomes of

interest can be difficult; see Fleming and Demets (1996).

Blinding of Treatment Assignment: When the AMR criterion is applied, assigned treatments are known to

patients and their physicians.  In contrast, blinded treatment assignment has been the norm in clinical trials
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of new drugs.  Hence, a trial at most reveals the distribution of response in a setting where patients and

physicians are uncertain what treatment has been assigned.  It does not reveal the distribution of response

in a real clinical setting where patients and physicians would know the assigned treatment.

Use of Empirical Evidence in Decision Making: Choosing a treatment allocation to minimize maximum

regret is remote from the way that the findings of RCTs are now used in decision making.  The conventional

approach is to perform a statistical hypothesis test, the null hypothesis being that the innovation is no better

than the status quo treatment and the alternative being that it is better.  If the null hypothesis is not rejected,

the status quo treatment continues in force and no one subsequently receives the innovation.  If the null is

rejected, the innovation replaces the status quo as the treatment of choice.  A decision mechanism of this type

is institutionalized in the drug approval process of the U. S. Food and Drug Administration; see Fisher and

Moyé (1999).

Adaptive Clinical Trials

The AMR criterion shares a broad familial relationship with the idea of adaptive clinical trials, but

differs in important respects.  Adaptive trials sequentially draw subjects into traditional clinical trials and

use a frequentist or Bayesian statistical criterion to make the allocation of new subjects across treatments a

function of the outcomes observed to date for subjects drawn earlier.  The objective, as stated in Tamura et

al. (1994, p. 768), is to “use the observed response data to adapt the allocation probabilities, so that more

patients will hopefully receive the better treatment.”

The AMR criterion shares with adaptive trials the broad objective of using observed treatment

responses to inform subsequent treatment choices.  However, these ideas differ in two ways.  First, the AMR

criterion proposes fractional allocation of the entire patient population, not a sample of volunteers.  Second,

the AMR criterion is intended to cope with ambiguity rather than the statistical imprecision that motivates
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adaptive trials.  Indeed, the large-population assumption maintained in this paper render statistical

imprecision a negligible concern.

The idealization of a large population approximates well the actual environment for treatment of

widespread conditions such as diabetes, heart disease, and various cancers.  However, statistical imprecision

in empirical findings on treatment response may be a serious cause of errors when the patient population is

small.  Prescription of how a planner might reasonably behave in a dynamic choice setting when facing both

ambiguity and statistical imprecision is an open and difficult question.

4. Non-Cooperative Decision Processes

Sections 2 and 3 studied decision making by a planner who can dictate the treatment allocation.

Planners possessing close to unilateral decision power exist in some important settings.  Consider, for

example, centralized health care systems where governmental agencies or private HMOs choose medical

treatments for their patents.  These planners can more or less unilaterally implement the AMR criterion.

Treatment allocations often result from non-cooperative decision processes.  Manski (2008) suggests

application of a second-best version of the AMR criterion to the institutionally complex matter of medical

drug treatment in the United States, where the Food and Drug Administration has the power to approve new

drugs but not to determine usage following approval.  Here I consider a much simpler problem of non-

cooperative choice between a status quo treatment and an innovation.  I presume a two-agent setting where

the agents may have different welfare functions and assessments of the feasible states of nature.  I assume

that any departure from the status quo policy requires the agreement of the two players.

Consider decision making in period n.  When policy choice is framed as a binary decision, the status

n nquo is chosen if either agent prefers allocation ä  = 0 to ä  = 1.  The innovation replaces the status quo only
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n nif both agents prefer ä  = 1 to ä  = 0.

When policy choice is framed as selection of a treatment allocation, there may exist fractional

n nallocations that both agents prefer to ä  = 0 and ä  = 1.  Section 4.1 shows that this is so when both agents

face ambiguity and use the AMR criterion to compare allocations.  Section 4.2 uses an educational policy

decision to illustrate.

4.1. Noncooperative Application of the AMR Criterion

Reconsider the dynamic planning problem of Section 3.1.  Rather than a single planner, there now

m mare two agents, denoted m = 1 and m = 2.  Let u (t) / u [y(t), t] denote the net contribution to the welfare

m m mof agent m when a person receives treatment t and realizes outcome y(t).  Let á  / E[u (a)] and â  /

m mnE[u (b)].  Let S  index the feasible states of nature in period n, as perceived by agent m..

mnAMRSuppose that both agents use the AMR criterion to compare treatment allocations.  Let ä  be the

allocation that agent m would choose if he were able to dictate policy choice.  Without loss of generality,

1nAMR 2nAMRsuppose that ä  # ä .

The analysis of Section 2.2 shows that, for each agent m, the maximum static regret of  an allocation

n mnAMR mnAMRä  strictly decreases on the interval [0, ä ] and increases on the interval [ä , 1].  Hence, both agents

1nAMR n 1nAMR 2nAMR n 2nAMR n 1nAMRprefer ä  to all ä  < ä , both prefer ä  to all ä  > ä , and preferences differ for ä  0 [ä ,

2nAMR 1nAMR 2nAMRä ].  Thus, the set of pareto efficient allocations is [ä , ä ].

Consider a decision process that calls on each agent to announce his preferred allocation and then,

giving deference to the status quo, selects the smaller of the two reported values.  This process makes it

optimal for each agent to reveal his preferred allocation truthfully, regardless of what the other agent

1nAMRannounces.  Thus, ä  is the chosen allocation.  This result is pareto efficient.  Alternatively, one could

give deference to the innovation and select the larger of the two reported values.  This decision rule also
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2nAMRmakes truthtelling optimal and yields the pareto efficient allocation ä .

