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Abstract

This paper considers semiparametric efficient estimation of conditional moment models with
possibly nonsmooth residuals in unknown parametric components (6) and unknown functions (h)
of endogenous variables. We show that: (1) the penalized sieve minimum distance (PSMD) estima-
tor (6, h) can simultaneously achieve root-n asymptotic normality of § and nonparametric optimal
convergence rate of h, allowing for noncompact function parameter spaces; (2) a simple weighted
bootstrap procedure consistently estimates the limiting distribution of the PSMD 6; (3) the semi-
parametric efficiency bound formula of |Ai and Chen/| (2003) remains valid for conditional models
with nonsmooth residuals, and the optimally weighted PSMD estimator achieves the bound; (4)
the centered, profiled optimally weighted PSMD criterion is asymptotically chi-square distributed.
We illustrate our theories using a partially linear quantile instrumental variables (IV) regression, a
Monte Carlo study, and an empirical estimation of the shape-invariant quantile IV Engel curves.
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1 Introduction

Many semi/nonparametric models are special cases of the following conditional moment models

containing unknown functions:
Elp(Y, X=;00, ho1 (), -, hog (1)) | X] = 0, (1.1)

in which Z = (Y, X’)", Y is a vector of endogenous variables, X, is a subset of the conditioning
variables X, and the conditional distribution, Fy|x, of ¥ given X is not specified beyond that
Fy|x satisfies (LI). p() is a vector of generalized residual functions whose functional forms are
known up to a vector of unknown finite dimensional parameters (fy) and a vector of unknown
real-valued functions (hg = (ho1(:), ..., hog(+))), where the arguments of each function hge(-) may
differ across £ = 1,...,q, and, in particular, may depend on Y. For example, a partially linear
quantile Instrumental Variables (IV) regression (E[1{Y3 < Y{0 + ho(Y2)}|X] = ), a single index
IV model (E[Y7 — ho(Y360)|X] = 0), and a partially additive IV regression with a known link (g)
model (E[Y3 — g(Y{0y + ho1(X1) + ho2(Y2))|X] = 0) belong to the general framework (L.I]).
Newey and Powell | (2003) and |Ai and Chen| (2003) propose Sieve Minimum Distance (SMD)
estimation of ag = (0o, ho) for the models (I.1]). Under the assumptions that the residual function
p(Z;0,h(-)) is pointwise Holder continuous in the parameters a = (6,h) € © X H, the parameter
space © x H is compact in a Banach space norm || - ||5, Newey and Powell| (2003) establish the
consistency (with no rate) of the SMD estimator of (fp,ho) in || - ||s. Under the same set of

1/4 convergence rate of their SMD

assumptions, IAi and Chen| (2003) first derive a faster than n~
estimator % to ho() in a pseudo metric || - ||, which is weaker than the consistency norm || - ||,
when h() depends on Y. They then establish root-n asymptotic normality and semiparametric
efficiency of the SMD estimator of #y. As an illustration, |Ai and Chen| (2003) present the root-n
normality and efficiency of their SMD estimator 0 for a partially linear mean IV regression example
ElY7 — X100 — ho(Y2)|X] = 0, after showing that their SMD estimator T is consistent for hq
in a strong norm ||h||s = /E([h(Y2)]?), with a rate faster than n~'/4 in a weaker pseudo metric
||| = VE([E{h(Y2)|X }]2). Unfortunately, when hq() depends on Y and enters the semiparametric

model (LI) nonlinearly, in order to estimate 6y at a root-n rate, one also needs some convergence

rate of h to hg in a strong norm |- |ls-

For the purely nonparametric conditional moment models E[p(Y, X,; ho(:))|X] = 0 in which
ho(-) may depend on the endogenous variables Y, |[Chen and Pouzo| (20084) propose a Penalized
SMD (PSMD) estimator. They establish the consistency and the convergence rates of the PSMD
estimator % in a strong metric || - ||s without assuming compactness of H, allowing for nonsmooth
residual function p(Z;h(:)) in h. They do not, however, consider the root-n efficient estimation

of 0y for the more general semiparametric models (LI), nor any methods of computing tests and



confidence intervals. Finally, none of the existing work investigates whether one can simultaneously
estimate 0y and hg for the general semiparametric models (IL1]) at their respectively optimal rates.

In this paper, we contribute in several major ways to the existing semiparametric literature
allowing for nonparametric endogeneity. First, we show that, for the general semiparametric models
(LI), the PSMD estimator a = (@, ﬁ) can simultaneously achieve root-n asymptotic normality of
6 and the optimal convergence rate of h (in the metric || - ||5), allowing for possibly nonsmooth
residuals, and possibly noncompact (in || - ||s) function space (H) and the sieve spaces (H,). It
is previously known that for semiparametric models without nonparametric endogeneity (i.e., the
unknown A() does not depend on Y'), the sieve estimators of (6, hy) can simultaneously achieve
root-n normality of 6 and the optimal convergence rate of h (in || - ||s)& From the point of view
of empirical estimation of models ([LI) with nonparametric endogeneity (see, e.g., estimation of
a system of shape-invariant Engel curves with endogenous total expenditure in [Blundell et al.
(2007)), it is nice to know that the PSMD estimators still possess such an attractive property.
Second, under the same sets of sufficient conditions for the root-n normality of the PSMD 5, we
show that a simple weighted bootstrap procedure consistently estimates the limiting distribution
of the PSMD 4. Previously, |Ai and Chen| (2003) propose a consistent sieve estimator of the
asymptotic variance of @, which hinges on the pointwise differentiability of the residual functions
p(Z;0,h()) in @« = (6,h). In our paper p(Z;0,h(-)) could be pointwise non-smooth with respect
to a = (0, h), such as in the partially linear quantile IV regression example; therefore we provide a
justification of using a weighted bootstrap to construct a confidence region. Third, we show that the
semiparametric efficiency bound formula of |Ai and Chen| (2003) remains valid for the conditional
models (LI)) with nonsmooth residualsH When the model (LI]) contains several unknown functions
ho = (ho1(-), .., hog(-)) and when some of the hg; depend on Y, although the efficiency bound is
well-defined and unique, it may not have a closed-form expression and its “least favorable curve”
solutions may not be unique. Nevertheless, our optimally weighted PSMD estimator always achieves
the efficiency bound for 6. Fourth, we show that the centered, profiled optimally weighted PSMD
criterion is asymptotically chi-square distributed. This leads to an alternative confidence region
construction by inverting the centered, profiled optimally weighted criterion. It also avoids the
nonparametric estimation of the asymptomatic variance of /9\, and is computationally less time-
consuming than the weighted bootstrap.

Technically, we are able to achieve the above listed results by first showing that our computable
PSMD criterion function with nonsmooth residuals can be approximated well by an infeasible

SMD criterion with smooth moments in a shrinking neighborhood of oy = (0o, ho), where the

Tt is known that the original kernel estimators can not; see e.g., Robinson| (1988) and [Newey et al. | (2004).

®We note that the semiparametric efficiency bound theorem of [Ai and Chen| (2003) (theorem 6.1) and its proof
do not rely on the || - ||s—compactness of the space H. In fact, the working paper version of |Ai and Chen!| (2003)
presents such results without assuming compact parameter space.



neighborhood is defined using the optimal convergence rates in both the strong norm || - ||s and
the weaker pseudo metric || -||. We then slightly modify the proof strategy in|Ai and Chen ! (2003)
(and the references therein) by performing a second order Taylor expansion to the difference of the
smoothed infeasible SMD criterion evaluated at two points: the PSMD estimator o = (5, E) and a
deviation from & along an approximately least favorable direction.

In section 2] we present the PSMD estimator a = (@,E) and its convergence rates in both the
strong norm || - ||s and the weaker pseudo metric || - || under the same set of smoothing parameters.
In section Bl we establish the root-n asymptotic normality of 9 and the validity of a weighted boot-
strap procedure. In section M we derive the semiparametric efficiency bound for 6, and show the
efficiency of the optimally weighted PSMD of 6. In addition, we show that the profile optimally
weighted PSMD criterion is asymptotically chi-squared distributed. Our PSMD estimator and its
large sample properties are applicable to all specific models that satisfy the semiparametric condi-
tional models (I.I]). Due to the lack of space, we only discuss a partially linear mean IV regression
example in section Ml and a partially linear quantile IV regression example in section Bl where the
latter example is used to highlight the technical difficulty of estimating 6y semiparametrically effi-
ciently when the unknown ho(Y') enters the generalized residual function p(Z; 6, h(-)) nonsmoothly.
Although the asymptotic properties of the PSMD estimator are difficult to derive, the estimator is
easy to compute and performs well in finite samples. See section [0 for a Monte Carlo study of a
partially linear quantile IV example, and a real data study of a system of shape-invariant quantile
IV Engel curves. All the proofs are gathered in the appendix.

Notation. We assume that all random variables (Y, X', W) are defined on a complete prob-
ability space, and for simplicity that Y, X are continuous random variables. Let fx (Fx) be the
marginal density (cdf) of X, and fy|x (Fy|x) be the conditional density (cdf) of ¥ given X. We
often implicitly define a term (such as a notation or an order of convergence rate) using “=". For
any vector-valued z, we denote ||z||g as its Euclidean norm (i.e., ||z||g = V2'z, although some-
times we use |z| = ||z||g for simplicity). Denote LP(£2,du), 1 < p < oo, as a space of measurable
functions with ||g||zs(0,a.) = { /g lg(t)[Pdp(t)}/? < oo, where  is the support of the sigma-finite
positive measure dy (sometimes LP(du) and ||g||z»(4u) are used for simplicity). For any positive
possibly random sequences {a,} and {b,}, a, = Op(by,) means that Pr (a,/b, > M) — 0 as n and
M go to infinity; and a,, = op(by,) means that for all ¢ > 0, Pr (a,, /b, > €) — 0 as n goes to infinity.

2 The Penalized SMD estimator

The semiparametric conditional moment models (I.I]) can be equivalently expressed as m(X, ag) =
0 a.s. — X, where m(X, o) = E [p(Y, X.;a)|X] = [ p(Y, X.; a)dFy|x(y) and ag = (0o, ho) € A =



© x H. Following |Chen and Pouzo| (2008a), we define the Penalized SMD (PSMD) estimator as

~

n
Gn = (00, hy) = arg aeiﬂf(n) {% Z; (X, ) [S(X)] (X, a) + Anﬁn(h)} , (2.1)
where Ay ;) = © X Hy(p,) is a sieve for A = © x H, m(X, a) and f)(X ) are nonparametric estimators
of m(X,a) and X(X) (a positive definite weighting matrix) respectively, A, > 0 is a penalization
tuning parameter such that A\, = o(1), and ﬁn(h) > 0 is a possibly random penalty function. Let
k(n) denote the dimension of the sieve Hy(n) for the function space H. In this paper we focus on the
PSMD procedure using a finite dimensional sieve (i.e., k(n) < 00). See |Chen and Pouzo ! (2008a)
for a more detailed presentation of the PSMD procedures with possibly infinite dimensional sieves.

