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INTERSECTION BOUNDS: ESTIMATION AND INFERENCE

VICTOR CHERNOZHUKOV, SOKBAE LEE, ADAM M. ROSEN

Abstract. We develop a practical and novel method for inference on intersection
bounds, namely bounds defined by either the infimum or supremum of a parametric
or nonparametric function, or equivalently, the value of a linear programming problem
with a potentially infinite constraint set. Our approach is especially convenient in mod-
els comprised of a continuum of inequalities that are separable in parameters, and also
applies to models with inequalities that are non-separable in parameters. Since analog
estimators for intersection bounds can be severely biased in finite samples, routinely
underestimating the length of the identified set, we also offer a (downward/upward) me-
dian unbiased estimator of these (upper/lower) bounds as a natural by-product of our
inferential procedure. Furthermore, our method appears to be the first and currently
only method for inference in nonparametric models with a continuum of inequalities.
We develop asymptotic theory for our method based on the strong approximation of
a sequence of studentized empirical processes by a sequence of Gaussian or other piv-
otal processes. We provide conditions for the use of nonparametric kernel and series
estimators, including a novel result that establishes strong approximation for general
series estimators, which may be of independent interest. We illustrate the usefulness
of our method with Monte Carlo experiments and an empirical example.
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1. Introduction

This paper develops a practical and novel method for estimation and inference on pa-

rameters restricted by intersection bounds. These are settings where the true parameter

value, say θ∗, is known to lie within the bounds
[
θl (v) , θu (v)

]
for each value v in a

possibly infinite set V . The identification region for θ∗ is then

ΘI = ∩v∈V
[
θl (v) , θu (v)

]
=

[
supv∈V θl (v) , infv∈V θu (v)

]
. (1.1)

Intersection bounds arise naturally from exclusion restrictions (Manski (2003)) and ap-

pear in numerous applied and theoretical examples.1 This paper covers both paramet-

ric and non-parametric estimators of the bound-generating functions v 7→ θu(v) and

v 7→ θl(v), and also covers cases where the constraint set V is a continuum. Thus, this

paper improves upon prior approaches, which only treat finite constraint sets and para-

metric estimation of bound-generating functions. More generally, the methods of this

paper apply to any estimator for the value of a linear programming problem with an

infinite dimensional constraint set.

This paper overcomes significant complications for estimation and inference in such

contexts. First, since sample analogs of the lower and upper bounds of ΘI are the

suprema and infima of estimated bound-generating functions, they have substantial fi-

nite sample bias, and the estimated bounds tend to be much tighter than the population

bounds. This has been noted by Manski and Pepper (2000, 2008), and some heuris-

tic bias adjustments have been proposed by Haile and Tamer (2003) and Kreider and

Pepper (2007). Second, the fact that the boundary estimates are suprema and infima

of parametric or nonparametric empirical processes typically renders closed-form char-

acterization of their asymptotic distributions unavailable or difficult to establish. As a

consequence, researchers have typically used the canonical bootstrap for inference. Yet

results from the recent literature indicate that the canonical bootstrap is not generally

consistent in such settings, see e.g. Andrews and Han (2009), Bugni (2009), and Canay

(2009).

1Examples include monotone instrumental variables and the returns to schooling (Manski and Pepper
(2000)), English auctions (Haile and Tamer (2003)), the returns to language skills (Gonzalez (2005)),
set identification with Tobin regressors (Chernozhukov, Rigobon, and Stoker (2007)), endogeneity with
discrete outcomes (Chesher (2007)), changes in the distribution of wages (Blundell, Gosling, Ichimura,
and Meghir (2007)), the study of disability and employment (Kreider and Pepper (2007)), estimation of
income poverty measures (Nicoletti, Foliano, and Peracchi (2007)), unemployment compensation reform
(Lee and Wilke (2009)), bounds on the distribution of treatment effects under strong ignorability (Fan
(2009)), and set identification with imperfect instruments (Nevo and Rosen (2008)).
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We solve the problem of estimation and inference for intersection bounds by proposing

(downward or upward) median unbiased estimators of the upper and lower bounds, as

well as confidence intervals. Specifically, our approach employs a precision-correction to

the estimated bound-generating functions v 7→ θ̂l (v) and v 7→ θ̂u (v) before applying the

supremum and infimum operators. Indeed, we adjust the estimated bound-generating

functions for their precision by adding to each of them an appropriate critical value times

their pointwise standard error. Then, depending on the choice of the critical value, the

intersection of these precision-adjusted bounds provides (i) a downward median unbiased

estimator for the upper bound infv∈V θu(v) and an upward median unbiased estimator

for the lower bound supv∈V θl(v) and (ii) confidence sets for either the identified set

ΘI or the true parameter value θ∗.2 We select the critical value either analytically

or via simulation of an approximating Gaussian process. Our method applies in both

parametric and non-parametric settings. For both cases we provide formal justification

via asymptotic theory based on the strong approximation of a sequence of studentized

empirical processes by a sequence of Gaussian or other pivotal processes. This includes

an important new result on strong approximation for series estimators that applies to any

estimator that admits a linear approximation, essentially providing a functional central

limit theorem for series estimators for the first time in the literature. In principle this

functional central limit theorem covers linear and non-linear series estimators, both with

and without endogeneity.

This paper contributes to a growing literature on inference on set-identified param-

eters bounded by inequality restrictions. The prior literature has focused primarily on

models with a finite number of unconditional inequality restrictions. Some examples

include Andrews and Jia (2008), Beresteanu and Molinari (2008), Chernozhukov, Hong,

and Tamer (2007), Galichon and Henry (2009), Romano and Shaikh (2008), Romano

and Shaikh (2009), and Rosen (2008), among others. To the best of our knowledge, our

paper is the first to consider inference with a continuum of inequalities, which includes

conditional moment inequalities as a particular case but also covers other examples such

as conditional quantile inequalities. Recent papers (some in progress) on conditional

moment inequalities, written independently and contemporaneously, include Andrews

and Shi (2009), Fan (2009), Kim (2009), and Menzel (2009), and all employ different

2We say an estimator is downward (upward) median unbiased if the probability it lies below (above)
its target value is less (greater) than or equal to one half asymptotically. Achieving exact median
unbiasedness is not possible in full generality.
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approaches.3 Our approach is especially convenient for performing inference in para-

metric and non-parametric models with a continuum of inequalities that are separable

in parameters, and it also applies to inference in models with inequalities that are non-

separable in parameters. Furthermore, our method appears to be the first and currently

only method available for performing inference with fully nonparametric inequality re-

strictions. An attractive feature of our approach is that in addition to providing a valid

method of inference, we provide a novel construction for (downward or upward) me-

dian unbiased estimators for (upper or lower) intersection bounds. In fact, the only

difference in the construction of our estimators and confidence intervals is the choice of

critical value, which is a quantile of an appropriate approximating distribution. Thus,

practitioners need not implement two entirely different methods to construct estimators

and confidence bands with desirable properties.

We organize the paper as follows. In section 2, we motivate the analysis with examples

and provide an informal overview of our results. In section 3 we provide a formal treat-

ment of our method, providing conditions and theorems for validity in both parametric

and nonparametric contexts. In 4 we provide a Monte Carlo study, and in section 5

we give an empirical example. In section 6 we conclude. In the Appendix we provide

proofs, establish strong approximation results for both series and kernel estimators, and

describe the steps required to implement our method in practice.

2. Motivating Examples and Informal Overview of Results

In this section we briefly describe four examples of intersection bounds from the lit-

erature and provide an informal overview of our results.

Example 1: Treatment Effects and Instrumental Variables. In the analysis of

treatment response, the ability to uniquely identify the distribution of potential outcomes

is typically lacking without either experimental data or strong assumptions. This owes to

the fact that for each individual unit of observation, only the outcome from the received

treatment is observed; the counterfactual outcome that would have occurred given a

3Some approaches, such as Andrews and Shi (2009), rely on Bierens type integrated moment tests and
some, such as Menzel (2009), on standard tests with finite inequalities, using an increasing number
of inequalities, both of which differ from the approach pursued here. Using goodness-of-fit tests as a
simple analogy, our approach is most similar to Kolmogorov-Smirnov type tests, whereas the approach
in Andrews and Shi (2009) appears similar to Bierens type tests, and Menzel (2009)’s approach appears
similar to Pearson type tests. Just as in the goodness-of-fit literature, none of the approaches are likely
to universally dominate others since there are no uniformly most powerful tests in complex settings
such as the one considered here.
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different treatment is not known. Though we focus here on treatment effects, similar

issues are present in other areas of economics. In the analysis of markets, for example,

observed equilibrium outcomes reveal quantity demanded at the observed price, but do

not reveal what demand would have been given other prices.

To illustrate how bounds on treatment effects fit into our framework, first suppose

only that the support of the outcome space is known, but no other assumptions are made

regarding the distribution of counterfactual outcomes. Then Manski (1989) and Manski

(1990) provide worst-case bounds on mean treatment outcomes for any treatment t con-

ditional on covariates w, LBwc (w, t) ≤ E [Y (t) |w] ≤ UBwc (w, t). These bounds are

conditional expectations of observed random variables, and are thus trivially intersection

bounds where the intersection set is singleton. If w = (x, v) and v is an instrumental

variable satisfying E [Y (t) |x, v] = E [Y (t) |x], then the sharp bounds on E [Y (t) |x] are

LBiv (x, t) ≤ E [Y (t) |x] ≤ UBiv (x, t), where LBiv (x, t) = supv∈V LBwc ((x, v) , t) and

UBiv (x, t) = infv∈V UBwc ((x, v) , t). In this case the identified set is the intersection

over the support of the instrument v of the worst-case bounds at w = (x, v). Similarly,

bounds implied by restrictions such as monotone treatment response, monotone treat-

ment selection, and monotone instrumental variables, as in Manski (1997) and Manski

and Pepper (2000), also take the form of intersection bounds. In particular, the returns

to schooling application of section 5 considers estimation and inference on intersection

bounds implied by joint monotone treatment selection and monotone instrumental vari-

able restrictions. ¤

Example 2: Bounding Distributions to Account for Selection. Similar analy-

sis to that of Manski (1994) and Manski and Pepper (2000) can be applied generally

to inference on distributions whose observations are censored due to selection. Such

an approach is employed by Blundell, Gosling, Ichimura, and Meghir (2007) to study

changes in male and female wages, while accounting for the censoring of the wage dis-

tribution incurred by selection into employment. The starting point of their analysis

is that the cumulative distribution of wages at any point w, conditional on covariates x

must satisfy the worst case bounds

F (w|x,E = 1) P (x) ≤ F (w|x) ≤ F (w|x,E = 1) P (x) + 1− P (x)

where E is an indicator of employment, and P (x) ≡ Pr (E = 1|x). This relation is then

used to bound quantiles of the distribution of wages conditional on covariates. The
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worst-case bounds are often not very informative, so additional restrictions motivated

by economic theory are used to tighten the bounds.

One such restriction is an exclusion restriction of the continuous variable out-of-work

income, z, see Blundell, Gosling, Ichimura, and Meghir (2007, pp. 331-333). Two such

possibilities are considered: the use of z as an excluded instrument, and the use of z as

a monotone instrument. The former restriction implies

max
z
{F (w|x, z, E = 1) P (x, z)} ≤ F (w|x)

≤ min
z
{F (w|x, z, E = 1) P (x, z) + 1− P (x, z)} ,

while the weaker monotonicity restriction implies that for any z0 on the support of Z,

max
z≥z0

{F (w|x, z, E = 1) P (x, z)} ≤ F (w|x, z0)

≤ min
z≤z0

{F (w|x, z, E = 1) P (x, z) + 1− P (x, z)} .

¤

Example 3: English Auctions. Invoking two weak assumptions on bidder behavior

in an independent private values paradigm, Haile and Tamer (2003) use the distribution

of observed bids to formulate bounds on the distribution of bidders’ valuations. The two

assumptions on bidder behavior, which nest various equilibria, are that each bidder’s bid

is no greater than her valuation, and that bidders who did not win would not have been

willing to pay more than the winning bid. Theorems 1 and 2 of Haile and Tamer (2003,

pp. 7-10) give the following implied bounds on the cumulative distribution of valuations

at any point v,

max
2≤n≤M̄

φ
(
G∆

n:n (v) ; n− 1, n
) ≤ F (v) ≤ min

2≤n≤M̄, 1≤i≤n
φ (Gi:n (v) ; i, n) ,

where M̄ is the number of potential bidders in an auction, and n is the number who

actually submit bids. Here, Gi:n denotes the distribution of the ith order statistic of

bids, and φ (·; i, n) is a monotone transformation relating any parent distribution F to

the distribution of its ith order statistic, i.e.

F (v) = φ (Fi:n (v) ; i, n) .

G∆
n:n denotes the distribution of the nth order statistic of bids, plus minimum bid incre-

ment ∆, in an auction of n bidders. The derived bounds fall into the present framework,

as the distributions G∆
n:n (·) and Gi:n (·) are identified and consistently estimable.
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Example 4: Conditional Moment Inequalities. Our inferential method can also

be used to conduct pointwise inference on parameters in models comprised of conditional

moment inequalities. This can be done whether the conditioning variables are discrete or

continuous. Such restrictions arise naturally in empirical work in industrial organization

and in particular in models of oligopoly entry, see for example Pakes, Porter, Ho, and

Ishii (2005) and Berry and Tamer (2007).

To illustrate, consider the restriction

E [m (x, γ0) |v] ≥ 0 for every v ∈ V , (2.1)

where m (·, ·) is a real-valued function, (x, v) are random variables observable by the

econometrician, and γ0 is the parameter of interest. For example, in a model of oligopoly

entry γ0 could measure the effect of one firm’s entry decision on a rival’s profit. It may

be of interest to test whether γ0 is equal to some conjectured value γ, e.g. γ = 0. To see

how our framework can be used to test this hypothesis, define θ (γ, v) := E [m (x, γ) |v]

and θ̂ (γ, v) a consistent estimator. Suppose that we would like to test (2.1) at level α

for the conjectured parameter value γ0 = γ against an unrestricted alternative. Under

some continuity conditions this is equivalent to the test of

inf
v∈V

θ (γ, v) ≥ 0 against inf
v∈V

θ (γ, v) < 0.

Let θ0 (γ) := infv∈V θ (γ, v). Our method for inference delivers a statistic

θ̂α(γ) = inf
v∈V

[
θ̂ (γ, v) + k · s (γ, v)

]

such that limn→∞ P (θ0 (γ) ≥ θ̂α(γ)) ≤ α. Here, s(γ, v) is the standard error of θ(γ, v)

and k is a critical value, which will be described below. If θ̂α(γ) < 0, then we reject the

null hypothesis, while if θ̂α(γ) ≥ 0, then we do not reject. This provides a method for

pointwise inference on γ0. ¤

Informal Overview of Results. We now provide an informal description of our

method for estimation and inference. Let θ∗ denote the parameter of interest. Con-

sider an upper bound θ0 on θ∗ of the form

θ∗ ≤ θ0 := inf
v∈V

θ(v), (2.2)

where v 7→ θ(v) is a bound-generating function, and V is the set over which the minimum

is taken. Likewise, there could be lower bounds defined symmetrically. Since our method

covers lower bounds in an analogous way, we focus on describing our method for (2.2).
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We base estimation and inference on a uniformly consistent estimator {θ̂(v), v ∈ V} of

the bound-generating function, which could be parametric or nonparametric.

