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Abstract

Competition between political parties is a process that unfolds over time whereas formal theories of party

competition have tended to take an essentially static, or one-shot, approach. This leaves some gaps in our

understanding of the dynamics of campaigning. The aim of this paper is to make up some of this gap. This

is done using a differential game theory model to analyse a situation in which support for a party depends

on the amount spent on marketing relative to the expenditure of the other party. One of the main results is

that, even when voters are not myopic, the logic of the competition forces parties to accelerate expenditure

on campaigning during the period between elections.
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1 Introduction

Social scientists are fully aware that competition between political parties or candidates for election is a

dynamic process in which resources, such as energy and funds, are spent over time in trying to win voter

support but, so far, most existing studies of campaign expenditure are static and we have very little by way

of a theoretical understanding of these dynamics. This is, in fact, part of a larger shortcoming in the analysis

of the dynamics of electoral competition.1 This paper attempts to help fill some of the gap in our formal

theories. It is concerned with the dynamics of resources spending in the period between elections. I fill out

the term ’resources’ subsequently.

The types of questions that are of concern might be illuminated, in a preliminary way, by considering

some casual observations about the way in which parties, or candidates, spend resources in trying to market

themselves to voters.

(i). The first is that, for political parties, campaigning seems to be a constant activity throughout the period

between elections and that the effort spent on trying to sell a favourable image of candidates and policies

tends to increase as the election approaches [17], ([39], 61). Whitely and Seyd [40] describe the underlying

pattern by dividing the campaign into three periods. These are the long period which starts at the end of

the last election and lasts throughout followed by a subsequent medium and then a short term campaign.

Similarly, in presidential elections candidates seem to accelerate expenditure as election day approaches ([21],

77). Although the observation that expenditure increases through time might seem too obvious to warrant

consideration, it is only one possible trajectory. The question is, what explains this observations, or in fact

any other trajectory? Is there any reason why expenditure should increase over the electoral period? Why

not spend all resources at the beginning, or the end?

(ii). Secondly, it has been noted that here sometimes seems to be a correlation between the expenditure

of candidates. This observation is again fairly casual. It has recently been tested in some work by Box-

Steffensmeier [6] for the 2000 presidential election. This shows that Bush’s expenditure increased in response

to increases in expenditure by Gore. Why should the fact that one candidate has increased its expenditure

cause the other candidate to increase?

The specific purpose of this paper is to help answer some of these questions. This is done by examining a

fairly stripped down model of the dynamics of campaign expenditure in a competition between two parties

or candidates.

In order to concentrate on the influence of competition on the dynamics of resource expenditure the

model is constructed to abstract from the impact of personalities and other unique events. It also assumes

that the determinant of support has two components. The first is fixed by partisan identification or per-

ceptions of the economy or some other factor that does not change during the period. The second is the

variable component which increases with the amount of resources spent on campaigning for a fixed level
1The comment is often made, for example, that most studies of campaign expenditure are static or ignore the temporal

properties of data when it is available [6], [7], [4] and standard texts on party competition such as [27] and [?] do not mention

time. This situation is changing with the increasing availability of data and popularisation of techniques to deal with time

series analysis [3], [15], [8].
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of expenditure by the opposition. This is consistent with the substantial body of work that indicate that

many voters are responsive to advertising and that support increases with campaign effort [6], [32], [18],[29].2

In one sense the level of abstraction in this paper is higher than in some existing static models because

of the complexity of the dynamic analysis. As with much of life, gains in one direction are bought at a cost

in some other. It might be hoped that some of these abstractions could be reduced in future developments.

Although the model deals with competition for support in general, the reference in what follows will

usually be to parties in order to save repetition. The findings hold for candidates in other systems, with

obvious local modification, and some of the empirical data on support for parties, or candidates, is from

work done on these systems.

The main result of the analysis is, roughly, that, under most of the conditions studied, the government

and the opposition increase their rate of resource expenditure on marketing through the entire period be-

tween elections and the opposition spends more than the government in every time interval. The case which

strikingly sums up the most important lesson of the analysis is where parties start out with equal support

and the cost per unit of impact on the electorate is the same. In a simultaneous move game both parties

have to spend more and more at each instant in order to retain their initial levels of support. This is often

known as the Red Queen effect.3 This stands in sharp contrast to the hypothetical one horse race. Where

only a single party tries to buy votes, and the electorate is not myopic, it spends at a constant rate for the

entire time period.

It is also shown that changes in the level of support for the parties depend, roughly, on the cost per unit of

impact. If the cost is high for the government, relative to the opposition, the government allows its support

to decrease. If this is low it may pay it to spend resources in order to increase its support through the entire

interval.

In addition it is shown that when the cost per unit of impact is the same for both parties it pays the

opposition to try harder and devote more resources to building support than the government. Although

results are given for all cost structures, the case where the relative cost of impact for the government is

higher than that of the opposition is of most interest since it is frequently argued in the literature that this

is the usual situation [29] [17] [20]. In this case it pays the government to increase its spending at a faster

rate than the opposition.