In the working paper version (Chen and Pouzo | (2008h)), we establish the asymptotic normality,
weighted bootstrap, semiparametric efficiency and chi-square approximation of the PSMD estimator
using any nonparametric estimators m(X, «) of m(X, «). In this published version, due to the lack
of space, we only present the large sample properties of the PSMD estimator when m(X, «) is a
series least squares (LS) estimator, as defined in (2.2]):

n

m(X,a) = p™(X)(P'P)” Y p"(Xi)p(Z, ), (2.2)
i=1

where {pj()}]o-‘;l is a sequence of known basis functions that can approximate any square inte-
grable functions of X well, J, — oo slowly as n — oo, p/"(X) = (p1(X),...,ps, (X)), P =
(p”"(X1),...,p"" (X)), and (P'P)~ is the generalized inverse of the matrix P’P. To simplify pre-
sentation, we let .J,, be the dimension of p”/»(X), and p’»(X) be a tensor-product linear sieve basis,
which is the product of univariate linear sieves such as B-splines, polynomial splines (P-splines),
wavelets and Fourier series. See Newey (1997), Huang (1998) and Chen (2007) for more details

about tensor-product linear sieves.

2.1 Review of consistency without compactness

For the purely nonparametric conditional moment models E [p(Y, X; ho(+))|X] = 0,/Chen and Pouzo
(2008a) present several consistency results ||lAtn — hg|ls = op(1) for their PSMD estimator h o=
arg infher(n){% Yo m(Xg, h)'m(X;, h) + AnP,(h)}, depending on whether or not the penalty
function P,(h) is lower semicompact (under the metric ||-||,). All of their consistency theorems
can be trivially adapted to establish consistency of our PSMD estimator &, = (gn,ﬁn) defined in
[2I)). For the sake of easy reference, here we provide one consistency result with lower semicompact

penalty. In the following we denote |||, = ||0]| z + [|h]|, on A= 0O x H.

Assumption 2.1. (i) {(Y/, X])}"_, is an i.i.d. sample; (ii)) A=0O xH, © is a compact subset of
R% , and H C H, H is a separable Banach space under a metric ||-||,; (iii) E[p(Z,a0)|X] =0, and
60 — 8|z + [|ho — h||y =0 for any o = (0, h) € A with E[p(Z, )| X] = 0.

4



Assumption 2.2. (i) Ay = 0O X Hy, k > 1, are the sieve spaces satisfying Hx € Hi+1 C H, and
there exists a function Iy, ho € Hygny such that ||y, ho—holls = o(1); (i) Elm(X, a)'S(X) ™ 'm(X, a)]

is continuous at oy under ||-||,.

Assumption 2.3. (i) E[m(X,a)2(X)'m(X, )] is lower semicontinuous (in || -||s) on A; (i)
for each k > 1, Ay is closed subspace of (A,||-||s);

Assumption 2.4. (i) \, SUDpet, 0, |P,(h) — P(h)| = Op(An), with P(-) a non-negative real-valued
measurable function of h € H, P(hg) < oo and A\,|P(I1,ho) — P(ho)| = O(\yn); (it) the set {h €
H : P(h) < M} is compact under || - ||s for all M € [0, 00).

Let {dxn}n and {dmn}n be real-valued positive sequences decreasing to zero (as n — 00),

denoting the convergence rates of Y —Sand m—m respectively.

Assumption 2.5. (i) sup,cy 1S(z)—S(z)| = Op(6x.n); (i) with probability approaching one, 5(x)
is positive definite, and its smallest and largest eigenvalues are finite positive uniformly in x € X;
(11i) X(x) is positive definite, and its smallest and largest eigenvalues are finite positive uniformly

mzxeX.

Assumption 2.6. (i) supaeAk(n)E[HﬁL(X,a) -m(X,a)|3] = Op(572n7n); (ii) there are finite
constants ¢, > 0 such that, except on an event whose probability goes to zero as m — oo,
cBl||[m(X, a)l|E] < n™ ! 0 [Im(Xs, )l|f < ¢El|[im(X, a)l|F] uniformly over o € Ay

Assumption [Z0is a high level condition, and is satisfied when m (X, a) is the series LS estimator
22) (see Remark 2.1)). Denote &, = sup, ||p”"(z)||z.

Assumption 2.7. (i) X is a compact connected subset of R with Lipschitz continuous boundary,
and fx is bounded and bounded away from zero over X; (ii) The smallest and largest eigenvalues
of E[p”"(X)p’"(X)'] are bounded and bounded away from zero for all Jy; (iii) either J &2, = o(n)
or Jylog(Jy,) = o(n) for P-spline sieve p’»(X).

Let {bm,J, }n be a real-valued positive sequence decreasing to zero (as .J,, — 00), denoting the

bias of approximating m(-, «) by the series basis p/=(-).

Assumption 2.8. (i) sup,e 4, sup, Var[p(Z,a)|X = 2] < K < oo; (i) for any g € {m(-,a) : v €
Apn}, there is p’n(X)'m such that, uniformly over o € Ay, either (a) or (b) holds: (a) sup, |g(x) —
P’ (@)'w| = Olbm.s,): (b) E{lg(X) —p" (X)'w]*} = O, ;,) for p™(X) sieve with &, = O(Jn'?).

m,Jn
Assumption 2.8|(ii) is satisfied by typical smooth function classes of {m(-,a) : « € A,,}. For ex-
ample, if {m(-,a) : a € A, } is a subset of AJ™(X), 7,, > dx/2, (or W;”c" (X,leb.)), then assumption
2.8(ii) (a) (or (b)) holds with by, s, = J,,"™ and 7y, = 7, /dy-



Remark 2.1. (Lemma B.3 of \Chen and Pouzo! (2008a)) Let m be the series LS estimator given
in (23) with B-splines, P-splines, cosine/sine or wavelets as the basis p”n(X). Suppose that as-
sumptions [2.7 and [2.8 hold. Then: assumption 28 is satisfied with 0y, n = = max{,/ < /2 b, }-

Denote Iy nya0 = (0o, My ho) € Apm) = © X Hyp). The following lemma is a minor modifi-

cation of Theorem 3.3 of |(Chen and Pouzo| (20084) hence we omit its proof.

Lemma 2.1. Let &, be the PSMD estimator (21)) with A, > 0, A\, = o(1). Let assumptions [21] -
A hold. If max{s?, ., E[m(X, My my o) m(X, Ty o)} = O(An), then: ||ay, — aolls = op(1) and
P(hn) = Op(1).

m,n?

2.2 Convergence Rates
Denote Ays = {a € A [|a — ap|[s = o(1), P(h) < ¢} and Aosn = Aops N Ag(p). For any a € A,s we
define the first pathwise derivative of m (X, «) at the direction [o — o] evaluated at «q as

dm(X7 Oé(])
do

dE[p(Z, (1 — T)ag + Ta) | X]
dr

[ —ag] =

a.s. X. (2.3)
7=0
dm(X, ap)

dh

L dmXoan)

7 [h = ho].

Following |Ai and Chen| (2003), we define the pseudo-metric ||a; — || for any aq, ay € A, as

llog — as|P = E [(W[al _ a2]>/ $(X)! <W[al _ a2]>] (24

The next assumption Z9)(i) ensures that the pseudo-metric ||a; — azl| is well-defined for any

o1, 0 € Aos.

Assumption 2.9. (i) A,s and A,sy, are convezr, m(X, «) is continuously pathwise differentiable with
respect to o € Ays; (i) there are finite constants ¢, ¢ > 0 such that c||a—ag||* < E [||m(X, o)||3] <
c||a—ag||? for all a € Aos; (iii) there is a finite constant K > 0 such that K x||a—ag|| < [|a—ag]|s
for all o € Aps.

Define V as the closure of the linear span of A,s —{ag} under the metric ||-||. For any vy, v € V,

we define an inner product corresponding to the metric || - ||

.0 = 1 [ (A 0)p Y ey (Al )

and for any v € V we call v = 0 if and only if ||v|| = 0 (i.e., functions in V are defined in an equiva-

lent class sense according to the metric ||-]|). Thus (V, (-)) is a Hilbert space. Any v = (vg, vs) € V if
and only if vy E [{W}’Z(X)_IW] vg < oo and F [{M[vh]}@( )~ {dm(x ,0) [v ]}] <

00. We can express V as R% x W with W = {w E [HE {dm(d% ]}HE} < oo}. For each

6



component 6; (of 8), j = 1,...,dg, denote D, (X) = dm((l?;ao) - dm(jz’o‘o)[wj]. Let wj € W be a

solution to

;an E [Dy,(X)'S(X) ' Dy, (X)] (2.5)

which solves

E [(W[%D,z(xrl (dm(d);; @) _ dm(j;; @) [w;]ﬂ —Oforall w; €W.  (2.6)

Denote w* = (wf, ...,w;}g) EWx---x W, and

_ _dm(X,a0) dm(X,a0),
Although the solution w} € W, j=1,..,dy to @H) (or (Z6)) may not be unique, the minimized
value, E[D., (X)’Z(X)_lDw; (X)], is unique; hence E[Dy«(X)'S(X) ! Dy+(X)] is uniquely de-
fined. If X(X) = Var{p(Z,ap)| X}, then E[Dy+(X)"S(X)™! Dy~ (X)] becomes the semiparametric

efficiency information bound for 6. See Section 4 for further details.

If hg were a parametric function say ho(-, 3y) up to an unknown finite dimensional parameter
By € R%, then w; becomes a vector in R4 (instead of a function), and (ZX) (or (ZH])) can be
solved in a closed form:

dm(X, ag)’ _1dm(X, ap) . dm(X, ag)’ _1dm(X, ap)
e o R G e

for w} € R%, j=1,...,dp; hence Dy+(X) = dm(X,a0) _ dm(fﬁ’o‘o) x w* is simply the weighted least

do
m(X,a0) dm(X, )

squares regression residual of regressing d 7 on —gz using the weight ¥(X)~!. (Even for
/
the parametric case, (2.5)) (or (2.6])) has a unique solution w7} if and only if £ (%ﬁ’ao) »(Xx)! %ﬁ,mﬁ)

is invertible.) We impose the following assumption.

Assumption 2.10. (i) E {W}’Z(X)_I{W}] is finite; (i) E[ Dy« (X)'[2(X)] 7 Dy« (X)]
is finite, positive-definite.

