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Abstract

Power law or generalized polynomial regressions with unknown real-valued

exponents and coe¢ cients, and weakly dependent errors, are considered for

observations over time, space or space-time. Consistency and asymptotic nor-

mality of nonlinear least squares estimates of the parameters are established.

The joint limit distribution is singular, but can be used as a basis for inference

on either exponents or coe¢ cients. We discuss issues of implementation, e¢ -

ciency, potential for improved estimation, and possibilities of extension to more

general or alternative trending models, and to allow for irregularly-spaced data

or heteroscedastic errors; though it focusses on a particular model to �x ideas,

the paper can be viewed as o¤ering machinery useful in developing inference

for a variety of models in which power law trends are a component. Indeed, the

paper also makes a contribution that is potentially relevant to many other sta-

tistical models: our problem is one of many in which consistency of a vector of

parameter estimates (which converge at di¤erent rates) cannot be established

1



by the usual techniques for coping with implicitly-de�ned extremum estimates,

but requires a more delicate treatment; we present a generic consistency result.

Keywords: asymptotic normality; consistency; correlation; generalized poly-

nomial; lattice; power law.

1. INTRODUCTION

Polynomial-in-time regression is one of the longest-established tools of time series

analysis (see e.g.Jones (1943)). In much empirical work, especially when stochastic

trends, such as unit roots, are also involved, only a linear trend is countenanced, or

merely a constant intercept. On the other hand, classical methods can test poly-

nomial order when observations are equally-spaced in time: with independent and

identically distributed (iid) normal errors, a particularly elegant way of achieving

this, with �nite-sample validity, results from an orthogonal polynomial representa-

tion - the covariance matrix of the least squares estimate (LSE) is diagonalized, and

contributions to the F -statistic from individual regressors are iid (see e.g. §3.2.2 of

Anderson (1971)). Asymptotic theory is valid under much wider conditions on the

errors, indeed from §7.4 of Grenander and Rosenblatt (1984) the LSE is asymptoti-

cally e¢ cient (in the Gauss-Markov sense) when the (possibly non-Gaussian) errors

are covariance stationary with spectral density bounded and bounded away from zero

at zero frequency, as with short memory processes. Polynomial models have also been

extended to spatial lattice data (see e.g. §3.4 of Cressie (1993)).

Polynomials are nevertheless restrictive. The Weierstrass theorem justi�es their

uniform approximation of any continuous function over a compact interval, but seems

less practically relevant the longer the data set. Nonparametric smoothing may be

unreliable in series of moderate length, when instead richer parametric models than

polynomials might be considered. One class that advantageously nests polynomials,

and has received little theoretical attention, consists of "generalized polynomial" or
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"power law" models. With equally-spaced time series observations yu, u = 1; :::; N ,

consider

yu =
pP
j=1

�ju
�j + xu; (1.1)

where the �j and �j are real-valued and all can be unknown, �j > �1=2 for all j; and

the zero-mean unobservable process xu is covariance stationary with short memory.

For �j < �1=2; �j would not be estimable (whether �j were known or unknown)

because the corresponding signal is drowned by the noise. For �j = �1=2; �j is

estimable but we omit this possibility because our central limit theorem requires �j

to lie in the interior of a compact set. Polynomials, such as when �j = j � 1 for all j,

are nested, indeed this is a hypothesis that might be tested within (1.1).

We consider the nonlinear least squares estimate (NLSE) of the �j; �j in (1.1) and,

more generally, of exponents and coe¢ cients in an extended model de�ned on a lat-

tice, applying to spatial and spatio-temporal data, where our provision, for example,

for weaker trends than linear ones and for decaying trends seems practically useful.

Unlike the LSE when exponents are known, the NLSE cannot be expressed in closed

form and requires numerical optimization. Correspondingly, asymptotic theory, with

sample size N increasing, is needed to justify rules of statistical inference even when

errors are Gaussian. We establish consistency and asymptotic normality for the

NLSE of exponent and coe¢ cient estimates, achieving also an analogous e¢ ciency

bound to that described above. As with other implicitly-de�ned estimates, asymp-

totic distribution theory makes use (in application of the mean value theorem) of

an initial consistency proof. Many such proofs (e.g. Jennrich (1969), Malinvaud

(1970)) require regressors to be non-trending, whence under suitable additional con-

ditions all parameter estimates are N
1
2 -consistent. For the NLSE of (1.1), Wu (1981)

signi�cantly relaxed this requirement but nevertheless appears to heavily restrict the

diversity of trends in Wu (1981): the discussion after Assumptions A and A�indicates

that they reduce in (1.1) with known �j to the assumption maxj�j < 1
2
+ 2minj �j,
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and no weaker requirement su¢ ces in case of unknown �j. Example 4 of Wu (1981)

addressed the latter case but with p = 1 only (and for �1 2 (�1
2
; 0]) when the in-

equality is trivially satis�ed. In general, more elaborate techniques seem required to

establish consistency in (1.1). Moreover Wu (1981) established consistency with no

rate, whereas we �nd that a slow rate of convergence in the �j estimates is required

before asymptotic normality is established. Wu (1981) also established asymptotic

normality of the NLSE in a quite general setting, but under the assumption that

all parameter estimates converge at the same rate. This is not the case with (1.1),

indeed all rates of �j; �j estimates turn out to di¤er. For implicitly-de�ned extremum

estimates such variation is typically associated with di¢ culty in the initial consistency

proof, due to the objective function not converging uniformly to a function that is

uniquely optimized over the whole parameter space. Consistency proofs here have

tended to be somewhat ad hoc, geared to the case at hand (e.g. Giraitis, Hidalgo and

Robinson (2001), Nagaraj and Fuller (1991), Nielsen (2007), Robinson (2008), Sun

and Phillips (2003)). Our consistency proof employs a generic result (presented and

proved in Appendix A to avoid interrupting the �ow) which seems likely to apply to

a quite general class of estimates (not just the NLSE) of a variety of models. Our

asymptotic distribution theory of estimates for (1.1) and its extension presents some

other unusual features.

The following section presents the model, regularity conditions, and three theorems

describing asymptotic statistical properties. The main details of their proofs appear

in Appendix B. These use a series of propositions, stated and proved in Appendix

C, and relying in turn also on a series of lemmas, in Appendix D. A Monte Carlo

study of �nite-sample performance appears in §3, while §4 discusses aspects of the

theoretical results and their implemention, and possible extensions.
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2. ESTIMATION OF SPATIAL LATTICE REGRESSION MODEL

Let the integer d � 1 represent the dimension on which data are observed, where

d = 1 for time series (as in (1.1)) and d � 2 for spatial or spatio-temporal data. Gener-

alize u to the d�dimensional multi-index u = (u1; u2; :::; ud)0 : Denoting Z+= fj : j = 0; 1; :::g ;

generalize (1.1) to

yu =
dP
i=1

piP
j=1

�iju
�ij
i + xu = f(u; �)

0� + xu; u 2 Zd+; (2.1)

where xu is described subsequently and � = (�01; :::; �
0
d)
0
; �i =

�
�i1; :::; �ipi

�0
; � =

(�01; :::; �
0
d)
0
; �i = (�i1; :::; �ipi)

0 ; f(u; �) = (f1(u1; �1)
0; :::; fd(ud; �d)

0)0 ; fi(ui; �i) =�
u�i1i ; :::; u

�ipi
i

�0
; for i = 1; :::; d: De�ning p = p1+ :::+pd; the p�1 vectors � and � are

supposed unknown. Any fi(ui; �i) might be absent from f(u; �); when corresponding

�i and �i are void; we proceed as if corresponding pi, and sums over j = 1; :::; pi ; are

zero, avoiding indicator functions to describe such circumstances.

Our consistency proof con�nes the NLSE of � to a compact set. Prescribe an

(arbitrarily small) positive �; and for each i = 1; :::; d, prescribe �i; �i such that

�1=2 < �i < �i <1; and de�ne

�i =
�
h1; :::; hpi : h1 � �i; hj � hj�1 � �; j = 2; :::; pi;hpi � �i

	
; (2.2)

and � =
Qd
i=1�i:We introduce two assumptions which imply identi�ability of � and

�.

Assumption 1 � 2 �:

Assumption 2 �ij = 0 for at most one (i; j) ; �ij 6= 0 for all (i; j) :

Assumption 1 implies

� 1=2 < �i1 < ::: < �ipi <1; i = 1; :::; d: (2.3)
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The ordering in (2.3) is arbitrary, and distinctness of the �ij across j along with the

�rst part of Assumption 2 identi�es �; note that u0i = 1 for all i and that we allow

an intercept but do not require one. The second part of Assumption 2 identi�es �:

GivenN =
Qd
i=1 ni observations on yu; u 2 N = N1�:::�Nd; Ni = (1; :::; ni); de�ne

the NLSE of �; � by
�b�;b�� = argminb2Rp;h2�Q(b; h); whereQ(b; h) =Pu2N fyu � b0f(u;h)g

2 :

Asymptotic theory requires further assumptions. Let Z = fj : j = 0;�1; :::g :

Assumption 3 xu, u 2 Zd, is covariance stationary with zero mean, and its auto-

covariance function, u = cov (xt; xt+u), for the multi-index t = (t1; :::; td)
0, satis�esP

u2Zd juj <1:

Our parameter estimates make no attempt to correct for this possible nonparamet-

ric weak dependence of the xu (permitted also in Assumption 5), and Cressie (1993)

(see e.g. p. 25) stresses the importance of mean function speci�cation relative to

error speci�cation. However, the NLSE turns out to be not only consistency-robust

to spatial correlation but also asymptotically Gauss-Markov e¢ cient.

The next assumption, of increase with algebraic rate of observations in all dimen-

sions, is capable of generalization but is employed for simplicity.