A rough intuitive interpretation of these results goes as follows. A single party will spend at a constant

rate to avoid the costs associated with trying to change support rapidly in any period. If there were two

parties and party one spends evenly across the entire period, or more at the beginning party two is better off,

and party one is worse off, when party two spends little during the early part of the campaign and increasing
2See [17] for a discussion of some of the problems in an empirical test of the relation between spending and support. For a

discussion of the continuing relevance of economic factors and party support see [31]
3It gets its name from the Red Queen’s comment to Alice that, ’here, you see, it takes all the running you can do to keep

in the same place.’ [10].
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amounts on converting the electorate towards the end. If, on the other hand, party one were to defer all

its expenditure until near the end of the campaign its opponent could do better by building up support at

an increasing rate. Party one would then find that it would cost more to reduce its opponent’s support in

the final period than if it had been spending earlier. If party one spends resources on building support at

an increasing rate throughout the entire period, the opposition can do no better than follow a similar strategy.

As far as I am aware there are no similar studies in the political economy literature. There is some work on

competitions between oligopolies in discrete time such as [37] and [34] and in continuous time such as [19] and

[11] that have some parallels. Of these, this paper is closest to [19], but differs in assumptions and approach.4

I set out the paper as follows. In section §.2 the model of party competition is specified. This is analysed

in sections §.3 for one party attempting to buy support. It is analysed for competition between the parties

in §.4− §.6 under different assumptions about information and strategies of the parties.

2 The model and discussion of the problem.

Suppose there is a political system with two parties and that each spends an all purpose resource on mar-

keting its image over a continuous time period running up to an election in order to maximize its support

at this election.5 This time period covers the entire duration of campaigning activity and is not restricted

to the final few weeks running up to an election. The resource that is allocated includes finances and the

time and effort of the candidates, volunteers, and party members. The activities on which resources are

spent are things like appearances at public functions and talk shows, low level advertising, consultation with

groups, research, selling policies to various constituencies, attending cake stalls, and listening to complaints.

Time spent on these activities is costly in the sense that there are other opportunities lost, or leisure and

private income sacrificed. It is assumed, for simplicity, that these different types of resource expenditures

can be expressed in a common monetary scale. There is a cost attached to spending resources. There is no

limit on the amount that can be spent, however, because it seems reasonable to assume that parties can run

up debts in money and goodwill.6 It is also assumed that the image of the parties and, to a lesser extent,

their policies are fixed in the period running up to an election. This simplification is intended to make the

analysis tractable. Although party positions and policies may vary from one election to the next [9], [1] it

is assumed that there is sufficient consistency in views of what the parties stand for, and their policies, to

make this a reasonable first approximation for any one period between elections. In order to accommodate

policy changes of sufficient magnitude to alter a party image it might be imagined that they take place prior

to the campaign period.7

4Among the main differences are that I study the situation where there is a finite termination time and produce results for

different information structures.
5It would be possible to see parties as firms with the main activity of marketing an image of themselves which they have

produced at no cost.
6See ([39], 208-9) for a discussion of the importance of the activities of members and the role of voluntary activity as

substitutes for other forms of campaign expenditure.
7See Budge [9] for a discussion of long run consistency in party images and variations in policy in individual elections from

one election to the next.
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The assumption that parties wish to maximize support at the time of the election captures the idea that

the level of representation in the current legislative period is of value for itself and for its contribution to

credibility and future elections. This assumption is consistent with early work on modelling electoral compe-

tition by Stigler and by Crain [33], [12]. It gives a continuous payoff function rather than the discontinuous

payoff associated with the assumption that getting a majority is all that matters.

It is assumed that support for a party increases at a declining marginal rate with the amount of resources

spent on marketing, doing good deeds and other forms of promotion, everything else constant. It might

be imagined, for example, that each party has a natural constituency and that the closer a voter is to this

constituency the more easily it is won over by the efforts of that party. As a voter gets further away, more

effort is required to gain support. This assumption combines some elements of the Michigan model, which

assumes that party identification is largely fixed, and the more recent literature which claims that many vot-

ers are responsive to advertising and that support for a party increases with campaign effort as required for

my model [6], [32] [18].8 In this case fixed party affiliations are replaced with the idea that it is increasingly

costly to dislodge voters.

The strategies available to the parties depend on the information available and this introduces some subtle

points to do with observation and responses over time that don’t feature in the analysis of static games.9

It is also possible that parties may formulate their strategies at different times. The following possibilities

seem the most interesting.

A1. The parties formulate their expenditure programmes for the entire period at time zero. This might be

explained by the long lead times needed to map out legislative programmes, to organize public engagements,

to negotiate and meet with pressure groups, to set up public events, and to mobilize support from members.

It might also be explained by uncertainties about the value of the information received during the competi-

tion. This gives an open loop competition.

A2. Parties might change their strategies at each instant in response to information on the effect of their

actions, and those of their rival, on the level of support. This requires considerable flexibility. It gives a

closed loop memoryless state feedback competition.