What are good estimators and confidence regions for the bound θ0? The first and per-

haps simplest idea is to base estimation and inference on the sample analog: infv∈V θ̂(v).

However, this estimator does not perform well in practice. First, the sample analog

estimator tends to be downward (optimistically) biased in finite samples. Second, and

perhaps more importantly, unequal sampling error of the estimator θ̂(v) across v can

overwhelm inference in finite samples. Indeed, different levels of precision of θ̂(v) at dif-

ferent points can severely distort the perception of the minimum of the bound-generating

function θ(v). Figure 1 illustrates these problems geometrically. The solid curve is the

true bound-generating function v 7→ θ(v), and the dash-dotted thick curve is its estimate

v 7→ θ̂(v). The remaining dashed curves represent eight additional potential realizations

of the estimator, illustrating the precision of the estimator. In particular, we see that

the precision of the estimator is much lower on the right side than on the left. A näıve

sample analog estimate for θ0 is provided by the minimum of the dash-dotted curve, but

this estimate can in fact be quite far away from θ0. This large deviation from the true

value arises from both the lower precision of the estimated curve on the right side of

the figure and from the downward bias created by taking the minimum of the estimated

curve.

To overcome these problems, we propose a precision-corrected estimate of θ0:

θ̂ := min
v∈V̂

[θ̂(v) + k · s(v)], (2.3)

where s(v) is the standard error of θ̂(v), V̂ is a data-dependent set that converges in

probability to a non-stochastic set V that contains V0 := arg minv∈V θ (v), and k is a

critical value, whose construction we describe below. That is, our estimator θ̂ minimizes

the precision-corrected curve given by θ̂(v) plus critical value k times the pointwise

standard error s(v). Figure 2 shows a precision-corrected curve as a dashed curve with

a particular choice of critical value k. In this figure, we see that the minimizer of

the precision-corrected curve can indeed be much closer to θ0 than the sample analog

infv∈V θ̂(v). Although this illustration is schematic in nature, it conveys geometrically

why our approach can remove the downward bias. In what follows, we provide both

theoretical and Monte-Carlo evidence that further supports this point.
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Let us now discuss the choice of the critical value k. Ideally, we would choose k in

(2.3) as a quantile of the supremum of the normalized stochastic process

Zn(v) :=

(
θ(v)− θ̂(v)

s(v)

)
, v ∈ V ⊂ Rd. (2.4)

In particular, for the purpose of estimation of θ0, we would like to set

k = Median

[
sup
v∈V̂

θ(v)− θ̂(v)

s(v)

]
, (2.5)

which gives us a downward median-unbiased estimate θ̂ of θ0. For the purpose of infer-

ence on θ0, we would like to set

k = (1− α)-Quantile

[
sup
v∈V̂

θ(v)− θ̂(v)

s(v)

]
, (2.6)

which gives us a one-sided (1 − α) confidence region (−∞, θ̂] for θ0. Of course, these

values of k are unknown in practice, and we have to replace them with suitable estimates.

We estimate critical values as follows. Generally, the finite-sample distribution of the

process Zn = {Zn(v) : v ∈ V} is unknown, but we can approximate it uniformly by a

sequence of processes with a known (or at least estimable) distribution. Indeed, we can

approximate Zn uniformly by a sequence of processes Z ′
n, which are zero-mean Gaussian

or other pivotal processes with a known distribution, that is,

an sup
v∈V

|Zn(v)− Z ′
n(v)| = op(1), (2.7)

for some sequence of constants an. Once we have Z ′
n, we consider the variable

En(V ) = an[sup
v∈V

Z ′
n(v)− bn] (2.8)

for some sequences of constants an and bn. Then we obtain the estimates of the p-th

quantile of En(V ), denoted by ĉ(p), by one of two methods:

1. Simulation Method, where we simulate the Gaussian process Z ′
n(v) and compute

its quantiles numerically.

2. Analytical Method, where we use limit quantiles or approximate quantiles of

En(V ), which we derive by limit arguments or Hotelling’s tube method for the

suprema of Gaussian processes.
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Finally, we then set the critical value k := b̂n + ĉ(p)/ân, where ân and b̂n consistently

estimate an and bn, respectively, and where p = 1/2 for estimation and p = 1 − α for

inference.

At an abstract level our method does not distinguish parametric estimators of θ(v)

from nonparametric estimators; however, details of the analysis and regularity conditions

are quite distinct. Specifically, in section 3, we divide the analysis into Donsker and non-

Donsker cases, corresponding approximately to parametric and non-parametric cases. In

both cases, we employ strong approximation analysis to approximate the quantiles of

En(V ), and we verify our main conditions separately for each case.

An important input into our procedure is the choice of the estimator V̂ of V0, the

argmin set of the true bound-generating function. We describe a specific choice of

such an estimator in Section 3. At a general level we require V̂ to be bigger than

(to include) V0, with probability approaching one; at the same time, we require this

estimate not to be too much bigger than V0.
4 The first requirement guarantees that we

are not performing overly optimistic inference, and the second requirement guarantees

that were are not performing overly pessimistic inference. Indeed, from (2.5) and (2.6)

we see that the critical value k is decreasing in the size of the set V̂ , so that smaller

V̂ leads to a lower (less conservative) k. Lower k in turn leads to point estimates

with a less conservative bias-correction, and less conservative confidence intervals. A

good estimator V̂ is therefore essential. We illustrate the gains that can be made from

estimating the argmin set V0 in Figures 2 and 3. In Figure 2, we depict a precision-

corrected curve (dashed curve) that adjusts the boundary estimate θ̂(v) (dotted curve)

by an amount proportional to its point-wise standard error using the conservative choice

V̂ = V = [0, 1]. In Figure 3, we depict the same initial precision-corrected curve and

also a two-step precision-corrected curve (dash-dotted cruve) that adjusts the boundary

estimate θ̂(v) (dotted curve) by an amount proportional to its point-wise standard error

using a critical value that was computed using an estimate V̂ of V0, which is much less

conservative than using the entire set V = [0, 1]. The gain from estimating the argmin

set V0 here is that the minimum of this precision-corrected curve is now much closer to

the true minimum θ0 of the bound-generating function θ(v) than the minimum of the

initial precision-corrected curve.

4Of course, an ideal but infeasible choice of V̂ would be to simply use V0.
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3. Theory of Inference on Intersection Bounds

3.1. Theory under High-Level Conditions. We begin by presenting a set of simple

high-level conditions, under which we demonstrate validity and general applicability of

our inferential approach. In subsequent sections we verify these conditions for parametric

and nonparametric estimators of the bound-generating function θ(v).

In the conditions that follow, the studentized stochastic process defined in (2.4) plays

a particularly important role. Moreover, we also employ a general superset estimate V̂

consistent for the argmin superset V , which is a set that contains the argmin set

V0 = arg inf
v∈V

θ(v),

that is V0 ⊆ V . We require that the superset estimate V̂ be consistent for the superset

V with respect to the Hausdorff distance, i.e.

dH(V̂ , V ) := max{sup
v∈V̂

d(v, V ), sup
v∈V

d(v, V̂ )} →p 0,

where d(v, V ) = infv′∈V ‖v−v′‖. While it is generally desirable for the set V to be small,

we shall see later that working with supersets V of the argmin set V0, rather than with

the argmin set itself, turns out to be essential in non-parametric settings.

We are now prepared to state the following conditions on the studentized stochastic

process and estimators of the superset.5

Condition C. 1. Let V be a superset of V0, that is, V0 ⊆ V . For some sequence of

nonnegative normalizing constants an and bn, we have that the normalized supremum

of the studentized process an · (supv∈V Zn(v) − bn) can either be (a) approximated in

distribution by a variable E∞(V ), namely

an · (sup
v∈V

Zn(v)− bn) =d E∞(V ) + op(1),

or (b) approximately majorized in distribution by a variable E∞(V ), namely

an · (sup
v∈V

Zn(v)− bn) ≤d E∞(V ) + op(1),

5The notation used in Condition C.1 is as follows: for a sequence of random variables Xn and a random
variable X, we use Xn =d X + op(1) to denote that there exist a sequence of random variables X̃n and
a random variable X̃ on the same probability space satisfying Xn =d X̃n for each n, X =d X̃, and
X̃n →p X̃, where X =d X̃ denotes that the distribution of X is the same as that of that of X̃. Similarly,
we use Xn ≤d Yn + op(1) to mean that there exist X̃n and Ỹn on the same probability space satisfying
Xn ≤d X̃n, Yn =d Ỹn for each n, and X̃n− Ỹn →p 0, where X ≤d X̃ denotes that the distribution of X

is first-order stochastically dominated by that of X̃.
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where E∞(V ) has a known continuous distribution function.

This is a basic asymptotic condition, which either requires standard convergence in

distribution or majorization in distribution by a limit random variable with a continuous

distribution function. We also consider the following generalization of C.1 which is useful

for our purposes.

Condition C∗. 1. Let V be a superset of V0, that is, V0 ⊆ V . For some sequence of

nonnegative normalizing constants an and bn, we have that the normalized supremum

of the studentized process an · (supv∈V Zn(v) − bn) can either be (a) approximated in

distribution by a variable En(V ), namely

an · (sup
v∈V

Zn(v)− bn) =d En(V ) + op(1),

or (b) approximately majorized in distribution by a variable En(V ), namely

an · (sup
v∈V

Zn(v)− bn) ≤d En(V ) + op(1),

where En(V ) = Op(1) has a known distribution and satisfies a sequential continuity or

anti-concentration property, specifically that for any sequence εn ↘ 0,

sup
x∈R

P [|En(V )− x| ≤ εn] → 0. (3.1)

Conditions C.1 or C∗.1 justify the use of quantiles of E∞(V ) or En(V ), respectively, for

inference. Condition C.1(a) requires that the supremum of the normalized process Zn(v),

appropriately studentized, converges in distribution to the random variable E∞(V ). As

shown in section 3, it applies with either parametric or nonparametric kernel estimation

of the bound-generating function θ(·). Condition C.1(b) is a weaker condition that

does not require the studentized supremum of Zn(v) to have an asymptotic distribution,

but only requires that its distribution can be majorized by that of E∞(V ). Section

3.4 establishes its validity for nonparametric series estimation of the bound-generating

function. Note that by the term “known distribution,” in reference to E∞(V0) and En(V ),

we mean a distribution whose parameters can be estimated consistently. Also, instead of

using standard convergence in distribution notation, we employ strong approximation,

which is without loss of generality relative to the former due to the Skorohod-Dudley-

Wichura construction. In general, the normalizing constants an and bn may depend on

V and can be different depending on which of C.1(a) and C.1(b) hold.
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Condition C∗.1 is a generalization of C.1, which allows for the use of some intermediate

or penultimate approximations for inference. For example, in the case of series approxi-

mation we can approximate the supremum of the process Zn(v) by the supremum En(V )

of a Gausssian process, which does not in general converge to a fixed random variable,

but can instead be majorized in distribution by an exponential random variable E∞(V ).

However, this majorization can be conservative. We can instead use the quantiles of

En(V ) for inference, which in our experience provides a more accurate, less conserva-

tive approximation. In order for the penultimate approach to be valid, we require the

sequential continuity, or anti-concentration, property (3.1) for the sequence of random

variables En(V ). This property is needed for the disappearance of the effect of approxi-

mation errors in critical values on the coverage probabilities. If En(V ) has a continuous

limit distribution the anti-concentration property follows automatically. If En(V ) does

not have a limit distribution, verification of this property is a harder problem, which can

be achieved either numerically or, in some limited cases, analytically using exact versions

of Hotelling’s tubing method. Analytical limitations arise because little is known about

the anti-concentration properties of the suprema of a sequence of Gaussian processes,

in contrast to a vast knowledge on the concentration properties of such processes (see

however Rudelson and Vershynin (2007), Rudelson and Vershynin (2008) and Tao and

Vu (2009) for a discussion of anti-concentration inequalities for some “simpler” related

problems).

The next condition deals with the effect of estimating the approximate argmin sets.

Condition C. 2. Let V̂ denote any sequence of sets, possibly data-dependent, that con-

tain a superset V of V0, with probability approaching one, and that converge to V at

the rate rn, i.e., dH(V̂ , V ) ≤ Op(rn), where rn is a sequence of constants converging

to zero. Also, let ân and b̂n denote corresponding, possibly data-dependent, normalizing

constants. Then the normalized supremum of the studentized stochastic process is insen-

sitive to the replacement of the superset V and normalizing constants (an, bn) with the

estimates V̂ and (ân, b̂n), namely

ân · (sup
v∈V̂

Zn(v)− b̂n)− an · (sup
v∈V

Zn(v)− bn) →p 0.

This assumption allows for a data-dependent choice of V̂ , but requires that V̂ should

eventually settle down at V , without affecting the supremum of the studentized sto-

chastic process. In Section 3.6, we construct such estimators from the level sets of the

estimated bound-generating function v 7→ θ̂(v) and show that these estimators converge
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to the level sets of v 7→ θ(v) at a rate sufficiently fast not to affect the behavior of

the supremum of the estimated process. In nonparametric settings, this may sometimes

require that level sets are strictly larger than the argmin set V0.

We now state our first main result under the above conditions.

Theorem 1 (Main Result Under C.1-C.2.). Let

θ̂p = inf
v∈V̂

[θ̂(v) + [̂bn + ĉ(p)/ân]s(v)],

where ĉ(p) is defined below.

1. Suppose that conditions C.1(b) or C∗.1(b) and C.2 hold and that ĉ(p) is a consistent

upper bound on cn(p) := the p − th quantile of En(V ), where n = ∞ under C.1(b),

namely

ĉ(p) ≥ cn(p) + op(1).

Then we have that the estimator θ̂p is downward p-quantile unbiased, namely

lim inf
n→∞

P [θ0 ≤ θ̂p] ≥ p.

2. Suppose conditions C.1(a) or C∗.1(a) and C.2 hold with V = V0 and that ĉ(p) is

a consistent estimate of cn(p) := p-th quantile of En(V0), where n = ∞ under C.1(a),

namely

ĉ(p) = cn(p) + op(1).

Then we have that the estimator θ̂p is p-quantile unbiased, namely

lim
n→∞

P [θ0 ≤ θ̂p] = p.

Thus, the quantity θ̂p can be used to provide a one-sided confidence interval for θ0,

since limn→∞ P [θ0 ≤ θ̂p] ≥ p, with equality under C.1(a) or C∗.1(a). Moreover, θ̂1/2 is a

median downward-unbiased estimator for θ0 in the sense that

lim
n→∞

P [θ0 ≤ θ̂1/2] ≥ 1

2
.

In words, the asymptotic probability that the estimator θ̂1/2 lies above the true θ0 is at

least a half.

3.2. Donsker and Non-Donsker Cases. We specialize the high-level conditions de-

veloped above into two general cases:

(1) The Donsker case, where the studentized process converges to a fixed continuous

Gaussian process. This immediately implies the convergence of suprema as well as
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the insensitivity of the supremum to replacement of the argmin sets with consistent

estimates. This case primarily covers parametric estimation and includes a great variety

of practical procedures, including the “finite-support case”, where V is a finite set.