Assumption 4 ni � BiN
bi, i = 1; :::; d, as N ! 1; where Bi > 0, bi > 0,

i = 1; :::; d;
Qd
i=1Bi =

Pd
i=1 bi = 1:

De�ne � ij = bi�ij; and with no loss of generality, identify dimension i = 1 such that

�11 = min
1�i�d

f� i1g ; (2.4)

where, if two or more i satisfy (2.4), an arbitrary choice is made. Note that �11+
1
2
> 0

is implied by �11 + 1
2
> 0:

Theorem 1 Let Assumptions 1-4 hold. Then for j = 1; :::; pi, i = 1; :::; d; as N !1;

�̂ij � �ij = Op
�
N���ij� 1

2

�
; (2.5)
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for any � > 0:

The proof is in Appendix B. As is common with initial consistency proofs a sharp

rate (corresponding to � = 0 in (2.5)) is not delivered (smoothness conditions, in

particular, are not exploited). Theorem 1 is used in the proof of our central limit

theorem (CLT), for which we also need consistency, with a rate, for �̂. We state

this result without the proof, which is a relatively straightforward application of

Theorem 1, techniques used in its proof, and that of Theorem 3 below, and routine

manipulations.

Theorem 2 Let Assumptions 1-4 hold. Then, for j = 1; :::; pi, i = 1; :::; d;

�̂ij = �ij +Op

�
(logN)N���ij� 1

2

�
, as N !1:

The relative rates for the �̂ij and �̂ij in Theorems 1 and 2 are matched by relative

rates that feature in our CLT. For this we introduce �rst

Assumption 5 xu =
P

v2Zd �v"u�v,
P

v2Zd j�vj <1, u 2 Zd; where v is the multi-

index v = (v1; :::; vd)0;
�
"u; u 2 Zd

	
are independent random variables with zero mean

and unit variance,
�
"2u; u 2 Zd

	
are uniformly integrable, and

P
v2Zd �v 6= 0:

Assumption 5 implies Assumption 3, and both imply existence and boundedness of

the spectral density F (�) = (2�)�1
��P

v2Zd �ve
iv0�
��2 of xu; where � is the multi-index

� = (�1; :::; �d)
0; while Assumption 5 implies also F (0) > 0. Stationary invertible

autoregressive moving averages are among time series processes covered by Assump-

tion 5, as are spatial generalizations of these (see e.g. Hallin, Lu and Tran (2001),

Robinson and Vidal Sanz (2006), Tjøstheim (1978, 1983), Yao and Brockwell (2006)).

Mixing conditions, such as ones employed in a spatial context by Gao, Lu and Tjøs-

theim (2006), Hallin, Lu and Yu (2009), Lu, Lundervold, Tjøstheim and Yao (2007),

provide an alternative route for establishing a central limit theorem, but are not
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strictly weaker or stronger than Assumption 5, which we prefer here because xu;

unlike processes considered in the latter references, is involved only linearly.

Let Ir be the r-rowed identity matrix, 
 denote Kronecker product, and introduce

p � p matrices D = N
1
2diag

n
n�111 ; :::; n

�1p1
1 ; :::; n�d1d ; :::; n

�dpd
d

o
; L(s) =

diag fL1(s1); :::; Ld(sd)g ; where Li(si) = (log si)Ipi ; and (2p � 2p) matrices D+ =

I2 
 D and L+ = diag fIp; L(n)g : De�ne � = (�0; �0)0; b� = (b�0; b�0)0: Denote by
Nr(a;A) an r-dimensional normal vector with mean vector a and (possibly singular)

covariance matrix A: Appendix B de�nes the p � p matrix � and p � 2p matrix B

and proves

Theorem 3 Let Assumptions 1, 2 and 5 hold. Then as N !1;

D+L
�1
+ (b�� �)!d N2p

�
0; 2�F (0)B0��1B

�
:

3. FINITE-SAMPLE PROPERTIES

A small Monte Carlo study provides some information on �nite sample performance.

Issues of concern, given unknown �, are bias and variability of the NLSE, and accuracy

of large sample inference rules suggested by Theorem 3. We employed (2.1) with

d = 2, p1 = p2 = 1, picking 2 (�1; �2) = (�11; �21) combinations - (1; 1), (0:5; 2) - but

throughout took �i1 = [�0:45; 4], �i = �i1 = 1, i = 1; 2. We varied N absolutely and

also the relative n1; n2, taking n1; n2 = (8; 12); (10; 10); (11; 20); (15; 15).

Our �rst experiment took the xu to be iid N1 (0; 1) variables. Tables 1 and 2

report, for the respective parameter combinations, bias (BIAS), mean squared error

(MSE), and empirical size at 5% (SIZE5) and 1% (SIZE1) for the NLSE �̂i, �̂i; and

also ~�i; the LSE of �i that correctly assumes �, for i = 1; 2, across 1000 replications.

The sizes were proportions of signi�cant estimates, using normal critical values scaled

by estimated standard deviations, which in case of the �̂i, �̂i were computed on the

basis of Theorem 3 with current parameter estimates replacing true values of �; �,
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and 2�F (0) replaced by the sum of squared residuals divided by N (so the spatial

independence of the xu was treated as known, as it was also in the, conventional,

scaling used for the ~�i).

The tables reveal a de�nite inferiority of the NLSE relative to the LSE, but un-

surprisingly, as the LSE is exactly unbiased, more e¢ cient, and yields exact critical

regions. Though the NLSE-based tests on � are nearly always over-sized, this phe-

nomenon diminishes with increased N , and overall the discrepancy between the per-

formances of the two classes of � estimate does not seem very serious. There is also

a predominate over-sizing of the tests on �, but again this falls as N increases, and

in Table 2, in particular, it is often modest. There is a tendency for the NLSE to

over-estimate, but for � biases only exceed 2% of the parameter value when ni = 8,

ni = 12, and for � they never reach 1%, while overall they mostly fall with increasing

N , as does the MSE. In Table 2, the results are not in line with what the rates in

Theorem 3 suggest, because the fall in MSE is greater for �̂2 and �̂2 than for �̂1 and

�̂1, despite the fact that �1 = 2 and �2 = 1
2
. Nevertheless, it is not clear to what

extent one would expect asymptotic theory to predict comparisons at this level of re-

�nement in such sample sizes. Note too that the Monte Carlo results are also di¢ cult

to judge relative to the theory because the various ni did not result from �xing the

bi and Bi and then increasing n, but were chosen with a view to representing some

variability in n, and in relative to n1 and n2. In addition, the convergence rates of

�̂i and �̂i do not only depend on ni, but on the overall n. Other of the results are

more closely in line with the asymptotic theory. This is the case in Table 1, where,

with �1 = �2 = 1, the above MSE ratios are sometimes greater for �̂2 and/or �̂2 and

sometimes less. It is also the case in Table 2 for the LSE ~�i, though, as elsewhere,

comparisons are sometimes di¢ cult as a number of MSEs are zero to 3, and even to

4 (unreported here) decimal places.
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Table 1: �1 = 1; �2 = 1; �1 = 1; �2 = 1; �
2 = 1; xu iid

n1 n2 b�1 b�2 b�1 e�1 b�2 e�2
8 12

BIAS

MSE

SIZE5

SIZE1

0.008

0.016

0.100

0.044

0.007

0.007

0.125

0.048

0.024

0.080

0.151

0.075

0.000

0.001

0.048

0.010

0.017

0.051

0.166

0.084

0.000

0.000

0.055

0.010

10 10

BIAS

MSE

SIZE5

SIZE1

0.005

0.010

0.132

0.055

0.009

0.009

0.132

0.050

0.016

0.060

0.180

0.084

-0.001

0.006

0.053

0.015

0.009

0.063

0.186

0.090

0.002

0.007

0.051

0.011

11 20

BIAS

MSE

SIZE5

SIZE1

-0.002

0.003

0.086

0.030

0.002

0.001

0.104

0.039

0.016

0.022

0.115

0.051

0.000

0.000

0.039

0.005

-0.007

0.010

0.120

0.049

0.000

0.000

0.051

0.012

15 15

BIAS

MSE

SIZE5

SIZE1

0.003

0.002

0.074

0.024

0.002

0.002

0.075

0.022

0.006

0.013

0.108

0.033

0.000

0.000

0.043

0.010

-0.001

0.013

0.103

0.037

0.000

0.000

0.039

0.010
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Table 2: �1 = 2; �2 = 1=2; �1 = 1; �2 = 1; �
2 = 1; ; xu iid

n1 n2 b�1 b�2 b�1 e�1 b�2 e�2
8 12

BIAS

MSE

SIZE5

SIZE1

0.008

0.014

0.063

0.028

0.001

0.001

0.060

0.012

0.024

0.071

0.087

0.038

0.003

0.005

0.077

0.029

-0.002

0.001

0.053

0.014

-0.000

0.000

0.090

0.034

10 10

BIAS

MSE

SIZE5

SIZE1

0.008

0.013

0.069

0.033

0.000

0.003

0.057

0.013

0.020

0.074

0.101

0.047

0.004

0.004

0.058

0.015

0.000

0.001

0.065

0.017

-0.000

0.000

0.039

0.009

11 20

BIAS

MSE

SIZE5

SIZE1

0.005

0.005

0.052

0.017

-0.000

0.000

0.054

0.012

-0.001

0.028

0.069

0.017

-0.002

0.002

0.030

0.012

0.000

0.000

0.059

0.011

0.000

0.000

0.041

0.006

15 15

BIAS

MSE

SIZE5

SIZE1

0.002

0.004

0.058

0.018

0.001

0.001

0.044

0.011

0.004

0.025

0.070

0.019

0.001

0.001

0.081

0.019

0.004

0.000

0.043

0.010

0.000

0.000

0.055

0.020

Next we considered the e¤ect of dependence, employing three di¤erent models for

xu, again with d = 2. All models entailed weak dependence, with varying spans, but

in the �rst dependence was negative, so that the spectral density at zero was small,

whereas in the other two it was positive, producing a peaked spectral density. In the

following, "u � iid N1 (0; 1) :

1. Multiple direction MA(1):

xu = "u � 0:12

1X
j=�1

1X
k=�1

(j;k) 6=0

"u1+j;u2+k; ui = 1; :::; ni, i = 1; 2: (3.1)
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2. Multilateral MA(4), no interactions:

xu = "u +

4X
j=�4
j 6=0

ajjj ("u1+j;u2 + "u1;u2+j) ; ui = 1; :::; ni, i = 1; 2; (3.2)

for a1 = 0:14, a2 = 0:12, a3 = 0:1, a4 = 0:08:

