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ABSTRACT 
 

This paper addresses the question of whether administrative data sources, such as 
performance monitoring data, can be used for program evaluation purposes.  It argues that under 
certain circumstances, such data can be used.  In particular, program performance data that are 
routinely gathered and monitored by administrators of many workforce development programs 
meet these circumstances.  The paper goes on to demonstrate the point by using administrative 
data from the state of Washington to examine the net impact on earnings and employment of 
services provided to adults under the Workforce Investment Act (WIA). 

 
Because of a lack of consensus about appropriate net impact estimators, the strategy of 

this paper is to examine the sensitivity of the results to various estimation techniques.  The paper 
describes the various estimation techniques, and it summarizes the net impact estimates that are 
generated for the State of Washington.  For the most part, the results are fairly stable across the 
techniques, which the paper argues adds a degree of confidence in them.  The final section of the 
paper offers guidance to policymakers and program administrators who may not be familiar with 
the technical details of various analytical approaches about how empirical results that may 
appear to be complex or unstable can be used for program improvement. 
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SENSITIVITY TESTING OF NET IMPACT ESTIMATES OF 
WORKFORCE DEVELOPMENT PROGRAMS USING ADMINISTRATIVE DATA 

 
The purpose of this paper is to address the question of whether administrative data 

sources, such as performance monitoring data, can be used for program evaluation purposes. It 

argues that under certain circumstances such data can be used. In particular, program 

performance data that are routinely gathered and monitored by administrators of many workforce 

development programs meet these circumstances. The paper goes on to demonstrate the point by 

using administrative data from the state of Washington to examine services provided to adults 

under the Workforce Investment Act (WIA). Using the lingo of individuals who have formalized 

evaluation studies (e.g., Rossi and Freeman 1993), the work presented here uses a quasi-

experimental method relying on ex post data. 

A considerable literature has arisen concerning the various empirical techniques used in 

quasi-experimental evaluations (see the February 2004 Review of Economics and Statistics 

collection of papers and the many studies referenced there).1 The general theme of this literature 

seems to be that there are many different econometric techniques for estimating program 

effectiveness that have appropriate asymptotic properties. Some papers in this literature go on to 

speculate about which estimators seem to work best under which conditions.   

Because of the lack of a consensus about appropriate estimators, the strategy of this paper 

is to examine the sensitivity of the results to various estimation techniques.2 The paper describes 

the various estimation techniques, and it summarizes the net impact estimators that have been 

generated for the state of Washington. For the most part, the results are fairly stable across the 

techniques; I argue that this adds a degree of confidence to them. The final section offers 

                                                 
1 One of the articles in that collection, Michalopoulos, Bloom, and Hill (2004), addresses the question that 

is central to this paper, namely the advisability of using administrative data for program evaluation purposes. 
2 The approach in this paper is very similar to work described in Mueser, Troske, and Gorislavsky (2003). 
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guidance to policymakers and program administrators who may not be familiar with the 

technical details of various analytical approaches about how empirical results that may appear to 

be complex or unstable can be used for program improvement.   

 
1. INTRODUCTION 
 

Analyses of quantitative data about workforce development programs are valuable to at 

least two audiences:  1) individuals charged with administering the programs and 2) entities that 

invest resources in the programs. The first group, administrators, are accountable for the results 

of their programs and want to make sure that they are achieving maximum results given the 

resources they have. The second, investors (or funders), want to make sure that they are 

maximizing their returns on investment. Like ship captains, program administrators set directions 

and objectives to be reached, and they must get feedback to determine if and when directional 

adjustments need to be made. I use the term performance monitoring to refer to this kind of 

feedback. The owners of the shipping company, on the other hand, want to know their returns on 

investment in order to allocate or reallocate their resources. I use the term net impact evaluation 

to refer to this kind of information. A question that this paper addresses is whether performance 

monitoring data can be used for net impact evaluation.   

The empirical results presented pertain to WIA as administered in Washington State 

during the program year July 2000 to June 2001. However, the evaluation purposes and methods 

discussed in the paper are relevant to a gamut of workforce development programs:  federal job 

training programs such as WIA, formal postsecondary educational programs such as community 

colleges or four-year colleges and universities, apprenticeships, adult basic education, formal or 

informal on-the-job training, and secondary career and technical education.   
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2. NET IMPACT EVALUATION VERSUS PERFORMANCE MONITORING 
 

Many references provide excellent discussions of social program evaluation (see, for 

example, Blalock 1990; Rossi and Freeman 1993; Mohr 1992; Wholey, Hatry, and Newcomer 

1994). The emphasis of much of this literature is on the design of an evaluation for which the 

evaluator has control over the data collection. However, less attention has been paid to the role of 

performance monitoring in program evaluation. In recent years, performance monitoring has 

become an integral part of program administration as public resources have become tighter and 

tighter, forcing administrators to be held more and more accountable to measurable performance 

standards. A fortunate by-product of performance monitoring is the considerable individual-level 

data that have become available, which may be used for evaluation purposes as well.   

 
2.1 Performance Monitoring   
 

The purpose of performance monitoring is to measure the usage of resources and the flow 

of clients in order to manage as effectively as possible the resources that are available. In 

general, administrators are concerned about efficiency, which is providing the greatest amount 

and highest quality of service given the level of resources, and about equity, which is providing 

services fairly. Administrators need to ensure that the characteristics that are being measured (to 

which measurements the administrators are being held accountable) are important, not just things 

that are easily measured. Furthermore, administrators need to ensure that measures are 

consistently defined over a sufficient length of time to have some confidence in their levels and 

trends.  

Performance monitoring is most useful when the information can be benchmarked. That 

is, administrators who are undertaking performance monitoring in order to improve their 

programs’ effectiveness will need to make judgments about trends or levels in the data. 
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Benchmarks, which are summaries of comparable indicators from other agencies and programs 

or from other time periods, can be used to formulate those judgments.  Performance standards 

are intended to be a method of benchmarking performance data.3   

In short, the purpose of performance monitoring is to inform program improvement. The 

audience for such monitoring is administrators. 

 
2.2 Net Impact Evaluation 
 

The purpose of a net impact evaluation is to evaluate the outcomes of the program for 

participants relative to what would have occurred if the program did not exist. In other words, it 

answers the question of how the program has changed the lives of individuals who participated 

in it relative to their next best alternative. The data that are used to address this question are 

quantitative, and the evaluation should attempt to examine results by subgroup because there 

may be systematic relationships between program outcomes and participant characteristics. The 

audiences for a net impact evaluation are the funding agency (or agencies) and the program 

administrators. For publicly funded workforce development programs, the owners are the 

taxpayers, and their agents are state or federal legislators or evaluation branches of the executive 

agencies. 

The attribution of the net impacts to the program intervention is confounded by at least 

four factors. The first factor is definition of the treatment. Social programs usually tailor services 

to the individuals being served. Thus, each participant may receive slightly different services. 

Furthermore, participants control their effort. So, even if participants are given the same 

treatment, they may exert more or less effort in learning and applying the skills or knowledge 

being delivered to them. Furthermore, some individuals may not complete the treatment.  
                                                 

3 Heckman, Heinrich, and Smith (2002) provide a thorough analysis of the impact of performance 
standards, which tend to focus on short-run outcomes—i.e., on actual performance. 
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Second, in order to estimate the net impacts of a program, it is necessary to compare 

program participants to another group of individuals who represent the counterfactual—i.e., what 

would have happened to the participants absent the program. Designation of that comparison 

group and, concomitantly, having adequate data concerning members of the group are crucial for 

estimating net impacts. However, acquiring the data may be difficult because the comparison 

group members did not receive the treatment. 

The third factor that may confound attribution is the definition and measurement of the 

outcomes. Performance measurement is aimed at inflows to and outflows from a program, 

whereas evaluation is likely to focus on outcomes after clients have received the treatment. The 

performance measurement system may not be designed to collect such information.  

Finally, the fourth factor is that the dynamics of program interventions and outcomes may 

make attribution difficult. In particular, receiving the treatment may require a significant amount 

of time. So the question becomes whether outcomes should be measured after program entrance 

or after the treatment ends. (Furthermore, individuals who receive the treatment may not 

complete the program.) Observations that are well matched at the time of program entrance may 

differ considerably if the reference point is program exit simply because of the business cycle or 

other changes that may occur over time. 

The four conditions, then, that must be met in order to use administrative, performance-

monitoring data for evaluation purposes are as follows: 

1) The treatment is defined in a general enough fashion to be meaningful for a sizable 
group of program participants. But, of course, the more general the definition of the 
treatment, the less useful it may be for program improvement purposes. 

2) Administrative data must be available for a group of individuals that arguably make 
up a reasonable comparison group. 

3) Outcome data must be available for both the treatment and the comparison group. 
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4) The time periods of observation and treatment for program participants and the 
comparison group must be reasonably close to each other, so that meaningful 
outcome comparisons can be made.   

 
3. THE NET IMPACT EVALUATION PROBLEM AND KEY ASSUMPTIONS  
 
3.1 Statement of Problem 
 

The net impact evaluation problem may be stated as follows: Individual i, who has 

characteristics Xit, will be observed to have outcome(s) Yit(1) if he or she receives a treatment, 

such as participating in a training activity, at time t and will be observed to have outcome(s) 

Yit(0) if he or she doesn’t participate. The net impact of the treatment for individual i is Yit(1) − 

Yit(0). But, of course, this difference is never observed because an individual cannot 

simultaneously receive and not receive the treatment.   

To simplify the notation without loss of generality, I will omit the time subscript in the 

following discussion. Let Wi = 1 if individual i receives the treatment, and Wi = 0 if i does not 

receive the treatment. Let T represent the data set with observations about individuals who 

receive the treatment for whom we have data, and let nT represent the number of individuals with 

data in T. Let U represent the data set with observations about individuals who may be similar to 

individuals who received the treatment for whom we have data, and let nU be its sample size. In 

some of the techniques described below, I identify a subset of U that contains observations that 

match those in T. I call this subset C, so let nC be its sample size. The names that I use for these 

three data sets are Treatment sample (T), Comparison sample (U), and Matched Comparison 

sample (C). 

Receiving the treatment is assumed to be a random event—individuals happened to be in 

the right place at the right time to learn about the program, or the individuals may have 
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experienced randomly the eligibility criteria for the program—so Wi is a stochastic outcome that 

can be represented as follows: 

 
 (1) Wi = g(Xi, ei) ,   
 
where ei is a random variable that includes unobserved or unobservable characteristics about 

individual i as well as a purely random component.  An assumption that I make about g(•) is that 

0 < prob(Wi = 1|Xi) < 1. This is referred to as the “support” or “overlap” condition that is 

necessary so that the outcome functions described below are defined for all X.4 

In general, outcomes are also assumed to be stochastically generated. As individuals in 

the treatment group encounter the treatment, they gain certain skills and knowledge and 

encounter certain networks of individuals. I assume their outcomes are generated by the 

following mapping: 

 (2) Yi(1) = f1(Xi) + e1i . 
 