(2) The non-Donsker case, where the studentized process does not converge to a

fixed continuous Gaussian process, but may instead be approximated by a sequence of

Gaussian processes or other pivotal processes. This case is harder, but it also leads to a

majorization of the supremum by tractable random variables as well as insensitivity to

replacement of the argmin supersets with consistent estimates. This case primarily covers

nonparametric estimation of the boundary and includes a rich variety of procedures,

ranging from kernel to series methods.

Formally we define the Donsker case as follows.

Condition D. 1. The normalized stochastic process Zn converges to a continuous Gauss-

ian process Z∞ with a known distribution and a non-degenerate covariance function, in

the space of bounded functions on V, namely

Zn(·) =d Z∞(·) + op(1), in `∞(V).

It is worth noting here that given weak convergence, convergence in probability is

without loss of generality due to the Skorohod-Dudley-Wichura construction. According

to the latter, given weak convergence, we can always find a suitably enriched probability

space on which convergence in probability takes place.

The Donsker condition is widely applicable in parametric and semi-parametric esti-

mation problems. It leads to immediate verification of the high-level conditions C.1 and

C.2.

Lemma 1. The Donsker condition D.1 implies conditions C.1 (a) with normalizing

constants an = ân = 1 and bn = b̂n = 0 and the limit variable E∞(V0) = supv∈V0
Z∞(v)

with a continuous distribution and condition C.2, including the ideal case V = V0, with

any vanishing sequence of positive constants rn = o(1).

Next, we formally define the non-Donsker cases as follows.

Condition N. The normalized stochastic process Zn can be approximated uniformly by

a sequence of penultimate processes Z ′
n, which is a sequence of either Gaussian processes

or some other pivotal processes Z ′
n, with a known distribution, namely

an sup
v∈V

|Zn(v)− Z ′
n(v)| = op(1),
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for some sequence of constants an. Conditions C.1 and C.2 or C∗.1 and C.2 hold with

Zn(v) replaced by the sequence of penultimate processes Z ′
n(v). The resulting conditions

are referred to as Conditions N.1, N∗.1 and N.2, respectively.

This condition requires the studentized stochastic process to be approximated by a

sequence of pivotal processes, whose behavior is sufficiently regular to allow verification

of the high-level conditions C.1 and C.2. Below, we show how this condition is fulfilled

for series and kernel estimators.

Lemma 2. Condition N implies C.1 (or C∗.1) and C.2.

3.3. Parametric Estimation of v 7→ θ(v). In this subsection, we show that the con-

ditions developed above apply to various parametric estimation methods of v 7→ θ(v).

Parametric estimation is an important practical case, and it turns out to be quite

tractable. In particular, it includes the case where the set V is finite. We formally

state the conditions required for parametric estimation in the following:

Condition P. θ(v) = θ(v, γ0), where θ(v, γ) is a known function of finite-dimensional

parameter γ ∈ Rk, and ∂θ(v, γ)/∂γ is uniformly continuous in (γ, v) for all γ in a

neighborhood of γ0, v ∈ V.

P.1 An estimate γ̂ is available such that
√

n(γ̂ − γ0) =d Ω1/2N + op(1), N =d N(0, I),

where for

g(v)′ =
∂θ(v, γ0)

∂γ

′
Ω1/2

the norm ‖g(v)‖ is bounded uniformly in v above and away from zero.

P.2 There is an estimator for the standard deviation of θ(v, γ̂) that satisfies

s(v) =
1√
n
‖g(v)‖(1 + op(1)),

uniformly in v ∈ V. For example, if there is an estimate Ω̂ such that Ω̂ =

Ω + op(1), then such an estimate of precision is given by s(v) = ‖ĝ(v)‖/√n with

ĝ(v)′ = ∂θ(v,γ̂)
∂γ

′
Ω̂1/2.

For the case of a finite number of support points, one can set θ(v) =
∑J

j=1 γj1(v = vj),

where (v1, . . . , vJ) are the support points and 1(·) is the usual indicator function. The

following lemma shows that Condition D follows under the conditions stated above.
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Lemma 3. Condition P implies Condition D with the limit process

Z∞(v) =
g(v)′N
‖g(v)‖ , g(v)′ =

∂θ(v, γ0)

∂γ

′
Ω1/2.

3.4. Nonparametric Estimation of θ(v) via Series. Series estimation is effectively

like parametric estimation, but the dimension of the estimated parameter tends to in-

finity and bias arises due to approximation based on a finite number of basis functions.

If we select the number of terms in the series expansion so that the estimation error is

of larger magnitude than the approximation error, then the analysis closely mimics that

of the parametric case.

Condition S. Suppose that the series estimator θ̂(v) for the function θ(v) has the form

θ̂(v) = p(v)′β̂,

where pn(v) := (p1(v), . . . , pK(v)) is a collection of K-dimensional approximating func-

tions, K →∞, K = o(n), and β̂ is a K-vector of series regression estimates. Further-

more, assume the following conditions hold.

S.1 The estimator satisfies the following linearization and strong approximation con-

dition in `∞(V)
√

n(θ̂(v)− θ(v))

‖gn(v)‖ =d
gn(v)′Nn

‖gn(v)‖ + Rn(v),

where

gn(v)′ = pn(v)′Ω1/2
n , Nn =d N(0, IK), sup

v∈V
|Rn(v)| = op(1/

√
log n),

where Ωn are positive definite matrices, and ‖∇vgn(v)/‖gn(v)‖‖ is of polynomial

growth in K uniformly in v ∈ V.

S.2 There exists an estimate s(v) of precision such that

s(v) =
‖gn(v)‖√

n
(1 + op(1)),

uniformly in v ∈ V. For example, if there is an estimate Ω̂ such that ‖Ω̂ −
Ω‖ = op(1), then such estimate of precision is given by s(v) = ‖ĝn(v)‖/√n with

ĝn(v)′ = pn(v)′Ω̂1/2.

Assumption S.1 embeds a number of requirements. The first is that the series esti-

mator admits a linear approximation in terms of a zero-mean vector Ñ ∼ (0, I), which
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is typically a rescaled sum of vectors. The second is undersmoothing, namely that the

approximation bias is asymptotically negligible. The third is the approximation of the

vector Ñ by a normal vector N =d N(0, I). This approximation is immediate, for

example, in series regression with normal errors, but it also applies considerably more

generally. Indeed, using the coupling of Yurinskii (1977), we provide sufficient primitive

conditions for this approximation in Appendix B.1.

Lemma 4. Assume that mes(V ) > 0, where mes(V ) denotes the Lebesgue measure of

V . Condition S implies condition N.1∗(b) with the penultimate process

Z ′
n(v) = αn(v)′Nn, Nn = N(0, IK), αn(v) =

gn(v)

‖gn(v)‖ ,

En(V ) = an[sup
v∈V

Z ′
n(v)− bn], an = bn ∼

√
2d log(2L/

√
2π),

L = sup
v∈V

‖∇αn(v)‖ · diam(V ).

When d = 1, we can also use a sharper constant an =
√

2 log κn(V )
2π

where κn(V ) =∫
V
‖∇αn(v)‖dv. Furthermore, condition S implies condition N.1(b), as the sequence

of random variables En(V ) is stochastically dominated in distribution by the standard

exponential random variable

En(V ) ≤d E∞ + op(1), P [E∞ > p] = exp(−p).

Lemma 4 provides a majorizing limiting variable E∞ for the normalized supremum

of the studentized empirical process Zn. It also provides a penultimate approximation

En(V ) for this supremum. We can use these results for construction of critical values.

The p-th quantile of E∞(V ) is given by

c∞(p) = − log(1− p).

Therefore, we can set

k1−α = an(V ) +
c∞(1− α)

an(V )
. (3.2)

Alternatively, we can base inference on quantiles of En(V ) and estimate them numerically.

We describe the practical details of simulation of critical values in Appendix C. It is not

restrictive to assume that V has strictly positive measure. Even if V0 is singleton, we

can select V to be a superset of V0 of positive measure, in which case our method for

inference is valid but conservative.
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Lemma 5. Assume that mes(V ) > 0. Let an = bn and ân = b̂n := an(V̂ ). Then,

condition N.2 holds if an(V̂ )2 − an(V )2 →p 0 and the following growth condition holds

an · rn · sup
v∈V

‖∇αn(v)‖ → 0. (3.3)

The requirement that an(V̂ )2 − an(V )2 →p 0 is a weak assumption. For example,

consider an =
√

2 log κn(V )
2π

in one-dimensional settings. In this case, an(V̂ )2−an(V )2 →p

0 is satisfied if log κn(V̂ )
κn(V )

→p 0. If 1 . κn(V ), which is the case when V has non-zero

Lebesgue measure, then |κn(V̂ )
κn(V )

− 1| . rn · supv∈V ‖∇αn(v)‖ → 0. For typical series the

upper bound on ‖∇αn(v)‖ is of order
√

K. If also rn = (log n)c(K/n)1/2ρ for some c > 0,

then the growth condition (3.3) reduces to

(log n)c+1/2(K/n)1/2ρK1/2 → 0,

When the parameter ρ = 1, this amounts to a rather mild condition K2(log n)c′/n → 0,

for some c′ > 0, on growth on the number of series terms. The value ρ = 1 is plausible

when the superset V is the ε-argmin of the bound-generating function for some ε > 0,

as we discuss in Section 3.6.

3.5. Nonparametric Estimation of θ(v) via local methods. In this section we

provide conditions under which a kernel-type estimator of the bound-generating function

satisfies Conditions N.1 and N.2 and we also describe how to obtain critical values k.

Kernel-type estimators include standard kernel estimators as well as local polynomial

estimators.

For any positive integer d and a d-dimensional vector u = (u1, . . . , ud), let K(u) =∏d
i=1 K(ui), where K is a kernel function on R. We assume that a kernel-type estima-

tor θ̂(v) of a bound-generating function θ(v) satisfies the following conditions. These

conditions cover local estimation of bound-generating functions defined as conditional

expectation functions, in which case given i.i.d. random variables (Yi, Vi, Ui) we have

θ(v) = E[Yi|Vi = v], and σ2(v) = Var(Yi|Vi = v) in the expression given below. These

conditions also cover local estimation of bound-generating functions defined as condi-

tional quantile functions, although in this case the underlying interpretation of param-

eters differs.
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Condition K. 1. Assume that the estimator satisfies the following linearization and

strong approximation condition in `∞(V):

(nhd
n)1/2[θ̂(v)− θ(v)]

‖wn(v)‖ =d
wn(v)′Un

‖wn(v)‖ + Rn(v),

where

Un =d Nn(0, I) conditional on (V1, . . . , Vn), sup
v∈V

|Rn(v)| = op(a
−1
n ),

wn(v) is typically an n-dimensional vector of the form

wn(v) =

(
σ(Vi)K [h−1

n (v − Vi)]

(nhd
n)1/2fV (v)

, i = 1, . . . , n

)
, (3.4)

K is a kernel function that is bounded and is continuously differentiable with a bounded

derivative, hn is a bandwidth that satisfies hn → 0 and log n/(nhd
n)1/2 → 0, σ2(v) is

uniformly continuous, bounded and also bounded below from zero, fV (v) is the probability

density function for Vi, which is bounded away from zero and has a bounded derivative,

and Nn(0, I) denotes the n-dimensional multivariate normal distribution with variance

the identity matrix, and Vi are i.i.d.

Condition K. 2. There exists an estimate of precision such that

s(v) =
‖wn(v)‖√

nhd
n

(1 + op(1)),

uniformly in v ∈ V. For example, a consistent estimate of precision is given by s(v) =

‖ŵn(v)‖/
√

nhd
n, where

ŵn(v) =

(
σ̂(Vi)K [h−1

n (v − Vi)]

(nhd
n)1/2f̂V (v)

, i = 1, . . . , n

)
, (3.5)

where supv∈V |σ̂(v)− σ(v)| = op(1) and supv∈V |f̂V (v)− fV (v)| = op(1).

Conditions K.1 and K.2 embed a number of requirements. As was the case for series

estimators, a simple immediate case is nonparametric mean regression with normal errors

that are mean independent of regressors with known conditional variance σ2(v). It is

not difficult to extend conditions K.1 and K.2 to more general cases with non-normal

errors, an unknown conditional variance function, and additional covariates other than

v. In Appendix B.2, we give sufficient conditions for strong approximation of kernel-type

estimators of conditional expectation functions.
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In order to provide an analytic approximation for the asymptotic distribution of the

supremum of the studentized estimation process Zn, let ρd(s) =
∏d

j=1 ρ(sj), where s ≡
(s1, . . . , sd) is a d-dimensional vector and

ρ(sj) =

∫
K(u)K(u− sj)du∫

K2(u)du
(3.6)

for each j.

Lemma 6. Let an(V ) = bn(V ) be the largest solution to the following equation:

mes(V )hn
−dλd/2(2π)−(d+1)/2ad−1

n exp(−a2
n/2) = 1, (3.7)

where

λ =
− ∫

K(u)K ′′(u)du∫
K2(u)du

.

Assume that K.1 and K.2 hold and mes(V ) > 0. Then, condition N.1(a) holds with the

penultimate process

Z ′
n(v) :=

wn(v)′Un

‖wn(v)‖ .

Furthermore, we have that

Z ′
n(v) =d Z ′′

n

(
h−1

n v
)

+ R′
n(v), sup

v∈V
|R′

n(v)| = op(an(V )−1).

where {Z ′′
n(h−1

n v) : v ∈ V } is a sequence of Gaussian processes with continuous sample

paths such that

E[Z ′′
n(s)] = 0,

E[Z ′′
n(s1)Z

′′
n(s2)] = ρd(s1 − s2) for s, s1, s2 ∈ Vn := h−1

n V ,

Finally, we have that

En(V ) := an(V )

[
sup
v∈V

Z ′′
n

(
h−1

n v
)− an(V )

]
=d E∞ + op(1), (3.8)

where E∞ has the type I extreme-value distribution.

Lemma 6 provides a majorizing limiting variable E∞ for the normalized supremum

of the studentized empirical process Zn. It also provides a penultimate approximation

En(V ) for this supremum. We can use these results for construction of critical values.
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For example, when d = 1 and V = [a, b],

an(V ) =

(
2 log(h−1

n (b− a)) + 2 log
λ1/2

2π

)1/2

. (3.9)

The 1− α quantiles of E∞ is given by

c∞(1− α) = − log log(1− α)−1

Then we set

k1−α = an(V ) +
c∞(1− α)

an(V )
, (3.10)

which consistently estimates the 1 − α quantile of E∞(V ). Alternatively, we can base

inference on quantiles of En(V ) and estimate them numerically. We describe the practical

details for the simulation of critical values in Appendix C. Note that it is not restrictive

to assume that V has strictly positive measure. Even if V0 is singleton, we can select

V to be a superset of V0 of positive measure, in which case our method for inference is

valid but conservative.

It is possible to construct an asymptotically valid, alternative critical value. Equation

(A.6) in the proof of Theorem 6 suggests that we might construct an alternative critical

value by using the leading term in equation (A.6). In other words, instead of using

quantiles of E∞(V ), we can use quantiles of the following distribution-like function:

exp

{
− exp

(
−x− x2

2a2
n

)[
1 +

x

a2
n

]d−1
}

.