3. Bilateral MA(9), on diagonal:

xu = "u +

9X
j=�9
j 6=0

(0:95)jjj"u1+j;u2+j; ui = 1; :::; ni, i = 1; 2: (3.3)

For the same parameter values as before, bias and MSE of the LSE and NLSE are

presented in Tables 3-8, with Tables 3 and 4 referring to (3.1), Tables 5 and 6 to (3.2),

and Tables 7 and 8 to (3.3). As before the LSE ~�1; ~�2 are exactly unbiased, as the

Monte Carlo results tend to illustrate. However, perhaps surprisingly, the dependent

model (3.3) produces some very large biases in the NLSE �̂1, though not so much in

�̂2; �̂1; �̂2, and for the other dependence models the NLSE biases are not necessarily

greater than under independence. The MSE magnitudes are not directly comparable

to those of Tables 1 and 2, because scales were not calibrated, but a similar overall

picture emerges: the NLSE of � often has much greater MSE than the LSE, but

this falls with increasing N , as does that of the NLSE of �. In Tables 4, 6 and 8,

where �1 = 2, �2 = 1
2
, the same somewhat surprising feature as noted in Table 2

appears, with �̂1 and �̂1 improving less than �̂2 and �̂2 with increasing n, and the

only additional point to add to our previous discussion is that convergence is often

expected to be slowed by dependence.
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Table 3: �1 = 1; �2 = 1; �1 = 1; �2 = 1; �
2 = 1; xu = (3.1)

n1 n2 �̂1 �̂2 �̂1
~�1 �̂2

~�2

8 12
BIAS

MSE

0.005

0.006

0.003

0.003

0.006

0.031

0.000

0.000

0.002

0.021

-0.000

0.000

10 10
BIAS

MSE

0.005

0.003

0.001

0.003

0.001

0.023

0.000

0.000

0.008

0.023

-0.000

0.000

11 20
BIAS

MSE

0.001

0.001

0.0001

0.000

0.001

0.006

-0.000

0.000

0.001

0.003

0.000

0.000

15 15
BIAS

MSE

0.002

0.000

-0.001

0.000

-0.003

0.004

-0.000

0.000

0.005

0.004

0.000

0.000

Table 4: �1 = 2; �2 = 1=2; �1 = 1; �2 = 1; �
2 = 1; xu = (3.1)

n1 n2 �̂1 �̂2 �̂1 ~�1 �̂2 ~�2

8 12
BIAS

MSE

0.003

0.003

0.000

0.000

0.003

0.017

-0.000

0.001

-0.000

0.000

0.000

0.000

10 10
BIAS

MSE

-0.003

0.003

0.000

0.000

0.014

0.018

-0.001

0.001

-0.001

0.000

0.000

0.000

11 20
BIAS

MSE

-0.000

0.001

0.000

0.000

0.003

0.004

0.000

0.000

-0.000

0.000

-0.000

0.000

15 15
BIAS

MSE

-0.001

0.000

0.000

0.000

0.005

0.004

0.001

0.000

-0.000

0.000

-0.000

0.000
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Table 5: �1 = 1; �2 = 1; �1 = 1; �2 = 1; �
2 = 1; xu = (3.2)

n1 n2 �̂1 �̂2 �̂1
~�1 �̂2

~�2

8 12
BIAS

MSE

0.032

0.050

0.020

0.026

0.053

0.249

-0.001

0.004

0.035

0.169

0.000

0.002

10 10
BIAS

MSE

0.029

0.031

0.020

0.031

0.017

0.181

-0.005

0.003

0.047

0.177

0.003

0.003

11 20
BIAS

MSE

0.010

0.013

0.003

0.004

0.017

0.091

-0.001

0.001

0.015

0.045

0.001

0.000

15 15
BIAS

MSE

0.008

0.007

0.007

0.008

0.006

0.059

-0.001

0.00

0.014

0.060

0.000

0.001

Table 6: �1 = 2; �2 = 1=2; �1 = 1; �2 = 1; �
2 = 1; xu = (3.2)

n1 n2 �̂1 �̂2 �̂1 ~�1 �̂2 ~�2

8 12
BIAS

MSE

0.064

0.115

0.001

0.000

0.048

0.272

0.005

0.024

-0.001

0.003

-0.000

0.000

10 10
BIAS

MSE

0.067

0.111

-0.001

0.001

0.023

0.267

-0.002

0.019

0.005

0.005

0.000

0.000

11 20
BIAS

MSE

0.019

0.027

0.000

0.000

0.035

0.151

0.000

0.009

-0.001

0.000

0.000

0.000

15 15
BIAS

MSE

0.008

0.020

0.000

0.000

0.046

0.143

-0.002

0.007

-0.001

0.001

0.000

0.000

14



Table 7: �1 = 1; �2 = 1; �1 = 1; �2 = 1; �
2 = 1; xu = (3.3)

n1 n2 �̂1 �̂2 �̂1 ~�1 �̂2 ~�2

8 12
BIAS

MSE

0.074

0.129

0.096

0.157

0.154

0.738

0.008

0.048

0.091

0.549

-0.004

0.024

10 10
BIAS

MSE

0.041

0.080

0.069

0.097

0.105

0.455

-0.008

0.033

0.050

0.371

0.008

0.032

11 20
BIAS

MSE

0.016

0.043

0.036

0.032

0.134

0.462

0.0010

0.014

0.017

0.232

-0.000

0.005

15 15
BIAS

MSE

0.013

0.026

0.024

0.026

0.061

0.214

-0.003

0.009

0.028

0.182

0.002

0.009

Table 8: �1 = 2; �2 = 1=2; �1 = 1; �2 = 1; �
2 = 1; xu = (3.3)

n1 n2 �̂1 �̂2 �̂1
~�1 �̂2

~�2

8 12
BIAS

MSE

0.063

0.518

-0.000

0.003

0.100

1.217

0.014

0.291

0.009

0.019

-0.000

0.000

10 10
BIAS

MSE

0.098

0.512

-0.000

0.003

0.118

0.912

0.009

0.222

0.008

0.016

-0.000

0.000

11 20
BIAS

MSE

-0.037

0.275

-0.002

0.000

-0.007

1.059

-0.001

0.128

0.008

0.004

0.000

0.000

15 15
BIAS

MSE

0.054

0.226

0.000

0.000

0.128

0.616

-0.001

0.086

0.001

0.003

0.000

0.000

4. FINAL COMMENTS

1. For known �; long-established techniques (see e.g. Anderson (1971, §2.6)) give

D
�
�̂(�)� �

�
!d Np (0; 2�F (0)�

�1) (where � is de�ned near the start of Appendix B below), so

ignorance of � incurs not only e¢ ciency loss, but slightly slower convergence. Theorem
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3 also implies a singularity in the limit distribution, whose covariance matrix has rank

p only. This is due to bias in �̂, which on expansion is seen to have a term linear in

�̂� � that dominates the contribution from
P

u2N f(u; �)xu. Nevertheless Theorem 3

does provide separate inference on � (moreover one can conduct joint inference that

does not cover both �ij and �ij for any (i; j)), though given Assumption 1 we cannot

test zero restrictions on �. In our setting � may be of less initial interest than �, and

Theorem 3 allows inference on � with �̂ converging slightly faster than b�, and at what
appears to be the optimal rate for this problem.

2. If independence of the xu is not assumed, the limiting covariance matrix in

Theorem 3 can be consistently estimated (under additional conditions) by replacing

F (0) by a parametric or smoothed nonparametric estimate based on NLSE residuals.

3. The form of the limiting covariance matrix in Theorem 3, with dependence

simply re�ected in the scale factor 2�F (0); suggests that a generalized NLSE, which

corrects parametrically or nonparametrically for correlation in xu; a¤ords no e¢ ciency

improvement (cf. §7.4 of Grenander and Rosenblatt (1984)).

4. On the other hand, our estimates are not Fisher-e¢ cient for non-Gaussian

xu: Departures from Gaussianity might be detected by, for example, nonparamet-

ric probability density estimation based on NLSE residuals; Hallin, Lu and Tran

(2001) studied density estimation for linear lattice processes. More e¢ cient parame-

ter estimates could be obtained by M -estimation using a correctly parameterized "u

distribution, or adapting semiparametrically to a nonparametric one, in either case

employing parametric f�vg or approximating them via a long autoregression. The

extra proof details would be far from trivial, but convergence rates should be unaf-

fected, with the limiting covariance matrix of Theorem 3 simply shrunk by a scalar

factor.

5. Another extension allows long or negative memory, in xu; bearing in mind results

of Yajima (1988) for (1.1) with known integer �i; and Yajima andMatsuda (2008); this
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would a¤ect all convergence rates by the same scalar factor, the e¢ ciency property

in comment 3 is lost, and negative �ij, and corresponding �ij, may not be estimable.

6. In an alternative formulation to (1.1) u�j is replaced by (u=N)�j ; con�ning the

regression to the unit interval; and (2.1) can be analogously modi�ed. Consistency is

then much easier to prove, all exponent estimates being
p
N�consistent. A similar

device is employed in �xed-design nonparametric regression, but unlike there it is not

essential in order to achieve consistency in our parametric setting, where we �nd it

aesthetically unattractive given that xu is de�ned on an increasing domain.

7. The results are straightforwardly extended to allow some �ij in (2.1) to be

known, for example to specify an intercept by �11 = 0, though the norming factor

and limit covariance matrix in Theorem 3 are a¤ected.

8. Our notation suggests constant spacing between observations across all d dimen-

sions, but allowing interval of observation to vary with dimension a¤ects each �ij by

a factor depending also on the corresponding �ij, but not the �ij themselves.

9. Irregular spacing of observations, either due to missing from an otherwise reg-

ular lattice, or with observations occurring anywhere on Rd, can also be considered.