A3. One party might delay its planning until the other has formulated its campaign. In this case one party

is the leader and decides on its expenditure of resources knowing that the other will then choose a pattern

of expenditure to get the greatest share of support for itself. This gives an open loop Stackelberg game. It

seems natural, although not necessary, to assume that the government, or incumbent, moves first.

In order to get a complete analysis we need to look at each of these. It is not possible to tell, in advance,

how the trajectories will vary in each case.

The most natural way to analyse the dynamics of this situation, and the one that has considerable ad-

vantage from the viewpoint of mathematical elegance, is as a differential game in continuous time. Even if
8See fish for a discussion of some of the problems in an empirical test of this.
9See ([2], 227-8) for a detailed discussion of information.
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parties to adjust their expenditure at discrete intervals there may be so many of these that they are best

approximated continuously. On the other hand, many political economists will be more familiar with static

or discrete time optimization problems and it may be useful to give some pointers about what is happening

in these terms.10

In order to specify the model, let subscripts 1 and 2 refer to the government and opposition respectively.

Time is written t for t = 0, 1. The resource expenditure of the government at time t is u1(t) and of the

opposition is u2(t) and the cost of expenditure is fi(ui) for i = 1, 2. The natural constituency of party i is

written qi and, for simplicity, let q1 = q2 = q. Without loss of generality change coordinates to set q = 0.

The number of supporters for the government at time t is written z1(t) and for the opposition z2(t). The

fraction of support is x(t) = z1(t)
n and y(t) = z2(t)

n . Assume that n is sufficiently large that x(t) can be

approximated as closely as we wish by a smoothly differentiable function. This is also written x(t) to save

notation. Since gains for the opposition are losses to the government y(t) = (1 − x(t)). For the simple two

period model the dynamics of support for party one could be written as

x(t+ 1)− x(t) = k1(1− x(t))u1(t)− k2x(t)u2(t) (1)

where the parameters k1, k2 > 0 capture the idea that the voters may respond differently to expenditure by

each party [29], [17], [20].

In this case, the problem for party one is to maximize x(2) and for player two to minimize x(2). Note

that the firms are only interested in the payoff at the terminal time but that the costs of expenditure will

be incurred across the entire time period. This means that, since x(2) is the support for party one in the

final period the problem for each player is to maximize

J i =
1∑

t=0

fi(ui(t)) + θix(2) (2)

where i = 1, 2 and θ = 1 for i = 1 and θ = −1 for i = 2.

In order to solve this game we proceed backward from the values of ui(1) that maximize x(2) to obtain

the maximum expenditure at each step.

The continous time game can be thought of as an extension of this idea across an arbitrarily large number

of time steps. In order to specify it we take advantage of the fact that x is smoothly differentiable and write

the effect of spending by the government and opposition on the rate of change in support as11

ẋ = k1(1− x)u1 − k2xu2 (3)

where ẋ = dx
dt . Reference to time arguments are supressed unless they are needed to simplify the notation.

10I owe the idea of discussing the model in this stripped down form to John Roemer.
11The equation for the dynamics could easily be extended to take into account things like a natural rate of growth in support

for one of the parties. As it stands it is similar to the Lanchester model. See [19] for references and a discussion.
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For tractability the payoff functions, f i, are simplified and the sum of costs is dealt with in continuous

time by writing it in integral form. It is assumed that the parties attempt to maximize payoff functions of

the form

J i = −
∫ 1

0

ci
2
u2

i dt + θix(1) (4)

for i = 1, 2 subject to the dynamics in equation (3). ci > 0 is a paramater that captures any differences in

the cost to each party of spending resources and this may depend on such things as the level of donations,

availability of voluntary labour and so on. In many cases information on costs will be coarse owing to the

different influences on cost. In addition it will also be interesting for analytical purposes to assume c1 = c2.

Since we are dealing with time as an interval, and not units, the period between elections has been normal-

ized and set at one.

It is assumed that a winning majority is m̄ ≥ n
2 + 1 and hence that x(0) ≥ 1

2 where equality ocurs when

support is tied. Party support, as opposed to actual votes, could be tied for any number of reasons. Maybe

a supporter of the opposition forgot to vote, or submitted a spoiled ballot, for example.

Before analysing the competition between the parties I consider the dynamics for the one horse, or single

party, race. This is, of course, not meant to capture any actual situation. It is meant to provide a point of

comparison to help answer the question, how much of the trajectory of party expenditure is produced by

the dynamics of competition?

3 The optimal expenditure without competition.

The election is contested by a single party. In this case the optimal use of resources is to spend at a

constant rate throughout the entire period. Any deviation from this can be attributed to the effects of

competition between the parties. In order to show this the simple two step model is first analysed. I then

prove it for the more general continuous time case.