Individuals not in the treatment group progress through time and also achieve certain outcomes 

according to another stochastic process, as follows: 

 (3) Yi(0) = f0(Xi) + e0i . 
 
Let fk(Xi) = E(Yi(k)|Xi), so that eki is a deviation from expected values that reflects unobserved or 

unobservable characteristics for k = 1,0. 

As mentioned, the problem is that Yi(1) and Yi(0) are never observed simultaneously. 

What is observed is the following: 

 (4) Yi = (1 − Wi)Yi(0) + WiYi(1) . 
 
The expected value for the net impact of the treatment on the sample of individuals treated is as 

follows:   

                                                 
4 Note that Imbens (2004) shows that this condition can be slightly weakened to Pr(Wi = 1|Xi) < 1. 
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 (5) 

[ (1) (0) , 1] ( , 1)

[ (1) , 1] [ (0) , 0]

[ (0) , 0] [ (0) , 1]

i i iE Y Y X W E Y X W

E Y X W E Y X W

E Y X W E Y X W

− = = Δ =

= = − =

+ = − =

 

 
     = 1̂f (X) − 0̂f (X) + BIAS, 
 

where    (X), k = 1,0 are the outcome means for the comparison and treatment group samples, 

respectively, and BIAS represents the expected difference in the Y(0) outcome conditional on X 

between the comparison group (actually observed) and the treatment group (the counterfactual). 

A key assumption that allows estimation of Equation (5) is that Y(0) ⊥ W|X. This 

orthogonality assumption states that, given X, the outcome (absent the treatment), Y(0), is not 

correlated with participation. This is equivalent to the assumption that participation in the 

treatment can be explained by X up to a random error term. In other words, there is no 

deterministic function of X that perfectly predicts participation (or nonparticipation). The 

assumption is called “unconfoundedness,” “conditional independence,” or “selection on 

observables.” If the assumption holds, then the net impact is identified because BIAS goes to 0, 

or 

 (6) E[Δ Y|X, W = 1] = 1̂f (X) − 0̂f (X) . 
 
In random assignment, the X and W are uncorrelated through experimental control, so the 

conditional independence assumption holds by design. In any other design, the conditional 

independence is an empirical question. Whether or not the data come from a random assignment 

experiment, however, because the orthogonality assumption holds asymptotically, in practice, it 

may make sense to regression-adjust Equation (6).   

 

k̂f
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3.2 Regression and Quasi-experimental Estimation of Net Impacts 
 

Burtless and Greenberg (2004) address the use of random assignment experiments to 

estimate the net impacts of programs. Clearly, a well-conducted experiment is the best solution 

to the attribution problem because it builds the assumption of unconfoundedness into the design. 

However, as many evaluators have pointed out, social experimentation is difficult to implement 

with total control and is therefore fraught with potential threats to validity. Furthermore, as 

Hollenbeck, King, and Schroeder (2003) point out, an experimental design may not be feasible 

for entitlement programs or may be prohibitively costly. 

In short, for the purposes of this paper, I assume that experimental data are unavailable. 

Instead, I assume that I have one data set that contains information about individuals who have 

encountered a treatment (presumably collected as part of a performance monitoring system) and 

another data set that contains information about individuals who may comprise a comparison 

group for the treatment cases. The question that I address in this section is, “How should I 

proceed to derive defensible estimates of the net impact of the treatment?” 

Figure 1 depicts the situation. The vertical axis suggests that there are eligibility 

conditions to meet in order to gain access to the treatment, which I assume is participation in a 

workforce development program. Individuals may be more or less eligible, depending on their 

employment situation or their location or other characteristics such as age or family income. The 

X-axis measures participation likelihood.  Individuals who are highly eligible (observations that 

would be arrayed near the top of the graph) may or may not participate. On the other hand, 

individuals who are not eligible (near the bottom of the graph) may or may not have the desire to 

participate.   
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T represents the data set with treatment observations, and U represents the data set from 

which the comparison set of observations may be chosen. Note that T and U may come from the 

same source of data, or they may be entirely different data sets. In the former situation, U has 

been purged of all observations that are also in T.   

Various estimation techniques have been suggested in the literature, but they may be 

boiled down to two possibilities:  1) use all of the U set, or 2) try to find observations in U that 

closely match observations in T. Note that identification of the treatment effect requires that none 

of the covariates X in the data sets are perfectly correlated with being in T or U. That is, given 

any observation Xi , the probability of that covariate being in T or in U is between 0 and 1. I will 

call techniques that use all of U full sample techniques.5 Techniques that attempt to find 

matching observations will be called matching techniques. Each will be described in turn. 

Full sample estimators. Assuming that T and U have some resemblance to each other, 

the evaluator should calculate the simple difference in means of the outcome variables as a 

baseline estimator.6  This estimator essentially assumes away selection bias.  It may be 

represented as follows: 

 (7) ( ) ( )1
1 11 0

∈ ∈
τ = −∑ ∑ j

i T i UT U

Y Y
n n

 . 

 
This estimator can be regression-adjusted. If we assume that the same functional form holds for 

both Y(1) and Y(0), then the treatment effect can be estimated from a linear equation such as the 

following using the observations in the union of T and U: 

 (8) Yi = a + B′Xi + τWi + ei . 
 
                                                 

5 Some of these techniques trim or delete observations from U in order for support reasons, but I will still 
refer to them as full sample techniques. 

6 In comments on this paper, David Stevens points out that its emphasis is on the traditional focus of net-
impact mean value estimates. David encourages readers to not neglect analysis of outliers, an evaluation focus that 
has been around for decades. He cites Klitgaard and Hall (1973, 1975). 
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More generally, τ can be estimated by using two separate regression functions for the two 

regimes (Y(1) regressed on X in T and Y(0) regressed on X in U), using both models to predict a 

“treated” and a “nontreated” outcome for all observations in both T and U.7 The following 

average treatment effect can then be calculated: 

 (9) ( ) ( )1 0
,

1 ˆ ˆ
i i

i T U
f X f X

N ∈

⎡ ⎤τ = −∑ ⎣ ⎦  ,  

 
where N = nT + nU and k̂f (Xi) is the predicted value for k = 1, 0. 
 

Equation (8) and the more general regression in the first stage of Equation (9) require 

strong parameterization assumptions. Heckman et al. (1998) relax those assumptions in a 

nonparametric kernel method. This method amounts to weighting the observations in U so that 

the observations closest to the treatment observations receive the highest weights. This estimator 

may be written as follows (following Imbens 2004): 

(10) ( )1
ˆ

j i
j

j

k
j i

j

X X
Y K

h
f X

X X
K

h

−⎛ ⎞
∑ ⎜ ⎟

⎝ ⎠=
−⎛ ⎞

∑ ⎜ ⎟
⎝ ⎠

 for k = 1, 0 , 

 
where  j 0 T if k = 1 and j 0 U if k = 0 and K (C) is a kernel function with bandwidth h.  Thus, 
 

 (11) ( ) ( )1 0
1 ˆ ˆ⎡ ⎤τ = −∑ ⎣ ⎦i i

i
f X f X

N
 . 

 
Several of the full sample estimators rely on the observations’ propensity scores, which 

are the estimated probabilities of being in the treatment group. Rosenbaum and Rubin (1983) 

                                                 
7 Imbens (2004) points out this generalization. The intuition is similar to that of the basic Roy (1951) model 

with two regimes and individuals pursuing the regime for which they have a comparative advantage. However, 
Imbens (2004) notes, “These simple regression estimators may be very sensitive to differences in the covariate 
distributions for treated and control units” (p.12). I produced these estimates in the empirical work, but the 
estimators and standard errors did not seem to make sense and were quite different from all other estimates. The 
regression parameters were quite unstable when estimated with full comparison and treatment samples. 
Consequently, I have not presented these results. 
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showed that the conditional independence assumption, Y(0) ⊥ W|X , implies that Y(0) ⊥ W|p(X), 

where p(X) is the conditional probability of receiving the treatment (= Prob(W = 1|X)). 

This result implies that the regression approaches in Equations (8) through (10) can be 

reestimated, at reduced dimensionality, with the Xi replaced by p(Xi). That is, estimates can be 

generated as follows: 

 
 (8′) Yi = a + B′p(Xi) + τWi + ei ; 
 

 (9′) ( )( ) ( )( )( )1 0
,

1 ˆ ˆ
∈

⎡ ⎤τ = −∑ ⎣ ⎦i i
i T U

f p X f p X
N

 ; 

 

 (10′) ( )

( ) ( )

( ) ( )
ˆ

j i
j

j

k i
j i

j

p X p X
Y K

h
f X

p X p X
K

h

⎛ ⎞−
⎜ ⎟∑ ⎜ ⎟
⎝ ⎠=
⎛ ⎞−
⎜ ⎟∑ ⎜ ⎟
⎝ ⎠

 for k = 1, 0 . 

 
The final type of full sample estimator is computed by a technique known as blocking on 

the propensity score (see Dehejia and Wahba 1998). The intuition here is to partition the union of 

the treatment and the full sample into “blocks” or strata by propensity score, so that there is no 

statistical difference between the covariates, X, in each block. This essentially achieves the 

conditional independence assumption locally in each block. Then the average treatment effect is 

a weighted average of the treatment effects in each block.   

Assume there are K blocks. Let the kth block be defined as all treatment or full 

comparison sample cases with values of X , so that p(X) 0 [p1k, p2k]. Let NTk be the number of 

treatment cases in the kth block and NUk be the number of comparison cases from the full 

sample. The treatment effect with each block k is: 
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(12) ( ) ( )
1 1

1 11 0
k kNT NU

k i j
i jk ki T j U

Y Y
NT NU= =

∈ ∈

τ = −∑ ∑  , 

 
and the overall estimated average treatment effect is: 
 

(13) ∑
=

=
K

k
k

k

N
NT

1
ττ  . 

 
Matching estimators. As above, U denotes the set of observations from which I will 

choose the subset C (for matched comparison group) that will be used in the net impact analyses. 

The idea is to have C be composed of the observations where individuals are most “like” the 

individuals who make up T. Matching adds a whole new layer of complexity to the net impact 

estimation problem. The estimator becomes a function of how the match is done in addition to 

the characteristics of the sample. Since the matching process is a structured algorithm specified 

by the analyst, the statistical error associated with the net impact estimator now includes a 

component that may be identified as matching error in addition to the sampling error and model 

specification error.8 

There is a substantial and growing literature on how to sample individuals to construct 

the comparison sample.9 The first candidate approach is cell-matching algorithms. Variables that 

are common to both data sets would be used to partition (cross-tabulate) the data into cells. Then 

for each treatment observation the cell would be randomly sampled (with or without 

replacement) to select a comparison group observation. A substantial drawback to cell-matching 

is that the cross-tabulation of data, if there are many common variables, may result in small or 

empty cells.10   

                                                 
8 This forces the analyst to use bootstrapping techniques to calculate standard errors. 
9 See Heckman, Lalonde, and Smith (1999) and references cited there. 
10 Center for the Study of Human Resources (1994) used a variation of this approach. 
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More sophisticated comparison group construction can be accomplished with nearest-

neighbor algorithms. These algorithms minimize a distance metric between observations in T 

and U. If we let X represent the vector of variables that are common to both T and U, and let Xj, 

Xk be the values of X taken on by the jth observation in T and the kth observation in U, then C 

will be composed of the k observations in U that minimize the distance metric *(Xj − Xk)* for all 

j. This approach is very mechanistic, but it does allow the use of all of the X variables. 