In both of these settings asymptotic theory requires a degree of regularity in the ob-

servation locations, ruling out situations where observations become too sparse, for

example. Given this, the extension is relatively simple with independent xu. Under

dependence, asymptotic variance formulae will be complicated by the irregular spac-

ing and the e¢ ciency property of comment 3 is lost, but in addition di¤erent kinds

of assumptions from ours on the errors xu may be needed. In the case of missing

data from an otherwise regular lattice, our Assumptions 3 (for consistency) and 5

(for asymptotic normality) should still su¢ ce. But for observations anywhere on Rd

it would be appropriate to consider an underlying continuous process. Then for

consistency a suitable ergodicity property would be needed, whereas for asymptotic

normality leading possibilities that can entail weak dependence analogous to that
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of Assumption 5 incude suitable linear functionals of Browniam motion and mixing

conditions.

10. A Bayesian treatment would be worthwhile, with suitable priors placed on the

exponents and possibly also the coe¢ cients.

11. When d � 2 a more realistic model than (2.1) might allow interaction terms,

i.e. products of powers of ui and uk, i 6= k. Our proof methods are extendable,

but from a practical perspective the curse of dimensionality threatens, and the issue

of parsimonious speci�cation, already posed by (2.1), becomes more pressing. A

penalized procedure could be used.

12. Modi�ed model classes might provide an alternative route to parsimony; for

example one might take pi = 1 with �i1u
�i1
i1 replaced by �i1 (ui1 + �it)

�i1 for known

or unknown �i1 (cf. Example 3 of Wu (1981)). Trigonometric factors might also be

incorporated (cf. §7.5 of Grenander and Rosenblatt (1984)).

13. For alternative classes of trending model, for example involving wavelets,

asymptotic estimation theory might be handled by similar techniques.

14. An alternative practically relevant modelling of the xu treats them as het-

eroscedastic but possibly independent. Broadly similar proof techniques would pro-

vide corresponding results to ours, but the NLSE is less e¢ cient than a suitably

weighted estimate.

15. Though we have focussed on (1.1) and (2.1) to �x ideas, our methods and theory

can be developed to cover models which incorporate power law trends along with other

explanatory variables, both stochastic and nonstochastic, such as extensions of the

nonparametric and semiparametric spatial regressions considered by Gao, Lu and

Tjøstheim (2006), Lu, Lundervold, Tjøstheim and Yao (2006), and so the paper can

be viewed as introducing machinery relevant to a wide variety of settings.
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APPENDIX A: GENERIC CONSISTENCY THEOREM

We present a consistency theorem for a general implicitly-de�ned extremum esti-

mate under unprimitive conditions which will be checked in the paper�s setting, and

seem capable of checking in a number of others. As this appendix is self-contained

there seems no risk of confusion in employing notations that are similar to those

elsewhere in the paper but can have slightly di¤erent meanings. We estimate the

p � 1 vector parameter �; with elements �i, i = 1; :::; p; by �̂ = arg minh2�R(h);

where R(h) : Rp ! R depends on sample size N and � � Rp is a �xed compact

set: For positive scalars Ciw; i = 1; :::; p; w = 1; 2; :::; depending on N and such that

Ciw � Ci;w+1, i = 1; :::; p, de�ne Cw = (C1w; :::; Cpw)0, and

Ni(Ciw) = fhi : jhi � �ij < Ciwg ; N (Cw) =
pQ
i=1

Ni(Ciw);

�N (Cw) = �nN (Cw); Sw = �N (Cw) \N (Cw+1): (A.1)

Theorem A. Assume:

(i) � � N (CW+1) for a �nite integer W and N su¢ ciently large;

(ii) there exist positive s1; ; : sW and U(h); V (h) such that R(h) = R(�) + U(h) +

V (h) and s1 < ::: < sW ; and as N !1, s1 !1 and

P

�
inf
h2Sw

U(h)

sw
> �

�
! 1, some � > 0; (A.2)

sup
h2Sw

jV (h)j
sw

= op(1): (A.3)

Then

�̂ = � +Op(C1); as N !1;

where Op(C1) is a p� 1 vector with i-th element Op(Ci1).

Proof We show that P
�
�̂ 2 �N (C1)

�
! 0 as N ! 1. By a standard kind of

argument

P
�
�̂ 2 �N (C1

�
) � P

�
inf

h2 �N (C1)
fR(h)�R(�)g � 0

�
:
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Under (i), �N (C1) � �N (C1) \ N (CW+1) = [Ww=1Sw: Thus the last probability is

bounded by

WP
w=1

P

�
inf
h2Sw

�
R(h)�R(�)

sw

�
� 0
�
�

WP
w=1

P

�
sup
h2Sw

jV (h)j
sw

� inf
h2Sw

U(h)

sw

�
;

which is bounded by

WP
w=1

�
P

�
sup
h2Sw

jV (h)j
sw

> �

�
+ P

�
inf
h2Sw

U(h)

sw
� �
��

; (A.4)

which tends to zero on applying (A.2) and (A.3). �
Three comments are relevant. (1) In the setting of the rest of the paper U can be

chosen nonstochastic but this is not possible in the context of such stochastic trends

as unit roots, where the more general (A.2) is useful. (2) An almost sure convergence

version of Theorem A is possible under suitably strengthened versions of (A.2) and

(A.3). (3) By comparison with our decomposition of �N (C1) into S1; :::;SW ; van de

Geer (2000) (see e.g. pp. 69, 70) employed a "peeling device" to obtain an exponential

inequality for supg2G fjZN(g)j =� (g)g ; where ZN(g) is a stochastic process, � (g)

is a non-negative function and the set G is "peeled o¤" as
SJ
j=1 Gj; where Gj =

fg 2 G : mj�1 � �(g) < mjg ; for an increasing sequence fmjg and J need not be

�nite. Thus supg2Gj fjZN(g)j =� (g)g �
�
supg2G; �(g)<mj

jZN(g)j
	
=mj�1 and only the

supremum of the numerator of the original statistic need be approximated. There is

no denominator like � (g) in our problem, and our decomposition of �N (C1) is designed

to suitably balance U(h) and V (h) on each Sw to enable choices of the sw that make

all W summands in (A.4) small.
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APPENDIX B: DEFINITIONS AND PROOFS OF

THEOREMS

To de�ne�; introduce �rst, for i = 1; :::; d; the pi�1 vector �i(gi) with j�th element

(gij + 1)
�1 and the pi � pi matrix �i(gi; hi) with (j; k)� th element (gij + hik + 1)�1

for gi = (gi1; :::; gipi)
0, hi = (hi1; :::; hipi)

0 ; where gij; hij > �1=2 for all i; j: For

g = (g01; :::; g
0
d)
0; h = (h01; :::; h

0
d)
0; introduce the p � p matrix �(g; h) with (i; j) � th

pi� pj block �i(gi; hi) when i = j and �i(gi)�j(hj)0 when i 6= j. Denote � = �(�; �).

Writing �i = �i(�i), �i = �i(�i; �i), de�ne p � p matrices �+; �++ with (i; j) � th

pi�pj block �i��i; 2�i��i��i when i = j and �i
�
�j � �j

�0
; (�i � �i)

�
�j � �j

�0
when

i 6= j; where "�" denotes Hadamard product. Put � = �++ � �0+��1�+: De�ne

B =
�
��1� ;�Ip

�
; where �� is the p � p diagonal matrix such that ��1p = � and 1p

is the p� 1 vector of 10s.

Proof of Theorem 1 We have b� = argminh2�R(h) ; b� = b�(b�); where
R(h) = Q(b�(h); h); b�(h) =M(h; h)�1 fM(h; �)� +m(h)g

for M(g; h) =
P

u2N f(u; g)f(u;h)
0; m(h) =

P
u2N f(u;h)xu: The subsequent proof

implies that after suitable norming M(h; h) is well-conditioned for relevant h and

large N . In Theorem A take U(h) = �0D	(h)D�; V (h) = V1(h)�fV2(h)� V2(�)g�

fV3(h)� V3(�)g ; for V1(h) = � f0P (h)�D	(h)Dg �; V2(h) = 2m(h)0M(h; h)�1M(h; �)�;

V3(h) = m(h)
0M(h; h)�1m(h); with 	(h) = �(�; �)��(�; h)�(h; h)�1�(h; �); P (h) =

M(�; �)�M(�; h)M(h; h)�1M(h; �): De�ne, for j = 1; :::pi; i = 1; :::; d; and a �niteW;

positive scalars Cijw; w = 1; :::;W; such that Cijw � Cij;w+1 for each such w: De�ne

Cw = (C11w; :::; C1p1w; :::; Cd1w; :::; Cdpdw) ; w = 1; :::;W + 1: (B.1)

De�ne neighbourhoods Nij(Cijw) = fhij : jhij � �ijj < Cijwg ; j = 1; :::pi; i = 1; :::; d;
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w = 1; :::;W + 1. Finally de�ne, for w = 1; :::;W + 1;

N (Cw) =
dQ
i=1

piQ
j=1

Nij(Cijw); (B.2)

and then �N (Cw); Sw as in (A.1). Take Cij1 = N���ij� 1
2 � B�iji N�� 1

2n
��ij
i ; j = 1; :::pi;

i = 1; :::; d; so we need to show that P
�
�̂ 2 �N (C1)

�
! 0 as N !1. We check (i)

and (ii) of Theorem A , where (A.2) reduces to the requirement infh2Sw U(h)=sw > �

for large enough N and � as in (A.2). From (B.1) and (B.2),

Sw � � \ Tw;

where

Tw =
d
[
i=1

pi[
j=1
fhij : jhij � �ijj � Cijw;hkl : hkl 2 (�1=2;1); all (k; l) 6= (i; j)g :

It follows from Proposition 1 that

inf
h2Sw

U(h) � ��Nmin
i;j
�2ij

dP
i=1

piP
j=1

n
2�ij
i C2ijw �

�

p

dP
i=1

piP
j=1

N1+2�ijC2ijw:

Thus (A.2) is satis�ed when

dP
i=1

piP
j=1

N1+2�ijC2ijw � psw: (B.3)

Next, (A.3) is implied if

sup
h2Sw

jV1(h)j = o(sw); (B.4)

sup
h2Sw

jV2(h)� V2(�)j = op(sw); (B.5)

sup
h2Sw

jV3(h)j = op(sw); (B.6)

as N ! 1: (Note that in (B.5) we are considering the di¤erence V2(h) � V2(�)

for h suitably close to � and this closeness is important in obtaining the desired

result, whereas in in the usual kind of consistency proof, for standard, non-mixed
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rate settings, one more simply shows the convergence to zero in probability of a

suitably normalized V2(h); uniformly in h 2 � . Now (B.6) follows from Proposition