Let Hos = {h € H : |[|[h — ho|ls = o(1), P(h) < c} and Hosn = Hos N Hyy(p)- For any hy, ha € Hos

we define:

I = ol = (220, — ) w0 (200D )]

Lemma 2.2. Let assumptions and hold. Then: there are finite positive constants c,c
such that for all a € Ay, we have: ¢||6 — Opl|p < ||a — apl| and ||h — hol| < ||a — agl]-

Let {0}, and {05, }n be real-valued positive sequences decreasing to zero (as n — 00), denoting
the convergence rates of ||a, — ap|| and ||, — ap||s respectively, i.e., ||a, — ap|| = Op(d,) and
\|an — aolls = Op(8s,). Then Lemma 2 implies that |[6, — 6o||z = Op(6,) and ||h, — hol| =
Op(,). By definition of the norm || - ||s we also have ||h, — hol|s = Op(0sn)-

7



Assumption 2.11. (i) H € H, (H,|| - ||s) is a Hilbert space with (-,-)s the inner product and
{43321 a Riesz basis; (i) Hn = clsp{q1, ... Grn) }-

Assumption 2.T1Ki) suggests that H,, = clsp{qi, ..., Gr(n)} is a natural sieve for H. For example,
if H C Ws([0,1] leb) (a Sobolev space), then assumption BT is satisfied with (H, || - ||s) =

(L2(]0,1]¢, leb), || - || L2(teb) ), and spline or wavelet or power series or Fourier series bases as {g;}72;.

Assumption 2.12. There are finite constants ¢, C > 0 and a non-increasing positive sequence
{b;}52, such that: (i) [|h]? > cz;’il bil{h, q;j)s|? for allh € Hosn; (i) CY; bj\(ho—Hk(n)ho,qj>8]2 >
||ho — Tjy(myhol 2.

See |Chen and Pouzo | (2008a) for interpretation and sufficient conditions for assumption 2.12]

Lemma 2.3. Let ay,, be the PSMD estimator (21)) with A\, > 0, A\, = o(1). Let assumptions of
Lemmas[2.1] and[2.2 hold, and supy,cqy, |P,(h) = P(R)| = op(1). If max {0mmn, VAn} = Omon, then:
(1) 1o = holl = Op(6,) = Op (max{Sun o — Tiuyhll})-
(2) Further, let assumptions (211 and [Z12 hold. Then:

T

Remark 2.2. Let &y, be the PSMD estimator (21) with A\, > 0, A, = o(1). Suppose that all the
assumptions of Lemma hold. Let hy : RY — R and ||hy — Hy(nyholls = O({k(n)}=</%) for a
finite ¢ > 0, and 6y, p, = O < @) =op(1).

(i) Mildly ill-posed case: let by = O(k~2%?) for some a > 0. Then: 85, = O (n_m> and
op =0 (n_ﬁ> provided k(n) = O <nm>,' hence 6, = o(n=Y4) if ¢ +a > d/2.

(ii) Severely ill-posed case: let by, = O(exp{—k®?}) for somea > 0. Then: 65, = O ([ln(n)]_g/“)
and 6, = O < w) provided k(n) = O ([ln(n)]d/“); hence 6, = o(n=1/*).

~ dm,n
0n =0 (5m,n) and ||hy, — holls = Op(és,n) =Op <||h0 — Hk(n)h‘OHS + 7’) .

n

For a nonparametric mean IV regression model E[Y; — ho(Y2)|X] = 0, |Chen and Reiss | (2007)
show that the above convergence rate |[h, — holls = Op(dsy) in the norm ||h||s = /E([h(Y2)]?)
achieves the minimax optimal rate. The optimal rate Js,, is determined by choosing the smoothing
parameters to balance the sieve approximation error rate O({k(n)}~/) and the standard deriva-
tion part O (\ \v/ nf,{f?) >, where the term { bk(n)}_l/ 2 is called “sieve measure of ill-posedness” (see
Blundell et al. | (2007) and IChen and Pouzo | (2008a)). When by, = const for all k (or when a = 0 in

Remark 2.2(i)), the convergence rate d,, becomes the known optimal rate for sieve M-estimation

without nonparametric endogeneity; see, e.g., |(Chen and Shen | (1998).

According to Lemma and Remark 2.2 the same set of smoothing parameters that achieves
the optimal rate for ||ﬁn — holls = Op(ds,n) can also lead to the rate ||a, — ag|| = Op(dy) =
Op(6mn) = op(n~'/*), which is what we need for root-n asymptotic normality of 5; see Theorem

B in Section 3.



3 Asymptotic Normality and Weighted Bootstrap
3.1 Root-n normality of [

In this subsection we establish root-n asymptotic normality of the PSMD estimator 5, which extends
the normality result of Ai and Chen | (2003) to allow for nonsmooth residuals p(Z; «) and any lower
semicompact penalty functions. Denote Ny = {a € Aps : ||a — apl| = O(6,), || — aplls = O(dsn)}
and Non = No N Ay

Assumption 3.1. (i) There exist a measurable function b(X) with E[|b(X)|] < co and constants
€ (0,1], r > 1 such that for all § > 0 and o, o’ € Ny,

sup / (2, @) = p(2,a")|"dFy | x—o(y) < b(x)"0™;

[la—a/||s<d
(ii) supuens, |p(Z, )| < C(Z) and E[C(Z)%X] < const. < oo; (iii) 62 X (65n)" = o(n™1).

By Remark[2.2] for both the “mildly ill-posed” case and the “severely ill-posed” case, assumption
BIiii) 62 (6s.,)" = o(n™1) is satisfied if ¢ > d/k.

For any non-zero A € R% assumption [Z10 implies that there is a v* € V such that /\’(@L —
6o) = (v*,an — ap), that is, v* = (vj,v;) is the Riesz representer of N (6, — 6p), with vy =
(E[Dyw+ (X)[2(X)] ™ Dy (X)]) 71X and v} = —w* x v}.

Assumption 3.2. (i) 6y € int(©); (ii) Xo(X) = Var|p(Z, ag)| X] is positive definite for all X € X;
(i) there is a vy, = (vg, —W;, X v5) € Ay \ {ao} such that ||v;, — v*|| X &, = o(n=1/2).
Assumption 3.3. (i) 6, = o(n"'4); (i) 55, x 6p = o(n™/2);

(iii) A supaens, [Pa(h £ eawiivg) — Bu(h)| = op(L) with 0 < e, = o(n™1/?).

Let m(X,a) = p/(X)(P'P)~ 3", p/"(Xi)m(Xi, @) be the LS projection of m(X,«a) onto

p’"(X). Define g(X,v*) = {W[v*]}’ﬁ( )~! and g(X,v*) as its LS projection onto p’"(X).

Assumption 3.4. (i) E [“W[’U*] _ dmX.a0)1,,%)

da

(id) E [IIg0X, 0*) = (X, 0)[[3] (90)% = op(2).

2} (5.)2 = op(1);

Assumption 3.5. either (a) or (b) holds: (a) {(M[v N'E(X) " 'm(X,a) : « 6/\/0”} is a
Donsker class; (b) {m(-,a) : o € Nop} € AL™(X) with 7, = 7,,/ds > 1/2.

In the proof of Theorem [B.I] we establish that, under assumption ZT0(ii), assumption B35(b)
implies assumption 3.5(a).



d’>m(X,a) [ *

Assumption 3.6. (i) m(X, «) is twice pathwise differentiable in o € Ny, E <supa€/\/0n Tode

T o] - T )

2
oo; (ii) E [supaeNOn E] = o(n=1/2); (iii) for all @ € Ny, @ € N,

B [(W[v*])lmrl (e = o - P20 — o] ) | = o),

Assumption[3.0](ii) can be replaced by Assumption[3.6(ii)’: {w i a € /\/'On} is a Donsker
dm(z,a) ['U*]
n

2
{4 o] = o212
IIE/J

for all o € Ny, (see the working paper version |Chen and Pouzo| (2008h) or |Ai and Chen | (2003)).

dmﬁ]if,oc) [v¥] — dm(;goco)[

< const. < oo and E H

class, SUDzex, aeNon

Assumption is imposed to control the second order remainder term of m(X,«) in a shrinking
neighborhood of ay. It is automatically satisfied when m(X, «) is linear in . When h(Y") enters
m(X,a) = E[p(Y,X,0,h(Y))|X] highly nonlinearly, we need some rate of convergence in strong
norm (Js,) to verify assumption B.6(ii)(iii); see, e.g., the partially linear quantile IV regression

example in Section 5.

Theorem 3.1. Let a,, be the PSMD estimator (21]) with A, > 0, A\, = o(1) and m the series LS

estimator. Suppose that all the assumptions of Lemma 2.3 and Remark [21] hold. Let assumptions
(21, and[3.2 - hold. Then: \/n(6, — 6y) = N(0,V 1), where

(E [DW*(X)’ S(X D '
vl= (E [DW*(X)’[Z(X)]_lﬁ(X)[E( 'p *(X)D . (3.1)

x (E [DW*(X)’ 2(X D 1
3.2 Weighted Bootstrap

In this subsection we propose a weighted bootstrap procedure, and establish its validity by showing
that the asymptotic distribution of the weighted bootstrap estimator (centered at /H\n) coincides
with the asymptotic distribution of our PSMD estimator (centered at 6p). In a recent paper
Ma and Kosorok | (2005) establish a similar result for a semiparametric M-estimation without non-
parametric endogeneity; we extend their results to the PSMD estimation of the conditional moment

models (L)) with nonparametric endogeneity.

Assumption 3.7. {W;}' ;| is an i.i.d. sample of positive weights satisfying E[W;] = 1 and
Var(W;) = wg € (0,00), and is independent of {(Y;, X[)}™,.

Theorem 3.2. Let all the assumptions of Theorem [31l and assumption [3.7 hold. Le@

Hn,h;; =arg inf mw (X, « iXi Lw (X, o —i—)\nﬁnh,
= 0,7 = gt S (6 SO (05 0} + a0

SWe are indebted to Andres Santos for suggesting this weighted bootstrap procedure.
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where mw (X, a) = p"(X) (P'P)~ 31 p/"(X;)p(Zj, a)W; Then: Conditional on the data {(Y/, X})
\ /wio(@; - gn) has the same limiting distribution as that of \/ﬁ(gn —6p).

Chen et al. | (2003) establish the validity of a nonparametric bootstrap for a two-step semipara-
metric GMM estimator of 6y under high-level conditions. As Theorem [B.2] indicates, we obtain the
validity of the weighted bootstrap under basically the same sets of low-level conditions as those for

the root-n asymptotic normality of the original PSMD estimator 0.