The dynamics of the two step model for the single player are obtained for the closed loop case by modifying

Equation (1) to get

x(2) = x(1) + k1(1− x(1))u1(1) and x(1) = x(0) + k1(1− x(0))u1(0)

and using the appropriately modified specification for the payoff function in Equation (4) the problem is to

maximize

J1 = −u1(0)2

2
− u1(1)2

2
+ x(2)

Substituting from the second equation for the dynamics into the first and using the known value of

x(0) = β gives
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x(2) = β + k1(1− β)u1(0) + k1(1− k1(1− β)u1(0))u1(1)

Differentiating J1 with respect to the controls gives

u1(ρ) = k1(1− β)− k2
1(1− β)u1(ρ̄)

for ρ, ρ̄ ∈ {0, 1} and ρ 6= ρ̄ and hence

u1(0) = u1(1)

as required for constant expenditure in each period.

In the continuous time case the dynamics are given by

ẋ = k1(1− x)u1

and the payoff function is J1 in Equation (4). In order to deal with this either the Pontryagin principle for

the open loop game in A1 or the Hamilton-Jacobi-Bellman equation for the closed loop game in A2 will be

used. Since the solutions will be the same, in this example, for either of these approaches the open loop case

is solved for illustration.

The Pontryagin principle gives the necessary conditions that a piecewise differential optimal path of

expenditure must follow in continuous time [24]. It can be thought of as a means of incorporating the effect

of a change in expenditure at each instant on the value at that instant and on the value at all future times.

In order to apply this we need to form the Hamiltonian

H = −u
2
1

2
+ αk1(1− x)u1

where α(t) is a costate variable and is required to be piecewise continuously differentiable. It can be loosely

thought of as the marginal value of an increase in support at time t. The necessary conditions for an internal

solution are

u1 = αk1(1− x)

and

α̇ = αk1u1

Differentiating the first of these equations with respect to time gives

u̇1 = α̇k1(1− x)− αk1ẋ

and substituting gives

u̇1 = 0

7



as required.

It is worthwhile noting that this result is not limited to the specific assumptions made about the dynamics

of support. It can be generalised to any specification of the dynamics of the form ẋ = g(x)u.

With this result in mind we can now consider what happens in the competition for support.

4 A 1. The open loop competition.

The government and the opposition formulate their strategies at the beginning of the game and the op-

timal programme for each party is to accelerate its expenditure for the entire time period. This gives an

immediate, and important, difference between the dynamics of the two party competition and the optimal

programme for a single party. The way in which the trajectory of support changes along an optimal path

depends on a parameter that captures the relative cost of influencing voter support, called the impact cost

index. When the cost index and support are equal we get the Red Queen effect. If the government’s relative

cost is sufficiently low support increases. In what seems to be the more usual case, where the government’s

cost per unit of impact is high relative to that of the opposition, support for the government is decreasing

throughout the entire period. It is interesting to see that the government accelerates its expenditure faster

than the opposition. This tells us that, from the government’s perspective, it is better to spend relatively

more near the end of the campaign. What needs to be done is to prove all this.

In order to use the Pontryagin principle in this case we form the Hamiltonians

H1 = −c1
2
u2

1 + α1( k1(1− x)u1 − k2xu2) and H2 = −c2
2
u2

2 + α2( k1(1− x)u1 − k2xu2) (5)

where αi for i = 1, 2 are the costates and are required to be piecewise continuously differentiable. The details

of the analysis are in Appendix 1. The necessary conditions that a piecewise continuous optimum control

must satisfy for an interior solution are

u1 = α1
k1

c1
(1− x) and u2 = −α2

k2

c2
x (6)

α̇1 = (k1u1 + k2u2)α1 and α̇2 = (k1u1 + k2u2)α2 (7)

where α1 = −α2 = α for i = 1, 2. Differentiating and substituting gives

u̇1 > 0, ü1 > 0, u̇2 > 0 and ü2 > 0 (8)

which means that ui is increasing at an increasing rate for all t for i = 1, 2.

Substituting Equation (6) into Equation (3) give the trajectory of support for the government as

ẋ = α(
k2
1

c1
(1− x)2 − k2

2

c2
x2) (9)

along the optimal path. It follows that ẋ has the same sign as
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ψ = 1− 2x+ x2(1− σ)

where

σ =
k2
2

c2
/
k2
1

c1

For x ≤ 1 the positive root for ψ is r = 1−
√

σ
1−σ σ 6= 1 with ∂r

∂σ < 0. It follows that for x < r we have ẋ > 0 and

for x > r we have ẋ < 0. What this tells us immediately is that, the fraction of the support for party one is

always either increasing, decreasing or stationary. See fig. (1a). It will also be noted that limσ→1ψ = 1
2 and

ψ is continous.

It is possible to get a better picture of what is happening, and to set up an important parameter for the

analysis, by rewriting σ as c1
k2
1
/ c2

k2
2

and interpreting c1
k2
1

as an index of the cost of impact of the government’s

expenditure on campaigning, with the analogous interpretation for the opposition. Even though we are

working with k2
i the index will have the required properties for changes in ci and ki. Call this the impact

cost index. This allows us to interpret σ as the ratio of the cost of impact of the government’s campaign

expenditure over the cost of impact of the opposition’s expenditure. This may vary because voters are more

receptive to opposition messages, or beause one party might deal with their advertising in a more cost effec-

tive manner than its opponent [29], [17] [20]. This gives three cases to consider.