4, while (B.4) and (B.5) follow from Propositions 2 and 3 respectively, if

dP
i=1

piP
j=1

N1+2�ij���C2ij;w+1 = o(sw); (B.7)

where �� = min [min1�i�d fbi=2 + min (bi�i; 0)g ; 2�] (implying �� > 0) and

dP
i=1

piP
j=1

N
1
2
+�ij+"Cij;w+1 = o(sw); (B.8)

for some " > 0:

It remains to show that we can chooseW and the sw; Cijw; to satisfy (i) of Theorem

A and (B.3), (B.7) and (B.8). Now (B.3) holds for w = 1 if s1 = N2�; and for w > 1

if

sw = s1N
(w�1)��=2 = N2�+(w�1)��=2;

Cijw = Cij1N
(w�1)��=4 = N���ij� 1

2
+(w�1)��=4; j = 1; :::pi; i = 1; :::; d:

Since

N1+2�ijC2ij1 = s1; N
1+2�ij���C2ij;w+1 = s1N

(w=2�1)�� = swN
���=2

for all i; j, (B.7) is satis�ed. For all i; j,

N
1
2
+�ij+"Cij;w+1 = N

�+"+w��=4 = swN
"��+��=4+(1�w)��=4 = o(sw);

on taking " < � � ��=4, to satisfy (B.8). Finally, for all i; j; though Cij1 ! 0 as

N ! 1 (no matter how small ��, or how large � ij); we have Cijw ! 1 as N ! 1

for large enough w; so there is a �nite W to satisfy (i) of Theorem A. �

Proof of Theorem 2. Omitted. �
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Proof of Theorem 3. Put a = (h0; b0)0, Q(a) = Q(h; b), and de�ne Q(1)(a) =

(@=@a)Q(a), Q(2)(a) = (@=@a0)Q(1)(a). We have

L+Q
(1)(a) = �2

P
u2N

fyu � b0f(u;h)gH(u;h; b);

whereH(u;h; b) =
�
(L(u)f(u;h) � b)0 ; (Lf(u;h))0

�0
with L = L(n); and L+Q(2)(a)L+ =P3

i=1Q
(2)
i (a);with

Q
(2)
1 (a) = 2

P
u2N

H(u;h; b)H(u;h; b)0;

Q
(2)
2 (a) = 2

P
u2N

fb0f(u;h)� �0f(u; �)g J(u;h; b);

Q
(2)
3 (a) = �2

P
u2N

xuJ(u;h; b);

in which J(u;h; b) is the 2p � 2p symmetric matrix with (i; j) � th p � p block

L(u)f�(u;h)L(u)b� for i = j = 1; L(u)f�(u;h)L for i = 1; j = 2; and 0 for i = j = 2;

b�, f�(u; h) being the p�p diagonal matrices such that b = b�1p, f(u;h) = f�(u;h)1p.

By the mean value theorem

D+L
�1
+ (�̂� �) =

�
D�1
+ L+

~Q(2)L+D
�1
+

��1
D�1
+ L+Q

(1)(�); (B.9)

where ~Q(2) is formed from Q(2)(a) by evaluating its i-th row at a = ��(i), where��(i) � � � k�̂� �k, i = 1; :::; 2p. By Proposition 5 (B.9) is�
D�1
+ L+Q

(2)(�)L+D
�1
+ +Op(logN)

�2	�1D�1
+ L+Q

(1)(�):

Let B� = diag
�
��1� ;�Ip

�
and � be the 2p � 2p matrix with p � p blocks �11 = 0;

�21 = �
0
12 = L

�1�; �22 = �L�1�� �0L�1; with � = ��1�+��1: Noting Proposition

6 and the representations

BD�1
+ L+Q

(1)(�) = 2N� 1
2
P
u2N

fL(u)� LgD�1f(u; �)xu;

B��B�D
�1
+ L+Q

(1)(�) = �2N� 1
2
P
u2N

h�
��1� �

0�0 ; �L�1� fL(u)� Lg � �0�0i0
�D�1f(u; �)xu;
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we obtain from (B.9)

D+L
�1
+ (�̂� �) = �N� 1

2B
P
u2N

�
��1fL(u)� Lg+ �0

�
D�1f(u; �)xu

�N� 1
2
P
u2N

h
0;
�
L�1�fL(u)� LgD�1f(u; �)xu

�0i0
+Op

�
(logN)�2

�
N� 1

2
P
u2N

�
(��L(u))

0 ; L
�0
D�1f(u; �)xu:

The last two terms are Op((logN)�1) by application of Lemmas 15 and 10

respectively. The proof is completed by applying Proposition 7 to the �rst

term. �

APPENDIX C: PROPOSITIONS

Proposition 1 For all Cw given by (B.1) such that Cijw > 0, j = 1; :::; pi, i =

1; :::; d, there exists �� > 0 such that, for all � 2 �

inf
h2N (Cw)

U(h) � ��N
dP
i=1

piP
j=1

�2ijn
2�ij
i C2ijw:

Proof. Nonsingularity of �(h; h) for h 2 �, and

sup
�

�(h; h)�1 � K; (C.1)

where K throughout denotes a �nite, positive generic constant, follow from Lemmas

2 and 3, numerators of elements of the inverse being bounded and denominators

bounded away from zero. Now 	(h) =
�
(Ip; 0) �(h)

�1 (Ip; 0)
0��1 ; where the 2p � 2p

matrix �(h) has (i; j) � th p � p submatrix �(�1(i = 1) + h1(i = 2); �1(i = 1) +

h1(i = 2)); 1(:) denoting the indicator function and �(h)�1 existing on N (Cw) as

implied below. Introduce the 2p � 2p orthogonal permutation matrix � de�ned by

�(12
a) = ((102 
 a01); :::(102 
 a0d))
0 ; for any p�1 vector a with i�th pi�1 subvector

ai: Then ��(h)�0 has the form of T in Lemmas 2 or 3.
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In the Lemma 2 situation, where no �ij is zero and no hij is zero on N (Cw), we

have ri = 2pi, r = 2p, and vik = �ik, k = 1; :::; pi, vik = �i;k�pi, k = pi + 1; :::; 2pi.

Denoting Ei(h) = diag f�i1 � hi1; :::; �ipi � hipig and ei(h) = diag fEi(h);�Ei(h)g ;

e(h) = diag fe1(h); :::; ed(h)g ; inspection of the results of Lemma 2 indicates that we

may write (��(h)�0)�1 = e(h)�1Ge(h)�1; where the p � p matrix G is nonsingular

and bounded on N (Cw). Then

	(h) = (Ip; 0)�
0e(h)�1Ge(h)�1�(Ip; 0)

0 = E(h) ~G�1E(h);

where E(h) = diag fE1(h); :::; Ed(h)g ; ~G = (Ip; 0)�
0G�(Ip; 0)

0 : Thus U(h) =

�0DE(h) ~G�1E(h)D� � �0D2E(h)2�=tr( ~G); whence the result follows by bounded-

ness of ~G and infhij2N (Cijw) (�ij � hij)
2 = C2ijw.

The details in the Lemma 3 setting, in which either �ij = 0 for one (i; j), or hij can

be zero on N (Cw) for one (i; j), are too similar to warrant inclusion.

Proposition 2

sup
h2N (Cw)

jV1(h)j � K
dP
i=1

piP
j=1

: N 1+2�ij���C 2
ijw: (C.2)

Proof. De�ne D(h) = Ndiag
n
nh111 ; :::; n

h1pi
1 ; :::; nhd1d ; :::; nhdpdd

o
, so D = D(�); and

~M(g; h) = D(g)�1M(g; h)D(h)�1, also F1(h) = ~M(�; �)� ~M(�; h)� ~M(h; �)+ ~M(h; h);

F2(h) =
n
~M(�; h)� ~M(h; h)

o
~M(h; h)�1

n
~M(h; �)� ~M(h; h)

o
; so we have the iden-

tity D�1P (h)D�1 = F1(h)� F2(h): Likewise, 	(h) = 	1(h)�	2(h), where

	1(h) = �(�; �)� �(�; h)� �(h; �) + �(h; h);

	2(h) = f�(�; h)� �(h; h)g�(h; h)�1 f�(h; �)� �(h; h)g :

Thus V1(h) = V11(h) � V12(h); where V1i(h) = �0D fFi(h)�	i(h)gD�; i = 1; 2:
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Now V1i(h) is bounded by

KN
dP
i=1

piP
j=1

piP̀
=1

n
�ij+�i`
i

���� 1ni niP
ui=1

vij(ui=ni)vi`(ui=ni)�
1R
0

vij(x)vi`(x)dx

����
+KN

dP
i=1

piP
j=1

dP
k=1

pkP̀
=1

n
�ij
i n

�k`
k jevijevk` � vijvk`j ;

where vij(x) = v (x; �ij; hij) ; vij =
R 1
0
vij(x)dx; evij = n�1i

Pni
ui=1

vij(ui=ni): From

Lemma 8 the �rst modulus is bounded by

K jhij � �ijj jhi` � �i`j (log ni)2=n1+min(2�i;0)i � KN ��

because log ni � logN; n
1+min(2�i;0)
i =

�
BiN

bi
�1+min(2�i;0) � N2��=K: The second

modulus is bounded by

jevij � vijj jevk`j+ jevk` � vk`j jvijj : (C.3)

Now

jevk`j � � 1
nk

nkP
uk=1

vk` (uk=nk)
2

� 1
2

; jvijj �
�

1R
0

vij (x)
2 dx

� 1
2

;

so from Lemmas 6, 7 and 8, (C.3) is bounded by

K

(
(log ni)

2

n
1+min(�i;0)
i

+
(log nk)