The literature usually suggests that the distance metric be a weighted least squares 

distance, (Xj − Xk)NΣB1 (Xj − Xk), where ΣB1 is the inverse of the covariance matrix of X in the 

comparison sample. This is called the Mahalanobis metric. If we assume that the Xjs are 

uncorrelated, then this metric simply becomes least-squared error. Imbens (2004) has a 

discussion of the effect of using different metrics, although in practice the Mahalanobis metric is 

used most often.11 

In his work on training-program evaluation, Ashenfelter (1978) demonstrates that 

participants’ preprogram earnings usually decrease just prior to enrollment in a program. This 

implies that a potential problem with the nearest-neighbor approach is that individuals whose 

earnings have dipped might be matched with individuals whose earnings have not. Thus, even 

though their earnings levels would be close, these individuals would not be good comparison-

group matches.   

An alternative nearest-neighbor type of algorithm involves use of propensity scores (see 

Dehejia and Wahba 1995). Essentially, observations in T and U are pooled, and the probability of 

being in T is estimated using logistic regression. The predicted probability is called a propensity 

                                                 
11 Note that Zhao (2004) uses a metric that weights distances by the coefficients in the propensity score 

logit.  This is similar to the technique that Schroeder implements in Hollenbeck, King, and Schroeder (2003). 
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score.  Treatment observations are matched to the observations in the comparison sample with 

the closest propensity scores. 

An important consideration in implementing the matching approach is whether to sample 

from U with or without replacement. Sampling with replacement reduces the distance between 

the treatment and comparison group cases, but it may result in the use of multiple repetitions of 

observations, which may artificially dampen the standard error of the net impact estimator. 

Another consideration is the number of cases to use from U in constructing C. Commonly, 

matching is done on a one-to-one basis, where the nearest neighbor is chosen. However, it is also 

possible to take multiple nearest neighbors. In the empirical work below, I experiment with one-

to-five and one-to-ten matching. 

The whole reason for matching is to find similar observations in the comparison group to 

those in the treatment group when the “overlap” or statistical support is weak. Consequently, the 

nearest-neighbor approach may be adjusted to require that the distance between the observations 

that are paired be less than some criterion distance. This is called caliper or radii matching. 

Once the matched sample C has been constructed, the net impact estimation can be done 

using the estimators analogous to those in Equations (8) through (11). The outcome variable can 

be in terms of levels or difference-in-differences if the underlying data are longitudinal.   

 
4. EMPIRICAL ESTIMATION OF THE NET IMPACT OF WIA SERVICES 

 
4.1 Data 

 
The treatment in this section of the paper is receipt of WIA intensive or training services 

by adults12 who exited from WIA in Program Year 2000 (July 2000–June 2001) in the state of 

Washington. The counterfactual that I am using to construct a comparison group is that if there 

                                                 
12 Note that I am only looking at individuals served in the adult program, not dislocated workers or youth. 
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were no WIA services, then individuals would receive services through the State Employment 

Service (i.e., Wagner-Peyser services).13 Thus the pool of observations from which we construct 

the comparison groups is composed of individuals whose last reported service date in the 

Employment Service (ES) data was in the same program year. The administrative data from the 

WIA program and from the Employment Service have been linked to Unemployment Insurance 

wage records dating from 1990:Q1 through 2002:Q2.14   

The empirical analyses are intended to be illustrative of the stability of the net impact 

estimates to various full sample or matched sample estimation techniques. So I have reduced the 

underlying data sets in two ways. First, I have reserved a randomly chosen 25 percent of the 

treatment data set for specification testing. Second, I have chosen half of the ES sample for use 

in the estimation in order to conserve on computational time.  Table 1 presents descriptive data 

for the three samples by sex.    

The table shows that the observations in the data from the Employment Service are 

substantially different from the treatment observations in both preprogram characteristics and 

outcomes. Between 2 and 3 percent of the comparison sample is disabled, compared to over 20 

percent of the males in the treatment sample and about 15 percent of the females. Furthermore, a 

much higher percentage of comparison sample observations have educational attainment beyond 

a high school diploma. The employment and earnings histories of the individuals from the 

comparison pool are also quite different, although at the time of registration virtually none of the 

ES observations were employed, whereas one-sixth of the males and one-fourth of the females 
                                                 

13 Carolyn Heinrich has pointed out that an implicit assumption in this empirical work is that the 
Employment Service (ES) is the “next best alternative” for WIA clients. If, in fact, WIA participants could have 
fared better in the labor market with no government assistance or with the assistance of some other institution than 
with the ES, then the net impact estimates are biased upward. 

14Note that in much of the analysis described in this paper, I refer to preregistration employment and 
earnings data. To construct these variables, I used wage record data that started in 1997:Q3. Furthermore, note that 
Washington has an interstate agreement with contiguous states and Alaska to share wage record information for 
individuals who reside in Washington but work in one of these states. 
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that received training or intensive services from WIA were employed at the time of registration. 

Prior to program entry, the comparison sample’s employment rate was almost 90 percent, with 

an average quarterly earnings of almost $6,400 for males and more than $5,000 for females. The 

WIA exiters’ preprogram employment rate was about 75 percent, and average quarterly earnings 

were about $2,900 for males and $2,000 for females. 

Table 1 displays descriptive statistics concerning outcomes as well as preprogram 

characteristics. Earnings, as measured by average quarterly earnings in the fourth quarter after 

leaving the program and as measured by average quarterly earnings for all quarters after leaving 

the program are higher for the comparison group than for the treatment group. However, the 

differences are not nearly as large as the differences in preprogram earnings. Furthermore, the 

differences in the employment rates after the program are virtually nil. Thus one expects that the 

difference-in-differences for earnings and employment would show that the treatment group did 

much better than the comparison group, which it does.  

Figures 2 through 5 display the data for key outcome variables. The first two figures 

show quarterly earnings for males and females, respectively. The time series presented in these 

figures portray average quarterly earnings for the comparison and treatment samples prior to 

program entry and after program exit.  As expected, the earnings for the comparison sample are 

much higher than those of the treatment sample prior to program entry. This reflects a more 

favorable labor market history and human capital characteristics. Note that the figures show the 

earnings dip that occurs prior to registration. Figures 4 and 5 show employment rates for the 

groups, where employment is defined as quarterly earnings exceeding $100. Again, the left side 

of the graphs shows the trend prior to program registration, and the right side pertains to the 
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quarters after program exit. As with the other figures, the comparison sample exhibits far higher 

employment rates than does the treatment sample. 

 
4.2  Full Sample Estimators of Net Impact 
 

Tables 2 and 3 provide estimates of the net impact of the treatment (which is having 

received WIA Intensive or Training Services) using several of the full sample estimation 

techniques for males and females, respectively. The first row of the table shows the simple 

differences in means between the treatment sample and the comparison sample. Columns (1) and 

(3) show the differences in the levels of the outcome variables, and we know from Table 1 that 

these will be negative and quite large because the comparison group had higher education levels 

and preprogram earnings and employment histories than the treatment sample. The entries in 

columns (2) and (4) show the mean of the difference-in-differences, and, as in Table 1, the 

employment and earnings advantages for the comparison group outcomes were not nearly as 

large as the preprogram differences, so the difference-in-differences are quite large and 

positive.15 

The estimates in the first row are simply for baseline descriptive purposes because of the 

significant differences in the samples. The second row of the table regression-adjusts the results 

from the first row. For the most part, this reduces the magnitudes of the estimates significantly. 

The covariates used in the regression were measured at the time of registration with WIA or the 

ES. They are as follows:  age, race/ethnicity, educational attainment, veteran status, disability 

status, limited English proficiency, employment status at registration, industry of current or most 

recent employment, labor market area, and employment and earnings history. Hollenbeck and 

Huang (2003) summarize the employment and earnings histories of individuals using the 

                                                 
15 All of the earnings impacts in this paper are denominated in constant 2000 dollars. 
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following five variables:  1) percentage of quarters employed since entering employment, 2) 

conditional average earnings (preprogram), 3) trend in earnings levels (constant dollars), 4) 

variance in earnings levels, and 5) turnover. In this paper, I use these variables plus a measure of 

the preprogram dip in earnings that may have occurred in the preprogram earnings history.16 

The third row of the table is another regression-adjustment technique in which I have 

substituted the propensity scores for the covariates in the model used in row (2). So in this row 

the estimators are regression-adjusted using a model with only two independent variables—1) 

propensity score and 2) treatment. As would be expected, the standard errors of the estimates 

increase significantly relative to the full regression model, although the estimates are not all that 

different qualitatively. 

The next three rows show estimates derived using a kernel density nonparametric 

regression approach. Each row uses a different bandwidth for the basic Epanechnikov kernel. 

Mueser, Troske, and Gorislavsky (2003) and Imbens (2004) suggest that the bandwidth does not 

make much difference in the estimation, but the results here seem to indicate that bandwidth 

variation does make a considerable difference. With the exception of the postprogram 

employment rate, increasing the bandwidth significantly increases the magnitude of the 

estimates. 

The last row of the table shows estimates that were calculated using the propensity score 

blocking approach. The algorithm that we employed in this approach uses the full comparison 

sample in principle, although we do trim some observations to guarantee full overlap. In 

particular, observations are eliminated from U if their p-score < min (p-score) for T, and 

observations are eliminated from T if their p-score > max (p-score) for U. We then “blocked” the 

                                                 
16 The earnings dip variable is defined as max($0, [average quarterly earnings in preregistration quarters −3 

to −8 minus average quarterly earnings in preregistration quarters −1 to −2]). 
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file into p-score deciles and performed an F-test to determine whether the distribution of key 

covariates (age, education, employment status at registration, race, and preemployment 

variables) were independent. If the F-test failed for any group, we split the cells in half and 

tested the new cells. The average treatment effects in the seventh row of the table are weighted 

averages of the cell-by-cell treatment effects, in which the weights are the proportion of 

treatment observations in the cell. The estimates, which are in the range of 15 to 20 percent for 

earnings and 10 to 15 percent for employment, are similar to the regression-adjusted estimates. 