For example, when d = 1 and V = [a, b], instead of using (3.10), we can use the

alternative critical value:

k′1−α = (an(V )2 − 2 log log(1− α)−1)1/2. (3.11)

In some contexts this approximation may behave better in finite samples than an ap-

proximation using the extreme value distribution (see, e.g. Piterbarg (1996) and Lee,

Linton, and Whang (2009)). In addition, we can consider the following form:

k1−α = bn(V ) +
c∞(1− α)

an(V )
, (3.12)

where V = [a, b], an(V ) =
√

2 log(h−1
n (b− a)), and bn(V ) = an(V )+log

√
(λ/2π)/an(V ).

The critical value in (3.12) is a one-sided version of equation (29) of Härdle and Linton

(1994), which seems to behave better in finite samples, compared to (3.10). The critical

values in (3.10), (3.11), and (3.12) are asymptotically equivalent.
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The following lemma provides sufficient conditions for Condition N.2.

Lemma 7. Assume that mes(V ) > 0. Let αn(v) := wn(v)/‖wn(v)‖. Also, let an = bn

and ân = b̂n := an(V̂ ). Then, condition N.2 holds if an(V̂ )2 − an(V )2 →p 0 and the

following growth condition holds:

an(V ) · rn · sup
v∈V

‖∇αn(v)‖ →p 0. (3.13)

Furthermore, under Condition K, supv∈V ‖∇αn(v)‖ = Op(h
−1
n ).

As was the case for series estimation, the requirement that an(V̂ )2− an(V )2 →p 0 is a

weak assumption. For example, consider an(V ) in (3.9). In this case, an(V̂ )2−an(V )2 →p

0 is satisfied if mes(V ) > 0 and mes(V̂ )/mes(V ) →p 0. In Theorem 2 below we state

sufficient conditions for this. If rn = (log n)c(nhd
n)−1/2ρ, then the growth condition (3.13)

holds if

(log n)c+1/2(nhd+2ρ
n )−1/2ρ → 0.

When the parameter ρ = 1, this amounts to a rather mild condition nhd+2
n /(log n)c′ →

∞, for some c′ > 0, on the growth of bandwidth.

3.6. Estimation of V . Next we consider the choice and estimation of V , which we

choose to be the ε−argmin of the function θ(v). In parametric cases, we can take ε = 0,

that is V = V0. In nonparametric cases, it may not always be feasible to take ε = 0 and

attain both conditions C.1 and C.2. The reason is that the degree of identifiability of V0

is decreasing in the number of smooth derivatives that the bound-generating function

θ(v) has on the boundary of V0, while the rate of convergence of θ̂(v)−θ(v) is increasing

in this number. These two effects work to offset each other. However, we can use

V = Vε, the ε− argmin, whose degree of identifiability for ε > 0, under some reasonable

conditions, does not depend on the number of smooth derivatives.

Condition V. There are two parts:

V.1 The estimator θ̂(v) satisfies

sup
v∈V

|θ̂(v)− θ(v)|/s(v) = Op(cn), where cn & 1,

for example, cn = a−1
n + bn under the conditions C.1 and C.2. Also

`n := 2
√

log n · sup
v∈V

s(v)

satisfies γn := `n · cn → 0.
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V.2 The function θ(v) is separated away from θ0 + ε on the complement of the set

Vε := ε-argmin of θ(v) = {v ∈ V : θ(v) ≤ θ0 + ε}
by a polynomial minorant in the distance from this set , namely

θ(v)− θ0 − ε ≥ (cd(v, Vε))
ρ(ε) ∧ δ

for any vε 6∈ Vε for some positive constant ρ(ε), called the degree of identifiability,

and constant c and δ, possibly dependent on ε, where

d(v, Vε) := inf
v′∈Vε

‖v − v′‖.

We propose the following estimator of Vε:

V̂ε = {v ∈ V : θ̂(v) ≤ inf
v∈V

θ̂(v) + `ncn + ε}. (3.14)

Theorem 2. Suppose that conditions V.1 and V.2 hold. Then with probability converging

to one, the set Vε is a subset of the estimator V̂ε. Moreover, the Hausdorff distance

between these two sets approaches zero at the following rate:

dH(V̂ε, Vε) .p rn = γ1/ρ(ε)
n .

Moreover, the Lebesgue measure of the difference between the two sets approaches zero

at the following rate:

mes(V̂ε \ Vε) .p rn = γd/ρ(ε)
n ,

where d is the dimension of the Euclidean space containing V.

Thus the rate of convergence depends on the uniform rate of convergence γn of v 7→
θ̂(v) to v 7→ θ(v) and on the degree of identifiability ρ(ε) of the ε-argmin set Vε.

The following lemma presents a case where condition V.2 holds under reasonable

conditions and the degree of identifiability ρ(ε) is one.

Lemma 8. Let ε ≥ 0 be fixed, and suppose that V is a convex body in Rd and Vε is in

the interior of V. Suppose that there exists a function η(·) such that

θ(v) = max(η(v), θ0),

where η : V 7→ R is continuously differentiable on V with ‖∇η(v)‖ bounded away from

zero on

∂Vε := {v ∈ V : θ(v)− θ0 = η(v)− θ0 = ε}.
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Then condition V.2 holds with

ρ(ε) = 1, c = inf
v∈∂Vε

‖∇η(v)‖/2 > 0, and δ = inf
d(v,Vε)≥d0

(η(v)− θ0 − ε) > 0

for some d0 > 0.

3.7. Inference on the identified set ΘI and on the true parameter value θ∗.
We can use our one-sided confidence bands for lower and upper bounds to construct

confidence intervals for the identified set, as well as for the true parameter θ∗. As in the

introduction, we suppose that the identified set is of the form ΘI =
[
θl
0, θ

u
0

]
, where θl

0 =

supv∈Vl θl(v) is the maximum of a collection of lower bounds, and θu
0 = supv∈Vu θu(v) the

minimum of a collection of upper bounds on parameter θ∗. So far, we have described how

to consistently estimate such bounds, as well as how to construct one-sided confidence

bands. We now describe how these one-sided confidence bands can be used to construct

two-sided bands for either ΘI or θ∗.

We can construct two-sided bands for the identified set ΘI as follows. Let θ̂l
p and θ̂u

p

denote the end-points of one-sided bands so that

P
(
θu
0 ≤ θ̂u

p

)
≥ p + o(1) and P

(
θl
0 ≥ θ̂l

p

)
≥ p + o(1).

Then, by Bonferroni’s inequality, the region [θ̂l
p, θ̂

u
p ] with p = 1−α/2 is an asymptotically

valid 1− α confidence interval for ΘI ,

P
(
[θl

0, θ
u
0 ] ⊆ [θ̂l

p, θ̂
u
p ]

)
≥ 1− P

(
θl
0 < θ̂l

p

)
− P

(
θu
0 > θ̂u

p

)
≥ 1− α + o(1). (3.15)

We can construct two-sided bands for the true parameter value θ∗ as follows: Let

∆̂+
n ≡ ∆̂n1[∆̂n > 0], where ∆̂n = θ̂u

1/2 − θ̂l
1/2, and p̂n ≡ 1 − Φ(τn∆̂+

n )α, where Φ (·)
is the standard normal CDF, τn is a sequence of constants satisfying τn → ∞ and

τn|∆̂+
n −∆n| →p 0, where ∆n = θu

0 − θl
0. Notice that since 1/2 ≤ Φ (c) ≤ 1 for c ≥ 0, we

have that p̂n ∈ [1− α, 1− α/2]. Then under conditions similar to stated below we have:

inf
θ∗∈[θl

0,θu
0 ]

P
(
θ∗ ∈ [θl

p̂n
, θu

p̂n
]
) ≥ 1− α + o(1). (3.16)

We note that the confidence intervals are valid uniformly with respect to the location

of the true parameter value θ∗ within the bounds. Moreover, this statement allows the

model and thus also the width of the identification regions ∆n to change with the sample

size. Thus these confidence intervals are also valid uniformly with respect to ∆n.

Before stating the formal result, some further notation is required. In what follows we

shall use the additional superscripts j = u (for upper bound) or j = l (for lower bounds)
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relative to the main text. Thus, all statistics, estimators, and sets receive such indices;

moreover, we define the studentized empirical processes as follows

Zu
n (v) =

θu (v)− θ̂u (v)

su (v)
, Z l

n (v) =
θ̂l (v)− θl (v)

sl (v)
,

where the second expression has the sign reversed.

The following theorem provides a formal statement of the validity of our proposed

confidence intervals for θ∗.

Theorem 3. Consider a sequence of models indexed by n such that the following condi-

tions hold. Assume C*.1(b) holds for each j ∈ {u, l}, so that aj
n · (supv∈V j Zj

n(v)−bj
n) ≤d

E j
n(V j) + op(1), where each E j

n(V j) = Op(1) has a known distribution and satisfies the

stated anti-concentration property. Assume that C.2 holds so that for each j ∈ {u, l},
âj

n · (supv∈V̂ j Zj
n(v) − b̂j

n) − aj
n · (supv∈V j Zj

n(v) − bj
n) →p 0. Further suppose that ĉj(p)

is a consistent upper bound on cj
n(p) := the p − th quantile of E j

n(V j), where n = ∞
under C.1(b), namely for each j, ĉj(p) ≥ cj

n(p) + op(1). Let τn be a sequence of positive

constants such that (A.7) holds. Then if ∆n ≥ 0, (3.16) holds.

Regarding the choice of τn, we note that since |∆̂+
n−∆n| →p 0 typically at a polynomial

rate in n, there are many admissible choices of τn, for example τn = log n. In practice

it may be desirable to use a different choice, for example, τn = σ−1
n / log n, where σn is

a standardizing sequence for ∆̂n −∆n in the sense that σ−1
n (∆̂n −∆n) = Op(1). More

specifically, σn could be the standard deviation of ∆̂n − ∆n. Another choice, which is

more readily available in our context is σn = max[θ̂u
3/4 − θ̂u

1/4, θ̂
l
3/4 − θ̂l

1/4].

The construction above employs reasoning analogous to that of Imbens and Manski

(2004) and Stoye (2009), though the specifics differ since the former approaches do not

apply here. The reasoning behind our construction is as follows. If the width ∆n of

the identification region is bounded away from zero, then θ∗ can be close to either the

lower bound θl
0 or the upper bound θu

0 but not both, so in this case the end-points

θ̂u
1−α and θ̂l

1−α from one-sided intervals suffice for a two-sided interval. If ∆n is zero or

approaches zero, then θ∗ can be close to both the lower bound θl
0 and the upper bound

θu
0 simultaneously, so in this case the more conservative end-points θ̂u

1−α/2 and θ̂l
1−α/2 are

needed for a valid two-sided confidence interval. To smoothly and robustly interpolate

between the two situations, we use the end-points θ̂u
p̂n

and θ̂l
p̂n

from one-sided intervals

with the level p̂n ∈ [1− α, 1− α/2] varying smoothly as a function of ∆n.
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4. Monte Carlo Experiments

In this section we present the results of some Monte Carlo experiments that illustrate

the finite-sample performance of our method. We consider a Monte Carlo design that is

similar to that of Manski and Pepper (2009). In particular, we consider the lower bound

on θ∗ = E[Yi(t)|Vi = v] under the monotone instrumental variable (MIV) assumption,

where t is a treatment, Yi(t) is the corresponding potential outcome, and Vi is a monotone

instrumental variable. The lower bound on E[Yi(t)|Vi = v] can be written as

max
u≤v

E [Yi · 1{Zi = t}+ y0 · 1{Zi 6= t}|Vi = u] , (4.1)

where Yi is the observed outcome, Zi is a realized treatment, and y0 is the left end-

point of the support of Yi, see Manski and Pepper (2009). Throughout the Monte Carlo

experiments, the parameter of interest is θ∗ = E[Yi(1)|Vi = 1.5].

4.1. Data-Generating Processes. We consider two cases of data-generating processes

(DGPs). In the first case, which we call DGP1, V0 = V and the MIV assumption has

no identifying power. In other words, the boundary-generating function is flat on V ,

in which case the bias of the analog estimator is most acute, see Manski and Pepper

(2009). In the second case, which we call DGP2, the MIV assumption has identifying

power, and V0 is a strict subset of V .

Specifically, for both DGPs we generated 1000 independent samples from the following

model:

Vi ∼ Unif[−2, 2], Zi = 1{ϕ0(Vi) + εi > 0}, and Yi = µ0(Vi) + σ0(Vi)Ui,

where εi ∼ N(0, 1), ηi ∼ N(0, 1), Ui = min{max{−1.96, ηi}, 1.96}, and (Vi, ηi, εi) are

statistically independent, where i = 1, . . . , n. For DGP1, ϕ0(v) ≡ 0, µ0(v) ≡ 0, and

σ0(v) = |v|. In this case, the bound-generating function

θl(v) := E [Yi · 1{Zi = 1}+ y0 · 1{Zi 6= 1}|Vi = v]

is completely flat (θl(v) = −0.98 for each v ∈ V = [−2, 1.5]). For DGP2, an alternative

specification is considered:

ϕ0(v) = v1(v ≤ 1) + 1(v > 1), µ0(v) = 2[v1(v ≤ 1) + 1(v > 1)], and σ0(v) = |v|.
In this case, θl(v) = µ0(v)Φ[ϕ0(v)]− 1.96Φ[−ϕ0(v)], where Φ(·) is the standard normal

cumulative distribution function. Thus, v 7→ θl(v) is strictly increasing on [−2, 1] and is

flat on [1, 2], and V0 = [1, 1.5] is a strict subset of V = [−2, 1.5].
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We considered sample sizes n = 500 and n = 1000, and we implemented both series

and kernel-type estimators to estimate the bound-generating function θl(v) in (4.1). For

both estimators, we computed critical values via simulation as described in Appendix

C.2, and we implemented our method both with and without estimating Vε. For the

latter, the precision-corrected curve is maximized on the interval between the 5th per-

centile of Vi and the point 1.5. We do this in order to avoid undue influence of outliers

at the boundary of the support of Vi. For the former, Vε is estimated by V̂ε in (3.14)

with ε = 10−6, cn =
√

log n, and `n = 2
√

log n · supv∈V s(v).

4.2. Series Estimation. For basis functions we used cubic B-splines with knots equally

spaced over the sample quantiles of Vi. The number K of approximating functions was

obtained by the following simple rule-of-thumb:

K = K̂, K̂ := K̂cv × n−1/5 × n2/7, (4.2)

where a is defined as the largest integer that is smaller than or equal to a, and K̂cv

is the minimizer of the leave-one-out least squares cross validation score from the set

{5, 6, 7, 8, 9}. If θl(v) is twice continuously differentiable, then a cross-validated K has

the form K ∝ n1/5 asymptotically. Hence, the multiplicative factor n−1/5× n2/7 in (4.2)

ensures that the bias is asymptotically negligible from under-smoothing.6

We obtained the precision-corrected curve for the lower bound by subtracting the

product of a critical value and an asymptotic pointwise standard error from the estimated

function. At each data point of Vi, we computed the pointwise standard error of our

estimate using an asymptotic heteroscedasticity-robust formula.