2

n
1+min(�k;0)
k

)
jhij � �ijj jhk` � �k`j ;

and the expression in braces is bounded by N���. Thus by elementary inequalities,

suph2N (Cw) jV1i(h)j has the bound (C.2). Next, F2(h)�	2(h) isn
~M(�; h)� ~M(h; h)� �(�; h) + �(h; h)

o
~M(h; h)�1

n
~M(h; �)� ~M(h; h)

o
+ f�(�; h)� �(h; h)g

n
~M(h; h)�1 � �(h; h)�1

on
~M(h; �)� ~M(h; h)

o
+ f�(�; h)� �(h; h)g�(h; h)�1

n
~M(h; �)� ~M(h; h)� �(h; �) + �(h; h)

o
:

(C.4)
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The �nal factor times D� has norm bounded by

KN
1
2

dP
i=1

piP
j=1

���� piP̀
=1

n�i`i

�
1

ni

nkP
uk=1

vij (ui=ni) (ui=ni)
hi` �

1R
0

vij (x)x
hi`dx

�����
+KN

1
2

dP
i=1

piP
j=1

����� dPk=1
pkP̀
=1

n�k`k

(evij 1
nk

nkX
uk=1

(uk=nk)
hk` � vij

1R
0

xhk`dx

)����� : (C.5)

The �rst term in braces is

1

ni

niX
ui=1

v

�
ui
ni
; �ij + hi`; hij + hi`

�
�

1R
0

v (x; �ij + hi`; hij + hi`) dx:

By Lemma 8, this is bounded by

K j�ij + hi` � hij � hi`jN��� � K j�ij � hijjN��� :

After rearrangement as before, and application also of Lemma 8, the second term

in braces in (C.5) has the same bound. Thus (C.5) is bounded over h 2 N (Cw) by

K
Pd

i=1

Ppi
j=1N

1
2
+�ij���Cijw: On the other hand, using Lemma 6,

k�0D f�(�; h)� �(h; h)gk � K
dP
i=1

niP
j=1

N
1
2
+�ijCijw (C.6)

uniformly in h 2 N (Cw). Using (C.1), the contribution to V2i(h) has the bound in

(C.2). To deal with the contributions from the other two terms in (C.4), standard

manipulations indicate that it su¢ ces to show also that

sup
h2N (Cw)

n ~M(h; �)� ~M(h; h)
o
D�
 � K

dP
i=1

niP
j=1

N
1
2
+�ij+�

�
Cijw; (C.7)

sup
h2�

 ~M(h; h)� �(h; h) � KN�2�� : (C.8)

Since the elements of ~M(h; �)� ~M(h; h) are of form n�1i
P

u2N (ui=ni)
hij vk` (uk=nk) ;

for i = k or i 6= k; (C.7) follows much as before, using Lemmas 4 and 7. Finally,

(C.8) is an easy consequence of Lemma 5.

Proposition 3 For any " > 0

sup
h2N (Cw)

jV2(h)� V2(�)j � K
dP
i=1

niP
j=1

N
1
2
+�ij+"Cijw: (C.9)
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Proof. We can write V2(h)� V2(�) as

2 fm(h)�m(�)g0 � + 2m(h)0M(h; h)�1 fM(h; �)�M(h; h)g �

= 2 f ~m(h)� ~m(�)g0D� + 2 ~m(h)0 ~M(h; h)�1
n
~M(h; �)� ~M(h; h)

o
D�;

(C.10)

where ~m(h) = D(h)�1m(h): Now

E

�
sup
h2�

k ~m(h)k
�
� K (C.11)

immediately from Lemma 10. From the proof of Proposition 2, the last term of (C.10)

thus has the bound (C.9). Next,��f ~m(h)� ~m(�)g0D�
�� � K dP

i=1

niP
j=1

N �ij

����P
u2N

vij (ui=ni)xu

����
and by Lemma 11 its supremum over N (Cw) has the bound (C.9).

Proposition 4

sup
h2�

jV3(h)j � K :

Proof. Writing V3(h) = ~m(h)0 ~M(h; h)�1 ~m(h), the result follows from (C.1), (C.8)

and (C.11).

Proposition 5 As N !1,

D�1
+ L

n
~Q(2) �Q(2)(�)

o
LD�1

+ = Op
�
(logN)�2

�
:

Proof. By elementary inequalities, the result follows if

D�1
+ L

n
~Q(2)(��)�Q(2)(�)

o
LD�1

+ = Op
�
(logN)�2

�
for any �� such that k��� �k � k�̂� �k. A typical element of Q(2)1 (��)�Q

(2)
1 (�) is

2
P
u2N
(log ui)

�1(log ni)
1��1(log uk)

�2(log nk)
1��2

�
�
��
�1
ij u

��ij
i u

��k`
k
��
�2
k` � �

�1
ij u

�ij
i u

�k`
k �

�2
k`

�
; (C.12)
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for i = k and i 6= k; and �1; �2 = 0; 1:We need to show that (C.12)=Op
�
N1+�ij+�k`=(logN)2

�
.

With ��ij; ��k` replaced by �ij; �k`, it is bounded by

K(logN)2
N

ni

niP
ui=1

���u��ij+��i`i � u�ij+�i`i

��� ; i = k; (C.13)

or by

K(logN)2
N

nink

niP
ui=1

niP
ui=1

���u��iji u��k`k � u�iji u
�k`
k

��� ; i 6= k: (C.14)

Note that, for example,

niP
ui=1

u
��ij
i = Op

 
n
��ij
i sup
hij2�ij

����n�hiji

niP
ui=1

u
hij
i

����
!
= Op

�
n
�ij
i

�
;

since n
��ij
i = Op

�
n
�ij
i exp

�
N���ij� 1

2 logN
��

= Op

�
n
�ij
i

�
; taking � < �11 +

1
2
: Then

from Theorem 2 and Lemma 12, (C.13) is

Op

�
(logN)3N1+�ij+�i`

�
N���ij� 1

2 +N���i`� 1
2

��
;

which is Op
�
N1+�ij+�i`=(logN)2

�
as desired, while using also Lemma 4, (C.14) is

Op

�
(logN)3N1+�ij+�k`

�
N���ij� 1

2 +N���k`� 1
2

��
;

which is Op
�
N1+�ij+�k`=(logN)2

�
as desired. Using also Theorem 3, it is readily seen

that (C.12) = Op
�
N1+�ij+�k`=(logN)2

�
also.

The only elements of Q(2)2 (��)�Q
(2)
2 (�) that are not identically zero are the diagonal

elements corresponding to the three non-null submatrices in J(u;h; b), and are of form

2
P
u2N

n
��
0
f(u; ��)� �0f(u; �)

o
u
��ij
i

�
(log ui)

2��ij
	�
(log ui log ni)

1�� ; (C.15)

for � = 0; 1: We have to show this is Op
�
N1+2�ij=(logN)2

�
. After replacing ��ij by

�ij, it is bounded by

K(logN)2
dP
k=1

pkP̀
=1

����P
u2N

�
u
��k`
k � u�k`k

�
u
��ij
i

���� :
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Proceeding much as before, this is

Op

�
(logN)2

dP
k=1

pkP̀
=1

N1+�k`+�ijN���k`� 1
2

�
= Op

�
(logN)2N

1
2
+�ij+�

�
= Op

�
N1+2�ij=(logN)2

�
:

Again, the same bound holds for (C.15).

Finally, Q(2)3 (��) � Q
(2)
3 (�) has non-zero elements at the same locations, and they

are of form

�2(log ni)1��
P
u2N
xu

n
(��ij log ui)

�u
��ij
i � (�ij log ui)�u

�ij
i

o
; (C.16)

for � = 0; 1; which again will be shown to be Op
�
N1+2�ij=(logN)2

�
. Replacing ��ij by

�ij gives

�2�ij(log ni)1��
�
n
�ij
i

P
u2N
xu(log ui)

�v
�
ui=ni; ��ij; �ij

�
+
�
n
��ij��ij � 1

� P
u2N
xu(log ui)

�u
�ij
i

�
= Op

�
(logN)2N

1
2
+�ij+�

�
= Op

�
N1+2�ij=(logN)2

�
;

applying Lemmas 10 and 11, and n��ij��ij�1 = Op
�
(logN)

����ij � �ij���. We can show,
as before, that (C.16) has the same bound.

Proposition 6 As N !1,

D+L
�1Q(2)(�)�1L�1D+ =

1

2
B��1B0 +

1

2
B��B� +Op

�
(logN)�2

�
:

Proof. Clearly Q(2)2 (�) � 0. A typical non-zero element of Q
(2)
3 (�) is

�2
P
u2N

�
(log ui)

2�ij
	�
(log ui log ni)

1�� u
�ij
i xu;

for � = 0; 1, and from Lemma 10 this is

Op

�
(logN)2N

1
2
+�ij

�
= Op

�
N1+2�ij=(logN)2

�
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as desired. From Lemmas 13 and 14,

D�1
+ Q

(2)
1 D

�1
+ = 2diag f��; Ipg

�
A+O

�
(logN)�2

��
diag f��; Ipg ;

where A has p� p submatrices Aij such that A11 = L�L�L�+��0+L+�++; A12 =

A021 = L�L��0+L; A22 = L�L: Thus A�1 has p� p submatrices Aij such that A11 =

��1; A12 = A21
0
= �0L�1���1; A22 = L�1��1 (L�1 + (�L� �+)��1 (L�� �+) ��1L�1) :

It follows that A�1 = (Ip;�Ip)��1 (Ip;�Ip)0+�: The proof is straightforwardly con-

cluded.