 
4.3 Matched Sample Estimators 

 
Several different matched sample estimators were calculated. All of the approaches 

estimated the treatment effect by computing the average difference in outcomes for the treatment 

sample and the matched sample; they also estimated the treatment effect by adjusting those 

estimates by regression. Standard errors were estimated for the mean differences by 

bootstrapping with 100 replications. The standard errors for the regression-adjusted estimators 

come directly from the regression.   

Match quality indicators and specification testing. Most of the matched sample 

estimators presented in this paper use a propensity score approach. This approach relies on 

predicted probabilities of being in the treatment. To compute these probabilities for each 

observation, I estimated a logit model with a binary dependent variable indicating whether the 

observation came from the treatment sample or not. I used the parameters estimated from this 

model to calculate a propensity score (p-score) for all observations in the treatment sample (T) 

and in the comparison sample (U). These p-scores remained fixed on an observation-by-

observation basis throughout the analyses to eliminate a source of variation in the estimators that 

are being compared.   
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When using a quasiexperimental, matched sample estimation technique, it is important to 

try to demonstrate the “quality” of the match. Several indicators are used in this paper. First of 

all, for p-score matching, I present the mean difference in the p-scores. Since the whole purpose 

of the matched sample estimation is to find observations that are as comparable as possible to the 

treatment cases, the smaller the mean difference, the higher the quality of the match, other things 

being equal. Next, I present the percentage of comparison sample observations that are unique 

(used only once in the match). For the matching without replacement estimators, this is 100.0 

percent by construction. For the estimators derived by matching with replacement, higher 

percentages indicate that there were fewer cases used and that they were used more than once. 

The matching with replacement estimators yield lower mean differences in p-scores (higher 

quality), but using the same observation more than once will artificially reduce the variance and 

bias the standard error estimates. So, in comparing two matches done with replacement, the one 

with the higher percentage of unique cases is likely to be a higher quality match. 

By reserving a quarter of the treatment sample, I am able to conduct specification testing 

on the matched comparison samples. Specifically, I conduct two F-tests to test the joint 

dependence between the matched comparison sample and the “reserved” subsample of the 

treatment cases. One of the F-tests uses all of the covariates available, and the other tests for 

joint dependence of only the six preregistration employment and earnings variables.   

A final test of the “overlap” between the treatment sample and the comparison sample 

(recall that we assume that 0 < prob [participation | X] < 1) is a test that I refer to as the 20th 

percentile indicator. This is the percentile of the p-score distribution for the comparison sample 

(U) at the first quintile point in the p-score distribution in the treatment sample. If the 

participation in the treatment model is “good,” then most of the p-scores for treatment cases will 
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be near 1.0; and most of the p-scores for the comparison cases will be near 0. The mean for the 

former is expected to be much larger than the mean for the latter. Battelle Memorial Institute 

(n.d.) undertook an evaluation study using matched sample estimation and asserted that a 

reasonable assurance of overlap is that the p-score that identifies the lowest quintile of p-scores 

for the treatment sample should approximate the 80th percentile of the p-scores for the matched 

comparison set. The Battelle study does not really justify this assertion, but it turns out that the 

propensity estimates are very close to 80 percent—80.9 percent for males and 83.5 percent for 

females. 

Characteristics matching. The first set of estimators that I present construct the matched 

comparison set by minimizing distances between characteristics using a Mahalanobis distance 

metric.  The matching was done with replacement on a one-to-one basis. Tables 4 and 5 provide 

these estimates and the match quality indicators for males and females, respectively. For 

reference purposes, the first row of each table repeats the regression-adjusted difference in means 

for the full comparison sample. The second and third rows of the tables give the difference in 

means and the regression-adjusted difference in means for the matched comparison group and 

the treatment sample. Most of the estimates for females are statistically significant, and the 

regression-adjusted estimates are quite large in magnitude. For males, the earnings outcomes are 

not statistically significant, but the employment rate estimates are significant.   

As far as match quality goes, the preponderance of matched comparison set records are 

unique (used only once), although the percentage of observations used more than once for 

females is quite a bit higher than for males.  The specification tests show that these matched 

samples do not replicate well the distribution of covariates in the treatment subsample that we 

reserved for such testing.   
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In short, this form of matched file estimation is probably not the preferred specification. 

The net impact estimates seemed to bounce around quite a bit, and the specification test failed. 

Note that other types of characteristics matching may provide much more stable estimates.   

P-score matching. In these techniques, observations in the treatment sample are matched 

to their nearest neighbors using differences in p-score values. Tables 6 and 7 show the impact of 

using this technique with and without replacement when the minimization is done for males and 

females, respectively. Note that the mean of the (absolute value of) the p-score differences is 

almost three times larger for the without-replacement estimator than for the one done with 

replacement. The estimated treatment effects for both procedures are reasonably similar, 

although the magnitudes of the estimates “with replacement” are usually larger. Seven of the 

eight estimates for females are statistically significant for the p-score matching with replacement.   

In terms of match quality, as noted, the p-scores are much “closer” for matching with 

replacement. For both males and females, the percent of comparison observations that were used 

multiple times is not large, and the specification test shows that the distributions of the 

preregistration employment and earnings variables are independent for females. The 

specification tests are not consistent with statistical independence for males. 

In Tables 8 and 9, I display the sensitivity of the impact estimators to the number of 

comparison sample observations chosen to match each treatment case. In particular, I show one-

to-one, one-to-five, and one-to-ten nearest-neighbor estimates. Choosing more “nearest 

neighbors” seems to decrease the treatment effects on earnings for males, as well as their 

standard errors. The employment rate impacts are larger; however, again they have smaller 

standard errors. The picture is almost the exact opposite for females:  the earnings estimates 

increase slightly with more nearest neighbors chosen, and the employment impacts decrease 
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slightly. Of course, the standard errors decrease for females when more nearest neighbors are 

chosen, as they do for males. 

The match quality statistics conform to expectations. Choosing more observations to 

match causes the mean of the p-score differences to increase. The mean differences for the 

estimators using one-to-ten are three times as great as the mean differences for the one-to-one 

estimators. Furthermore, considerably fewer comparison file observations are used uniquely in 

the techniques that are one-to-many, and the maximum repetitions are quite large (especially for 

females). The specification tests for females indicate that the matched comparison sets do a good 

job of replicating the treatment subsample distribution of the preregistration employment and 

earnings variables for females, but the specification tests suggest systematic differences in the 

distribution for males. 

Caliper matching. The purpose of the matching techniques is to find the observations in 

the comparison sample that most closely match the treatment cases. Empirically, it may turn out 

that for some observations in the treatment sample, there may not be close matches. Caliper (or 

radius) matching deletes from consideration matches where the distance between the treatment 

observation and its nearest neighbor exceeds a particular distance. This distance is the caliper or 

radius, and it is arbitrarily set. I demonstrate the effect of the caliper on the matching estimates in 

Tables 10 through 13. In the first two tables, I use calipers of 0.005 and 0.01 on the nearest-

neighbor matching that was done with replacement. For males, these particular calipers do not 

change the estimates much. The treatment effects and standard errors in the second two panels of 

Table 10 are very similar to the estimates in the top panel, which were computed without a 

caliper. The match quality statistics are also quite comparable, although the mean p-score 

difference falls by almost 80 percent with the most binding caliper of 0.005, even though only 10 
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matches were deleted with this caliper. The outlying p-score differences in the top panel, the 

maximum of which was 0.0793, skew the mean difference considerably. 

These particular calipers are more binding for females, and indeed, the estimates in the 

bottom two panels of Table 11 exhibit larger differences from the top panel than the 

corresponding panels in Table 10 for males. All of the estimates are attenuated toward 0, and the 

earnings estimates become statistically insignificant. As was the case for males in the previous 

table, the average p-score difference dropped dramatically; the mean in the bottom panel with the 

most binding caliper is 0.0003, compared to 0.0025 in the top panel. In this case, 37 matches 

(almost 10 percent) were deleted. 

In Tables 12 and 13, I display the effects of calipers on results that were estimated by 

matching without replacement. In general, matches without replacement are not as close as 

matches with replacement, so the effects of using calipers are more dramatic. The results for 

males, displayed in Table 12, actually show fairly stable results across the three panels. The 

estimates decline slightly with the caliper of 0.01, but then they increase generally with the more 

binding caliper of 0.005. The average difference in p-scores tumbles by 90 percent, from 0.0031 

to 0.0003, although the number of matches that are deleted is not great—9 and 15 for the less 

binding and more binding calipers, respectively. The effects of the calipers on estimates for 

females are similarly not all that large in magnitude, but in this case the calipers delete almost 15 

percent of the matches—59 and 66 for the 0.01 and 0.005 calipers, respectively. 

In short, the effects of using calipers on the p-score nearest-neighbor matches in this 

sample are not very large in magnitude, whether the match is with or without replacement. The 

use of calipers eliminates some matches that are not very close, but the treatment effects for 

these matches apparently do not vary greatly from the overall average treatment effects. 
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4.4 Summary of Net Impact Estimates 

 
Tables 2 through 13 provide several dozen estimates of net impact estimates that exhibit 

significant variation. The question remains of whether there is enough stability or overlap in the 

estimates to draw a reasonable inference about the net impacts of WIA intensive or training 

services on adult clients in Washington who exited WIA in its first full year of implementation, 

i.e., PY 2000. Table 14 displays results from the previous tables that address this question. The 

columns in this table look at outcomes that have been calculated by using difference-in-

differences. Both sexes are displayed in the table. 

As a point of reference, the simple differences in means from the full sample are provided 

in the first row. In this particular sample, these differences are quite large and positive. They do 

not make reasonable estimates of the treatment effect, however, because the treatment and 

control samples were quite different prior to the program, as demonstrated in Table 1. So, the 

question becomes how best to estimate the treatment effect. The estimates in rows (2) through 

(5) are some of the full sample estimates, and those in rows (6) through (11) are some of the 

matched sample estimates. Note that all of these estimates come from a single set of data, so they 

are not independent pieces of information. The bottom row of the table provides means of the 

outcome variables for the preprogram period, which I display so that the treatment effects can be 

considered in percentage terms.   

All of the earnings impacts presented in the table are positive for males, although only 

one of them is statistically significant at the 0.05 level. (Many of them are significant at the 0.10 

level, however). The magnitudes of the estimates range from $166 to $553 in quarterly earnings.  

The mean of average quarterly earnings prior to the program is approximately $2,900, so this 

range corresponds to percentage increases of approximately 6 to 18 percent. The entries in the 
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second column of the table display estimates of the net impact on employment. In this case, 

many of the estimates are significant. They range from 5.5 to 12.3 percentage points. These 

impacts, on a percentage basis, range from about 7 to 16 percent. Consequently, these estimates 

suggest that WIA intensive and training services in Washington State in PY2000 had an impact 

on the earnings of adult males of approximately 10 to 12 percent; this impact appears mainly to 

result from these services’ impact on employment. 