Figure 1. The dynamics of support for party one.

Case 1. Equal impact cost index. σ = 1.

(i). The parties are symmetrical in the sense that each is supported by half the population at the beginning

of the electoral period. It is immediate from Equations (6) and (9) that

ẋ = 0 and ui = u2

which means from Equation (8) that, like Alice and the Red Queen, each party is spending more and more

as time progresses in order to stand still.

(ii). The government has more initial support than the opposition and it is assumed that the coefficients

in the dynamic equation are the same and k1 = k2 = k̄ for k̄ > 0 a constant. In this case expenditure

for the opposition is higher than that for the government for the entire period. In other words, it pays the

opposition to try harder. In addition

9



ẋ < 0

for all t and the fraction of total support for the government falls for the entire period. In addition it can

be shown that ẍ > 0 to give the trajectory in fig. (1b). See Appendix 1.

To get the results for the dynamics of resource expenditure use the trajectory for x together with Equation

(6) to give

u1 < u2 and u̇1 > u̇2

for all t ∈ [0, 1) as required. See fig. 2 for an example. It is also possible to get explicit solutions for x and

ui for i = 1, 2 for σ = 1 for all t, if these are required.

Case 2. Impact cost index of the government less than the opposition. σ < 1.

The government’s support increases for all t for σ sufficiently small and, for the special case k1 = k2 = k̄,

expenditure by the opposition is increasing faster than expenditure by the government. To see this note

that for σ = 0 we have r = 1 and as σ increases r decreases with r → 0 as σ → ∞. It follows that, for σ

sufficiently small, x(0) < r and ẋ > 0 for all t. See fig. 3

Figure 2. Trajectories of reource expenditure for equal impact cost indexes .

To get the relation between the trajectories of expenditure for the government and opposition note that, for

k1 = k2 = k̄, it follows immediately from equation (3) that u1 > u2 for all t. Using equation (6) and writing

ρ = u1 − u2 and differentiating gives ∂ρ
∂x < 0. This means u1 − u2 < 0 as required.

Figure 3. Example of trajectories for r(σ).
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Case 3. Impact cost index of government greater than the opposition. σ > 1.

In this, the more usual, case support for the government is decreasing and, for k1 = k2 = k̄, the government

is increasing its expenditure faster than the opposition. To begin note that for σ ≥ 1 we get x(0) > r and

ẋ < 0 for all t as in fig. 3.

When k1 = k2 = k̄ equation (6) gives u1(0) < u2(0). Since ∂ρ
∂x < 0 we now have u1 − u2 increasing.

5 A 2. The closed loop game with equal impact cost indexes. σ = 1.

The parties now adjust their advertising expenditure according to the level of support at each instant as

revealed by polls and other information sources to give a closed loop game with state space information.

This is rather more difficult to analyse than the previous case and results are only produced for k2
i

ci
= k

for i = 1, 2. The general result in this case is that the trajectory is essentially the same as the trajectory

in the open loop case. Where the government and the opposition have the same initial level of support we

again see the Red Queen effect and for k1 = k2 = k̄ the opposition spends more than the government as

before. An unexpected feature of this case is that parties spend less on campaigning at each instant and

hence across the entire time period than in the closed loop game, even thought the end results are the same.

With the benefit of hindsight we can see that, if parties are able to adjust their strategies at each instant,

they must be able to do at least as well as, or better than, they can if they are not able to adjust. Each

party can constantly monitor the other’s activities and will tend to fine tune its expenditure according to its

opponent’s moves at each instant. If parties have to commit themselves at the beginning of the game they

do not have the possibility of this fine tuning.

In order to solve this problem it is necessary to use the Hamilton-Jacobi-Bellman equation to take into

account the feedback between support at each instant and the expenditure of the parties. Write the value of

the game for player i from time t and initial condition x0 as ωi(t, x0) and the partial derivative of ωi with

respect to any variable z as ωi
z. The details of the analysis are in Appendix 2. This gives us

−ω1
t = max u1(−

c1
2
u2

1 + ω1
x(k1(1− x)u1 − k2xu2)) (10)

with the analogous expression for ω2
t .

The partial differential equation in (10) is solved in Appendix 2 in terms of ϕi(t) where ϕi has the same

place in the dynamics as αi in the open loop game. This gives

ϕ̇ =
3k
2
ϕ2 (11)

and this can be used to get explicit solutions for x and ui.

Comparison of open and closed loop strategies.

The general result is set out below. Paths are said to have the same profile if they have the same sign and
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the same first and second derivatives for every t.12

Proposition 1. For σ = 1 the trajectories for x and ui for i = 1, 2 in the closed loop game have the same

time profile as the open loop game with u1 < u2 when k1 = k2 = k̄.

Proof. Since ϕ1 = −ϕ2 we have ωi
x = ϕi with the same place in the dynamics as αi and x is bounded away

and above x = 1
2 for all t ∈ [0, 1) in both games. In addition u1 < u2 in both games. In order to get the rest

of the profile compare equations (17) and (11).