4 Semiparametric Efficiency and Chi-square Approximation
4.1 Semiparametric efficiency bounds and efficient estimation

Recall that Xo(X) = Var(p(Z, ag)|X). We define Vo and Wy in the same way as V and W defined
in subsection 2.2, except using the optimal weighting matrix o(X) instead of ¥(X). For example,
_ 2 —

Wy = {w ) [ Eo(X)_%{W[w]}HE] < oo}. For any w = (w1, ..., wq,) with w; € Wy, let

Dy (X) = dm(jg’o‘o) — dm(jz’ao) [w], and define

Vo = inf E { Dy (X)'[S0(X)] 7 Du(X)} = B { Dy (XY [So(X)] ' Durg(X)}, (4.1)

where wo = (wo1, ..., Wod, ), and for j = 1, ..., dy, each wp; € Wy solves:

E KW[W])/ZO(X)A (dm(d);';ao) — dm(;};’ ) [woj-]>] =0 for all w; € Wy.

When the residual function p(Z,«) is pointwise smooth in «, |Ai and Chen| (2003) establish
that Vp is the semiparametric efficiency (information) bound for 6y identified by the model (ITI).
The following theorem shows that their result remains valid when p(Z, ) is not pointwise smooth
in . We denote go(y,x, ap) as the true joint probability density of (Y, X). Since A,s is convex at
ag by assumption, hg + &(h — hg) € {h € H : ||h — ho||s = 0o(1)} for any h € {h € H : ||h — hol|s =
o(1)} and any small scalar & > 0. Let {q(y,z,0,ho + &(h — ho);¢) : 6 € int(©),£ > 0, > 0}
denote a family of all parametric density submodels that satisfies the conditional moment restriction
[ p(y, X.,0,ho+E(h—ho))q(y, X, 0, ho+E(h—ho); ¢)dy = 0 a.s.—X, and passes through go(y, z, ap)
at the true values = 6y, £ =0 and ( = 0.

Assumption 4.1. (i) E {W}’EO(X)%{W} < 00; (i) for any h € Hos, {q(y, 2,0, ho+
E(h—ho);C) : 0 €int(©),£ > 0,¢ > 0} is smooth in the sense of |Van der Vaart!| (1991).

Denote vy = (v, —wp x vJ) with v = (V) 1A for non-zero A € R%.

Theorem 4.1. Let assumptions [21], [Z.2(i), [229(i), [32(i)(ii) and [{-1] hold. Then: (1) Vi given
in (4-1) is the semiparametric efficiency (information) bound for 6y in the model (11). (2) The

11
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positive definiteness of Vy is the necessary condition for 6y to be estimable at \/n—rate. (3) Sup-
pose that all the assumptions of Theorem [31] hold with £(X) = ¥o(X) and v* = vy, then the

corresponding PSMD estimator of 0y is efficient with asymptotic variance Vo_l

Under assumption 4.1l the semiparametric information bound Vj given in (£I]) is always well-
defined and unique, albeit the solutions wq (the “least favorable directions”) may not be unique,
and may not be solvable in closed-forms. Luckily, our optimally weighted PSMD estimator of 6 is

automatically efficient, regardless whether there is a closed-form solution wy.

4.2 Chi-square approximation

Previously IMurphy and Van der Vaart| (2000) show that the profiled likelihood ratio statistics is
asymptotically chi-square distributed, and [Shen and Shil (2005) establish that the profiled sieve
likelihood ratio statistic is asymptotically chi-square distributed. In this subsection we show that
the profiled optimally weighted SMD criterion (@n(ﬁ)) also possess such a nice property.

In the following we denote & (X, ) as any nonparametric estimator of & (X, o) = Var[p(Z, a)| X],
and @, as any initial consistent estimator such that &, € M, with probability approaching one
(e.g., the PSMD estimator with 3(X;) = I). The profiled optimally weighted PSMD estimator
Oy = (én,ﬁn) is defined as:

= P ~
hy = arg he%f(n) - Zm X;,0,h) [S(X;, @) (X, 0,h) + AnPo(R)} for any fixed 6,

D1
3
I

arg min{ - Zm Xi,0,hg)[5(X;,6n)) MU Xy, 0, hg) + AnPr(h)}, and hy, = by

Define the profiled optimally weighted SMD criterion function as:

-~

_ - RS SN-15(x.-0 h
Qul0) = 53 D2 MUK, R (DX 8] (X030, ).
In the following we define v) = (v, —wpvf)) € Ag(n) \ {0} the same way as v = (v}, —wjv;)
defined in section 3 except using ¥o(X) instead of X (X).

Assumption 4.2. (i) Sup,cx aens, Sz, o) —So(z)| = Op(0xn); (ii) S(X, ) is finite and positive
definite with eigenvalues bounded away from zero uniformly for all X € X and o« € Nyp; (i)
An SUD e, |Po(h + ERWoVg) — P,(h)| = op(L) with 0 < &, = O(n=1/2).

Lemma A.1 of the working paper version (Chen and Pouzo| (2008b)) provides sufficient condi-
tions for assumption EE2(i) when S(z, @) is a series LS estimator. For alternative nonparametric
variance estimators and their properties, see [Robinson | (1995h), IAndrews| (1995) and references

therein.
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Theorem 4.2. Suppose that all the assumptions of Theorem [31 hold with ¥(X) = 3o(X). Let
assumptions [.4 hold. Then: V0, — ) = N(0, Voh) and 2n (@n(ﬁo) - @n(én)> = X%e-

See the working paper version (Chen and Pouzo ! (2008h)) for an analogous result for the profiled
continuously updated PSMD criterion.

Remark 4.1. For the partially linear IV mean regression model: Y3 = Y{0y + ho(Y2) + U with

E[U|X] = 0, Florens et al. | (2007) provide identification of (0y, ho), propose a kernel-based Tikhonov
reqularized estimator for 0y, and obtain its root-n asymptotic normality without assuming compact-

ness of space H. For this model, we can compute our optimally weighted PSMD estimator én, and

Theorem [J.2 immediately implies that: \/n (0, —0) = N0, Vyl) and 2m{Qn(00) — Qn(0n)} = X?lg’

where Yo(X) = Var{U?|X} and

Vo = inf B { B[Y] — w(Y2)|X]'So(X) T E[Y{ — w(Y2)|X]} .

Moreover, since m(X,a) = E[Ys—Y{0 —h(Y2)|X] is linear in o = (0, h), assumption[3.4 is trivially
satisfied; hence 8,, is root-n asymptotically normal even z'fl;n converges to hg very slowly in a strong
norm, such as ||lAtn - h0||L2(fy2) =0Op ([ln(n)]_g/a) in Remark [2.2.

5 A Partially Linear Quantile IV Example

In this section we apply the above general theories to study the following partially linear quantile

IV regression model:
Y3 = 6gY7 + hO(YQ) + U, PI‘(U < O‘X) =7vE€ (O, 1), (51)

where 6 is a scalar unknown parameter, hq() is a real-valued unknown function, and the conditional
distribution of the error term U given X = (X1, X3)" is unspecified, except that Fyx(0) = v for a
known fixed . The support of X is X = [0, 1]% with d,, = 1+d, and the support of Y = (Y3, Y7, Yy)’
is ¥ € R**?. To map into the general model (L)), we let Z = (Y', X')", a = (0, h) and p(Z,a) =
1{Y; < 0Y; + h(Y2)} — 7. Recently (Chernozhukov et al. | (2007) and Horowitz and Lee| (2007)
study the nonparametric quantile IV regression model E[1{Y3 < ho(Y2)}|X] = . |Chen and Pouzo
(2008a) illustrate their general convergence rate results using a nonparametric additive quantile IV
regression example E[1{Y3 < hg1 (Y1) + ho2(Y2)}| X] = 7. [Chen et al. | (2003) consider an example
of partially linear quantile IV regression with an exogenous Y, (i.e., Yo = X5), and [Lee! (2003)
studies the partially linear quantile regression with exogenous Y7 and Y, (i.e., Y1 = X;,Ys = Xo).
See [Koenker | (2003) for excellent review on quantile models.

We estimate ag using the PSMD estimator a,, with m (X, «) being a series LS estimator of
m(X,a) = E[Fy,y; v, x (0Y1 + h(Y2))| X] — 7, where p/(X) is either B-splines, P-splines, wavelets
or cosine series. 2(X) = S(X) = So(X) = v(1 =), Po(h) = P(h), and A, = [b,b] x Hp(ny being
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a finite dimensional (dim(Hy,)) = k(n) < 0o) linear sieve. We impose some low level sufficient

conditions:

Condition 5.1. (Z) fY3|Y1,Y2,X (y3‘y17 Y2, ‘T) is continuous in (y37 Y1,Y2, ‘T)7 and Supy3 ng‘Y17Y27X (y3) <
const. < oo for almost all Y1,Y2, X; (1) fy, vo|x=2(Y1,Yy2) is continuous in (y1,ye,T);
(iii) E[Fy,y, vy, x (0Y1+h(Y2))| X =] € A|™(X), 1y = 7,n/de > 1/2, for all (0,h) € © X Hyr).

-9 /2
Let fuvi,ve,x(0) = fyavi,va,x (60Y1 + ho(Y2)). Denote @ (yo) = (1 + |2 ) /% for some ¥ > 0.

Condition 5.2. (i) 0 < E{(E[fU‘yhyQ,X(O)Yl]X])2} < oo; (ii) E[(1+ |Y2))*] < oo for some
9 >9 > 0; (i) © = [b,b] C R, H C {h € L*R% fy,) : lwhllws (eby < 00} with ¢ > 0; (iv) Hin)
span{qu, - - -, Qrm)} with (qx)x being wavelet basis for Ws(R%, @); (v) P(h) = ||V (wh)||L2 leb) wz’th
0<d¢ <.

Condition 5.3. (i) (0g, ho) € int(©)xH satisfies the model (51)); (i) for allo € O XH and all T €
[0,1] with ar = Tag + (1 = 7)o, E{ fyg)vi,ve,x (0:Y1 + by (Y2))[Y1(0 — 0g) + h(Y2) — ho(Y2)]| X } =0
implies that [Y1(0 — 0o) + h(Y2) — ho(Y2)] = 0 almost surely; (iii) E{|Y1 — E(Y1]Y2)|} > 0.

Condition [5.3] is a sufficient condition to ensure that the model (5. has a unique solution
ap = (0o, ho) € © x H.