All of the earnings impacts for females are also positive, and they are of larger magnitude 

than the estimates for males. Many of them are statistically significant at the 0.05 level. The 

magnitudes range from $391 to $894; the amounts correspond to effects that are between 20 to 

45 percent. All of the employment impacts for females are significant, ranging from 5.0 to 17.2 

percentage points. On a percentage basis, these employment impacts range from about 6 to 24 

percent. Because the employment rate impacts are smaller than the earnings impacts, it must be 

the case that the program had positive net impacts on wage rates or hours worked. In short, these 

estimates suggest that WIA intensive and training services in Washington State in PY2000 had 

an impact on the earnings of adult females of approximately 20 to 25 percent—a difference that 

results from these services’ impact on employment and on either wages or hours or both. 

 
5. POLICY AND PROGRAMMATIC IMPLICATIONS 
 

The empirical section of this study presented literally hundreds of estimates using 

different techniques to try to tease out the net impact of WIA. In this last section of the paper, I 

am going to try to take the perspective of a policymaker or program administrator who is 

confronted with all of these estimates, many of which are denoted as being significant. The 

question is, “What is such a policymaker or administrator to do with all of these results?” I am 

going to assume that this individual is interested in improving her program, and that she wants to 
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use results from empirical analyses of data as warranted. However, this individual has limited 

expertise in statistical analyses of data and wants to rely on studies done by experts. I am also 

going to assume that the studies being considered have gone through a peer review process and 

have achieved a level of professional acceptance. If this last assumption does not hold, the 

policymaker should be extremely cautious about relying on any findings. 

I believe that there are six key principles that such an individual needs to keep in mind 

when considering the findings from studies.   

 
Principle 1: Since all study results have some degree of uncertainty no matter what 

methodology is used, always consider the costs associated with Type I and Type II errors before 

instigating a programmatic change based on study findings.   

The null hypothesis in a program evaluation would be that the treatment has no effect. A 

Type I error would mean rejecting a true null hypothesis. (If a Type I error has been made, then a 

false positive has been identified; i.e., the study found a significant treatment effect that was, in 

fact, not true.) A Type II error would mean accepting a null as true when in fact it is false. (This 

would be a false negative; i.e., the treatment-effect findings are not significant statistically, when 

in fact the null was false.) It is usually the case that Type I errors are much more expensive than 

Type II errors because they involve changing the status quo. Thus the administrator should be 

especially conservative or cautious with a study, such as the present one, that finds significant 

impacts, in case there turn out to be Type I errors. 

 
Principle 2: Insist on multiple answers. Do not make high-stakes decisions based on a single 

study.   
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Policymakers or program administrators would only be considering major changes if they 

had been given a credible study that had convincing evidence. However, even in this case, the 

decision maker should actively seek out other sources of information, including qualitative data 

from staff persons and clients, before taking any sort of major programmatic action.   

 
Principle 3: For quasi-experiments, insist on documentation of match quality. The author of 

the study needs to present evidence of sufficient overlap and, if possible, specification testing 

that confirms conditional independence. 

Other things being equal, the validity of the estimates likely will increase with sample 

size, amount of overlap in covariates between the treatment and comparison samples, and 

similarity of the treatment and comparison samples. A consensus has formed around the notion 

that when employment-related outcomes are examined it is critical to require matches within—or 

at least control for—local labor market areas.   

 
Principle 4: Apply the “smell” test. 

Do the estimates seem reasonable? In all likelihood, the net impact of a program or 

change in a program on a particular outcome will be directly proportional to the size of the 

treatment. If only small, marginal changes are being made, or if the resources invested per 

recipient are modest, then the net impacts are likely to be modest also. This study presented 

estimated net impacts on earnings that were around 10 percent for males, and perhaps double that 

for females. Net impacts this large border on unreasonableness and should be considered with a 

healthy skepticism.   

 
Principle 5: Insist on getting estimates of statistical uncertainty. 
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Policymakers and program administrators want to know the answer. But there will 

always be sources of error in the analyses of social programs because of the stochastic nature of 

client-program interaction, changes in the overall labor market, and pure chance. Furthermore, 

data generally come from samples of populations, so there is sampling error as well. When 

considering the size of an impact, it is always important to assess magnitudes within the context 

of the estimated statistical uncertainty. 

 
Principle 6: Stability of estimates is probably good, but hard to assess.   

First of all, the notion of stability has to be judged relative to the perturbation that has 

been introduced in order to compute different estimates. For instance, some of the estimates in 

this paper use entirely different estimation techniques and samples. (An example would be 

regression-adjusted full sample differences in means versus regression-adjusted matched sample 

differences in means when matching is done with replacement and selection of the 10 nearest 

neighbors for each treatment observation.) In other cases we made minor changes, such as trying 

a caliper of 0.005 instead of 0.01. Other things being equal, it is probably the case that stable 

estimates are more likely to approximate truth when the stability occurs in the presence of 

multiple data sets or substantially different estimation techniques. One should have less 

confidence in the results if the only results that are presented are stable but only minor estimation 

changes have been attempted, or if the results are not very stable when there are significant 

differences in the estimation techniques. One should be least comfortable with results that are 

highly variant to what appear to be minor changes in the estimation technique or samples. 
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6. SUMMARY 
 

With government resources scarce, more and more emphasis has been placed on 

accountability and demonstrated return on investment. This trend, along with the dramatic 

decreases in the cost of information processing, has led to striking advances in the availability of 

program administrative data and to a demand for net impact evaluation. This paper demonstrates 

that administrative data can be used to support the hard, quantitative data demands of net impact 

estimation.   

The paper has described a number of full sample and matched sample techniques for 

estimating the net impacts of workforce development programs. Furthermore, it provides 

empirical estimates of the impact of WIA services for adults in the state of Washington using 

several of these approaches. Virtually all of the techniques yielded estimates of positive impacts 

for both men and women. Men had earnings gains on the order of 10 percent that appear to have 

resulted mainly from increased employment rates of approximately the same amount. Women 

had larger earnings gains—perhaps 20 to 25 percent—that emanated from increased employment 

and wages or hours. These impacts are large and should be accepted with some caution. The 

final substantive section of the paper provides six principles that policymakers should apply 

when considering evaluation results in order to exercise an appropriate amount of healthy 

skepticism and caution. 
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Table 1  Summary Statistics 
Male  Female 

Treatment Sample Treatment Sample 

Characteristic 
Spec. testing 
subsample

Analysis 
subsample 

Comparison
(ES)  

sample  
Spec. testing 
subsample 

Analysis 
subsample 

Comparison
(ES)  

sample 
Age (years) 34.2 35.5 37.0** 35.9 36.1 38.3** 
Disability 21.2 20.2 2.7** 11.9 17.4 2.2** 
White 72.7 73.6 75.1 72.2 74.4 78.1 
Veteran 24.2 20.2 12.8** 1.6 2.1 1.6 
Limited English proficiency 

(LEP) 
6.1 8.2 5.9 2.4 7.2 4.8 

Education Completed 
< high school 
High school 
> high school 

 
17.1 
56.6 
26.3 

 
17.8 
49.0 
33.9 

 
15.8 
41.1** 
43.1** 

 
9.5 

50.8 
39.7 

 
13.1 
50.0 
37.1 

 
12.3 
37.2** 
50.5** 

Employed at reg. 16.2 18.2 1.1** 27.8 24.8 1.1** 
Preprogram Employment 

Employment rate (%) 
Avg. earnings 
Earnings trend 
Variance earnings 
Percent of employed qtrs. w/ 

mult. employers 
Earnings dip, mean 

 
73.2 

2609.1 
−243.5 

4.73 
22.7 

 
1670.2 

 
73.1 

2908.7 
−173.3 

5.70 
22.2 

 
1388.3 

 
87.7** 

6398.1** 
197.4** 
12.90**
17.1** 

 
671.5** 

  
74.7 

1860.2 
−67.3 

1.79 
23.1 

 
608.6** 

 
74.4 

2008.9 
−100.6 

2.95 
21.1 

 
973.1 

 
88.5** 

5059.5** 
177.9** 

7.23 
16.7** 

 
523.6 

Outcomes 
Earnings in Quarter 4 
Avg. earnings 
Employment rate (%) 
Difference in earnings 
Difference in avg. earnings 
Difference in empl. rate 
Ever employed (%) 

 
2746.5 
4122.7 

62.6 
−653.3 

435.2 
−5.1 
58.6 

 
2844.0 
4176.5 

65.1 
−1143.7 

230.7 
−0.6 
61.6 

 
4235.1** 
6299.3** 

66.4** 
−2964.3** 
−920.7** 
−15.1** 

63.2 

  
2474.6 
3713.9 

64.3 
175.8 

1247.3 
−0.2 
57.1 

 
2460.1 
3593.0 

66.8 
−26.7 
946.2 

2.4 
61.6 

 
3602.0** 
5099.3** 

67.3 
−2083.4** 
−596.4** 
−15.5** 

65.4 
Sample size 99 292 39,241 126 391 28,733 
NOTE: Treatment samples are observations from PY2000 WIASRD file that reported receiving intensive or training 
services. These observations were randomly divided into an analysis subsample (75 percent) and a specification 
testing subsample (25 percent). Comparison samples are a random 50 percent sample from ES records.  
** represents means that are statistically significantly different from the analysis subsample at the p < 0.05 level. 
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Table 2  Net Impact Estimates Using Full Sample Estimation Techniques, Males 
Outcome 

Estimator 
Postprogram 

earnings (4th qtr.)
Difference-in-

Difference 
Postprogram 

employment rate 
Difference-in-

Difference 
(1) Difference in means 

(baseline) 
−1391.2*** 

(194.0) 
1818.6*** 
(253.1) 

−1.3 
(2.4) 

14.5*** 
(3.1) 

     
Regression adjustment     
(2) Regression adjustment 197.9 

(258.8) 
314.7 

(258.0) 
4.3 

(2.4) 
5.5** 

(2.6) 
(3) Regression adjustment  
 (p-score as sole regressor) 

302.8 
(288.0) 

166.5 
(386.9) 

7.1*** 
(2.5) 

8.4*** 
(2.8) 

     
Kernel density estimation     
(4) Bandwidth = 0.01 −31.3 

(205.3) 
552.6** 

(269.9) 
6.1** 

(2.5) 
8.7*** 

(3.1) 
(5) Bandwidth = 0.05 −701.4*** 

(199.3) 
1131.0*** 
(264.6) 

2.4 
(2.4) 

9.8*** 
(3.0) 

(6) Bandwidth = 0.10 −883.6*** 
(204.3) 

1342.7*** 
(261.4) 

1.9 
(2.4) 

11.2*** 
(3.0) 