Since ϕ(1) = 1 we have α > ϕ from equations (17) and (11) for all t and ui(0) greater in the open loop

game than in the feedback game. In order to support the statements at the beginning of the analysis of this

case we look at explicit solutions to the equations for the case where > 1
2 . This gives

(i). Support for the government is always higher in the closed loop than in the open loop game with the

highest level of support at approximately t = 1
2 and the level of support roughly equal for t = 1 in both

games. See fig. 4 where $(t) = xc(t)− xo(t) where xc and xo are support for the government in the closed

loop and open loop games respectively.

(ii). Government expenditure is higher for all t in the open loop game than the closed loop game with the

maximum difference at approximately t = 1
2 .

(iii). Opposition expenditure is higher for all t in the open loop game than in the closed loop game with the

maximum difference at t = 0.

6 A 3. The open loop competition with the government as a leader.

The government formulates its strategy first and the opposition responds. This is the most difficult case

to analyse, but we might hope to get the most important characteristics of the trajectories. As in case A1

support for the government depends on the relative cost of impact for government expenditure. If relative

cost is sufficiently high support will be decreasing along the optimal path although there is a possible case

where it decreases and then increases. If the relative cost is low support for the government will increase.

The opposition increases its expenditure for the entire time period. It can also be shown that the government

is increasing its expenditure at the beginning and end of the time period.

Figure 4. Difference between trajectory of support in closed loop and open loop games for$(t) = xc(t)−xo(t).

12A similar sort of result is obtained by Fruchter [19] for an infinite horizon duopoly market.
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The solution to this problem is similar to the open loop game. In this case the Lagrangean for the

government is

L1 = −c1u
2
1

2
+ α3( k1(1− x)u1 − k2u2x) + α4(−

∂H2

∂x
) + α5

∂H2

∂u2
(12)

with H2 given by equation (5) and the α(t) terms again being costate variables with properties given in

Appendix 3. This gives us the necessary conditions for an internal solution as

u1 = α3
k1

c1
(1− x) + k1α2α4 and u2 = −α2

k2

c2
x (13)

In a similar manner to the previous analysis of {x : ẋ = 0} we get ẋ < 0 if x > r̄ and ẋ > 0 if x < r̄ where

r̄ = (1−
√
σe

k2
2

c2
(1−t))(1− σe

k2
2

c2
(1−t))−1.

Rewriting k2
2

c2
= k̃ and σ̄ = σek̃(1−t) and doing some work on the derivative to get the sign gives ∂r

∂σ̄ < 0

and ∂σ̄
∂t < 0. This gives a similar analysis to the open loop game with the additional time dynamic given by

the fact that, for σ given, r̄ increases as t increases. This means that we cannot rule out the possibility that

ẋ switches sign and support for the government starts to increase at some t < 1. See fig. 5 for an illustration.

This again gives three cases to analyse.

Case 1. Equal impact cost indexes. σ = 1.

The government’s support initially declines along the optimum trajectory, but may increase near the end of

the time period. The opposition starts by spending more than the government and increases its expenditure

for all time and the government also increases its expenditure for some time interval near the beginning of

the campaign. For the specific case where ki

ci
= 1 the government also increases its expenditure in an interval

near the end of the campaign.

To analyse the trajectory of support note that the positive root is now r̄(k, t) = 1−e
k̃(1−t)

2

1−ek̃(1−t) . Taking the

limit as t→ 1 gives r̄(k, t) → 1
2 and since ∂r̄

∂t > 0 we have r̄(k, 0) < 1
2 . This means that ẋ(0) < 0. For some

x(0) sufficiently close to one half it must be the case that x is increasing in the vicinity of x = 1 as in fig.5.13

Figure 5. Example of trajectory for σ = 1.

13If required we could get x(t) for specific parameters by solving the two point boundary value problem for equations (3),

(22), (23) with the value for α given in (19). See Roberts and Shipman, [30] for example.
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It is straightforward to analyse the resource expenditure of the opposition since it will follow the same

path as the open loop game to give

u̇2 > 0 and ü2 > 0

for all t. It can also be shown from the analysis of the costates and Equation (13) that

u2(0) > u1(0)

as in the open loop game.

In order to analyse the resource expenditure for the government consider the special case where ki = ci = 1

for i = 1, 2. Since the relative values for the α(t) terms are either known or can be obtained at t = 0 and

t = 1 we evaluate u1 at these points. Differentiating u1 and using values for the α terms gives

u̇1(0) > 0, ü1(0) > 0 and u̇1(1) > 0, ü1(1) > 0

This might suggest that the government is accelerating its expenditure for all t but, even though this

seems plausible, I do not have a proof.

It is also noted from equation (6) that the final level of expenditure of the government in the Stackelberg

game is greater than in the open loop and closed loop games for the same level of x(1).

Case 2. Lower impact cost index for government. σ < 1.

Support for the government is increasing for all t for σ sufficiently small. To see this observe that we can

make r̄(k, 0) > 1− ε for some ε as small as we wish by letting σ → 0. The trajectory of expenditure by the

opposition remains the same as in the previous case. It is also the same for the government when ki = ci = 1.