Let ||h||? = E{[h(Y2)]*} and Ays = {a € © X H : |0 — 0| + ||h — ho||s = o(1), P(h) < c}. Define
linear operators To[g] = E{ fy;)v;,v,,x (0Y1+1(Y2))[9(Y2)][X = -} and T [9] = E{fy;v,v2,x (BoY1+
ho(Y2))[9(Y2)]|X = -} that map from Dom(T,) C L?(fy,) — L*(X, fx). Condition 53(ii) also
implies that T, is invertible (i.e., injective, i.e., {g : To,[g] = 0} = {0}). We assume

Condition 5.4. For all g € Dom(Ty,), (i) there are finite constants c,C' > 0 such that c||T, [g]]|32 ) S
| Talg ]HL2 ) S Cl|Ta, [Q]HH(fX) for all o € Ayg; (ii) there are finite positive constants a,c,d > 0

such that cl|Tag g2z, ) < 5221 372 (g,q)sl? < ¢I[Too 91122 -

Condition 5.5. max{\/‘%, J72m A} = \/% =o(1), Jy, > k(n), J, = O(k(n)).

Note that Wy = {w : E [{E[fu}v; v5,x (0)w(Y2)|X]}?] < 00}. Denote wy € Wy as the solution to:

LB [ {Ffoprex O —wWIIX})] B [(B {foprx O - wo(2)]X})’]
7 e v(1—7) B v(1—7) '
(5.2)

Conditions [5.2(i) and 5.3 imply that V; € (0, c0).

Condition 5.6. (i) there is an w)) € Hyy) such that E[(E { fuv v, x (0)[wd (Y2) — wo(Yg)]|X})2] =
o({k(n)}~1); (ii) assumption [{.3(iii) holds with P,(h) = P(h).

Condition 5.7. (i) ¢ > max{a + %,2(1}; (ii) for almost all Y1,Ys, X, the partial derivative of

Tys|vi,ve,x (Y3) with respect to y3 exists, is continuous and bounded uniformly in ys.
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In the following, /Hg denotes the profile PSMD estimator, obtained by fixing # and minimizing
the PSMD criterion with respect to h € ‘H,,. By definition 71\” = ﬁAn.

Proposition 5.1. For the model {51), suppose that {(Y, X])}"_, is i.i.d., assumption [2.7, and
conditions [5.1] - hold. Let k(n) = O (nm). Then:

(1) |l = hol 25, = O (n” 257752 and ||a, — aol| = Op (n” 272,

(2) If assumptions and [5.7 hold, then: \/ﬁ@n —6y) = N (O,VO_l), where Vi given in

equation ([5.2) is the semiparametric efficiency bound, and

1Y (0 B, )V — (X B F))) = 1

i=1

Remark 5.1. (1) Proposition[51lis directly applicable to the model E[1{Y3 < 6 X1 +hp2(X2)}X] =
v (i.e., Y; = X for j =1,2, no endogenez'ty) studied in |Lee| (2003)), and to the model E[1{Y3 <
0Y1 + hoo(Xo) HX]| =« (i.e., Yo = Xo, Y1 # X4, endogeneity only in parametric part) considered
inChen et al. | (2003)). For both models we have: a =0, and Proposition [5.1] leads to the optimal
convergence rate Op (n 2<+d) of hn to ho in norm || - \|Lz(fy2), the root-n semiparametric efficient
estimation of 6y, and the chi-square approximation of the PSMD criterion based test statistics of
the null hypothesis: 0 = 6.

(2) One can characterize the semiparametric efficiency bound Vi using the operator formulation.

In particular, any solution wg € Wy to the optimization problem (5.2) must satisfy:
<Ta0 [w], E {fU‘yl’y27X(0)Yi|X} —Ta, [w0]>L2( =0 for all w € W. (5.3)

Let Too(-) = E{fupyvi v, x(0)Y1|X = -}. Define T7 [r] = E { fuv,v,x (0)r(X)|Ya = -} as the ad-

joint operator of Ty, (i.e., (Tuylgl,7) 2 fx = (9, T3, ]> L2(fy )). Then Condition [5.3 implies that
2

T3 T, is invertible, and if || (T7; Tao) Ty, [TO,9]||L2(fy2) < oo then

B | (To0(X) = Tag lwo])?|
(1 =) ’

However, this does not imply any explicit expressions for wg() when hy() depends on the en-

* -1 *
Vo = wo = (T, Tay) To[To,0]-

dogenous variable Yo. When there is no nonparametric endogeneity, then one can solve the ef-
ficiency bound in closed-forms. For example, for the partially linear quantile model with para-
metric endogeneity (i.e., Yo = Xo, but Y1 # X;) of [Chen et al. | (2003), we have: Vo = [y(1 —
NITLEN(E { fury, x (0)[Yi — wo(X2)][X })?] and

E (E [fuy,x O)Y1|X] E [ fup,x (0) | X] \X2)
E[(E{fujv,,x (0) |X}) | Xo]

wo (X2) =
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Proposition [5.1] only establishes the root-n asymptotic normality and efficiency for the partially
linear quantile IV model (5.1]) under the mildly ill-posed case (| |ﬁn—h0 L2, fvy) = OP (n_ 2(<+§a>+d> ).
This is because the model is nonlinear in hy(Y2), our sufficient conditions (assumption B.6l(ii)(iii))

for root-n normality rules out the severely ill-posed case (||h, — hol| L2(fy,) = OP (In(n)]=</2)).

6 Simulation and Empirical Illustration

6.1 A Monte Carlo Study

We assess the finite sample performance of the PSMD estimator in a simulation study. We simulate

the data from the following partially linear quantile IV model:

Y X190+h0 (Yé) +U7
U = V0.075 <—<1>—1 (E lho (Y2) | Xs] = ho (12) + 7) + e) ,e~N(0,1),
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where 0y = 1, ho (y2) = ® (%), X, ~ U|0,1] independent of ¢, and both are independent of
(Y3, X5). Following the way Bhfnd/ell et al. | (2007) conduct their Monte Carlo study, we generate
our Monte Carlo experiment from the 1995 British Family Expenditure Survey (FES) data set
with subsample of families with no kids. In particular, Y5 is the endogenous regressor (log-total
expenditure), ®(Xs) is its instrument (log-gross earnings), and the joint density of (Y3, X2) is a
bivariate Gaussian density with first and second moments estimated from the FES data set. We
draw an i.i.d. sample from the joint density of (Y2, X2, X1,¢) with sample size n = 1000.

We estimate m (X, a) by the series LS estimator m (X, a) given in (Z2), where p/»(X) consists
of P-Spline(3,3), P-Cos(9) and 4 cross-products terms (the second term of P-Spline(3,3) times the
first four terms of P-Cos(9)) with J,, = 20/ We use a linear spline sieve P-Spline(2,6) as H,,. We
add a penalization term P, (h) = ||Vh| 2, (1eb) With An € [0.001, 0.01] In all the cases we performed
500 Monte Carlo repetitions. Table [Il and Figure [l summarize the simulation results for different
quantiles v = 0.125,0.25,0.5,0.75,0.875. One can see that for all the cases our estimator performs

well.

6.2 An Empirical Illustration

We apply the PSMD to estimate a shape-invariant system of quantile IV Engel curves (or consumer

demand functions) using the UK Family Expenditure Survey data. The model is

E[{Y1q < ho(Yos — 01X15) + 02, X1} Xs] =7 € (0,1), [ =1,...,7,

7P-Spline(p,q) denotes a polynomial spline of order p with q number of knots, and P-Cos(p) a cosine series with
p number of terms. We have tried other combinations as sieve bases for m and all yield very similar results.
8The actual A, is chosen to minimize the integrated MSE of h for a small number of Monte Carlo repetitions.
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where Y7, is the budget share of household i on good [ (in this application, 1 : food-out, 2 :
food-in, 3 : alcohol, 4 : fares, 5 : fuel, 6 : leisure goods, and 7 : travel). Y3; is the log-total
expenditure of household ¢ that is endogenous, and X; = (Xy;, Xo;)’, where Xy; is 0 for without
kids sample and 1 for with kids sample and Xo; is the gross earnings of the head of household,
which is the instrumental variable. We work with the whole sample (with and without kids) that
consists of 1655 observations. Blundell et al. | (2007) have used the same data set in their study of
a shape-invariant system of mean IV Engel curves.

As illustration, we apply the PSMD using a finite-dimensional polynomial spline sieve to
construct the sieve space H, for h, with different types of penalty functions. We have tried
P,(h) = HthH]Lj(dm =n"t S0 [VFR(Yy)? for k = 1,2 and j = 1,2, and Hermite polynomial
sieves, cosine sieves and polynomial spline sieves for the series LS estimator m. All combinations
yield very similar results. Due to the lack of space, in Figure [2] we report the PSMD estimated En-
gel curves only for three different quantiles v = {0.25,0.5,0.75} and for four selected goods, using
P-Spline(2,5) as H,, and p’»(X) for 7 consisting of P-Spline(2,5), P-Spline(5,10) and 4 cross-
product terms (the second term of P-Spline(2,5) times the first four terms of P-Spline(5,10)), with
Jn = 27. Table 2] presents the corresponding PSMD estimates of 81 and (Hg,l)zzl for the median
(v = 0.5) case under different combinations of ﬁn(h) and \,. Figure 2 presents the corresponding
estimated curves, and its last two rows include the Engel curve estimates of Blundell et al. | (2007)
for comparison. Both our 6 estimates and our Engel curve estimates for the v = 0.5 quantile are

very similar to the estimates reported in Blundell et al. | (2007) for the mean IV Engel curve model.

7 Conclusion

In this paper, we study asymptotic properties of the penalized SMD estimator for the conditional
moment models containing unknown functions that could depend on endogenous variables. For
such models with possibly non-smooth generalized residual functions, and possibly non-compact
infinite dimensional parameter spaces, we show that the PSMD estimator of the parametric part
is root-n asymptotically normal, and the optimally weighted PSMD reaches the semiparametric
efficiency bounds. In addition, we establish the validity of a weighted bootstrap procedure for
confidence region construction of possibly inefficient but root-n consistent PSMD estimator. For
the optimally weighted efficient PSMD estimator, we show the validity of an alternative confidence
region construction method by inverting an optimally weighted profiled criterion function. We
illustrate the general theoretic results by a partially linear quantile IV regression example, a simu-
lation study, and an empirical estimation of a shape invariant system of quantile Engel curves with
endogenous total expenditure. The weighted bootstrap method could be easily extended to allow
for misspecified semiparametric conditional moment models of |Ai and Chen| (2007).

All the large sample theories obtained in this paper are first-order asymptotics. There are no
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results on higher order refinement for semiparametric models ((ILT]) containing unknown functions of
endogenous variables yet. There are some second order theories for semiparametric models without
nonparametric endogeneity, such as/Robinson | (1995a), Linton | (1995) and [Nishiyama and Robinson
(2005), to name a few. We hope to study the higher order refinement of the weighted bootstrap

procedure in another paper.
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A Mathematical Appendix

Proof of Lemma 2.2t Assumption implies that for any o = (0, h) € A,s with 6 # 0y, we can
always rewrite h — hg = —w(0 — 0y) with w = (w1, ...,wg,) € W x - - - x W. By definition of w* we
have for all w = (w1, ...,wg,) and for each j =1, ...,dp,

/ _1dm(X, o) al
«(X)'E(X) 1T0[wj—wj]:| =0.