     
(7)  Propensity score blocking 198.2 

(202.0) 
399.8 

(262.6) 
7.6*** 

(2.5) 
8.0** 

(3.2) 
NOTE: Table entries are estimated average treatment effects. Except as noted, regression adjustment includes the 
following independent variables: age, age2, disability, race/ethnicity, veteran status, LEP status, educational 
attainment, employment status at registration, exit quarter, preprogram employment and earnings, summary 
variables, industry of most recent employment, and labor market area. Standard errors for kernel density estimates 
calculated by bootstrapping (100 replications). 
*** denotes significant at the 0.01 level; ** denotes significant at the 0.05 level. 
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Table 3  Net Impact Estimates Using Full Sample Estimation Techniques, Females 
Outcome 

Estimator 
Postprogram 

earnings (4th qtr.)
Difference-in- 

Difference 
Postprogram 

employment rate 
Difference-in-

Difference 
(1) Difference in means 

(baseline) 
−1141.9*** 

(163.7) 
2056.7*** 
(206.4) 

−0.5 
(2.1) 

17.9*** 
(2.5) 

     
Regression adjustment     
(2) Regression adjustment 204.5 

(192.7) 
419.8 

(222.2) 
2.1 

(2.1) 
5.0** 

(2.4) 
(3) Regression adjustment  
 (p-score as sole regressor) 

399.2 
(223.2) 

486.4 
(282.5) 

6.2*** 
(2.3) 

9.4*** 
(2.6) 

     
Kernel density estimation     
(4) Bandwidth = 0.01 253.8 

(166.5) 
736.2*** 

(205.1) 
7.0*** 

(2.3) 
11.8*** 
(2.8) 

(5) Bandwidth = 0.05 −144.3 
(158.8) 

1249.0*** 
(188.9) 

6.5*** 
(2.1) 

15.7*** 
(2.8) 

(6) Bandwidth = 0.10 −395.1 
(158.9) 

1413.4*** 
(182.8) 

5.2** 
(2.0) 

16.5*** 
(2.7) 

     
(7) Propensity score blocking 389.2** 

(186.3) 
604.2*** 

(276.3) 
8.0*** 

(2.7) 
11.0*** 
(3.0) 

NOTE: Table entries are estimated average treatment effects. Except as noted, regression adjustment includes the 
following independent variables: age, age2, disability, race/ethnicity, veteran status, LEP status, educational 
attainment, employment status at registration, exit quarter, preprogram employment and earnings, summary 
variables, industry of most recent employment, and labor market area. Standard errors for kernel density estimates 
calculated by bootstrapping (100 replications). 
*** denotes significant at the 0.01 level; ** denotes significant at the 0.05 level. 
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Table 4  Net Impact Estimates and Match Quality Indicators Using Characteristics 
Matching, Males 

Outcome 

Estimator 
Postprogram 

earnings (4th qtr.)
Difference-in- 

Differences 
Postprogram 

employment rate 
Difference-in-

Differences 
(1) Full sample, difference in 

means, regression-adjusted 
197.9 

(258.8) 
314.7 

(258.0) 
4.3 

(2.4) 
5.5** 

(2.6) 
     
Mahalanobis distance matching (with replacement)    
(2) Difference in means −5.1 

(256.8) 
286.1 

(344.2) 
3.8 

(3.6) 
12.3*** 
(4.2) 

(3) Regression-adjustment 473.7 
(272.5) 

529.4 
(315.9) 

7.4** 
(3.6) 

12.3*** 
(4.0) 

 Match quality     
  (a) % comparison sample observations 

that are unique 
96.8   

 (b) Maximum repetition 4   
 (c) F-test, all covariates (d.f.)a 3.60 (30, 360) p < 0.001 
 (d) F-test, preregistration employment 

and earnings (d.f.)a 
9.33 (6, 384) p < 0.001 

NOTE: Table entries are estimated average treatment effects. Except as noted, regression adjustment includes the 
following independent variables: age, age2, disability, race/ethnicity, veteran status, LEP status, educational 
attainment, employment status at registration, exit quarter, preprogram employment and earnings, summary 
variables, industry of most recent employment, and labor market area. Standard errors for difference in means that 
are not regression-adjusted calculated by bootstrapping (100 replications). 
*** denotes significant at the 0.01 level; ** denotes significant at the 0.05 level. 
a d.f. stands for degrees of freedom. 
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Table 5  Net Impact Estimates and Match Quality Indicators Using Characteristics 
Matching, Females 

Outcome 

Estimator 
Postprogram 

earnings (4th qtr.)
Difference-in- 

Differences 
Postprogram 

employment rate 
Difference-in-

Differences 
(1) Full sample, difference in 

means, regression-adjusted 
204.5 

(192.7) 
419.8 

(222.2) 
2.1 

(2.1) 
5.6** 

(2.4) 
     
Mahalanobis distance matching (with replacement)    
(2) Difference in means 22.4 

(212.1) 
837.5*** 

(243.8) 
4.4 

(2.7) 
13.3*** 
(3.4) 

(3) Regression-adjustment 784.6*** 
(213.4) 

894.5*** 
(244.8) 

10.8*** 
(3.0) 

17.2*** 
(3.5) 

 Match quality     
  (a) % comparison sample observations 

that are unique 
90.9   

 (b) Maximum repetition 13   
 (c) F-test, all covariates (d.f.)a 2.84 (31, 485) p < 0.001 
 (d) F-test, preregistration employment 

and earnings (d.f.)a 
7.10 (6, 510) p < 0.001 

NOTE: Table entries are estimated average treatment effects. Regression adjustment includes the following 
independent variables: age, age2, disability, race-ethnicity, veteran status, LEP status, educational attainment, 
employment status at registration, exit quarter, pre-program employment and earnings, summary variables, industry 
of most recent employment, and labor market area. Standard errors for difference in means that are not regression-
adjusted calculated by bootstrapping (100 replications). 
*** denotes significant at 0.01 level; ** denotes significant at 0.05 level. 
a d.f. stands for degrees of freedom. 
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Table 6  Net Impact Estimates and Match Quality Indicators for P-score Matching, With 
and Without Replacement, Males 

Outcome 

Estimator 
Postprogram 

earnings (4th qtr.)
Difference-in- 

Differences 
Postprogram 

employment rate
Difference-in-

Differences 
(1) Full sample, difference in 

means, regression-adjusted 
197.9 

(258.8) 
314.7 

(258.0) 
4.3 

(2.4) 
5.5** 

(2.6) 
     
P-score Matching (without replacement)    
(2) Difference in means 341.9 

(254.3) 
223.0 

(330.3) 
6.1 

(3.2) 
6.4 

(3.8) 
(3) Regression-adjustment 466.5 

(253.3) 
369.1 

(309.2) 
6.4 

(3.4) 
7.8** 

(3.8) 
 Match quality     
  (a) Mean p-score difference 0.0031   
 (b) % comparison obs. unique 100.0   
 (c) Maximum repetition 1   
 (d) F-test, all covariates (d.f.)a 2.14 (30, 360) p < 0.001 
 (e) F-test, preregistration employment 

and earnings (d.f.)a 
2.63 (6, 384) p = 0.016 

    
P-score matching (with replacement)    
(4) Difference in means 438.1 

(263.6) 
263.0 

(362.8) 
4.8 

(3.7) 
4.9 

(4.2) 
(5) Regression-adjustment 586.4** 

(247.5) 
515.3 

(301.8) 
5.5 

(3.4) 
6.9 

(3.8) 
 Match quality     
 (a) Mean p-score difference 0.0011   
 (b) % comparison obs. unique 92.2   
 (c) Maximum repetition 3   
 (d) F-test, all covariates (d.f.)a 2.19 (30, 360) p < 0.001 
 (e) F-test, pre-registration employment 

and earnings (d.f.)a 
2.87 (6, 384) p = 0.010 

NOTE: Table entries are estimated average treatment effects. Regression adjustment includes the following 
independent variables: age, age2, disability, race/ethnicity, veteran status, LEP status, educational attainment, 
employment status at registration, exit quarter, preprogram employment and earnings, summary variables, industry 
of most recent employment, and labor market area. Standard errors for difference in means that are not regression-
adjusted calculated by bootstrapping (100 replications). 
*** denotes significant at the 0.01 level; ** denotes significant at the 0.05 level. 
a d.f. stands for degrees of freedom. 
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Table 7  Net Impact Estimates and Match Quality Indicators for P-score Matching, With 
and Without Replacement, Females 

Outcome 

Estimator 
Postprogram 

earnings (4th qtr.)
Difference-in- 

Differences 
Postprogram 

employment rate
Difference-in-

Differences 
(1) Full sample, difference in 

means, regression-adjusted 
204.5 

(192.7) 
419.8 

(222.2) 
2.1 

(2.1) 
5.6** 

(2.4) 
     
P-score Matching (without replacement)    
(2) Difference in means 310.4 

(171.1) 
546.9** 

(241.4) 
7.4*** 

(2.2) 
10.1*** 
(3.2) 

(3) Regression-adjustment 398.4 
(204.5) 

400.7 
(258.6) 

7.1** 
(2.9) 

11.3*** 
(3.3) 

 Match quality     
  (a) Mean p-score difference 0.0439   
 (b) % comparison obs. unique 100.0   
 (c) Maximum repetition 1   
 (d) F-test, all covariates (d.f.)a 1.59 (31, 485) p = 0.025 
 (e) F-test, pre-registration employment 

and earnings (d.f.)a 
1.27 (6, 510) p = 0.271 

    
P-score matching (with replacement)    
(4) Difference in means 421.0** 

(200.7) 
484.5 

(237.6) 
10.1*** 
(2.6) 

14.5*** 
(3.6) 

(5) Regression-adjustment 512.0** 
(202.3) 

531.3** 
(235.0) 

10.6*** 
(2.9) 

15.5*** 
(3.3) 

 Match quality     
 (a) Mean p-score difference 0.0025   
 (b) % comparison obs. unique 88.9   
 (c) Maximum repetition 13   
 (d) F-test, all covariates (d.f.)a 1.80 (31, 485) p = 0.006 
 (e) F-test, preregistration employment 

and earnings (d.f.)a 
1.50 (6, 510) p = 0.178 

NOTE: Table entries are estimated average treatment effects. Regression adjustment includes the following 
independent variables: age, age2, disability, race/ethnicity, veteran status, LEP status, educational attainment, 
employment status at registration, exit quarter, preprogram employment and earnings, summary variables, industry 
of most recent employment, and labor market area. Standard errors for difference in means that are not regression-
adjusted calculated by bootstrapping (100 replications). 
*** denotes significant at the 0.01 level; ** denotes significant at the 0.05 level. 
a d.f. stands for degrees of freedom. 
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Table 8  Net Impact Estimates and Match Quality Indicators for P-score Matching, With 
Replacement, Selecting 1, 5, and 10 Nearest Neighbors, Males 

Outcome 

Estimator 
Postprogram 

earnings (4th qtr.)
Difference-in- 

Differences 
Postprogram 

employment rate
Difference-in-

Differences 
(1) Full sample, difference in 

means, regression-adjusted 
197.9 

(258.8) 
314.7 

(258.0) 
4.3 

(2.4) 
5.5** 

(2.6) 
     