Case 3. Greater impact cost index for government. σ > 1.

If σ > m for some m sufficiently large we have r(k, t) → ε for any ε > 0 and hence support for the government

is decreasing. The trajectory of government and opposition expenditures are the same as in the previous case.

7 Conclusion.

The aim of this paper has been to make up some of the gap in our theories of the dynamics of competition

between political parties. It was found that both parties increase the effort spent on marketing over time

at an accelerating rate under open loop and closed loop information, although the picture is not so clear

when the government is a leader. In the first two cases it was also found that there is a Red Queen effect.

The contrast between these results and spending by a single party indicates that any observed increase in

marketing effort over time can, in part be explained, by the dynamics of the struggle for support. It does

not require special assumptions about memory on the part of the electorate.

14



It was also found that the trajectory of support depended on the relative cost of impact for the government

and opposition. In the case where these costs are equal, or greater for the government, the government loses

support through the entire period except, perhaps, in the case of the Stackelberg game.

It was stressed that this is only a first step in building an analysis of the dynamics of competition. Among

the variants of the model that could be explored are those in which the time of the election is optimally

chosen and in which the amount of resources to be spent are fixed. It would also be possible to explore the

case where the cost and response functions depend on the level of support.
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Appendix 1. A1. Open loop game.

The Hamiltonians are given in Equation (5) and the necessary conditions are given by Equations (6) and (7)

where the terminal conditions on the costates are α1(1) = 1 and α2(1) = −1. Since the Hessian matrices for

the Hamiltonians are negative semi-definite these conditions are also sufficient. The solution for the costates

is

α1(t) = e
−

∫ 1

t
k1u1(t)+k2u2(t) and α2(t) = −e−

∫ 1

t
k1u1(t)+k2u2(t) (14)

which gives α1 = −α2. Writing α = α1 = −α2 for i = 1, 2 gives

u̇1 =
k1

c1
αk2u2 > 0 and u̇2 =

k2

c2
αk1u1 > 0 (15)

and this tells us immediately that

ü1 =
k1

c1
k2(α̇u2 + αu̇2) > 0 and similarly ü2 > 0 (16)

To get the trajectory of support for the government substitute Equation (15) into Equation (3). This

gives ẋ = α(k2
1

c1
(1− x)2 − k2

2
c2
x2)

Notes σ = 1

Substituting for k2
i

ci
= k into equation (7) gives

α̇ = kα2 (17)

and this gives

ẍ = k(α̇(1− 2x)− 2αẋ) > 0 (18)

and substituting from equation (17) and dividing through by 1− 2x < 0 gives ẍ > 0 because α̇− 2kα2 < 0.

For k1 = k2 = k̂ it follows from equations (6) and (8) and the trajectory for x that u1 < u2 for all t ∈ [0, 1)

and that u̇1 > u̇2 as required.

It is also possible to get explicit solutions for x and ui for i = 1, 2 for σ = 1 for all t, if these are required.

This gives more detail than is necessary for present purposes. In order to do this use equation (17) to give

α(t) =
1

1 + k(1− t)
(19)

and substituting into the differential equation for x and solving gives

x(t) =
1
2
(1 + (2x(0)− 1)(

α(0)
α(t)

)2) (20)

It is now possible to get the equations for the expenditure of the parties by substituting into equation (6).
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Appendix 2. A 2. Closed loop game.

Solution to the Hamilton-Jacobi-Bellman partial differential equation. (10)

Solving the optimizing problem for equation (10) for u1 and u2 gives us the analogous expressions to (6)

with the partial differentials ω1
x and ω2

x replacing α1 and α2 ([?], 259-63). Substituting the solutions back

into equation (10) and its counterpart and simplifying gives a system of two partial differential equations

−ω1
t = k((ω1

x)2
(1− x)2

2
+ ω1

xω
2
xx

2) and − ω2
t = k((ω2

x)2
x2

2
+ ω1

xω
2
x(1− x)2) (21)

These equations indicate that there might be a symmetrical solution for ω. Redefine the game in equation

(4) with the payoffs at t = 1 written x(1)− 1
2 for player one and 1

2 − x(1) for player two. Since the payoffs

have only been altered by a constant this gives us the equivalent game. Consider solutions of the form

ω1 = ϕ(t)(x(t)− 1
2
) and ω2 = −ϕ(t)(x(t)− 1

2
)

with the boundary conditions derived from the new specification of the game. This means ω1(1) = (x(1)− 1
2 )

and ω2(1) = −(x(1)− 1
2 ). This gives ϕ(1) = 1.

Taking the partial differentials of the proposed solution and substituting into (21) gives

−ϕ̇(x− 1
2
) = k(ϕ2 (1− x)2

2
− ϕ2x2) and ϕ̇(x− 1

2
) = k(ϕ2x

2

2
− ϕ2(1− x)2)

and subtracting the first equation from the second and simplifying gives

ϕ̇ =
3k
2
ϕ2

which means

ϕ(t) =
2

2 + 3k(1− t)

and substituting into ẋ in equation (9) and solving gives

x(t) =
1
2
(1 + (2x(0)− 1)(

ϕ(0)
ϕ(t)

)
4
3 )

In order to get explicit solutions all that we need to do is substitute into u1(t) = k1
c1

(1 − x(t))ϕ(t) and

u2(t) = k2
c2
x(t)ϕ(t).