[l — x| [* = (6 — 6) E [ Dy (X)'S(X) ™ Dw(X)] (6 — o)
E [Dy+(X)'S(X) ™ Dy (X)]
= (0 —6p) \E [{ dm(;l)z,ao) W — w] ,E(X)_l {dm(ﬁ,ao) fw* — W]}] (0 —0p).

By assumption 2.I0|(i) we have:
lloe — ag||? > (6 — 09)' E Dy (X)2(X) ' Do+ (X)] (6 — 0) > const.||0 — bo]|%.

Next,

2
lo — aol[* > E

o+ {22 w0 - a0

] = ||h — ho + W* (6 — 69)]|*.
B

18



Note that |[h — ho||* < 2{||h — ho + w*(6 — 09)||> + |[w*(6 — 60)||*}, and

(6 = 60) P = (6 = 60 | {5 w00 (G e 6 - 60,

Assumption 2.10(i)(ii) and

L dm(X, o) ||?

E HZ‘,(X)_2 T = B [Dyw+(X)S(X) ' Do+ (X)]| + E

|me e

|

Proof of Lemma [2.3t For Result (1), assumption [25[ii) implies that there are two finite positive
constants ¢, ¢’ such that

1 2 RN,
C_Z”m (Xisa)[% < ZHE 7R (X 0)| < ¢S 3 I (X )l
1=1

uniformly over o € Ay,). Let 72 = max{5mn, llovo — My gnycro] 12, A P (Mg gy o) — P(hy)|} = op(1).
Since @, € Aysn, With probability approaching one, we have: for all M > 1,

E

imply that |[w*(0 — 6p)||> < const.||0 — 0o||%. Thus ||h — ho||? < const.||a — ao|[*. Q.E.D.

~ _ [ _1 2 ~
Pr <Han — Oé()H > M> < Pr lnf{aersn:Ha—aoiMm} |:1n Zi:l HE(XZ 2m (Xza Ci)HE + )\nPn(h):|
" < 33 [R5 (X Tegayoo) ||+ AnPa(TTyguyho)
- < Aol o) [0 il 17 (Ko )l + o1 )
< 5 S8 [ (X iy 00) 15+ An P (T o)

< Pr( lnf{aermna aol|>Mrn} { SR (X )| E + A P(h)} >
B < ¢ i [ (X, Ty o) [+ AnP [k o) + 0p (An)

i=1

where the last inequality is due to the assumption that supycq/, . |P,(h) — P(h)| = op(1). We can
now follow the proof of Theorem 4.1(1) of I(Chen and Pouzo! (2008a) (using our @, instead of their
), and obtain: ||, — aol| = Op(8,) = Op(ry) = Op (max{8m,n, vVAn, |lao — Hymyaol|}). Result
(1) now follows from our Lemma and the fact that ||ag — Il 0ll = [[ho — Hyenyhol|- Result
(2) follows from Result (1), Theorem 4.2 and Lemma 5.1 of |(Chen and Pouzo| (20084d). Q.E.D.

Lemma A.1. Letm be the series LS estimator given in (2.3) with P-splines, cosine/sine or wavelets
as the basis p’n(X). Suppose i.i.d. data, assumptions[2.7, [Z.8(i) and [31(i)(ii) hold. Then:

. ~ I x
) s -3 (%0) 7 (i) ()l = 0 (22 5.
acNon i=1

In
(2) sup — Z |17 (Xi, @) + 0 (Xiya)||% = Op <— + 53) .
aENOn =1 n

(3) Let assumptions [Z3(ii) and [32(iii) hold, and 2= = O(62). Then: Uniformly over a € Ny,
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Proof of Lemmal[A.1l For Result (1), let e(Z,a) = p(Z,a) —m(X, o), Ae(a) = —
An = Elllp(Z,0) — p(Z,a0)||% | X]. Recall that m(X,a) = p/»(X)(P'P)~ S0, p™(X;)m(X;, a)
is the LS projection of m(X, a) onto p’#(X). Then

sup —Zum (Xi, ) = (Xi, 00) — (X5, )|
aENon

=1
< sw E[p""(Xi)(P’P)‘lP’(Ae(a))(Ae( ))'P(P'P)~'p"(X;)']
< sup E [p7( )"'P'E [(As(a))(Ac(a)) X1, ..., X, P(P'P)~'p/"(X;)]
< 81/1\}) E [Ny, x Tr {n~p™(X;)'p" (X;)(P'P/n)~"}]
< K swp B [B(lp(Z.c) ~ p(Z o)} X)) 2 < K sup 2 ool < 0 (Z32).

where the first inequality is due to Markov inequality, i.i.d. data, and the subsequent inequal-
ities are due to assumptions B.II(i)(ii), 27, 2.8|i), i.i.d. data and the definition of Np,. Thus
Result (1) follows. For Result (2), by triangular inequality, we have: ||m(X;, ag) + m(X;, )|z <
|m(X, )| p+1m(Xi, &) || . Following the proof of Lemma B.2 of (Chen and Pouzo | (20084) (using
our « instead of their h), under the i.i.d. data, assumptions2.7and 2.8(i) (for a € Ay(,,)) and B.IJ(ii)
(for ag), we obtain: there are finite constants ¢, ¢’ > 0 such that, except on an event whose probabil-
ity goes to zero as n — oo, cE[||m(X, ao)||%] < n P Y0 [|M(Xi, )% < CE[||m(X, a)||%], and
cE (Hﬁ@(X,,a)H%) <ise, (X, )||5 < CE <H771(X,,04)H%> uniformly over a € Ay ,). By the
definition of m, the i.i.d. data, and assumption BI[(ii), we have: E <H7’ﬁ (Xi,ao)H%> = Op (22).
Assumption 2.9(ii) and m(X, ap) = 0 imply that F <Hﬁl(X,,a)H%> < const. ||ag — a|* = Op(62)
uniformly over « € Np,. Thus Result (2) follows.
For Result (3), denote H\A()H\% =n" 130 AX) S (X)) TA(X;) and
. ~ Il _1 2
UX, @) = (X, a0) + (X, a), B2= sup EZHZ(X,) 3 {7 (X;, ) —E(Xi,a)}HE
asNon T =1

By triangle inequality we obtain that uniformly over o € Ny,

1€C, el = Bn < [lIm( )lllg < [[16C, @)llls; + B (A1)

Results (1) and (2), assumptions 2.5((ii) and B1I(iii), and % = O(6%) imply that: uniformly over
o€ NOnv

2 _ ﬁ 25\ _ 2 25\ _ l
B2 = 0p (2 6.0™) = 0p (32 0.0") =or (5.

116G, lllg x Bn = Op ({\/J;"Mn}x %(5%)) Op (67 (3s.)") = op <%>

These and equation (A.I) now imply that: |||T?L(,oz)|||2i = |||€(,oz)|||% + op (%) uniformly over
a € Nop. Q.E.D
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Denote H\A()H]% =n 30 A S (X)TA(X), and (X, o) = (X, ag) + (X, q).
Proof of Theorem B.1} Let 0 < ¢, = o(n~"/?) and v’ = +v. By the definition of &, and
assumption B.3[(iii), we have: |||m(:, an)|||% —|[lm(-, @n+enu;';)|||% +op(n~') < 0. This and Lemma
[A](3) imply that

1G5 = 1160, @n + enup)l[I +op(n™h) < 0. (A.2)

Under assumption B.6|(i), we can perform second order Taylor expansion to equation (A.2]), and
obtain:

< 20y (B )} S0 (X a0) + X @)+ 1 (al9) T (a5 +or(n ),
=1

with a(s) = @, + seyul € Ny, for some s € (0,1), and

2 & 2m(X;, as . s '~ 1A ~
et = 23 (PN 45 o)) S0 (X a0) + X o).
=1
_ - (X a(s) o) s gt (X als),
Iy(a(s) = 23 (9L o) 5 x ) - (ERX ) )
n ; < do > < da >

Applying Cauchy-Schwarz, the i.i.d. data, assumptions 2.5(ii) and B.6(i), and Lemma [AT[2), we
have:

aENon aENy, T i=1

1 [T,
sup |[In(a)] < const.eiJ sup — Z |7( X5, ap) + m(X;, @) |5 = €2 x Op( % + dn),

thus sup,eps, [In(@)] < €2 x op(n~'/*) by assumption 3:3(i). Next, by assumption Z5(ii), we have:
uniformly over o € Ny,

_ " d’l’?L(XZ Oé(S)) d’l’?L(XZ Oé(])
IIn < t. 2 1 ) *] ) *
@] < eonstcin™ 32 | T ) - S|
+const.e%n_1; W[u;] i =op(n™) + Op(e2),

where the second inequality follows from the definition of m, the i.i.d. data and assumptions B.6l(ii)
and [2.10(ii). Therefore, we have

0< 2% 3 <W[u;]> (X)L (W Xs, a0) + 7 Xs, @) + Op(e2).
i=1

Since €, = o(n~2) and u¥ = +v¥ we obtain

=1
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Note that, by Cauchy-Schwarz, the i.i.d. data, assumption 2.5]ii) and the definition of m, we have:

LY (At S0 ) £ (X 0) + (X B)

n

1
< const.J - Z

1=1

dm(XZ,an)[ ] _ dm(Xi,Oé(])
do Un do

[v7]

2 n
1 A~ ~ o~
X J E Z HTTL(XZ',Oé(]) + m(Xuan)||2E
B i=1

where the first term is of order op(n~/*) by assumptions B.6/(ii) and ZI0(ii) and i.i.d. data, and
the second term is op(n~'/4) by Lemma [A1)(2) and assumption B3|(i). Thus, we obtain:

2 (TR ) S 06 ) 0 G) = (D),

Note that
1| (dm(Xi,00): o0\ (e v -1 A o
E; (T[%]) (Z(Xz) - ¥(X;) )(m(X,,a0)+m(XZ7an))
1 ¢ || dm(X;, ao) 2 I~ . P
< x| Ls||dmXiao) 1 X, X.a,
< Op(bsn) X J n; T [v7:] ; X n;Hm( ag) + m(Xi, a2

In _
< Op(Ogn X (0n +4/-7)) = op(n 2,

where the first inequality is obtained by assumption 2.5, and the second inequality follows from
i.id. data, Lemma [AJ](2), assumptions 2.T0(ii) and B3)(ii). Thus

LN (X0 00) o ST (X ) 4 (X A — o
\/ﬁ;< do [n]) E(XZ) ( (Xla 0)+ (X’M n)) P(l)
Notice that