Proposition 7 As N !1,

N� 1
2
P
u2N

�
��1 fL(u)� Lg+ �0

�
D�1f(u; �)xu !d Np

�
0; 2�F (0)��1

�
:

Proof. Write xu = xu1 + xu2 for xu1 =
P

v2EM �v"u�v; xu2 =
P

v2 �EM �v"u�v; with

EM = fu : juij �M; i = 1; :::; dg, �EM = Zd n EM , for positive integer M . For � > 0,

choose M such that �v2 �EM j�vj < �. Writing

gu =
�
��1 fL(u)� Lg+ �0

�
D�1f(u; �);

we have

E

N� 1
2
P
u2N
guxu2

2 = N�1 P
v2 �EM

P
w2 �EM

�v�w
P

u;u�v+w2N
g0ugu�v+w

�
 P
v2 �EM

j�vj
!2
N�1P

u2N
kguk2 ; (C.17)

and
1

N

P
u2N

kguk2 �
K

N

P
u2N

dP
i=1

piP
j=1

�
1 + flog(ui=ni)g2

�
(ui=ni)

2�ij � K;

by Lemmas 13 and 14. Then (C.17) � K�2. Next write N� 1
2

P
u2N guxu1

= N� 1
2

P
w2E0 "w

P
u2E00 �u�wgu; where

E 0 = fw : 1�M � wi � ni +M , i = 1; :::; dg ;

E 00 = fu : max(1; wi �M) � ui � min(ni; wi +M), i = 1; :::; dg :
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We may then apply a CLT, with N and thus N� = �di=1(ni + 2M) increasing, for

independent random variables whose squares are uniformly integrable. It remains to

check two aspects. The �rst is the Lindeberg condition

1

N
max
w2E0

 P
u2E00

�u�wgu

2 ! 0, as N !1:

The left side is bounded by

K

N
max
u2N

kguk2 �
K

N

dP
i=1

piP
j=1

max
ui

�
flog(ui=ni)g2 + 1

�
(ui=ni)

2�ij ! 0;

since, for some � > 0;

(ui=ni)
2�ij � 1(�ij � 0) + n2j�ij ji 1 (�ij < 0) � N1��; jlog(ui=ni)j � K logN:

The second aspect is the covariance structure:

E

�
N� 1

2
P
u2N
gux1u

��
N� 1

2
P
u2N
gux1u

�0
= N�1PP

v;w2 �EM
�v�w

P0 gugu+w�v; (C.18)

where the primed sum is over all u such that u, u + w � v 2 N. Since M is �xed

and kguk � KN1��, for some � > 0, (C.18) di¤ers by o(1), as N ! 1, from

N�1P
v;w2EM �v�w

P
u2N gugu+w�v: Using also Lemma 16, this di¤ers by o(1) from

N�1 �P
v2EM �v

�2P
u2N gug

0
u; which, by Lemmas 13 and 14 and straightforward cal-

culation and elimination, equals P
v2EM

�v

!2 �
��1�++�

�1 ���1�0+�� �0�+��1 + �0�� +O(1= logN)
	

=

 P
v2EM

�v

!2 �
��1 +O(1= logN)

	
!
 P
v2EM

�v

!2
��1

as N !1; and the last displayed expression di¤ers by O(�) from
�P

2Zd �v
�2
��1 =

2�F (0)��1:
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APPENDIX D: TECHNICAL LEMMAS

Lemma 1 Let T be a r � r matrix, with (i; j)-th ri � rj block Tij, i; j = 1; :::; d,

where �di=1ri = r. Let ti be a column vector such that Tij = tit
0
j, i 6= j; and Tii�tit0i is

positive de�nite, i; j = 1; :::; d. Then T is nonsingular, with (i; j)-th ri�rj submatrix

T�1ii +
T�1ii tit

0
iT
�1
ii

1� � i

dP
s=1
s 6=i

� s
1� � s

= (1 + �) ; i = j; (D.1)

and
�T�1ii tit0jT�1jj
(1� � i)(1� � j)

= (1 + �) ; i 6= j; (D.2)

where � i = t0iT
�1
ii ti, � = �

d
i=1� i=(1� � i).

Proof. Let ~T be the r � r matrix with diagonal blocks ~Ti = Tii � � i� 0i, and zeros

elsewhere, so T = ~T + tt0, where t = (t01; :::; t
0
d)
0. Now because detfTii � tit0ig =

detfTiig(1� � i), it follows that � i < 1, and

~T�1ii = T�1ii
�
Iri + (1� � i)�1tit0iT�1ii

	
; i = 1; :::; d: (D.3)

Then ~T�1 is the r � r matrix with diagonal blocks ~T�1ii . Thus

T�1 = ~T�1
�
Ir �

�
1 + t0 ~T�1t

��1
tt0 ~T�1

�
: (D.4)

Now t0i ~T
�1
ii =

�
1 + � i (1� � i)�1

�
t0iT

�1
ii = (1� � i)�1 t0iT�1ii ; i = 1; :::; d; and so t0 ~T�1 =�

(1� � 1)�1 t01T�111 ; :::; (1� � d)
�1 t0dT

�1
dd

	
;and thus t0 ~T�1t = �. From (D.4), the (i; j)-

th ri � rj submatrix of T�1, for i 6= j, is � ~T�1ii tit0j ~T�1jj =
�
1 + t0 ~T�1t

�
; which equals

(D.2) on substituting (D.3), while for i = j it is

T�1ii +
T�1ii tit

0
iT
�1
ii

1� � i
� T

�1
ii tit

0
iT
�1
ii

(1� � i)2
= f1 + �g ;

which equals (D.1) after straightforward algebra.
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Lemma 2 Let Tii be a Cauchy matrix, having (j; k)-th element (1+ vij + vik)�1,

and let the j-th element of ti be (1 + vij)�1, where vij 2 (�1
2
;1)nf0g, all i; j and

vij 6= vik, for j 6= k. Then T as de�ned in Lemma 1 is non-singular, and its inverse

T�1 has (i; j)-th ri � rj block with (k; `)-th element

(1 + 2vik) (1 + 2vi`)
riQ
m=1
m6=k

1 + vik + vim
vik � vim

riQ
m=1
m6=`

1 + vi` + vim
vi` � vim

�
"

1

1 + vik + vi`
�
(

1

vik (1 + vik) vi` (1 + vi`)

riQ
m=1

�
1 + vim
vim

�2)

=

(
dP
s=1

riQ
m=1

�
1 + vsm
vsm

�2
+ 1� d

)#
; i = j; (D.5)

(1 + 2vik) (1 + 2vj`)

v2ikv
2
j`

riQ
m=1
m6=k

(1 + vik + vim) (1 + vim)

(vim � vik) vim

riQ
m=1
m6=`

(1 + vj` + vjm) (1 + vjm)

(vjm � vj`) vjm

=

(
dP
s=1

riQ
m=1

�
1 + vsm
vsm

�2
+ 1� d

)
; i 6= j: (D.6)

Proof. From p.31 of Knuth (1968), T�1ii has (k; `)-th element

riQ
m=1

(1 + vik + vim) (1 + vi` + vim)

=

8<:(1 + vik + vi`) riQ
m=1
m6=k

(vik � vim)
riQ
m=1
m6=`

(vi` � vim)

9=; :
For each i de�ne the (ri + 1)� (ri + 1) non-singular Cauchy matrix T+ii whose �rst ri
rows are (Tii; ti) and whose last row is (t0i; 1) : Thus, again from p.31 of Knuth (1968),

the (ri + 1; ri + 1)-th element of its inverse is (1� � i)�1 =
Qri
`=1

�
1 + v�1i`

�2
: Thus

1 + � =
riQ̀
=1

�
1 + v�1i`

�2
+ 1� d: (D.7)

Also, the leading ri�1 subvector of the (ri+1)-th column of T+�1ii is (1� � i)�1 T�1ii ti,

which has k-th element

(1 + vik)
riQ
m=1

(1 + vik + vim) (1 + vim) =

8<:(1 + vik) vik riQ
m=1
m6=k

(vik � vim)
riQ
m=1

(�vim)

9=;
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=
1 + 2vik
v2ik

riQ
m=1
m6=k

(1 + vik + vim) (1 + vim)

(vim � vik) vim
:

The proof is completed by substitution and rearrangement.

Lemma 3 Let T+ be the (r+1)� (r+1) matrix whose �rst r rows are (T; t) and

whose last row is (t0; 1) ;with T and t de�ned as in Lemmas 1 and 2. Then

T+�1 =

24 T�1 �Ir + tt0T�1 (1� t0T�1t)�1� �T�1t (1� t0T�1t)�1

� (1� t0T�1t)�1 t0T�1 (1� t0T�1t)�1

35 ;
where (1� t0T�1t)�1 = 1 + �:

Proof. From (D.1) and (D.2)

t0T�1t =
dP
i=1

�
� i +

� 2i
(1 + �)(1� � i)

�
� � � i

1� � i

��
� �2

1 + �
+

1

(1 + �)

dX
i=1

� 2i
(1� � i)2

=
�

1 + �

after routine algebra. Thus 1�t0T�1t = 1=(1+�), and the proof is readily completed.

Lemma 4 For a > �1

sup
a�a

����� 1J JP
j=1

�
j

J

�a����� � K:
Proof. The expression within the modulus is bounded by

1R
0

xadx+ 1 =
1

a+ 1
+ 1 � 1

a+ 1
+ 1 � K:
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Lemma 5 For a > �1,

sup
a�a

����� 1J JP
j=1

�
j

J

�a
� 1

1 + a

����� � K

J1+min(a;0)
:

Proof. The expression within the modulus is

1

J

J�1P
j=2

j=JR
(j�1)=J

��
j

J

�a
� xa

�
dx+

1

Ja+1
�

1=JR
0

xadx+
1

J
�

1R
1�1=J

xadx: (D.8)

Using the mean value theorem, the �rst term in (D.8) is bounded by

2a

J

JP
j=1

�
j

J

�a�1
1 (a > 0) +

jaj
Ja+1

JP
j=1

ja�11(a < 0) � 2

J
+

K

Ja+1
:

The last two integrals in (D.8) are bounded by

(1=J)a+1

a+ 1
+

1

a+ 1

�
1�

�
1� 1

J

�a�
� K

Ja+1
+
2

J
:

De�ne, for s 2 [0; 1]; v(s; a; b) = sa � sb:

Lemma 6 For a > �1
2

sup
a;b�a

(a� b)�2
1R
0

v(x; a; b)2dx � K:

Proof. The integral is

1

2a+ 1
� 2

a+ b+ 1
+

1

2b+ 1
=

2(a� b)2
(2a+ 1)(a+ b+ 1)(2b+ 1)

� K(a� b)2:

Lemma 7 For a > �1
2
;

sup
a;b2[a;a]

(
(a� b)�2

JP
j=1

v

�
j

J
; a; b

�2)
� KJ(log J)2: (D.9)
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Proof. By the mean value theorem,

jv(s; a; b)j � sc jlog sj ja� bj ; s 2 (0; 1]; (D.10)

where ja� cj � ja� bj. Also, for such c,

sc � sa; s 2 (0; 1]: (D.11)

Thus the quantity in braces in (D.9) is bounded by

K (log J)2
JP
j=1

�
j

J

�2a
� KJ(log J)2; (D.12)

because a > �1
2
.