Appendix 3. A3. Stackelberg game.

1. Analysis of costates

The Lagrangean for the problem is Equation (12) where α4(t) is the costate associated with α2 now treated

as a state variable and α5(t) is the multiplier for the condition that must hold for an optimum u2. See ([2],

p.410-12). This gives the necessary conditions for an internal solution as in Equation (13) and

α̇3 = (k1u1 + k2u2)α3 + k2α5α2 (22)

α̇4 = −α4(k1u1 + k2u2) + k2α5x (23)
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with the transversality conditions α3(1) = 1 because the second derivative of the terminal condition is zero

and α4(0) = 0 from ([2], p.412). It is shown below that α3 > 0, α4 < 0 and α̇3 > 0 for all t and that

| α4(1) |≤ k2
2

c2

∫ 1

0
x2. In order to get α5 we use the fact that ∂L

∂u2
= 0 for an internal solution. This gives

α5 =
k2

c2
(−α3x+ α4α2) (24)

Substituting for α5 in equation (24) and solving equation (22) and writing k1u1+k2u2− k2
c2
α2x = k1u1+2k2u2

as γ to save notation gives α3 = e

∫ t

0
γdq k2

c2

∫ t

0
α4(α2)2e

−
∫ s

0
γdq

ds+ e

∫ t

0
γds(e−

∫ 1

0
γ − k2

c2

∫ 1

0
α4(α2)2e

−
∫ s

0
γdq

ds.

Simplifying this gives

α3 = e
−

∫ 1

t
γds + e

∫ t

0
γds(−k2

c2

∫ 1

t

α4(α2)2e
−

∫ s

0
γdq

ds) (25)

In a similar manner we can solve for (23) to get

α4 = −e−
∫ t

0
γds k

2
2

c2

∫ t

0

α3x
2e

∫ s

0
γdq

ds (26)

It is also possible to get the following information on the costates.

Proposition 2. The signs on the costates are α3 > 0, α4 < 0 and α̇3 > 0 for all t for k2
2

c2
> 0.

Proof. Since α4(0) = 0, we get from equation (25) that α3(0) > 0 and hence α3(t) ≥ 0 in some interval

t ∈ [0, ε) for some ε > 0 and ε sufficiently small, since α3 is continuously differentiable. Differentiating α4

at ε gives α̇4 = γe
−

∫ ε

0
γ
ε

k2
2

c2
α3x

2e

∫ s

0
γdq − e

−
∫ ε

0
γ k2

2
c2
α3x

2e

∫ s

0
γdq

< 0 for ε sufficiently small. It follows that

α4(ε+ δ) < 0 for some δ > 0. Let S be the set S = {t ∈ [0, w) : α4 ≤ 0 and w = sup S}. It is clear that S is

non-empty from what has just been said. Since w = sup S we have α4(w) = 0 and this requires α3(w) = 0 .

This contradicts the fact that for α4(w) = 0 we have α3(w) > 0. It follows immediately that α̇3 > 0.

�

Proposition 3. | α4(1) |≤ k2
2

c2

∫ 1

0
x2.

Proof. The mean value theorem for integrals gives | α4(1) | = e
−

∫ 1

0
γds

e

∫ s

0
γds k2

2
c2

∫ 1

0
α3x

2ds ≤ k2
2

c2

∫ 1

0
α3x

2ds.

To complete the proof note that, from Proposition 2, max α3 = 1.

�

Resource expenditure. σ = 1.

The resource expenditures of the opposition is analysed by first noting from equation (14) and equation (25)

that α(0) > α3(0). Since α4(0) = 0 we have u2(0) > u1(0) as in the open loop game and we again have

u̇2 > 0 and ü2 > 0

for all t.
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In order to analyse the resource expenditure for the government consider the special case where ki = ci = 1

for i = 1, 2. Differentiating u1 gives

u̇1 = α̇3
k1

c1
(1− x)− ẋ

k1

c1
α3 + α̇2k1α4 + k1α2α̇4 (27)

which gives

u̇1(0) > 0

for all values of ki and c1 : σ = 1 from α2 < 0, α4(0) = 0, α̇4(0) < 0 and ẋ(0) < 0. In order to get the sign

for u̇1 at t = 1 substitute from the previous results into equation (27) and simplify to get

u̇1 = −2α2α3x+ α2
2α4

and

ü1 = −2(u1 + u2)α2α3x− α2
2(−α3x+ α2α4) + α2

2α4(u1 + u2)− 2α2α3u1

Rewrite u̇1(1) = 2x+ α4 and use the value for α4(1) to get 2x−
∫ 1

0
x2 > 0 for x ≤ 1. This gives

u̇1(1) > 0 and ü1(0) > 0, ü1(1) > 0
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