P-score Matching (with replacement, 1-to-1)    
(2) Difference in means 438.1 

(263.6) 
263.0 

(362.8) 
4.8 

(3.7) 
4.9 

(4.2) 
(3) Regression-adjustment 586.4** 

(247.5) 
515.3 

(301.8) 
5.5 

(3.4) 
6.9 

(3.8) 
 Match quality     
  (a) Mean p-score difference 0.0011   
 (b) % comparison obs. unique 92.2   
 (c) Maximum repetition 3   
 (d) F-test, all covariates (d.f.)a 2.19 (30, 360) p < 0.001 
 (e) F-test, preregistration employment 

and earnings (d.f.)a 
2.87 (6, 384) p = 0.010 

    
P-score matching (with replacement, 1-to-5)    
(4) Difference in means 271.0 

(223.3) 
207.0 

(289.3) 
6.4** 

(2.6) 
6.5** 

(3.4) 
(5) Regression-adjustment 369.9 

(193.5) 
226.5 

(233.7) 
6.7** 

(2.6) 
8.6*** 

(2.9) 
 Match quality     
 (a) Mean p-score difference 0.0011   
 (b) % comparison obs. unique 85.5   
 (c) Maximum repetition 7   
 (d) F-test, all covariates (d.f.)a 2.08 (30, 1528) p < 0.001 
 (e) F-test, preregistration employment 

and earnings (d.f.)a 
2.58 (6, 1552) p < 0.001 

    
P-score matching (with replacement, 1-to-10)    
(6) Difference in means 262.8 

(218.9) 
181.5 

(282.0) 
6.1** 

(2.5) 
6.1** 

(3.2) 
(7) Regression-adjustment 348.0 

(183.8) 
252.2 

(217.1) 
6.7*** 

(2.4) 
8.1*** 

(2.7) 
 Match quality    
 (a) Mean p-score difference 0.0034   
 (b) % comparison obs. unique 81.9   
 (c) Maximum repetition 11   
 (d) F-test, all covariates (d.f.)a 1.96 (30, 2988) p = 0.001 
 (e) F-test, preregistration employment 

and earnings (d.f.)a 
2.39 (6, 3012) p = 0.026 

NOTE: Table entries are estimated average treatment effects. Regression adjustment includes the following 
independent variables: age, age2, disability, race/ethnicity, veteran status, LEP status, educational attainment, 
employment status at registration, exit quarter, preprogram employment and earnings, summary variables, industry 
of most recent employment, and labor market area. Standard errors for difference in means that are not regression-
adjusted calculated by bootstrapping (100 replications). 
*** denotes significant at the 0.01 level; ** denotes significant at the 0.05 level. 
a d.f. stands for degrees of freedom. 
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Table 9  Net Impact Estimates and Match Quality Indicators for P-score Matching, With 
Replacement, Selecting 1, 5, and 10 Nearest Neighbors, Females 

Outcome 

Estimator 
Postprogram 

earnings (4th qtr.)
Difference-in-

Differences 
Postprogram 

employment rate
Difference-in-

Differences 
(1) Full sample, difference in 

means, regression-adjusted 
204.5 

(192.7) 
419.8 

(222.2) 
2.1 

(2.1) 
5.6** 

(2.4) 
     
P-score Matching (with replacement, 1-to-1)    
(2) Difference in means 421.0** 

(200.7) 
484.5** 

(237.6) 
10.1*** 
(2.6) 

14.5*** 
(3.6) 

(3) Regression-adjustment 512.0** 
(202.3) 

531.3** 
(235.0) 

10.6*** 
(2.9) 

15.5*** 
(3.3) 

 Match quality     
  (a) Mean p-score difference 0.0025   
 (b) % comparison obs. unique 88.9   
 (c) Maximum repetition 13   
 (d) F-test, all covariates (d.f.)a 1.80 (31, 485) p = 0.006 
 (e) F-test, preregistration employment 

and earnings (d.f.)a 
1.50 (6, 510) p = 0.178 

    
P-score matching (with replacement, 1-to-5)    
(4) Difference in means 421.3*** 

(162.4) 
666.0*** 

(213.0) 
8.2*** 

(2.2) 
10.3*** 
(2.9) 

(5) Regression-adjustment 494.4*** 
(140.1) 

599.4*** 
(162.3) 

8.8*** 
(2.3) 

11.6*** 
(2.5) 

 Match quality     
 (a) Mean p-score difference 0.0047   
 (b) % comparison obs. unique 82.1   
 (c) Maximum repetition 29   
 (d) F-test, all covariates (d.f.)a 2.11 (31, 2049) p < 0.001 
 (e) F-test, preregistration employment 

and earnings (d.f.)a 
1.17 (6, 2074) p = 0.322 

    
P-score matching (with replacement, 1-to-10)    
(6) Difference in means 419.5*** 

(158.6) 
701.0*** 

(209.9) 
8.5*** 

(2.0) 
11.2*** 
(2.6) 

(7) Regression-adjustment 501.1*** 
(131.1) 

604.1*** 
(152.4) 

8.8*** 
(2.2) 

12.6*** 
(2.4) 

 Match quality    
 (a) Mean p-score difference 0.0081   
 (b) % comparison obs. unique 75.8   
 (c) Maximum repetition 44   
 (d) F-test, all covariates (d.f.)a 1.98 (31, 4004) p = 0.001 
 (e) F-test, preregistration employment 

and earnings (d.f.)a 
1.34 (6, 4029) p = 0.236 

NOTE: Table entries are estimated average treatment effects. Regression adjustment includes the following 
independent variables: age, age2, disability, race/ethnicity, veteran status, LEP status, educational attainment, 
employment status at registration, exit quarter, preprogram employment and earnings, summary variables, industry 
of most recent employment, and labor market area. Standard errors for difference in means that are not regression-
adjusted calculated by bootstrapping (100 replications). 
*** denotes significant at the 0.01 level; ** denotes significant at the 0.05 level. 
a d.f. stands for degrees of freedom. 
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Table 10  Net Impact Estimates and Match Quality Indicators for P-score Matching, With 
Replacement, Calipers = 0.005 and 0.01, Males 

Outcome 

Estimator 
Postprogram 

earnings (4th qtr.)
Difference-in 
Differences 

Postprogram 
employment rate

Difference-in-
Differences 

(1) Full sample, difference in 
means, regression-adjusted 

197.9 
(258.8) 

314.7 
(258.0) 

4.3 
(2.4) 

5.5** 
(2.6) 

     
P-score Matching (with replacement)    
(2) Difference in means 438.1 

(263.6) 
263.0 

(362.8) 
4.8 

(3.7) 
4.9 

(4.2) 
(3) Regression-adjustment 586.4** 

(247.5) 
515.3 

(301.8) 
5.5 

(3.4) 
6.9 

(3.8) 
 Match quality     
  (a) Mean p-score difference 0.0011   
 (b) % comparison obs. unique 92.2   
 (c) Maximum repetition 3   
 (d) F-test, all covariates (d.f.)a 2.19 (30, 360) p < 0.001 
 (e) F-test, preregistration employment 

and earnings (d.f.)a 
2.87 (6, 384) p = 0.010 

    
P-score matching (with replacement, caliper = 0.01)   
(4) Difference in means 423.2 

(268.3) 
305.4 

(354.9) 
4.6 

(3.7) 
5.6 

(4.3) 
(5) Regression-adjustment 601.9** 

(251.5) 
550.9 

(307.5) 
5.6 

(3.4) 
6.8 

(3.9) 
 Match quality (deleted 8 matches)    
 (a) Mean p-score difference 0.0002   
 (b) % comparison obs. unique 92.8   
 (c) Maximum repetition 3   
 (d) F-test, all covariates (d.f.)a 2.12 (30, 352) p < 0.001 
 (e) F-test, preregistration employment 

and earnings (d.f.)a 
2.88 (6, 376) p = 0.009 

    
P-score matching (with replacement, caliper = 0.005)   
(6) Difference in means 437.6 

(270.6) 
323.6 

(368.2) 
4.5 

(3.7) 
5.6 

(4.4) 
(7) Regression-adjustment 609.8** 

(251.7) 
560.8 

(307.9) 
5.5 

(3.4) 
6.4 

(3.9) 
 Match quality (deleted 10 matches)    
 (a) Mean p-score difference 0.0002   
 (b) % comparison obs. unique 92.7   
 (c) Maximum repetition 3   
 (d) F-test, all covariates (d.f.)a 2.09 (30, 350) p < 0.001 
 (e) F-test, preregistration employment 

and earnings (d.f.)a 
2.91 (6, 374) p = 0.009 

NOTE: Table entries are estimated average treatment effects. Regression adjustment includes the following 
independent variables: age, age2, disability, race/ethnicity, veteran status, LEP status, educational attainment, 
employment status at registration, exit quarter, preprogram employment and earnings, summary variables, industry 
of most recent employment, and labor market area. Standard errors for difference in means that are not regression-
adjusted calculated by bootstrapping (100 replications). 
*** denotes significant at the 0.01 level; ** denotes significant at the 0.05 level. 
a d.f. stands for degrees of freedom. 
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Table 11  Net Impact Estimates and Match Quality Indicators for P-score Matching, With 
Replacement, Calipers = 0.005 and 0.01, Females 

Outcome 

Estimator 
Postprogram 

earnings (4th qtr.)
Difference-in- 

Differences 
Postprogram 

employment rate
Difference-in-

Differences 
(1) Full sample, difference in 

means, regression-adjusted 
204.5 

(192.7) 
419.8 

(222.2) 
2.1 

(2.1) 
5.6** 

(2.4) 
     
P-score Matching (with replacement)    
(2) Difference in means 421.0** 

(200.7) 
484.5 

(237.6) 
10.1*** 
(2.6) 

14.5*** 
(3.6) 

(3) Regression-adjustment 512.0** 
(202.3) 

531.3** 
(235.0) 

10.6*** 
(2.9) 

15.5*** 
(3.3) 

 Match quality     
  (a) Mean p-score difference 0.0025   
 (b) % comparison obs. unique 88.9   
 (c) Maximum repetition 13   
 (d) F-test, all covariates (d.f.)a 1.80 (31, 485) p = 0.006 
 (e) F-test, preregistration employment 

and earnings (d.f.)a 
1.50 (6, 510) p = 0.178 

    
P-score matching (with replacement, caliper = 0.01)   
(4) Difference in means 316.8 

(205.0) 
436.9 

(241.3) 
8.0*** 

(2.6) 
11.7*** 
(3.6) 

(5) Regression-adjustment 348.5 
(210.7) 

391.1 
(245.3) 

7.5** 
(3.0) 

12.7*** 
(3.3) 