4.3. Kernel-Type Estimation. We used local linear smoothing since it is known to

behave better at the boundaries of the support than the standard kernel method. We

used the kernel function K(s) = 15
16

(1 − s2)21(|s| ≤ 1) and the following rule of thumb

bandwidth:

h = ĥROT × ŝv × n1/5 × n−2/7, (4.3)

6To check the sensitivity of simulation results, we considered alternative bandwidths such as K ± 1 or
K ± 2 and found that the simulation results were not very sensitive within the local range around our
rule-of-thumb choice.
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where ĥROT is the rule-of-the-thumb bandwidth for estimation of θl(v) with studentized

V , as prescribed in Section 4.2 of Fan and Gijbels (1996). The exact form of ĥROT is

ĥROT = 2.036


 σ̃2

∫
w0(v)dv

n−1
∑n

i=1

{
θ̃

(2)
l (Ṽi)

}2

w0(Ṽi)




1/5

n−1/5,

where Ṽi’s are studentized Vi’s, θ̃
(2)
l (·) is the second-order derivative of the global quartic

parametric fit of θl(v) with studentized Vi, σ̃2 is the simple average of squared residuals

from the parametric fit, w0(·) is a uniform weight function that has value 1 for any Ṽi

that is between the 10th and 90th sample quantiles of Ṽi. Again, the factor n1/5×n−2/7

is multiplied in (4.3) to ensure that the bias is asymptotically negligible due to under-

smoothing.7

At each data point of Vi, we computed an estimate of the pointwise standard error

with the asymptotic standard error formula [nhfV (v)]−1
∫

K2(u)du σ2(v), where fV is the

density of V and σ2(v) is the conditional variance function. We estimated fV and σ2(v)

using the standard kernel density and regression estimators with the same bandwidth h.

4.4. Simulation Results. Table 1 summarizes the results of Monte Carlo experiments.

To evaluate the relative performance of our new estimator, we also consider a simple

analog estimator of the left-hand side of (4.1).

First, we consider Monte Carlo results for the series estimator for DGP1 with n = 500.

In this case, not surprisingly, the simple analog estimator suffers from substantial biases

since the true bound-generating function is flat on V . However, our new estimator,

which is asymptotically median unbiased, has negligible mean bias and even smaller

median bias. One potential concern with the new estimator is that it may have a larger

variance due to the fact that we need to estimate the pointwise standard error for each

point. However, it turns out that with DGP1, the new estimator has smaller standard

deviation (SD) and also smaller mean absolute deviation. As a result, the new estimator

enjoys substantial gains relative to the analog estimator in terms of the root mean square

error (RMSE). It is interesting to comment on estimation of Vε in this case. Since the

true argmax set V0 is equal to V , an estimated Vε should be the entire set V . Note

that the simulation results are similar since for many simulation draws, V̂ε = V . Similar

conclusions hold for the sample size n = 1000. Note that the biases of the sample analog

7As in series estimation, we considered alternative bandwidths such as 0.8h or 1.2h and found that the
qualitative findings of Monte Carlo experiments were the same.
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estimator are still quite large, even though it is a consistent estimator. The discrepancies

between nominal and actual coverage probabilities are not large.

We now move to DGP2. In this case, the true argmax set V0 is [1, 1.5]. In this case,

our estimator is upward median unbiased and the coverage probability is conservative.

The Monte Carlo results are consistent with asymptotic theory. As in DGP1, the sample

analog estimator suffers from upward biases. However, unlike in DGP1, our new pro-

posed estimator has a slightly larger RMSE than the analog estimator with n = 500. In

DGP2, the true argmax set V0 is a strict subset of V . Hence, we expect that it is impor-

tant to estimate Vε. On average, the estimated sets were [−0.847, 1.5] when n = 500 and

[−0.147, 1.5] when n = 1, 000. As can be seen from the table, our method performed

better when Vε is estimated in terms of making the bound estimates and confidence

intervals less conservative. However, there was no gain for the sample analog method

even with the estimated Vε. When n = 1, 000 and Vε is estimated, the RMSE of the new

proposed estimator is more than 10% lower than that of the sample analog estimator.

We now comment on local linear estimation. Overall, simulation results are quite

similar for both the series estimator and the local linear estimator. With DGP1, the

differences between the two estimators are negligible, but with DGP2, it seems that the

series estimator performs slightly better than the local linear estimator. We conclude

from the Monte Carlo experiments that our inference method performs well in coverage

probabilities and that our proposed estimator outperforms the sample analog estimator,

especially when the MIV assumption has no identifying power.

5. An Empirical Application

In this section, we illustrate our inference procedure by applying it to a MIV-MTR

(monotone instrument variable - monotone treatment response) bound of Manski and

Pepper (2000, Proposition 2). The parameter of interest is E[Yi(t)|Vi = v], where t is a

treatment, Yi(t) is a potential outcome variable corresponding to a treatment t, and Vi

is a scalar explanatory variable. Let Zi denote the realized treatment that is possibly

self-selected by individuals. The source of the identification problem here is that for

each individual i, we only observe Yi ≡ Yi(Zi) along with (Zi, Vi), but not Yi(t) with

t 6= Zi. The MIV-MTR bounds take the form

sup
u≤v

E
[
Y l

i |Vi = u
] ≤ E[Yi(t)|Vi = v] ≤ inf

u≥v
E [Y u

i |Vi = u] ,
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where Y l
i = Yi ·1 {t ≥ Zi}+y0 ·1 {t < Zi}, Y u

i = Yi ·1 {t ≤ Zi}+y1 ·1 {t > Zi}, and [y0, y1]

is the support of Yi. Thus the bound-generating functions are θl(v) = E
[
Y l

i |Vi = v
]

and

θu(v) = E [Y u
i |Vi = v] with intersection sets V l = (−∞, v] for the lower bound and

Vu = [v,∞) for the upper bound. Note that the MIV-MTR bounds are uninformative

if the support of Y is unbounded. In the empirical illustration below, we use the sample

minimum and maximum as the boundary points of the support.

We use data from the National Longitudinal Survey of Youth of 1979 (NLSY79); in

particular, we use the same data extract as Carneiro and Lee (2009) giving us n = 2044

observations. The outcome variable Yi is the logarithm of hourly wages in 1994. In

order to alleviate problems induced by possible measurement error and the occurrence

of missing wages, Yi is constructed as a 5 year average of all non-missing wages reported

in the five year interval centered in the year 1994. The treatment variable t is years

of schooling. The monotone instrumental variable Vi is the Armed Forces Qualifying

Test score (AFQT, a measure of cognitive ability), normalized to have mean zero in the

NLSY population. The MIV assumption here stipulates that the conditional expectation

of potential log wages at any level of schooling is nondecreasing in AFQT score. The use

of AFQT as a MIV can tighten the bound, but its empirical implementation carries some

challenges since the bounds are the suprema and infima of nonparametric estimates.8

Table 2 presents descriptive statistics for our sample.

Our targets are the MIV-MTR bounds for E[Yi(t)|v] at v = 0 (the mean value of

AFQT) for high school graduates (t = 12) and college graduates (t = 16). We estimate

the bound-generating functions E
[
Y l

i |Vi = u
]

and E [Y u
i |Vi = u] by local linear smooth-

ing. For each nonparametric function, we use the same kernel function and rule-of-thumb

as in Section 4.3. In addition, we used the critical value in (3.11) and estimated Vε as

in Section 4.3.

Table 3 summarizes our empirical results. The first row shows näıve sample analog es-

timates, which are based on the maxima and minima of the bound-generating functions.

The second row presents our median downward-unbiased (upward-unbiased) estimates

for the upper (lower) bounds. We see that our estimate and the analog estimate for the

upper bound of average log wages for college graduates differ quite substantially. The

economic implication of this difference is large: the upper bound for the return to college

(defined as E[Yi(16)|Vi = 0]−E[Yi(12)|Vi = 0]) is 2.87− 2.12 = 0.75 based on the näıve

8The NBER working paper version of Manski and Pepper (1998) also considered AFQT as a MIV.
See the comments in the NBER working paper version of Manski and Pepper (1998, Section 6.2) for
discussion of the difficulty of carrying out inference.
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sample analog estimates, whereas it is 3.18 − 2.03 = 1.15 based on our proposed new

estimates. The resulting difference between the two estimates of the upper bound for

the return to college is 40%, a 10% difference in terms of one year of college education.

We now consider 95% one-sided confidence intervals, which are given in the third row

of the table. If we combine upper and lower bounds together, then we obtain a 90 %

confidence interval for average log wages of each education group. Note that the 90%

confidence interval for the potential average college log wages is wider that the 90%

confidence interval of the high school wages.9 This is because the estimate of the upper

bound-generating function for college wages is rather imprecise.

In order to illustrate the sources of the difference between näıve sample analog esti-

mates and our estimates in Figures 4 and 5, we plot estimated bound-generating func-

tions v 7→ E
[
Y j

i |Vi = v
]
, j = l, u as well as precision-corrected bound-generating func-

tions for college graduates. In Figure 4 we see that the sudden drop of the estimated

bound-generating function in the right tail for college graduates tightens the empirical

MIV-MTR bound, but the tightness of this bound could be due to reduced precision

of the local linear estimator at the boundary. On the other hand, our new method

automatically corrects for varying degree of precision.

6. Conclusion

In this paper we provided a novel method for inference on intersection bounds. Bounds

of this form are common in the recent literature, but two issues have posed difficulties

for valid asymptotic inference and bias-corrected estimation. First, the application of

the supremum and infimum operators to boundary estimates results in finite-sample

bias. Second, unequal sampling error of estimated boundary functions complicates infer-

ence. We overcame these difficulties by applying a precision-correction to the estimated

boundary functions before taking their intersection. We employed strong approximation

to justify the magnitude of the correction in order to achieve the correct asymptotic

size. As a by-product, we proposed a bias-corrected estimator for intersection bounds

based on an asymptotic median adjustment. We provided formal conditions that justi-

fied our approach in both parametric and nonparametric settings, the latter using either

kernel or series estimators. As such, our method is the first to provide valid inference

for nonparametric specifications of a continuum of conditional moment inequalities.

9To check sensitivity to the choice of critical values, we obtained the corresponding confidence intervals
using critical values in (3.12). It turns out that the resulting 90% confidence intervals are almost
identical: [1.96,2.88] for high school wages and [2.30, 3.46] for college wages, respectively.
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At least two of our results may be of independent interest beyond the scope of in-

ference on intersection bounds. First, our result on the strong approximation of series

estimator is new. This essentially provides a functional central limit theorem for any

series estimator that admits a linear asymptotic expansion, and is applicable quite gen-

erally. Second, our method for inference applies to any value that can be defined as

a linear programming problem with either finite or infinite dimensional constraint set.

Estimators of this form can arise in a variety of contexts, including, but not limited

to intersection bounds. We therefore anticipate that although our motivation lay in

inference on intersection bounds, our results may have further application.

Appendix A. Proofs

Proof of Theorem 1. We prove the results assuming condition C∗.1 only, since

condition C.1 is a special case with En(V ) = E∞(V ).

Part 1. Observe that

P [θ0 ≤ θ̂p] = P [ inf
v∈V̂

[θ̂(v)− θ0 + [̂bn + ĉ(p)/ân]s(v)] ≥ 0]

≥ P [ inf
v∈V̂

[θ̂(v)− θ(v) + [̂bn + ĉ(p)/ân]s(v)] ≥ 0]

= P [ân[θ̂(v)− θ(v)]/s(v) + ânb̂n ≥ −ĉ(p),∀v ∈ V̂ ]

= P [ân[Zn(v)− b̂n] ≤ ĉ(p),∀v ∈ V̂ ]

= P [ân[sup
v∈V̂

Zn(v)− b̂n] ≤ ĉ(p)]

= P [an[sup
v∈V

Zn(v)− bn] ≤ ĉ(p) + op(1)],

where we used that θ(v) ≥ θ0 for all v ∈ V as well as condition C.2. Then we observe

that using condition C.1∗(b) and the anti-concentration property

P [an[sup
v∈V

Zn(v)− bn] ≤ ĉ(p) + op(1)] = P [En(V ) ≤ ĉ(p) + op(1)]

≥ P [En(V ) ≤ cn(p) + op(1)]

≥ P [En(V ) ≤ cn(p)]− P [En(V ) ∈ [cn(p)± op(1)]]

≥ p− o(1),

which proves part 1.
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Part 2. Using Condition C∗.1(a) and C.2, we obtain

P [θ0 ≤ θ̂p] = P [ inf
v∈V̂

[θ̂(v)− θ0 + [̂bn + ĉ(p)/ân]s(v)] ≥ 0]

= P [ân[sup
v∈V̂

θ0 − θ̂(v)

s(v)
− b̂n] ≤ ĉ(p)]

= P [an[sup
v∈V0

θ0 − θ̂(v)

s(v)
− bn] ≤ ĉ(p) + op(1)]

= P [an[sup
v∈V0

Zn(v)− bn] ≤ ĉ(p) + op(1)]

= P [En(V0) ≤ cn(p) + op(1)]

= P [En(V0) ≤ cn(p)] + wn where |wn| ≤ P [En(V0) ∈ [cn(p)± op(1)]]

= p + o(1),

where we also used that θ (v) = θ0 for all v ∈ V0, and the continuity of the limit

distribution of E∞(V0). ¤.

Proof of Lemma 1. From the Donsker condition and by the Continuous Mapping

Theorem, we have that

sup
v∈V0

Zn(v) =d E∞(V0) + op(1) = sup
v∈V0

Z∞(v) + op(1).

Moreover, the distribution of the limit variable is continuous by the non-degeneracy of

the covariance kernel. This verifies condition C.1(a).

By the stochastic equicontinuity, we have that

| sup
v∈V̂

Zn(v)− sup
v∈V

Zn(v)| ≤ sup
|v−v′|≤dH(V̂ ,V )

|Zn(v)− Zn(v′)| = op(1),

for any sequence of sets V̂ such that dH(V̂ , V ) = Op(rn) = op(1). This implies condition

C.2. ¤.

Proof of Lemma 2. This is immediate from the statement of the conditions. ¤.

Proof of Lemma 3. We have by Taylor expansion that

√
n(θ̂(v)− θ(v)) =d

∂θ(v, γ0 + op(1))

∂γ

′
(
√

n(γ̂ − γ0))

=d
∂θ(v, γ0 + op(1))

∂γ

′
(Ω1/2N + op(1))

=d g(v)′N + op(1).
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Then in `∞(V),

Zn(v) =
(θ(v)− θ̂(v))

s(v)
=d

g(v)′N + op(1)

‖g(v)‖+ op(1)

=d
g(v)′N
‖g(v)‖ + op(1).

¤.

Proof of Lemma 4 By assumption we have that an · supv∈V |Zn(v)−Z ′
n(v)| = op(1)

for any an, including an stated in the Lemma. Now we set En(V ) = an[supv∈V Z ′
n(v)−bn].

This random variable need not have a limit distribution, but its exact distribution can

be obtained by simulation. Thus, in our words, its distribution is known.