Lemma 8 For �1 < a < a <1,

sup
a;b2[a;a]

ja� bj�1
����� 1J JP

j=1

v

�
j

J
; a; b

�
�

1R
0

v (x; a; b) dx

����� � K(log J)2

J1+min(a;0)
:

Proof. The expression within the modulus is

JP
j=2

j=JR
(j�1)=J

�
v

�
j

J
; a; b

�
� v (x; a; b)

�
dx+

1

J
v

�
1

J
; a; b

�
�

1=JR
0

v(x; a; b)dx: (D.13)

From (D.10) and (D.11), the last integral is bounded by

K
1=JR
0

xa jlog xj dx ja� bj � K(log J)J�a�1 ja� bj ;

and the same bound results for the penultimate term of (D.13). By the mean value

theorem jv(s; a; b)� v(s� r; a; b)j is bounded by

jsc log s� (s� r)c log(s� r)j ja� bj ; 0 � r � 1=J; s � 2=J; (D.14)

where ja� cj � ja� bj, and the �rst modulus is bounded by

jfsc � (s� r)cg log sj+ j(s� r)c flog s� log(s� r)gj

� sc jlog sj
n���1� �1� r

s

�c���+ �1� r
s

�c ���log �1� r
s

����o
� K

sc�1

J
jlog sj : (D.15)
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Thus the �rst term of (D.13) is bounded by ja� bj times

K log J

J2

JP
j=1

�
j

J

�a�1
= O

�
log J

Ja+1
1(a � 0) + (log J)

2

J
1(a = 0) +

log J

J
1(a > 0)

�
:

(D.16)

Lemma 9 For a > �1
2
,

sup
aj ;bi2[a;a]
i=1;2

�
2Q
i=1

jai � bij
��1 ����� 1J JP

j=1

2Q
i=1

v

�
j

J
; ai; bi

�

�
Z 1

0

2Q
i=1

v(x; ai; bi)dx

���� � K(log J)3

J1+min(2a;0)
:

Proof. The expression within the second modulus is

JP
j=2

j=JR
(j�1)=J

�
2Q
i=1

v

�
j

J
; ai; bi

�
�

2Q
i=1

v(x; ai; bi)

�
dx

+J�1
2Q
i=1

v

�
1

J
; ai; bi

�
�

1=JR
0

2Q
i=1

v(x; ai; bi)dx: (D.17)

Similarly to the proof of Lemma 7, the last term is bounded by

K
1=JR
0

x2a(log x)2dx
2Q
i=1

jai � bij �
K(log J)2

J2a+1

2Q
i=1

jai � bij :

The expression in braces in (D.17) can be written�
v

�
j

J
; a1; b1

�
� v (x; a1; b1)

�
v

�
j

J
; a2; b2

�
+v (x; a1; b1)

�
v

�
j

J
; a2; b2

�
� v (x; a2; b2)

�
:

Both terms are treated similarly, we consider only the �rst. From the bounds (D.14),

(D.15) its �rst factor is bounded by (K=J)(j=J)a�1(log J) ja1 � b1j, and its second

one by K(j=J)a(log J) ja2 � b2j. Thus its contribution is

O((log J)2J1+2a
PJ

j=1 j
2a�1);
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whence the result follows by an analogous calculation to (D.16).

Lemma 10 For i = 1; :::; d and �1
2
< a < �a <1, and all q � 0

E

(
sup
a2[a;a]

����N� 1
2
P
u2N

�
ui
ni

�a
(log ui)

qxu

����
)
� K(logN)q: (D.18)

Proof. By summation by parts

niP
ui=1

�
ui
ni

�a
(log ui)

qxu

=
ni�1P
ui=1

��
ui
ni

�a
�
�
ui + 1

ni

�a� uiP̀
=1

(log `)qxu1;:::;`;:::;ud +
niP
ui=1

(log ui)
qxu;

where "u1;:::;`;:::;ud is "u with ui replaced by `. Thus the expression in the modulus in

(D.18) is

N� 1
2

ni�1P
ui=1

�
ui
ni

�a �
1�

�
1 + u�1i

�a	
Hi(ui) + n

� 1
2Hi(ni); (D.19)

where

Hi(s) =
nkP
uk=1
k=1;:::;d
k 6=i

sP̀
=1

xu1;:::;`;:::;ud(log `)
q:

The factor in braces in (D.19) is bounded by jaj =ui � K=ui, whereas (ui=ni)a �

(ui=ni)
a. Thus the left side of (D.18) is bounded by

KN� 1
2

ni�1P
ui=1

�
ui
ni

�a
1

ui
E jHi(ui)j+ n�

1
2E jHi(ni)j

� K(log ni)
qn
� 1
2
�a

i

niP
ui=1

u
a� 1

2
i +K(logN)q � K(logN)q;

since a > �1
2
and

EHi(s)
2 =

nkP
uk=1
k=1;:::;d
k 6=i

sP̀
=1

nkP
vk=1

k=1;:::;d
k 6=i

sP
m=1

u1�v1;:::;`�m;:::;ud�vd(log `)
q(logm)q

� KNs

ni
(log s)2q

P
u2Zd

juj �
KNs(log s)2q

ni
:

40



Lemma 11 For a > �1
2
,

E

(
sup

a;b2[a;a]
ja� bj�1

����P
u2N
v (ui=ni; a; b)xu

����
)
� KN 1

2 logN: (D.20)

Proof. By summation by parts,

niP
ui=1

v(ui=ni; a; b)xu =
ni�1P
ui=1

fv(ui=ni; a; b)� v((ui + 1) =ni; a; b)g
uiP̀
=1

xu1;:::;`;:::;ud :

From (D.14) and (D.15), the expression in braces is bounded by

K

�
log ni
ni

��
ui + 1

ni

�a�1
� K logN

ui

�
ui
ni

�a
:

Thus the left side of (D.20) is bounded by K logN
ni�1P
ui=1

(ui=ni)
a u�1i E jHi(ui)j ; which,

from the proof of Lemma 10 (with q = 0), has the desired bound.

Lemma 12 Let a > �1
2
be a scalar and ~a = ~aJ be a sequence such that

~a� a = Op(J��) as J !1, for some � > 0. Then for all q � 0;

J�1�a
JP
j=1

(log j)q
��j~a � ja�� = Op �J��� ; as J !1:

Proof. The left side is bounded by

JP
j=1

(log j)q
�
j

J

�a ��j~a�a � 1�� � 1

J

JP
j=1

(log j)q+1
�
j

J

�a
j~a� aj

� KJ�=2Op
�
J��

� 1
J

JP
j=1

�
j

J

�a
= Op

�
J��=2

�
:

Lemma 13 For a > �1
2
, there is an � > 0 such that for all su¢ ciently large J ,����� 1J JP

j=1

(log j)

�
j

J

�a
� log J

a+ 1
+

1

(a+ 1)2

����� � KJ��: (D.21)
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Proof. The left side is bounded by

1

Ja+1

JP
j=2

jR
j�1
j(log x)xa � (log j)jaj dx+

���� 1

Ja+1

1R
0

(log x)xadx

���� : (D.22)

The �rst modulus is bounded by

jlog xj jxa � jaj+ jlog(x=j)j ja � K(log j)
�
(j � 1)a�1 + ja�1

	
+ ja�1

� K(log j)ja�1

for x 2 [j � 1; j], j � 2. Thus the �rst term of (D.23) is O ((log J)J�a�1) for a < 0,

O ((log J)2J�1) for a = 0, and O ((log J)J�1) for a > 0. The last integral is O(Ja�1).

Since a > �1 there is an � > 0 to satisfy (D.21).

Lemma 14 For any a > �1
2
, there is an � > 0 such that for all su¢ ciently large

J , ����� 1J JP
j=1

(log j)2
�
j

J

�a
� (log J)

2

a+ 1
+
2 log J

(a+ 1)2
� 2

(a+ 1)3

����� � J��:
Proof. The left side is bounded by

1

Ja+1

JP
j=2

jR
j�1

��(log x)2xa � (log j)2ja�� dx+ ���� 1

Ja�1

1R
0

(log x)2xadx

���� :
The �rst integrand is bounded by

(log x)2 jxa � jaj+ jlog(x=j)j jlog (xj)j ja � K(log j)2ja�1

as in the proof of Lemma 13; the proof is completed in similar fashion.

Lemma 15 For any a > �1
2
and all su¢ ciently large N;

E

�
N� 1

2
P
u2N

log (ui=ni) (ui=ni)
a xu

�2
� K:

Proof. The left side is

N�1
PP
u;v2N

�
ui
ni

�a�
vi
ni

�a
log

�
ui
ni

�
log

�
vi
ni

�
u�v

� N�1P
u2N

�
ui
ni

�2a
log2

�
ui
ni

� P
v2Zd

��u�v�� � K;
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by Assumption 3 and straightforward application of Lemmas 13 and 14.

Lemma 16 For a1; a2 > 1
2
; q1; q2 � 0; and any �nite positive or negative integer

M , there is an � > 0 such that for all su¢ ciently large J;

1

J

JP
j=1

�
logq1

�
j

J

���
j

J

�a1 �
logq2

�
j +M

J

��
j +M

J

�a2
� logq2

�
j

J

��
j

J

�a2�
� jM j J��: (D.23)

Proof. We have �����j +MJ
�a2

�
�
j

J

�a2���� � M

j

�
j

J

�a2
;����logq2 �j +MJ

�
� logq2

�
j

J

����� � M

j
:

By elementary inequalities the left side of (D.23) is bounded by

KM(log J)q1+q2

Ja1+a2+1

JP
j=1

ja1+a2�1

� K jM j (log J)q1+q2
�
1(a1 + a2 < 0)

Ja1+a2+1
+
1(a1 + a2 = 0)

J
log J +

1(a1 + a2 > 0

J

�
;

which is O(jM j J��):
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