 Match quality (deleted 27 matches)    
 (a) Mean p-score difference 0.0005   
 (b) % comparison obs. unique 89.8   
 (c) Maximum repetition 5   
 (d) F-test, all covariates (d.f.)a 1.75 (31, 458) p = 0.009 
 (e) F-test, preregistration employment 

and earnings (d.f.)a 
1.83 (6, 483) p = 0.092 

    
P-score matching (with replacement, caliper = 0.005)   
(6) Difference in means 281.1 

(207.7) 
420.6 

(245.1) 
7.4*** 

(2.7) 
10.9*** 
(3.6) 

(7) Regression-adjustment 325.9 
(215.2) 

364.0 
(250.7) 

6.5** 
(3.0) 

11.8*** 
(3.4) 

 Match quality (deleted 37 matches)    
 (a) Mean p-score difference 0.0003   
 (b) % comparison obs. unique 91.0   
 (c) Maximum repetition 4   
 (d) F-test, all covariates (d.f.)a 1.76 (31, 448) p = 0.008 
 (e) F-test, preregistration employment 

and earnings (d.f.)a 
1.86 (6, 473) p = 0.085 

NOTE:  Table entries are estimated average treatment effects.  Regression adjustment includes the following 
independent variables: age, age2, disability, race/ethnicity, veteran status, LEP status, educational attainment, 
employment status at registration, exit quarter, preprogram employment and earnings, summary variables, industry 
of most recent employment, and labor market area.  Standard errors for difference in means that are not regression-
adjusted calculated by bootstrapping (100 replications). 
*** denotes significant at the 0.01 level; ** denotes significant at the 0.05 level. 
a d.f. stands for degrees of freedom. 
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Table 12  Net Impact Estimates and Match Quality Indicators for P-score Caliper 
Matching, Without Replacement, Calipers = 0.005 and 0.01, Males 

Outcome 

Estimator 
Postprogram 

earnings (4th qtr.)
Difference-in- 

Differences 
Postprogram 

employment rate
Difference-in-

Differences 
(1) Full sample, difference in 

means, regression-adjusted 
197.9 

(258.8) 
314.7 

(258.0) 
4.3 

(2.4) 
5.5** 

(2.6) 
     
P-score Matching (without replacement)    
(2) Difference in means 341.9 

(254.3) 
223.0 

(330.3) 
6.1 

(3.2) 
6.4 

(3.8) 
(3) Regression-adjustment 466.5 

(253.3) 
369.1 

(309.2) 
6.4 

(3.4) 
7.8** 

(3.8) 
 Match quality     
  (a) Mean p-score difference 0.0031   
 (b) % comparison obs. unique 100.0   
 (c) Maximum repetition 1   
 (d) F-test, all covariates (d.f.)a 2.14 (30, 360) p < 0.001 
 (e) F-test, preregistration employment 

and earnings (d.f.)a 
2.63 (6, 384) p = 0.016 

    
P-score matching (without replacement, caliper = 0.01)   
(4) Difference in means 360.2 

(259.3) 
311.9 

(342.5) 
5.9 

(3.3) 
7.1 

(3.8) 
(5) Regression-adjustment 502.5 

(257.7) 
425.2 

(316.9) 
6.6 

(3.4) 
7.3 

(3.9) 
 Match quality (deleted 9 matches)    
 (a) Mean p-score difference 0.0003   
 (b) % comparison obs. unique 100.0   
 (c) Maximum repetition 1   
 (d) F-test, all covariates (d.f.)a 2.07 (30, 351) p = 0.001 
 (e) F-test, preregistration employment 

and earnings (d.f.)a 
2.69 (6, 375) p = 0.145 

   
P-score matching (without replacement, caliper = 0.005)   
(6) Difference in means 305.5 

(259.4) 
237.3 

(342.4) 
5.7 

(3.3) 
6.9 

(3.9) 
(7) Regression-adjustment 460.3 

(258.4) 
370.0 

(316.0) 
6.3 

(3.4) 
7.3 

(3.9) 
 Match quality (deleted 15 matches)    
 (a) Mean p-score difference 0.0002   
 (b) % comparison obs. unique 100.0   
 (c) Maximum repetition 1   
 (d) F-test, all covariates (d.f.)a 2.08 (30, 354) p = 0.001 
 (e) F-test, preregistration employment 

and earnings (d.f.)a 
2.85 (6, 369) p = 0.010 

NOTE: Table entries are estimated average treatment effects. Regression adjustment includes the following 
independent variables: age, age2, disability, race/ethnicity, veteran status, LEP status, educational attainment, 
employment status at registration, exit quarter, preprogram employment and earnings, summary variables, industry 
of most recent employment, and labor market area. Standard errors for difference in means that are not regression-
adjusted calculated by bootstrapping (100 replications). 
*** denotes significant at the 0.01 level; ** denotes significant at the 0.05 level. 
a d.f. stands for degrees of freedom. 
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Table 13  Net Impact Estimates and Match Quality Indicators for P-score Caliper 
Matching, Without Replacement, Calipers = 0.005 and 0.01, Females 

Outcome 

Estimator 
Postprogram 

earnings (4th qtr.)
Difference-in- 

Differences 
Postprogram 

employment rate
Difference-in-

Differences 
(1) Full sample, difference in 

means, regression-adjusted 
204.5 

(192.7) 
419.8 

(222.2) 
2.1 

(2.1) 
5.6** 

(2.4) 
     
P-score Matching (without replacement)    
(2) Difference in means 310.4 

(171.1) 
546.9** 

(241.1) 
7.4*** 

(2.2) 
10.1*** 
(3.2) 

(3) Regression-adjustment 398.4 
(204.5) 

400.7 
(238.6) 

7.1** 
(2.9) 

11.3*** 
(3.3) 

 Match quality     
  (a) Mean p-score difference 0.0439   
 (b) % comparison obs. unique 100.0   
 (c) Maximum repetition 1   
 (d) F-test, all covariates (d.f.)a 1.59 (31, 485) p = 0.025 
 (e) F-test, preregistration employment 

and earnings (d.f.)a 
1.27 (6, 510) p = 0.271 

    
P-score matching (without replacement, caliper = 0.01)   
(4) Difference in means 278.1 

(186.1) 
673.4*** 

(261.9) 
7.3*** 

(2.4) 
11.3*** 
(3.4) 

(5) Regression-adjustment 318.5 
(226.9) 

377.2 
(263.3) 

5.8 
(3.2) 

10.6*** 
(3.6) 

 Match quality (deleted 59 matches)    
 (a) Mean p-score difference 0.0004   
 (b) % comparison obs. unique 100.0   
 (c) Maximum repetition 1   
 (d) F-test, all covariates (d.f.)a 1.86 (31, 426) p = 0.004 
 (e) F-test, preregistration employment 

and earnings (d.f.)a 
1.30 (6, 451) p = 0.254 

   
P-score matching (without replacement, caliper = 0.005)   
(6) Difference in means 271.8 

(182.3) 
657.7** 

(253.7) 
7.0*** 

(2.4) 
11.2*** 
(3.3) 

(7) Regression-adjustment 356.0 
(223.6) 

416.5 
(259.0) 

6.2** 
(3.1) 

10.9*** 
(3.5) 

 Match quality (deleted 66 matches)    
 (a) Mean p-score difference 0.0002   
 (b) % comparison obs. unique 100.0   
 (c) Maximum repetition 1   
 (d) F-test, all covariates (d.f.)a 2.12 (31, 419) p < 0.001 
 (e) F-test, preregistration employment 

and earnings (d.f.)a 
1.31 (6, 444) p = 0.252 

NOTE: Table entries are estimated average treatment effects. Regression adjustment includes the following 
independent variables: age, age2, disability, race/ethnicity, veteran status, LEP status, educational attainment, 
employment status at registration, exit quarter, preprogram employment and earnings, summary variables, industry 
of most recent employment, and labor market area. Standard errors for difference in means that are not regression-
adjusted calculated by bootstrapping (100 replications). 
*** denotes significant at the 0.01 level; ** denotes significant at the 0.05 level. 
a d.f. stands for degrees of freedom. 
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Table 14  Summary of Net Impact Estimates 
Male Female 

Estimator 
Earnings 
(D-in-D) 

Employment 
(D-in-D) 

Earnings 
(D-in-D) 

Employment 
(D-in-D) 

(1) Full sample, difference in 
means, unadjusted 

1818.6*** 
(253.1) 

14.5*** 
(3.1) 

2056.7*** 
(206.4) 

17.9*** 
(2.5) 

     
(2) Full sample, regression 

adjusted 
314.7 

(258.0) 
5.5** 

(2.6) 
419.8 

(222.2) 
5.0** 

(2.4) 
(3) Full sample, regression 

adjusted (p-score only) 
166.5 

(386.9) 
8.4*** 

(2.8) 
486.4 

(282.5) 
9.4*** 

(2.6) 
(4) Full sample, kernel 

density, bandwidth = 0.01 
552.6** 

(269.9) 
8.7*** 

(3.1) 
736.2*** 

(205.1) 
11.8*** 
(2.8) 

(5) p-score blocking 399.8 
(262.6) 

8.0** 
(3.2) 

604.2*** 
(226.3) 

11.0*** 
(3.0) 

     
(6) Characteristics matching 

(Mahalanobis metric), 
regression adjusted 

529.4 
(315.9) 

12.3*** 
(4.0) 

894.5*** 
(244.8) 

17.2*** 
(3.5) 

(7) p-score matching, w/o 
replacement, regression 
adjusted 

369.1 
(309.2) 

7.8** 
(3.8) 

400.7 
(258.6) 

11.3*** 
(3.3) 

(8) p-score matching, w/o 
replacement, 0.01 caliper, 
regression adjusted 

370.0 
(316.0) 

7.3 
(3.9) 

416.5 
(259.0) 

10.9*** 
(3.5) 

(9) p-score matching, 
w/replacement, regression 
adjusted 

515.3 
(301.8) 

6.9 
(3.8) 

531.3** 
(235.0) 

15.5*** 
(3.3) 

(10) p-score matching, 
w/replacement, 1-to-5, 
regression adjusted 

226.5 
(233.7) 

8.6*** 
(2.9) 

592.4*** 
(162.3) 

11.6*** 
(2.5) 

(11) p-score matching, 
w/replacement, 0.01 
caliper, regression 
adjusted 

550.9 
(307.5) 

6.8 
(3.9) 

391.1 
(245.3) 

12.7*** 
(3.3) 

     
(12) Treatment sample mean 

levels at time of program 
registration 

2908.7 73.1 2008.9 74.4 

NOTE: Table entries are estimated average treatment effects. Regression adjustment includes the following 
independent variables: age, age2, disability, race/ethnicity, veteran status, LEP status, educational attainment, 
employment status at registration, exit quarter, preprogram employment and earnings, summary variables, industry 
of most recent employment, and labor market area. Standard errors for row (4) calculated by bootstrapping (100 
replications).  D-in-D means difference-in-differences. 
*** denotes significant at the 0.01 level; ** denotes significant at the 0.05 level.
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