% Z (W[U: - U*]> 2(X:) ™ (MU X, a0) + m(Xi, Gn))

=1
* * Jn —
< Op (Il =" l) x Op(1/ 22 +5,) = op(n /%),

where the last inequality is due to Cauchy-Schwarz, the i.i.d. data, Lemma [A1](2), Markov in-
equality, and assumption B.2(iii). Thus,

1 - (dm(X; ' o
NG ; <%[v*]> (X:) ™ (7 Xy, 00) + (Xi,Gn)) = 0p(1).
This, Cauchy-Schwarz, the i.i.d. data, Lemma [A1)(2), assumptions 25(iii) and B.4(i) imply that

1

ln 7dm(Xi’a0)v* , )L (X, o m(X;,an)) = op(—
n;( o | ]) R(X3)7 (X a0) + (X3, Gn)) = 0P ().
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Recall that g(X,v*) = {dm(X .00) [v*]}2(X)~! and §(X,v*) is the LS projection of g(X,v*) onto
p?7(X). Then by the property of LS projection, we have:

3 (X 0" (X, 00) + (X B0} = - T 0" ol 00) (X B}
i=1 =1

1 & . . 1
= o ol o) + (X)) o ()
1=
where the second equality is due to the i.i.d. data, assumptions 2.5(iii), B.0)1), B2(ii), 29(ii), BA4(ii),
Elp(Z;, )| X1, ..., X;,] = 0 and the Markov inequality. Thus we obtain:

1 « . N 1
- ;g(Xi,u Ho(Zi, a0) +m(Xi, an)} = OP(%
Notice that |g(X,v*)m(X, a) — g(X, v*)m(X, ag)| < |g(X,v*)| X [m(X, @) — m(X, ap)|. Given
that E[|g(X,v*)?] < M by assumptions EI0(ii) and Z5(iii), it follows that the entropy under the
L?(X) norm of {g(X,v*)m(X,a) : @ € No,} is bounded by the entropy under the L*(X) norm
of {m(X,a) : & € Ny,}, which is €%/Ym hence a Donsker class by assumption B5(b). Therefore,
either by assumption B.5(a) or by assumption B.5(b), we have: uniformly over o € Ny,

).

_129 Xlav Xl7a) E[g(X,v*)(m(X,a) _m(Xv Oé(]))] +OP(n_1/2)'
By applying the mean value theorem to (m(X,a) — m(X, ap)) and assumption B.0l(iii), we obtain:
_129 X’MU Xuan) - (U*7an_a0>+OP(n_l/2)7
Thus, we finally obtain
1 X; '
VR, a, — ag) = —% ZZ:; <W[v*]> Y(X;) " p(Zi, ap) + 0p(1) (A.4)

and the result follows by applying a standard central limit theorem argument. @.FE.D

Proof of Theorem We repeat the proofs of the consistency and the convergence rates of
Lemma 23] except using Wp(Z, ) instead of p(Z,«). Under assumption 3.7, we can show that
the weighted bootstrap estimator, &, (Hn, h;) is in Ny, with probability approaching one. We
shall establish the limiting distribution in two steps.

STEP 1: We first derive the asymptotic normality of \/ﬁ(@i — o) by mimicking the proof of
Theorem B.Il Under assumption B.7], we can repeat the proof of Lemma[A.1l and obtain: uniformly

over « € Nop,
1 2 _
—ZHE 2 my (X, ) H ZHZ i 2€W X“a)HEj:OP(n D,
where lyy (X5, a) = mw (X, o) + mw (X, o). Moreover, by assumption B.7] it follows my (X, a) =
EWp(Z,a)|X] = EW|E[p(Z,a)|X] = E[p(Z, )| X]; this property also holds for the projection,
mw (X, a) = m(X, a).
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Recall that @) solves mingens, {|||mw (-, a)]H% + AP, (h)}. Under assumption B3(iii), we can

establish that @) is an “approximate minimizer” of a smooth criterion function: |||£W(-,oz)|||% =
n~iS O (Xi, @) [S(X0) " ow (X, @) for all o € {a € Noy : ||a — @%|| = Op(n~/2)}. Now we
can essentially repeat the proof of Theorem Bl Let 0 < ¢, = o(n~'/?) and u}, = +v’. We have:

ew (L anlll3, — llew (. @y + enun) I3 +op(n™h) < 0. (A.5)

By second order Taylor expansion to equation (A.H]), following the steps in the proof of Theorem
[B.1l and using assumption 3.7} we obtain:

=3 (T ) S0 G (X0 + (K 520) = o (1)
—= —— [V i) (mw(Xq, ap) +m(Xy,ap)) = op(1).
vn P do

By assumption [B.6[(ii), we have:
n
)
i=1
This and assumption [Z5](ii) imply that

1 & (dm(Xi,a0), .\ o o
Vi & (TO[”"D B(X0) ™ (Fw (X, 00) + (X, 7)) = 0p (1),

dm(X;, ay,) ] — dm(X;, agp) y
do

By Markov inequality and i.i.d. data, we have:

w3 (PG - 1) ) (PG - 01) = 0 (1)

P da da
Therefore, following the steps in the proof of Theorem Bl we obtain

1 - d’l’?L(Xi,Oé(]) % ! RPN _ ey
%; (T[v ]> S(X) ™ mw (X, o) + m(X, @) = op(1).

This, Cauchy-Schwarz, the i.i.d. data, Lemma [AT](2), assumptions 25(iii), B4(i) and B imply

that

1w dm(X;, a0), ! o N o )
E;(T[v ]> %(X;) 1(mW(Xi,Oé0)+m(Xi,an))_OP(\/_E)_

Recall that g(X,v*) = {W[v*]}’E(X)_l and g(X,v*) is its LS projection onto p/»(X). Then

we have:

1 ¢ o [ _ ~ 1~ « -
gzg(Xivv )(mW(Xivao) +m(Xi7an)) = ; Zg(Xi7U ){W,’,O(Zi,ao) +m(Xi7an)}’
i=1

i=1

Following the steps in the proof of Theorem B.1] and using assumption B.7], we obtain:
LS (X 07) — 900,07} Wip(Zi,a0) = op( )
n 4 - g i U g iU iP\Li, Q) = Op \/ﬁ
1=
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LS ) — g(Xe v Him(Xi @) — m(Xs,a0)} = op(
=1

i

Thus we obtain:

%;Q(Xi,v*){WiP(Zi, ag) + m(X;,ay)} = OP(%).

Recall that {g(X, v*)m(X, «) : @ € Np, } is a Donsker Class. Thus, we have uniformly over a € Ny,
n~h Y g(Xi,v)m(Xi ) = B g(X, 0" )m(X, )] + 0,(n” /%) = (v",a — ag) + op(n”/?).
i=1
Hence

. 1 < /dm X, a N ! _
Vi, o) = ) (%[ 1) S(X) " p(Zisao)Wi 4 op(1). (A6

This and assumption [3.7] implies that \/5(52 — 6p) is asymptotically normal with zero mean and
variance V.71 = woV L
STEP 2: Subtracting equation (A.4]) from (A.6l), we obtain:

VA8 = 8} =~ > () 080 o) + (1),

Given that Var(W — 1) = Var(W) = wo and that {W;}!_; is independent of {(Y;, X;)}",, it
follows that, conditional on the data {(Yi, X;) iy, /25 (52 — gn) is asymptotically normal with

i=17
zero mean and variance V!, the same limiting distribution as that of ﬁ(@n —6p). Q.E.D

Proof of Theorem [4.3} The proof essentially replicates that of theorem 6.1 in |Ai and Chen
(2003), except that we replace their use of the pathwise derivative of the generalized residual
function p(Z,«) with respect to «a by the pathwise derivative of the conditional mean func-
tion F[p(Z,a)|X]| wrt a in a shrinking neighborhood of «ag. See the working paper version
(Chen and Pouzo | (2008H)) for the detailed proof; also see the working paper version of|Ai and Chen
(2003) for an alternative proof via the empirical likelihood. Q.E.D

Proof of Theorem With the danger of slightly abusing notation, we denote f‘,o(X,-) =

~

Y (X, ap). Then we have:

~ . . = ~ = 1. -
an = (On,hy)=arg min {!Hm(w@ah)!H%O+>\nPn(h)}7 Qn(9n)E§H\m(van)!H%07

9€®,h€7’(k(n)
&0 = (00, 70) =arg min {[IA(,00. D2 +APalh)},  OnlBo) = 2|l 01 -
n n hEHk(n) ’ ’ 3o ’ 2 o Yo

We shall establish 22(Q, (60) — Qn(8)] = X3, by first showing n (|||e<-, anlliz, — Il an)|||2§0) -
X%e in several steps.

STEP 1: Recall that &, = (0,,h,) is the unconstrained PSMD estimator. Let o) = a, —
(G — g, v0)0Y /||vo]|?, where the inner product (-,-) is defined using the ¥(X) instead of ¥(X)
and |[vo]|? = NVy'A. Then @, — of = (@, — ag,v0)v/||vo]|?. Recall that for any A # 0,
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N (6 —00) = (@n — a0, v0). Applying Theorem Bl we have: /1 (&, — ag, vo) = N(0, ||vo|[?). Thus
we have ||&, — o||> = Op(n~1/?). Applying Taylor expansion up to second order, we have:

~ 2 * 2
1EC, an)llls, = I16C, an)lll,

= % > <W[an - ail]) So0(X) ™ (X4, a0) + T X, ) + In(@n) + T (@)
i=1

with @,, € Ny, a point in between &, and «, and

d*m(X;, @) ~ "o ~
—1 1y &n % ¥ N1/~ . =
n(@,) =n E < “ada [y, — o an]> Yo(Xi) T (m(X, an) + m( X5, @),

I (a) = n! g (e - am)/mxi)—l (T - a)).