Case 1 (Dimension of regressor v is one). In this case, we can also use

Hotelling’s tubing method to conservatively estimate the quantiles of En(V ). Expressions

for dimensions greater than one are less tractable, but they can also be stated at the

cost of complicated notation.

Indeed, from the Hotelling-Naik tubing method we obtain that

P [sup
v∈V

Z ′
n(v) ≥ k] ≤ (1− Φ(k)) +

κn(V )

2π
e−k2/2

where κn(V ) =
∫

V
‖∇αn(v)‖dv. As k →∞, we have

P [sup
v∈V

Z ′
n(v) ≥ k] ≤ κn(V )

2π
e−k2/2[1 + o(1)].

For any p, we choose k = kn(p) = an + p/an. Note that

an =
√

2 log(κn(V )/2π) ⇔ κn(V )

2π
e−a2

n/2 = 1.

Then

P [sup
v∈V

Z ′
n(v) ≥ kn(p)] ≤ exp

(
−p− p2

2a2
n

)
[1 + o(1)],

equivalently

P [an[sup
v∈V

Z ′
n(v)− an] ≥ p] ≤ exp

(
−p− p2

2a2
n

)
[1 + o(1)]. (A.1)

Using the above relations, we conclude that the quantiles of En(V ) can be estimated

conservatively by the quantiles of an exponential distribution or by the quantiles of

an exponential-distribution-like function Fn(p) := 1 − exp
(
−p− p2

2a2
n

)
. Thus, we have

established N.1(b) when the dimension of the regressors equals one.
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Case 2. (Dimension of regressor v is any). With regressors of higher dimen-

sion, we can also use the following argument. Since the metric entropy of {Zn(v)′, v ∈ V }
under the L2 pseudometric ρ satisfies

N(ε, V, ρ) ≤
(

c · L
ε

)d

, L = sup
v∈V

‖∇αn(v)‖ · diam(V ) . Kp for some constant p < ∞,

we have by Samorodnitsky-Talagrand’s inequality (van der Vaart and Wellner (1996),

p. 442) that for ` large enough and some constant C

P (sup
v∈V

Z ′
n(v) > `) ≤ 2 (C · L)d (1− Φ(`)).

Since

Tn :=
√

log 2(C · L)d .
√

log K,

the bound implies by Feller’s inequality

P (sup
v∈V

Z ′
n(v) > `) ≤ `−1

√
2π

e−`2/2+T 2
n/2, Tn .

√
log K

We thus conclude that

sup
v∈V

|Z ′
n(v)| = Op(

√
log K).

For any p, we choose k = kn(p) = an + p/an, where an is the largest solution to

2√
2π

(C · L)d a−1
n e−a2

n/2 = 1

which implies that as n → ∞, using the assumption that supv ‖∇vgn(v)/‖gn(v)‖‖ =

O(Kp),

an ∼
√

2d log(2LC/
√

2π) ∼
√

2d log(2L/
√

2π) .
√

2d log K.

Then

P [sup
v∈V

Z ′
n(v) ≥ kn(p)] ≤ an

kn(p)
exp

(
−p− p2

2a2
n

)
[1 + o(1)] ≤ exp

(
−p− p2

2a2
n

)
[1 + o(1)],

equivalently

P [an[sup
v∈V

Z ′
n(v)− an] ≥ p] ≤ exp

(
−p− p2

2a2
n

)
[1 + o(1)]. (A.2)

Thus, we have established N.1(b). ¤.
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Proof of Lemma 5. In order to establish N.2, we can use a crude approach based

on Cauchy-Schwarz inequalities

an

∣∣∣ sup
v∈V̂

Z ′
n(v)− sup

v∈V
Z ′

n(v)| ≤ an sup
|v−v′|≤rn

|(αn(v)− αn(v′))′Nn|

≤ an sup
|v−v′|≤rn,|v̄−v′|≤rn

‖∇αn(v̄)‖‖v − v′‖‖Nn‖

≤ an sup
v∈V

‖∇αn(v)‖rnOp(
√

K).

Provided an supv∈V ‖∇αn(v)‖rn

√
K → 0, we have the result. However, a substantially

better condition follows from a careful use of Samorodnitsky-Talagrand’s inequalities for

Gaussian processes as shown below. The strategy shown below has been used by Belloni

and Chernozhukov (2007) to bound oscillations of Gaussian processes of increasing di-

mension over vanishing neigborhoods. Here, we adopt their strategy to our case, which

is quite a bit different due to particular structure of the function αn(v).

We will use the following Samorodnitsky-Talagrand maximal inequality for Gaussian

processes (Proposition A.2.7 in Van der Vaart and Wellner (1998)). Let X be a separable

zero-mean Gaussian process indexed by a set T . Suppose that for some κ > σ(X) =

supt∈T σ(Xt), 0 < ε0 ≤ σ(X), we have

N(ε, T, ρ) ≤
(κ

ε

)v

, for 0 < ε < ε0,

where N(ε, T, ρ) is the covering number of T by ε-balls w.r.t. the standard deviation

metric ρ(t, t′) = σ(Xt − Xt′). Then there exist an universal constant D such that for

every λ ≥ σ2(X)(1 +
√

v)/ε0 we have

P

(
sup
t∈T

Xt > λ

)
≤

(
Dκλ√
vσ2(X)

)v

(1− Φ(λ/σ(X))).

We apply this result to the zero-mean Gaussian process Xn : V × V → R defined as

Xn,t = (αn(v)− αn(v′))′Nn, t = (v, v′) : |v − v′| ≤ rn.

It follows that supt∈T Xn,t = sup|v−v′|≤rn
(αn(v) − αn(v′))′Nn. For the process Xn we

have:

σ(Xn) ≤ sup
‖v−v′‖≤rn

‖αn(v)− αn(v′)‖ ≤ sup
v∈V

‖∇αn(v)‖rn.

Furthermore we have that

N(ε, T, ρ) ≤
(

C · L
ε

)d

, L := sup
v∈V

·‖∇αn(v)‖ · rn · diam(V2) . sup
v∈V

‖∇αn(v)‖ · rn,
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so that the bound on covering numbers holds with κ . L, and v = d. Applying the

Samorodnitsky-Talagrand inequality we conclude that for every ` →∞, ε0 = σ(Xn),

Pr{sup
t∈T

Xn,t > `σ(Xn)} . (1− Φ(`)) → 0.

Therefore, we conclude that supt∈T Xt = Op(σ(Xn)). Thus,

an

∣∣∣ sup
v∈V̂

Z ′
n(v)− sup

v∈V
Z ′

n(v)
∣∣∣ ≤ an sup

|v−v′|≤rn

|(αn(v)− αn(v′))′Nn|

= Op(an sup
v∈V

‖∇αn(v)‖rn),

which is op(1) by our assumption. Hence, we have shown that

an · sup
v∈V̂

Z ′
n(v)− an · sup

v∈V
Z ′

n(v) = op(1).

Since an = bn, it only remains to show that (ân − an) supv∈V̂ Z ′
n(v) →p 0. Note that

supv∈V̂ Z ′
n(v) = Op(an) and (ân − an) = (â2

n − a2
n)/(ân + an). Therefore,

(ân − an) sup
v∈V̂

Z ′
n(v) = Op(â

2
n − a2

n),

which is op(1) by assumption. ¤.

Proof of Lemma 6. Arguments similar to those used in the proof of Lemma 3.4 of

Ghosal, Sen, and van der Vaart (2000) yield

wn(v)′Un

‖wn(v)‖ =d Z ′′
n

(
h−1

n v
)

+ r′n(v), (A.3)

where

sup
v∈V

|r′n(v)| = Op

(
hn

√
log h−1

n

)
.

Now note that Conditions K.1 and K.2, along with (A.3), imply that

sup
v∈V

∣∣Zn(v)− Z ′′
n(h−1

n v)
∣∣ = op(an(V )−1).

Since the distribution of Z ′′
n(s) does not depend on n, for the purpose of statistical

inference, it suffices to consider the asymptotic behavior of a Gaussian process, say Z ′(s),
that has the same covariance function as Z ′′

n(s). We first derive the asymptotic behavior

of the tail probability of the maximum of Z ′(s) over s on a set S with a fixed measure,

mes(S). Define

Ψ(a) =
1√
2π

∫ ∞

a

exp

(
−1

2
x2

)
dx.
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Recall that

λ =
− ∫

K(u)K ′′(u)du∫
K2(u)du

.

We can prove that

Pr

(
max
s∈S

Z ′(s) > a

)
= mes(S)

(
λ

2π

)d/2

adΨ(a)[1 + o(1)] (A.4)

as a →∞. To show this, we use the double sum method developed in Piterbarg (1996),

applying in particular Piterbarg’s Lemma 7.1. Note that for each j,

ρ(sj) = 1− λ

2
s2

j + o(s2
j), sj → 0,

and that ρ(sj) = 0 for sj > 2 (K has support in [−1, 1]). Hence,

ρd

[
(2/λ)1/2 s

]
= 1−

d∑
j=1

s2
j + o

(
d∑

j=1

s2
j

)

as s → 0. Thus, the Gaussian process Z ′(s) has a stationary structure
(
E(d), α(d)

)
with

C = diag(
√

2/λ, . . . ,
√

2/λ), E(d) = (1, . . . , 1) and α(d) = (2, . . . , 2) (using the notation

in Piterbarg (1996)). Then an application of Corollary 7.1 of Piterbarg (1996) gives

Pr

(
max
s∈S

Z ′(s) > a

)
= HE(d),α(d)mes(S)adΨ(a)(1 + o(1)) (A.5)

as a →∞, where HE(d),α(d) is the Pickands’ constant (see Section 4 of Piterbarg (1996)

for its definition). In our case, HE(d),α(d) = (π)−d/2 by (F.4) and Lemma 6.4 of Piterbarg

(1996). Then, (A.4) follows immediately from (A.5).

Then arguments almost identical to those used in the proof of Theorem A.3 of Lee,

Linton, and Whang (2009), which is based on the proof of Theorem G.1 of Piterbarg

(1996), yield the following: for any x,

Pr

(
an(V )

[
sup
v∈V

Z ′′
n

(
h−1

n v
)− an(V )

]
< x

)

= exp

{
− exp

(
−x− x2

2an(V )2

)[
1 +

x

an(V )2

]d−1
}

+ o (1) , (A.6)

where an(V ) is defined in (3.7). Since an(V ) →∞, (3.8) is proved. ¤.

Proof of Lemma 7. This lemma can be proved using arguments almost identical

to those used to prove Lemma 5. In particular, as in the proof of Lemma 5, we ap-

ply Samorodnitsky-Talagrand’s maximal inequality to the following zero-mean Gaussian
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process Xn : V × V → R, which is defined as

Xn,t = (αn(v)− αn(v′))′Un, t = (v, v′) : |v − v′| ≤ rn

with αn(v) = wn(v)
‖wn(v)‖ . Then we have that

an

∣∣∣ sup
v∈V̂

Z ′
n(v)− sup

v∈V
Z ′

n(v)
∣∣∣ ≤ an sup

|v−v′|≤rn

|(αn(v)− αn(v′))′Un|

= Op(an sup
v∈V

‖∇αn(v)‖rn).

This proves the first conclusion of the lemma. To show the second conclusion of the

lemma, note that

‖∇αn(v)‖ ≤ ‖∇wn(v)‖
‖wn(v)‖ +

‖∇‖wn(v)‖‖
‖wn(v)‖ .

Furthermore, since

‖wn(v)‖ =

{
1

nhd
nf

2
V (v)

n∑
i=1

σ2(Vi)K
2

(
v − Vi

hn

)}1/2

,

we have that

∇‖wn(v)‖ = ‖wn(v)‖−1

{
1

nhd+1
n f 2

V (v)

n∑
i=1

σ2(Vi)K

(
v − Vi

hn

)
(∇K)

(
v − Vi

hn

)}
,

‖∇wn(v)‖ =
{ 1

nhd
nf

4
V (v)

n∑
i=1

d∑
j=1

σ2(Vi)
[
h−1

n fV (v) (∇jK)

(
v − Vi

hn

)

−K

(
v − Vi

hn

)
∇jfV (v)

]2}1/2

,

where ∇jK and ∇jfV are the j-th elements of ∇K and ∇fV . Then under Condition K,

‖∇αn(v)‖ is at most Op(h
−1
n ) uniformly over v. Therefore, we have proved the second

conclusion of the lemma. ¤.

Proof of Theorem 2. Let

ζn = cn sup
v∈V

s(v), γn = `ncn, θ̂0 = min
v∈V

θ̂(v) + `ncn.

Note that wp → 1, supv∈Vε
[θ̂(v)] ≤ θ̂0 + ε. This follows from two observations. First, by

construction ζn = op(`ncn), so wp → 1

sup
v∈Vε

[θ̂(v)] ≤ sup
v∈Vε

[θ(v) + Op(ζn)] ≤ sup
v∈Vε

[θ(v) + (`n/2)cn] ≤ θ0 + ε + (`n/2)cn.
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Second, wp → 1

θ̂0 + ε ≥ inf
v∈V
{θ(v)−Op(ζn) + `ncn}+ ε,

≥ inf
v∈V
{θ(v)− (`n/2)cn + `ncn}+ ε,

≥ inf
v∈V
{θ(v) + (`n/2)cn}+ ε,

≥ θ0 + (`n/2)cn + ε.

Hence wp → 1

Vε ⊆ V̂ε and sup
v∈Vε

d(v, V̂ε) = 0.

Next,

sup
v∈V̂ε

d(v, Vε) = sup{d(v, Vε) : θ̂(v) ≤ θ̂0 + ε}

≤ sup{d(v, Vε) : θ(v)− θ0 − ε ≤ Op(ζn) + γn}
≤ sup{d(v, Vε) : θ(v)− θ0 − ε ≤ γn · (1 + op(1))}
≤ sup{d(v, Vε) : (cd(v, Vε))

ρ(ε) ∧ δ ≤ γn(1 + op(1))}
≤ sup{x : (cx)ρ(ε) ∧ δ ≤ γn(1 + op(1))}

=
[(γn + op(1))]1/ρ(ε)

c
wp → 1.

The first claim of the theorem follows. The second claim follows from the inclusion

Vε ⊆ V̂ε, so that

mes(V̂ε \ Vε) . [sup
v∈V̂ε

d(v, Vε)]
d .p (γn)d/ρ(ε). ¤

Proof of Lemma 8. Take any v 6∈ Vε. A projection of v on the set Vε is defined as

vε ∈ arg min
v′∈V:θ(v′)−θ0≤ε

‖v − v′‖2.

The Lagrangian characterization of the solution to this problem is of the form:

v − vε = λ∇η(vε)

for some scalar λ > 0. This is true because the solution is necessarily an interior one by

Vε belonging to the interior of V and the latter being a convex body in Rd. Hence

v − vε = ‖v − vε‖ ∇η(vε)

‖∇η(vε)‖ = d(v, Vε)
∇η(vε)

‖∇η(vε)‖ .
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By Taylor expansion we have that for some v∗ε on the line joining v and vε

θ(v)− θ0 − ε = η(v)− θ0 − ε = ∇η(v∗ε )
′(v − vε) = ∇η(v∗ε )

′ ∇η(vε)

‖∇η(vε)‖d(v, Vε).