When there is conflict between the preferences of two agents, society usually defers to the status quo

rather than to the innovation.  This is especially evident in the American legal system.  A longstanding tenet

of the legal system is that the plaintiff in a civil proceeding bears the burden of proof to show that an action

by the defendant (the status quo) is improper.  This tenet was recently applied by the U.S. Supreme Court

to choice between a status quo treatment and an innovation.

Shaffer v. Weast: The Individuals with Disabilities Education Act is a federal statute requiring that public

schools provide to each disabled child “an individualized education program.”  The language of the statute

does not specify who bears the burden of proof when parents believe that a school has not properly complied

with the statute.  In the case Shaffer v. Weast (Supreme Court of the United States, 2005), the parents of a

disabled child challenged the adequacy of the educational services provided by his school (the status quo

policy) and proposed an alternative (the innovation).  The Court ruled that the parents have the burden of

proof of showing the status quo to be inadequate, writing “We hold that the burden lies, as it typically does,

on the party seeking relief.”       ~

4.2. Teacher Evaluation in New York City

To illustrate the non-cooperative decision problem, consider an educational setting where the

problem is to choose between a status quo policy for teacher evaluation and an innovation.  The two agents

are a school district and a teacher’s union.  The status quo is the traditional system basing evaluation on

scrutiny of teacher preparation and observation of classroom lesson delivery.  The innovation bases teacher

evaluation on student performance in standardized tests.  The contract between the school district and the

union requires that any departure from the status quo be approved by both agents.
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A potential instance of this teacher evaluation problem is described in a recent article in the New

York Times (Medina, 2008):

“New York City has embarked on an ambitious experiment, yet to be announced, in which some

2,500 teachers are being measured on how much their students improve on annual standardized tests.

. . . . . . While officials say it is too early to determine how they will use the data, which is already

being collected, they say it could eventually be used to help make decisions on teacher tenure or as

a significant element in performance evaluations and bonuses. . . . .  Randi Weingarten, the union

president, said she had grave reservations about the project, and would fight if the city tried to use

the information for tenure or formal evaluations or even publicized it.  She and the city disagree over

whether such moves would be allowed under the contract.”

Thus, New York City is acting unilaterally to collect data that could potentially be used to evaluate teachers.

The contemplated change from the status quo differs from a fractional allocation as defined in this paper

because the participating schools were not randomly drawn from the population of New York City schools.

This difference aside, the allocation that the City has in mind is fractional with ä about equal to 0.10.

New York City appears to see itself as a planner with unilateral power to implement the innovation.

However, the teacher’s union asserts that any departure from the status quo policy requires their agreement.

The Times reporter writes that an attempted unilateral decision by the City “would undoubtedly open up a

legal battle with the teacher’s union.”

Suppose that implementation of a new policy requires agreement by the City and the union.  As

presently framed, the decision problem is a static noncooperative choice between ä = 0 and ä = 0.10.  It

nwould be better to frame it as a noncooperative choice of ä  0 [0, 1] in a sequence of periods n, with observed

outcomes in earlier periods informing treatment choice in later ones.

The fact that the City currently contemplates a fractional allocation suggests that it views itself as

facing a problem of policy choice under ambiguity.  The union’s perception is not yet apparent, because it



32

thus far has no way to voice its preference except to state its opposition to unilateral decision making by the

City.  The analysis of Section 4.1 suggests that it would be better to have the City and the union each

announce their preferred allocation and then select the smaller of the announced allocations.



33

References

Fisher, L. and L. Moyé (1999), “Carvedilol and the Food and Drug Administration Approval Process: An
Introduction,” Controlled Clinical Trials, 20, 1-15.

Fleming, T. and D. Demets (1996), “Surrogate End Points in Clinical Trials: Are We Being Misled?” Annals
of Internal Medicine, 125, 605-613.

Manski, C. (2005), Social Choice with Partial Knowledge of Treatment Response, Princeton: Princeton
University Press.

Manski, C. (2006), “Search Profiling with Partial Knowledge of Deterrence.” Economic Journal, 116, F385-
F401.

Manski, C. (2007), Identification for Prediction and Decision, Cambridge, Mass.: Harvard University Press.

Manski, C. (2008), “Adaptive Partial Drug Approval.” Department of Economics, Northwestern University.

Manski, C. and D. Nagin (1998), “Bounding Disagreements about Treatment Effects: a Case Study of
Sentencing and Recidivism,” Sociological Methodology, 28, 99–137.

Manski, C. and A. Tetenov (2007), “Admissible Treatment Rules for a Risk-Averse Planner with
Experimental Data on an Innovation,” Journal of Statistical Planning and Inference, 137, 1998-2010.

Medina, J. (2008), “New York Measuring Teachers by Test Score,” The New York Times, January 21, 2008.

Supreme Court of the United States (2005), “No. 04698, Brian Schaffer, a Minor, by His Parents and next
Friends, Jocelyn and Martin Schaffer, et Al., Petitioners V. Jerry Weast, Superinten- Dent, Montgomery
County Public Schools, et al.,” 546 U. S.__ 2005.

Tamura, R., D. Faries, J. Andersen, and J. Heiligenstein (1994), “A Case Study of an Adaptive Clinical Trial
in the Treatment of Out-Patients with Depressive Disorder,” Journal of the American Statistical Association,
89, 768-776.