Following the same calculations as those in the proof of Theorem B and by assumption E2{ii), we
have: supg, eny, [In(@n)| = op(n™!). Similarly under assumption E2(i)(ii), we have:

~ 2
i) = (St (0 s 0 R )+ o),

By Cauchy-Schwarz inequality, (vo,d, — ag) = Op(n~1/?), assumption 22, and using the same
arguments as the ones in the proof of Theorem B.I], we obtain:

% 2 (W[&n - aZ]) Zo(X:) ™ (MU Xi, a0) + (X, 7))
=1

= n! Z <M[an — a;]) EO(Xz')_l (M X5, 0) + m(Xi, o)) + Op(n_l).

do
i=1

Since o — g = @y — ag — (G, — ag, vo)vY/||vo||?, applying second order Taylor expansion to
m(X;, o) —m(X;, ap), we obtain:

01 Z <W[an — a;]> Yo (X)) ' m(Xi, o)

i=1

= Op(n_1/2) % <<an N a07U0> . <an - OZO,U0><U9L,’U0> n op(n_1/2)>
= Op(n—1/2) X <<an — ap, vg) — (Qy, — g, vg) + Op(n—m)) _ Op(n_1)7

where the last equality uses the fact that (v) — v, vp) < |[v2 — vg||> = op(1) by assumption B2(i).
Therefore

~ 2 * 2
1EC, an)llls, = 16, an)llls,
2 o= [ dm(X;, ) ) 1 Qp — Q, v 2 1
= 2% (EEE, - anl) s ka0 + (L)l 4 or()

=1

2
= —————— + Op(n_l).
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STEP 2: Recall that & = (HO,EO) is the constrained PSMD estimator. Define o0 = &2 + (&, —
a0, v0)vY/||vo]|?. Note that &° — a0 = —(&, — o) = — (&, — ag, vo)v° /||vg|?. Following the same
calculations as those in Step 1, we obtain:

1

~0\ |2 «OV[[12 _ x 2 -1
EC, an)llls, — 116G, an)l§, = (@n — a0, vo) Tooll? +op(n™").
STEP 3: Applying Lemma [AT](3), we obtain:
~ ~ ~ * ~ * 1
116G, an)lllg, = I, anlllg, +0P( ) G G, = MmC aid)llig, +op(=). (AT
By the definitions of &,, a*?, and assumption L2(iii), we have: |||7(-, an)|||2 <|l|m(:, « ZO)|||%O+
op(n~1). This, equation (A7), and Step 2 imply that
~ 2
- - " Qy, — Qg, Vg 1
I, TN, 1, e, a2 IE, =S op () (a8)

STEP 4: Denote o(t) = af + tv0/||vg||? for a scalar ¢ > 0. We need to find a point, de-
noted as o (t*) = af + t*00/||vo||?, that satisfies (a) (af(t*),v9) = 0y (the constraint), and (b)
H\E(,a;ﬁ(t*))m% — H|€(,a;)m2i = o(n™1). Suppose such an o (t*) exists, then by the definition

%o 0
of 5[% = (0o, hY), and by Step 1, we obtain:

11eC,amllIg, = IlleC, anllE,
> (e alE, — HleC. ok _|||g(.7an)|||2§0_|||€(.7a;)|”2§0_op(%)
Gn — ), Vg)2 -
B _WHP(" D (A.9)

We now show such an o (t*) exists. For (a), we want to find a t* that solves the following
equation:

(V9 vo) (v — o, vo)

0 = (ay,(t) — ag,vo) = (0, — ap,vg) + ¢

= (o) — ap,v0) +t+t

{vo, vo) {vo, vo)
Notice that (af — g, vo) = (@ — @, vp) X (—%) = (o — a*,vg), since the second term

in the middle is o,(n~ 1/2) it is easy to see that there is a t* that solves the above equation
and such a t* is of order o(n~'/2). For (b), notice that we can approximate |||€(,oz;§(t*))|||% by
0

dl]|e(-e (0))112
14, (0 ))H\2 +——————20t*00 /||vo||]+0(n~t) (where the last term depends on t* = o(n~1/2)

and the second term is also of order o(n™1) by following similar calculations as those in Step 1).
Thus, (b) holds
STEP 5: Invoking the inequalities (A.8) and (A.9]), we obtain

~ 2
o (IeC.aDIE, - @il ) = (YL on) 5 0,

[lvol|

where the right hand side chi-square limiting distribution follows from v/n{c, —ag, vo) = N(0, ||vg]|?).
Applying Lemma [AT](3), we obtain:

2n[Qn(00) = Qu(0)] = n{lllm( @), — A, @)lZ )}

= nfllleC, anllfy, — IeC, a3, +op(~ ~)} = X3,
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and the conclusion follows. Q.E.D

Proof of Proposition 5.1k For this model, we have: p(Z,a) = 1{Ys < 0Y; + h(Y2)} — 7,
m(X, a) = E[Fy,y; v,,x (0Y1 + h(Y2))| X] — v and 5. = % =~(1 — 7). For Result (1), it is easy to
show that the i.i.d. data, assumption 2.7 and conditions B.1] - imply that all the assumptions
of Lemma 23] hold. In particular, for assumption [2.1I(iii) (identification), suppose that there is
a = (0, h) satisfying |0 — 0g| + ||h — h0||L2(fY2) > 0 and E[Fy,|y,y,x (a)|X] = 7, then by the mean
value theorem, there exists @ = (0, h) such that E[fy,|y,v,x (0Y1+h(Y2)){Y1(0—00)+h—ho}|X] = 0,
this and condition [5.3] then imply that |6 — 0y| + ||h — hol| L%(fy,) = 0; hence a contradiction and
assumption [2.I](iii) holds. Condition [(.2](i) implies assumption 2.I0(i); and conditions [5.3](ii)(iii)
and [5.2(1) imply assumption ZT0)(ii). The verifications of the rest of the assumptions of Lemma
23] are essentially the same as those in the proof of Proposition 6.4 in |Chen and Pouzo| (2008a);
hence we omit them.

For Result (2), we shall verify that all the assumptions of Theorem [B.11hold with S=%= y(1—
7). Condition [5.I(i)(ii) implies that assumption BIi) holds with x = 1/2. Since p(Z, a) € [0, 1]
assumption B.II(ii) trivially holds. Assumption B.I[(iii) follows from Result (1) and condition B.7](i).
Assumption B2((ii) follows from the fact that S = %y = 7(1 — 7). Regarding assumption -(iii)
v) = (v), —wv)), by condition B.II(i), w

n —

since v* = vy = (v], —wpv)), with v) = VO and vy,
have:
2
E [(E { fravi,ve,x (00Y1 + ho(Ya))[wh (Y2) — wo(Y2)]| X }) }
(1 =7) ’
thus assumption B.2[(iii) follows from condition [(.6[(i) and Result (1). Assumption B.3|(i) follows

from Result (1) and ¢ + a > d/2 (which is implied by condition [.7(i)). Assumption B3|(iii) is
implied by condition [5.6((ii). Since ¥ = v(1 — 7), and

1c

—v*|* = ||wp — wol* =

dm(X7 Oéo)
do

dTTl(X, Oéo)

[v*] = E (fuva,ye,x (0)[vo] | X) 7o

X < dm(X;, «
o] = P () (PP) 3 () 00
i=1
assumption [3.4] follows from Result (1), assumption 277 and conditions [5.1] and E.7(i). Assumption
B5(b) follows directly from condition [B.IIiii). Assumption B.6|(i) directly follows from condition
B.7(ii). Also, under condition B.7(ii), with v = v0 = (v), —wY x v)), we have:
dm(X, «) ] — dm(X, ag)
do " da
= F { (ng\Yl,Yg,X(eyl +h(Y2)) = fyavi,ve,x (BoY1 + hO(Y2))) Y1 — w;(Y2)]|X} vy
_ =z { dfysva,ve,x (OY1 + h(Y2))

[0n]

y [(0 —00)Y1 + h(Y2) — ho(Y2)][Y1 — w;i(Yé)]lX} vp
Y3

where 0Y] 4+ h(Y2) is in between 0Y; + h(Y3) and 0gY; + ho(Y2). By condition B.7(ii),

dm(X, a) dm(X, ap), , 2

FE doo [’U:;] - T[ n]

sup
a€Non

E

2
] < const. x |la — ap||? =0 (n_2(<+;)+d> ,

thus assumption B.6](i1) is satisfied given condition [5.7(i). Similarly, assumption B.6(iii) follows from
condition 57(i)(ii). Thus all the assumptions of theorem 311 hold, and we obtain: /n(6, — 6o) =
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N (0, Vo_l). Since & = ¥ = Yo = v(1 — =), the chi-square limiting distribution follows directly
from theorem Q.E.D
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B Tables and Figures

5 0.125 0.250 0.500 0.750 0.875
Enic 0] 1.0009 0.9981 1.0009 1.0008 0.9991
Varuc [, 0.0023 0.0018 0.0011 0.0017 0.0028
BIAS3¢ [0a] x 10% | 0.0083 0.0347 0.0084 0.0067 0.0078
(625, 007.5) 1y (0.90,1.10) | (0.91,1.07) | (0.93,1.07) | (0.91,1.08) | (0.89,1.09)
(82.5,097.5) .2 (0.89,1.09) | (0.91,1.06) | (0.93,1.05) | (0.91,1.07) | (0.88,1.08)
I - BIAS} e b 0.0022 0.0015 0.0030 0.0030 0.0044
1= Varye [ 0.0221 0.0287 0.0056 0.0147 0.0173
I - MSE}c [l 0.0244 0.0302 0.0087 0.0177 0.0217

Table 1: Monte Carlo study of a partially linear quantile IV example.

\hat{h} with \gamma=0.500 \hat{h} with \gamma=0.750 \hat{h} with \gamma=0.875

\hat{h}
— —--95%CB
— —--95%CB

Figure 1: Monte Carlo study: Estimate of h.
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Figure 2: Estimated Engel curves for quantiles v = 0.25 (dash), 0.5 (solid), 0.75 (dot-dash).
IV?Rl[32 (4)» An = 0.001; 2nd row: Pp(h) = [|V>h[ 11 gp), An = 0.001; 3rd row: Pu(h) = [[VA[[72(45), An = 0.003;

4th and 5th rows: Pa(h) = [|V?h||3245) (4th), IVA|[724) (5th), An = 0.0003,

1st row: P,(h) =

v = 0.5 (solid) and BCK (dash).

Po(h) | IV Z2gny | IN2RI iy | VA Z2 | V201122 g VAT 2 4

An 0.001 0.001 0.001 0.0003 0.0003 (BCK)
b1 0.4133 0.3895 0.5479 0.43136 | 0.36348 (0.3698)
food-in 0.0200 0.0267 -0.0056 0.00989 | 0.01949 (0.0213)
food-out | 0.0010 0.0006 0.0019 0.00033 | 0.00055 (0.0006)
alcohol -0.0195 -0.0123 -0.0171 -0.02002 | -0.01241 (-0.0216)
fares 0.0106 -0.0031 -0.0001 -0.00009 | -0.00173 (-0.0023)
fuel -0.0027 0.0027 0.0004 -0.00198 | -0.00370 (-0.0035)
leisure 0.0208 0.0214 0.0380 0.02582 | 0.01897 (0.0388)
travel -0.0207 -0.0218 -0.0084 -0.00622 | -0.01536 (-0.0384)

Table 2: Shape-invariant Engel curve quantile IV model with v = 0.5: 6 estimates under different
penalization. The values in parenthesis are the mean IV estimates of Blundell et al. | (2007).
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