If d(v, Vε) > 0 is small enough, say d(v, Vε) ≤ d0, then by continuity of ∇η(v) we have

that

∇η(v∗ε )
′ ∇η(vε)

‖∇η(vε)‖ ≥
1

2
∇η(vε)

′ ∇η(vε)

‖∇η(vε)‖ = ‖∇η(vε)‖/2 ≥ c,

where c = infv∈∂Vε ‖∇η(v)‖/2 . Thus, for δ = infd(v,Vε)≥d0(θ(v)−θ0−ε) = infd(v,Vε)≥d0(η(v)−
θ0 − ε) > 0,

θ(v)− θ0 − ε ≥ cd(v, Vε)1{d(v, Vε) ≤ d0}+ δ1{d(v, Vε) > d0} ≥ (cd(v, Vε)) ∧ δ.

Finally, note that δ > 0 by continuity of θ(v), by the definition of Vε as ε-argmin of θ(v),

and by d0 > 0. ¤
Proof of Theorem 3. Recall that we construct the two-sided bands for the true

parameter value θ∗ as follows: Let

∆̂+
n ≡ ∆̂n1[∆̂n > 0], where ∆̂n = θ̂u

1/2 − θ̂l
1/2, and p̂n ≡ 1− Φ(τn∆̂+

n )α,

where Φ (·) is the standard normal CDF and τn →∞ is a sequence of constants satisfying

τn{(aj
n)−1 + bj

n}s̄j → 0. (A.7)

This condition implies that τn|∆̂+
n − ∆n| →p 0, where ∆n = θu

0 − θl
0. We also define

s̄j = supv∈Vj sj (v), j ∈ {u, l}.
Step 1. We use the notation

pn := 1− Φ (τn∆n) α, ∆u
n = θu

0 − θ∗, ∆l
n = θ∗ − θl

0.

In what follows we allow θ∗ to be an arbitrary sequence of constants within the identified

set, so that its value can change depending on n; likewise, we allow ∆n ≥ 0 to change

with n.

The probability that θ∗ lies outside the confidence interval is

P
{

θ∗ /∈
[
θ̂l

p̂n
, θ̂u

p̂n

]}
≤ P

{
θ∗ < θ̂l

p̂n

}
+ P

{
θ∗ > θ̂u

p̂n

}
. (A.8)

Focusing on the second term, we have

P
{

θ∗ > θ̂u
p̂n

}
= P

{
θu
0 > θu

0 − θ∗ + inf
v∈V̂ u

[
θ̂u (v) +

(
b̂u
n + ĉu (p̂n) /âu

n

)
su (v)

]}
,
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from the definition of θ̂u
p̂n

. We can show that for some ε > 0 and some εn ↘ 0

P
{

θ∗ > θ̂u
p̂n

}
≤ P

{
Eu

n(V u) > cu
n (pn − ε) + au

n

∆u
n

s̄u
+ εn

}
+ o(1)

≤ P

{
Eu

n(V u) > cu
n (pn − ε) + au

n

∆u
n

s̄u

}

︸ ︷︷ ︸
A

+o(1).

The first inequality follows similarly to the proof of Theorem 1, also using that su ≤ s̄u,

that p̂n = pn +op(1) so that for any ε > 0, p̂n ≥ pn−ε with probability approaching one,

and the assumption on τn. The second inequality follows from the anti-concentration

property. We can conclude analogously that

P
{

θ∗ < θ̂l
pn

}
≤ P

{
E l

n(V l) > cl
n (pn − ε) + al

n

∆l
n

s̄l

}

︸ ︷︷ ︸
B

+o(1).

Thus we have that for each ε > 0

P
{

θ∗ /∈
[
θ̂l

p̂n
, θ̂u

p̂n

]}
≤ A+ B + o(1).

In Step 2 below we show that for each ε > 0, A+ B ≤ α + ε + o(1), so that

P
{

θ∗ /∈
[
θ̂l

p̂n
, θ̂u

p̂n

]}
≤ α + o(1).

This gives us the required conclusion since θ∗ is an arbitrary sequence of constants within

the identified set, dependent upon n.

Step 2. Let [0,∞] be the standard one-point compactification of [0,∞), endowed

with the metric d(x, y) = |λ(x) − λ(y)|, where λ(x) = 1 − exp(−x). This space is

compact, so that every sequence in this space has a convergent subsequence.

Here we first consider sequences along which τn∆n → c ∈ [0,∞], and show that

A+ B ≤ α + ε + o(1) if τn∆n → c ∈ [0,∞] (A.9)

Given this, we show that

A+ B ≤ α + ε + o(1) (A.10)

holds for every sequence by way of contradiction. Indeed, suppose that A+B > α+ε+δ

for some δ > 0 along a subsequence. Then we can find a convergent subsequence in [0,∞]

with respect to d. Thus, we can find a subsequence such that τk∆k → c ∈ [0,∞] and

A+ B > α + ε + δ for k large enough, which gives us a contradiction to (A.9).
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We now have to show (A.9). Suppose first that c = 0 in (A.9), then in this case

pn = 1− α/2 + o(1) and

A ≤ 1− (pn − ε) = α/2 + ε + o(1), B ≤ 1− (pn − ε) + o(1) = α/2 + ε + o(1).

Suppose that 0 < c ≤ ∞ in (A.9), then by τn(aj
n)−1s̄j → 0,

aj
n

s̄j
∆n = [τn(aj

n)−1s̄j]
−1τn∆n →∞.

Since ∆n = ∆l
n + ∆u

n, this implies that for every subsequence there exists a further

subsequence indexed by k such that (a) au
k∆

u
k → ∞ or (b) al

k∆
l
k → ∞. In case (a) we

get pk = 1− Φ(c)α + o(1) and

B ≤ 1− (pn − ε) = Φ(c)α + ε + o(1), A ≤ P

{
Eu

k (V u) > au
k

∆u
k

s̄u

}
+ o(1) = o(1);

in case (b) we get we get pk = 1− Φ(c)α + o(1) and

A ≤ 1− (pk − ε) ≤ Φ(c)α + ε + o(1), B ≤ P

{
E l

k(V
l) > al

k

∆l
k

s̄l

}
+ o(1) = o(1).

So we get for all such subsequences that A+B ≤ α + ε + o(1). Given this, we can claim

that this relation holds for every sequence by the way of contradiction. Indeed, suppose

that A + B > α + ε + δ for δ > 0 along a subsequence. But since we can find at least

one further subsequence along which A + B > α + ε + δ for δ > 0 holds and that also

satisfies either case (a) or (b) above, we obtain a contradiction. ¤

Appendix B. Strong Approximations For Nonparametric Estimators

B.1. Strong Approximations for Series Estimators. Here we establish strong ap-

proximations for series estimators of the form considered in section 3.4.

Theorem 4 (Strong Approximation for a Generic Series Estimator). Let an be a se-

quence of constants an → ∞. In this paper it suffices to consider an =
√

log n. We

assume the following conditions on a generic series estimation problem. (a) The se-

ries estimator θ̂(v) for the function θ(v) has the form θ̂(v) = p(v)′β̂, where pn(v) :=

(p1(v), . . . , pK(v)) is a collection of K-dimensional approximating functions such that
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K →∞, and β̂ is a K-vector of estimates. (b) The estimator β̂ satisfies an asymptoti-

cally linear representation around some K-dimensional vector β :

Ω−1/2
n

√
n(β̂ − β) = n−1/2Ω−1/2

n Q−1
n

n∑
i=1

pn(Vi)εi + rn, ‖rn‖ = op(a
−1
n ),

(Vi, εi) are i.i.d. with E[εip(Vi)] = 0, E[ε2
i pn(Vi)pn(Vi)

′] =: Sn, Q−1
n Sn(Q−1

n )′ =: Ωn,

where Q−1
n is some non-random invertible matrix, which is not necessarily symmet-

ric, and eigenvalues of S−1
n are bounded above by sn. (c) The function θ(v) admits

the approximation θ(v) = pn(v)′β + An(v), where the approximation error An(v) satis-

fies supv∈V
√

n|An(v)|/‖gn(v)‖ = o(a−1
n ), gn(v) := pn(v)′Ω1/2

n . (d) Finally, E[|εi|3] and

supv∈V maxj |pj(v)| are uniformly bounded in n, and a6
ns3

nK5/n → 0. Then we can find

a random normal vector Nn = N(0, IK) such that

‖Ω−1/2
n

√
n(β̂ − β)−Nn‖ = op(a

−1
n ).

As a consequence we obtain the following approximation for the series estimator

sup
v∈V

∣∣∣∣∣
√

n(θ̂(v)− θ(v))

‖gn(v)‖ − gn(v)′

‖gn(v)‖Nn

∣∣∣∣∣ = op(a
−1
n ).

Remarks. Sufficient conditions for linear approximation (b) are well known in the

literature on series estimation, e.g. Andrews (1991) and Newey (1995). Conditions

imposed in (a)-(c) are rather weak. The condition on the boundedness of compo-

nents pj of the vector p is weak, and is satisfied by B-splines, trigonometric series,

and a variety of other bases. As shown in the proof, the Condition (b), namely that

supv∈V maxj |pj(v)| < ∞ and s3
na

6
nK

5/n → 0 can be replaced by an alternative condi-

tion, which is s
3/2
n a3

nK5/2 maxv∈V
∑K

j=1 |pj(v)|3/n1/2 → 0, which will cover more general

cases.

Proof of Theorem 4. The proof has two steps: in the first, we couple the estimator√
n(β̂−β) with the normal vector; in the second, we establish the strong approximation

for the series estimate of the function.

Step 1. He we shall apply Yurinskii coupling, see Yurinskii (1977) and Pollard (2002)

(page 244).

Let ξ1, ..., ξn be independent K-vectors with Eξi = 0 for each i, and ∆ :=
∑

i E‖ξi‖3

finite. Let S = ξ1 + ... + ξn. For each δ > 0 there exists a random vector T with a
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N(0, var (S)) distribution such that

P{‖S − T‖ > 3δ} ≤ C0B

(
1 +

| log(1/B)|
K

)
where B := ∆Kδ−3,

for some universal constant C0.

In order to apply the coupling, consider

1√
n

n∑
i=1

ξi, ξi = Ω−1/2
n Q−1

n pn(Vi)εi ∼ (0, IK),

Then we have that

E‖ξi‖3 ≤ maxeig (S−1
n )3/2 · E‖pn(Vi)εi‖3

= s3/2
n ·K3/2E

(
ε2
i

1

K

K∑
j=1

pnj(Vi)
2

)3/2

≤ s3/2
n ·K3/2 max

v∈V
1

K

K∑
j=1

|pnj(v)|3E|εi|3

≤ s3/2
n ·K3/2 max

j
sup
v∈V

|pnj(v)|3E|εi|3

. s3/2
n K3/2,

using the assumption that E|εi|3 and maxj supv∈V |pnj(v)| are uniformly bounded in n.

Therefore, by Yurinskii’s coupling, for each δ > 0

P

{∣∣∣∣
∑n

i=1 ξi√
n

−Nn

∣∣∣∣ ≥ 3δa−1
n

}
. nKs

3/2
n K3/2

(δa−1
n

√
n)3

=
a3

ns
3/2
n K5/2

(δn1/2)
→ 0,

by (an)6s3
nK

5/n → 0.

This proves the first part of the lemma. Also, to justify the remark given after the

lemma, we have that

E‖ξi‖3 . s3/2
n K3/2 max

v∈V
1

K

K∑
j=1

|pj(v)|3E|εi|3.



47

Therefore, by Yurinskii’s coupling, for each δ > 0

P

{∣∣∣∣
∑n

i=1 ξi√
n

−Nn

∣∣∣∣ ≥ 3δa−1
n

}
.

s
3/2
n (an)3nK5/2 maxv∈V 1

K

∑K
j=1 |pj(v)|3E|εi|3

(δ
√

n)3
→ 0,

if s3/2
n (an)3K5/2 max

v∈V

K∑
j=1

|pj(v)|3/n1/2 → 0.

Finally by combining the preceding step with the assumption on the linearization

error rn, we obtain

‖Ω−1/2
n

√
n(β̂ − β)−Nn‖ ≤ ‖ 1√

n

n∑
i=1

ξi −Nn‖+ ‖Ω−1/2
n

√
n(β̂ − β)− 1√

n

n∑
i=1

ξi‖

= op(a
−1
n ) + rn = op(a

−1
n ).

Step 2. Using the result of Step 1 and that
√

np(v)′(β̂ − β)

‖gn(v)‖ =

√
ngn(v)′Ω−1/2

n (β̂ − β)

‖gn(v)‖
we conclude that

|Sn(v)| :=
∣∣∣
√

ngn(v)′Ω−1/2
n (β̂ − β)

‖gn(v)‖ − gn(v)′Nn

‖gn(v)‖
∣∣∣

≤
∥∥∥√nΩ−1/2

n (β̂ − β)−Nn

∥∥∥ = op(a
−1
n ),

(B.1)

uniformly in v ∈ V . Finally,

sup
v∈V

∣∣∣
√

n(θ̂(v)− θ(v))

‖gn(v)‖ − gn(v)′Nn

‖gn(v)‖
∣∣∣

≤ sup
v∈V

∣∣∣
√

n(θ̂(v)− θ(v))

‖gn(v)‖ −
√

ngn(v)′Ω−1/2
n (β̂ − β)

‖gn(v)‖
∣∣∣

+ sup
v∈V

∣∣∣
√

ngn(v)′Ω−1/2
n (β̂ − β)

‖gn(v)‖ − gn(v)′Nn

‖gn(v)‖
∣∣∣

= sup
v∈V

|√nAn(v)/‖gn(v)‖|+ sup
v∈V

|Sn(v)| = op(a
−1
n ) + op(a

−1
n ),

using the assumption on the approximation error An(v) = θ(v)− pn(v)′β and the bound

(B.1). ¤

B.2. Strong Approximations for Kernel-Type Estimators. This section provides

low-level sufficient conditions for K.1 and K.2. In particular, we focus on a case when
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a bound-generating function θ(·) is estimated by a kernel-type estimator of conditional

expectation functions. Let FU |V (·|v) denote the cumulative distribution function of U

given V = v.

Theorem 5. Assume that (1) the joint distribution of (U, V ) is absolutely continuous

with respect to Lebesgue measure on [0, 1]d+1; (2) fV (v) and σ2(v) are Lipschitz con-

tinuous and bounded away from zero on their support [0, 1]d; (3) σ(v) is continuously

differentiable and its derivative is bounded; (4) F−1
U |V (ε|v) is bounded uniformly in (ε, v)

and its partial derivatives with respect to ε and v are also uniformly bounded; (5) as

n →∞, the kernel estimator of θ(v) has an asymptotic linear expansion:

(nhd
n)1/2(θ̂(v)− θ(v)) =

1

(nhd
n)1/2fV (v)

n∑
i=1

σ(Vi)UiK

(
v − Vi

hn

)
+ Rn(v),

where K is a d-dimensional kernel function with compact support [−1, 1]d,
∫

K(u)du = 1,

and is twice continuously differentiable, hn is a sequence of bandwidths that converges to

zero, and the remainder term satisfies

sup
v∈V

|Rn(v)| = op(a
−1
n );

(6) Further, assume that

nhd
n

an(log n)2
→∞ and

an log n

n1/(d+1)hn

→ 0.

Then there exists a sequence of Gaussian processes Gn(·), indexed by V, with continuous

sample paths and with

E[Gn(v)] = 0 for t ∈ V ,

E[Gn(v1)Gn(v2)] = E[φhn,v1(U, V )φhn,v2(U, V )]

for v1 and v2 ∈ V, such that

sup
v∈V

∣∣∣∣∣
1

(nhd
n)1/2fV (v)

n∑
i=1

σ(Vi)UiK

(
v − Vi

hn

)
− Gn(v)

h
d/2
n fV (v)

∣∣∣∣∣

= O
[
n−1/(2d+2)

(
h−1

n log n
)1/2

+ (nhd
n)−1/2 log n

]
a.s.

Condition (1) assumes that (U, V ) are continuous random variables with support

on the unit cube. There is no loss of generality by restricting the support to be the

unit cube, provided that the support is known and is a Cartesian product of compact

connected intervals. The bounded support assumption on U is standard in settings with
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partial identification. Otherwise, the bound may not exist. Conditions (2)-(4) are mild

smoothness conditions. Condition (5) provides standard regularity conditions for kernel

estimation. This holds for kernel mean regression estimators and also local polynomial

estimators under fairly general conditions. One important restriction that is implicit

in the asymptotic expansion is that the asymptotic bias is negligible. This could be

achieved by undersmoothing, which would prevent us from using optimal bandwidths.

Alternatively, one could use a bias corrected one-sided confidence intervals. Condition

(6) ensures that

sup
v∈V

∣∣∣∣∣
1

(nhd
n)1/2fV (v)

n∑
i=1

σ(Vi)UiK

(
v − Vi

hn

)
− Gn(v)

h
d/2
n fV (v)

∣∣∣∣∣ = o
(
a−1

n

)
a.s.

Proof. To prove this theorem, we use Theorem 1.1 of Rio (1994). Define ε = FU |V (U |V ).

For any positive h, define φh,s(ε, v) = σ(v)F−1
U |V (ε|v)Kd [h−1(s− v)]. For any real num-

bers a and b satisfying 0 < a < b ≤ 1, let Ka,b be a class of functions

Ka,b = {φh,s(·, ·) : s ∈ Rd, h ∈ [a, b]}.
First, it is standard to show that Kh/4,h is a VC class of functions for each h. Second,

the UBV (uniformly of bounded variation) and LUBV (locally UBV) conditions of Rio

(1994) are satisfied. To see this, first note that for some universal constant C < ∞,

∫ ∫ ∣∣∣∣
∂φh,s(ε, v)

∂ε

∣∣∣∣ +
d∑

j=1

∣∣∣∣
∂φh,s(ε, v)

∂v(j)

∣∣∣∣ dεdv ≤ Chd−1,

where v(j) is the j-th element of v. Furthermore, as in equation (4.1) of Rio (1994), note

that for some universal constant C̃ < ∞,

∫ ∫

(ε,v)∈C(η)

∣∣∣∣
∂φh,s(ε, v)

∂ε

∣∣∣∣ +
d∑

j=1

∣∣∣∣
∂φh,s(ε, v)

∂v(j)

∣∣∣∣ dεdv ≤ C̃h−1 min(ηhd, ηd+1),

where C(η) is a tube in Rd+1 with edges of length η. Then Theorem 1.1 of Rio (1994)

gives the following:

sup
v∈V

∣∣∣∣∣
1√
n

n∑
i=1

φhn,v(Ui, Vi)−Gn(v)

∣∣∣∣∣ = O
[
n−1/(2d+2)

(
hd−1

n log n
)1/2

+ n−1/2 log n
]

a.s.

(B.2)

Since the density of fV (v) is bounded away from zero, Theorem 5 follows immediately

from (B.2). ¤
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Appendix C. Implementation

In this Appendix we describe implementation of our procedure. We begin by detailing

the steps required for parametrically estimated bound-generating functions, and then

describe implementation for nonparametric cases. Finally, we describe how one-sided

bands for upper and lower bounds on θ∗ can be combined to perform inference on either

ΘI or θ∗.

Note that below we focus on the upper bound, but if instead θ0 were the lower bound

for θ∗, given by the supremum of a bound-generating function, the algorithm would be

entirely symmetric.10

C.1. Parametric Boundary Estimation. We start by considering implementation

when the bound-generating function is estimated parametrically, i.e. where conditions

P.1 and P.2 hold. We provide a simple approach that relies on simulation from the

multivariate normal distribution:

(1) Compute a consistent set estimate V̂ for the minimizing set V0:

V̂ = {v ∈ V : θ̂(v) ≤ inf
v∈V

θ̂(v) + `ncn}

with `n = 2
√

log n · supv∈V s(v) and cn = 1.

(2) For each v ∈ V̂ , compute ĝ (v) = ∂θ (v, γ̂) /∂γ · Ω̂1/2, where Ω̂ is a consistent

estimator for the asymptotic variance of
√

n (γ̂ − γ0).

(3) Simulate a large number R of draws from N (0, IK), denoted Z1, ..., ZR, where

K = dim(γ) and IK is the identity matrix, and compute k̂ (p) = p-quantile of

{maxv∈V̂

(
ĝ (v)′ Zr/ ‖ĝ (v)‖) , r = 1, ..., R}.

(4) Compute θ̂p = minv∈V̂ [θ̂ (v) + k̂ (p) s (v)]. Selecting p = 1/2 provides a median-

unbiased estimator for θ0, while selecting p = 1 − α provides a one-sided confi-

dence interval such that P (θ0 ≤ θ̂p) = 1− α.

An important special case is when the support of v is finite, so that V = {v1, ...vJ}.
In this case, the algorithm above applies where θ (v, γ) =

∑J
j=1 γj1[v = vj], i.e. where

for each j, θ (vj, γ) = γj and ĝ (v) = (1 [v = v1] , ..., 1 [v = vJ ]) · Ω̂1/2.

10Specifically, the steps below would apply with the following two modifications. First, the set estimate
V̂ε in step 1 would be given by V̂ε = {v ∈ V : θ̂ (v) ≥ supv∈V θ̂ (v) − `ncn − ε}. Second, one would
subtract, rather than add, a precision adjustment from the analog estimates for the lower bound in step
(4), and then compute the maximum after applying this precision-adjustment, i.e. θ̂p = maxv∈V̂ [θ̂ (v)−
k̂ (p) s (v)]. Note that now k̂ (p) approximates the p-quantile of maxv∈V̂ [θ̂(v)− θ(v)]/s(v). However, no
changes need to made to the computation of k̂ (p) due to the symmetry of the normal distribution.
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C.2. Nonparametric Boundary Estimation. Here we generalize the previous pro-

cedure to nonparametric series and kernel boundary estimators. The basic steps are

the same, though some adjustments are necessary. In particular, the set estimator in

the first step, V̂ε will converge to Vε, which is generally not equal to V0, but contains V0

with probability approaching 1. Setting ε = 0 may also be feasible, but this implicitly

puts more stringent growth restrictions on the number of series terms and bandwidth,

which may be difficult to verify in practice.

C.2.1. Series Estimators. In practice, implementation with a series estimator does not

substantially differ from the parametric case:

(1) Compute a consistent estimate V̂ε for Vε:

V̂ε = {v ∈ V : θ̂(v) ≤ inf
v∈V

θ̂(v) + `ncn + ε}
with `n = 2

√
log n · supv∈V s(v) and cn =

√
log n.

(2) For each v ∈ V̂ε, compute ĝ (v) = pn (v)′ Ω̂1/2, where Ω̂ is a consistent estimate

of asymptotic variance of β̂.

(3) Simulate a large number R of draws from N (0, IK), denoted Z1, ..., ZR. Compute

k̂ (p) = p-quantile of {maxv∈V̂

(
ĝ (v)′ Zr/ ‖ĝ (v)‖) , r = 1, ..., R}.

(4) Compute θ̂p = minv∈V̂ε
[θ̂ (v) + k̂ (p) s (v)]. Selecting p = 1/2 provides a median-

unbiased estimator for θ0, while selecting p = 1 − α provides a one-sided confi-

dence interval such that P (θ0 ≤ θ̂p) = 1− α.

We can also bypass simulation of the stochastic process by employing expansion (A.2)

in the proof of Lemma 4 in Appendix A. This choice of k̂(p) is convenient because it

does not involve simulation; however, it could be too conservative in some applications.

Thus, we recommend using simulation in applications, unless the computational cost is

too high.

C.2.2. Kernel Estimators. The steps are as follows:

(1) Compute a consistent estimate V̂ε for Vε, as given in (3.14), e.g.

V̂ε = {v ∈ V : θ̂(v) ≤ inf
v∈V

θ̂(v) + `ncn + ε}
with `n = 2

√
log n · supv∈V s(v) and cn =

√
log n.

(2) For each v ∈ V̂ε, compute ωn (v) as given in condition K.1, using consistent

sample analog estimators.
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(3) Simulate a large number R of draws from N (0, In), denoted Z1, ..., Zn. Compute

k̂ (p) = p-quantile of {maxv∈V̂

(
ωn (v)′ Zr/ ‖ωn (v)‖) , r = 1, ..., R}.

(4) Compute θ̂p = minv∈V̂ε
[θ̂ (v) + k̂ (p) s (v)]. Selecting p = 1/2 provides a median-

unbiased estimator for θ0, while selecting p = 1 − α provides a one-sided confi-

dence interval such that P (θ0 ≤ θ̂p) = 1− α.

The researcher also has the option of employing an analytical approximation in place

of simulation if desired. Such critical values are provided by (3.10), (3.11), and (3.12),

all of which are asymptotically equivalent.
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Figure 1. This figure illustrates how variation in the precision of the
analog estimator at different points may impede inference. The solid curve
is the true bound-generating function θ(v), while the dash-dot curve is a

single realization of its estimator, θ̂(v). The lighter dashed curves depict
eight additional representative realizations of the estimator, illustrating

its precision at different values of v. The minimum of the estimator θ̂(v)
is indeed quite far from the minimum of θ(v), making the empirical upper
bound unduly tight.
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Figure 2. This figure depicts a precision-corrected curve (dashed curve)

that adjusts the boundary estimate θ̂(v) (dotted curve) by an amount pro-
portional to its point-wise standard error. The minimum of the precision-
corrected curve is closer to the minimum of the true curve (solid) than the

minimum of θ̂(v), removing the downward bias.
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Figure 3. This figure depicts a precision-corrected curve (dashed curve)

that adjusts the boundary estimate θ̂(v) (dotted curve) by an amount
proportional to its point-wise standard error. The dash-dot curve repre-
sents an improvement on the precision-corrected curve obtained by em-
ploying an estimator for the set of minimizing values. The minimum of
this dash-dotted curve is closer to the minimum of θ(v) than the initial
precision-corrected curve.
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Figure 4. This figure provides the estimated upper bound on the log
wages for college graduates. The minimum of the estimated boundary
function (dashed curve) occurs in the right-tail of the distribution, where
the curve is less precisely estimated. The estimate may therefore not
provide an accurate representation of the true boundary function in this
region. Our method employs the precision-corrected curve (solid curve)
to account for varying levels of precision of the estimate.
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Figure 5. This figure provides the estimated lower bound on the log
wages for college graduates. The maximum of the estimated boundary
function (dashed curve) is in a region where it is relatively precisely es-
timated. The maximum of the precision-corrected curve (solid curve) is
therefore quite near the maximum of the estimated curve, though the
latter is slightly higher.
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Table 1. Results for Monte Carlo Experiments [1,000 replications per experiment]

DGP Sample Average Estimating Method Mean Median SD MAD RMSE Cov. Prob.
Size Smoothing V ? Bias Bias 0.50 0.95

Parameter

Series Estimation
1 500 8.949 No Analog 0.255 0.238 0.137 0.256 0.290

New 0.007 0.000 0.096 0.074 0.096 0.496 0.958
1 500 8.916 Yes Analog 0.248 0.227 0.132 0.248 0.280

New 0.002 -0.006 0.096 0.075 0.096 0.531 0.965
1 1000 9.716 No Analog 0.187 0.179 0.091 0.187 0.208

New 0.003 -0.002 0.069 0.054 0.069 0.510 0.955
1 1000 9.696 Yes Analog 0.189 0.177 0.099 0.189 0.213

New 0.003 0.000 0.071 0.055 0.071 0.501 0.965
2 500 9.313 No Analog 0.172 0.176 0.211 0.221 0.272

New -0.171 -0.159 0.214 0.220 0.274 0.782 0.978
2 500 9.372 Yes Analog 0.164 0.159 0.214 0.216 0.270

New -0.136 -0.127 0.250 0.227 0.284 0.696 0.953
2 1000 10.430 No Analog 0.140 0.142 0.159 0.172 0.212

New -0.134 -0.129 0.166 0.173 0.213 0.796 0.974
2 1000 10.440 Yes Analog 0.144 0.147 0.162 0.177 0.217

New -0.064 -0.053 0.178 0.150 0.189 0.626 0.942

Local Linear Estimation
1 500 0.584 No Analog 0.208 0.192 0.119 0.209 0.240

New 0.012 0.001 0.088 0.067 0.088 0.491 0.943
1 500 0.584 Yes Analog 0.208 0.192 0.119 0.209 0.240

New 0.012 0.001 0.088 0.067 0.088 0.491 0.943
1 1000 0.548 No Analog 0.153 0.141 0.081 0.153 0.173

New 0.007 0.004 0.061 0.048 0.061 0.478 0.951
1 1000 0.548 Yes Analog 0.153 0.141 0.081 0.153 0.173

New 0.007 0.004 0.061 0.048 0.061 0.478 0.951
2 500 0.324 No Analog 0.165 0.163 0.220 0.222 0.276

New -0.242 -0.248 0.220 0.275 0.327 0.864 0.979
2 500 0.324 Yes Analog 0.166 0.163 0.221 0.222 0.276

New -0.198 -0.203 0.237 0.254 0.309 0.804 0.970
2 1000 0.266 No Analog 0.151 0.142 0.164 0.179 0.223

New -0.187 -0.195 0.163 0.211 0.248 0.862 0.984
2 1000 0.266 Yes Analog 0.151 0.143 0.165 0.179 0.224

New -0.126 -0.134 0.168 0.175 0.210 0.775 0.970

Notes: The “Analog” and “New” methods refer to the sample analog method and

our new proposed method. For each method, we report the mean and median biases,

standard deviation (SD), mean absolute deviation (MAD), root mean squared error

(RMSE), and empirical coverage probabilities at 50% and 95% levels.
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Table 2. Descriptive Statistics (n = 2044)

Variable Mean Median Std. dev. Minimum Maximum

Log hourly wages (Y ) 2.54 2.50 0.58 0.28 9.06
Years of schooling (Z) 13.43 12.00 2.56 5.00 20.00
AFQT score (V ) 0.00 0.12 0.99 -3.12 2.38

Table 3. Estimation Results

High School Graduates College Graduates
Estimation method Lower bound Upper bound Lower bound Upper bound

Näıve sample
analog estimator 2.12 2.75 2.41 2.87
New
estimator 2.03 2.84 2.35 3.18
95% confidence
interval 1.97 2.88 2.31 3.44
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