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Abstract

The statistical properties of the efficiency estimators based on Data Envelopment

Analysis (DEA) are largely unknown. Recent work by Simar et al. and Banker has shown

the consistency of the DEA estimators under specific assumptions, and Banker proposes

asymptotic tests of whether two subsamples have the same efficiency distribution. There

are difficulties arising from bias in small samples and lack of independence in nested

models. This paper suggest no new tests, but presents results on bias in simulations of

nested small sample DEA models, and examines the approximating powers of suggested

tests under various specifications of scale and omitted variables.
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1. Introduction

In the literature on the measurement of technical efficiency of production the non-

parametric deterministic frontier method of characterising production technology known

as Data Envelopment Analysis (DEA) has gained popularity. Most studies report DEA

efficiency without any evaluation of the model specification or of the significance of the

estimates, although there are exceptions. Rank order tests have been used to compare

efficiency in different groups or subsamples. In contrast, however, to the parametric

cost- and production function approaches there have been few attempts at constructing

statistical tests of the model specification. Some authors have extended the sensitivity

analysis of operations research to DEA, while others have been concerned with the

theoretical conditions for one specification to be equivalent to another.

The assumption of no measurement error in the variables implies that the DEA technique

is deterministic since each observed point is assumed feasible, but does not imply that the

efficiency measures that are calculated are without error. Since these measures are

calculated from a finite sample of observations they are liable to sampling error. While it

has previously been uncommon to refer to the DEA measures as estimators, it is

increasingly recognised that these measures have statistical properties that deserve

attention (see e.g. Simar, 1996).

The extent of bias is of interest in order to get better estimates of the level of efficiency

and the position of the frontier. Hypothesis tests are necessary to asses alternative model

specifications such as variable or constant returns to scale, omitted variables, permissible

aggregation and convexity, and also to compare the efficiency of different unit subsets

such as privately vs. publicly owned firms. While tests such as the Man-Whitney rank-

order tests have been used for subset comparisons1,  the assumptions underlying most

tests are not fulfill ed when testing model specifi cation since such models generally will be

nested.

                                               

1  See e.g. Valdmanis (1992) or Magnussen (1996).
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In recent developments, Banker (1993) has proven the consistency of the DEA

estimators under specific assumptions and suggested statistical tests of model

specification, while Korostelev, Simar and Tsybakov (1995a, 1995b) have been

concerned with the rate of convergence of non-parametric frontier estimators. Kneip,

Park and Simar (1996) extends these results to a more general model. Simar and Wilson

(1995) suggests a bootstrap method for estimating the bias and confidence intervals of

efficiency estimates and Simar and Wilson (1997) extend this to suggest a test of returns

to scale2. Even though this approach seems feasible, it would be advantageous if simpler

techniques were available.

So far, no tests have been suggested that can be shown analytically to able to

discriminate between competing models, especially in small samples. While suggesting

some of the tests analysed below, Banker (1993, p.1272) warns that “... the results

should be interpreted very cautiously, at least until systematic evidence is obtained from

Monte Carlo experimentation with finite samples of varying sizes”. Banker (1996) has

summarised a series of Monte Carlo runs, some of which are similar to the ones in the

present article, concluding that his tests outperform COLS tests and the Welch means

tests in many situations. Although results are promising, Simar (1996, p.181) points out

that the “...number of replications are definitely too small to draw any conclusions...” . In

Banker’s studies, there are 10-30 samples in each trial, while the simulations reported

below are based on 1000 samples in each trial. Furthermore, Banker generally only

provides one estimate of power (lack of Type II errors) in each experiment, while this

paper plots power curves based on five or ten such estimates.

In addition to the major undertaking of providing enough simulations to draw clear

conclusions about the usefulness of the suggested approximate hypothesis tests, this

paper aims at providing some simulation evidence on the bias of the DEA efficiency

estimators. After a brief review of the efficiency measurement literature, the subsections

of section 3 describe the data generating process, the DEA efficiency estimators, and the

suggested tests, and these are followed by three result subsections describing the basic

                                               

2 See Grosskopf (1996) for a survey of statistical inference in nonparametric models.
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results for bias and the returns to scale tests, variations on the basic assumptions, and a

section on testing for variable inclusion. The paper does not propose new tests or bias

correction methods; one needs first a proper evaluation of those allready sugggested.

Some substantive findings do however give grounds for conclusions in empirical work.

The simulations show that bias is important, and that the suggested tests are all of

incorrect size because of this bias and the lack of independence in nested models. Some

of the tests do, nevertheless, pass the size criterium and retain considerable power in

most simulations.

2. Efficiency measurement

The idea of measuring technical efficiency by a radial measure representing the

proportional input reduction possible for an observed unit while staying in the production

possibili ty set stems from Debreu (1951) and Farrell (1957) and has been extended in a

series of papers by  Färe, Lovell and others3 . Farrell 's specification of the production

possibili ty set as a piecewise linear frontier has also been followed up using linear

programming (LP) methods by Charnes, Cooper et al4.  The decomposition of Farrell 's

original measure relative to a constant returns to scale (CRS) technology into separate

measures of scale efficiency and technical efficiency relative to a variable returns to scale

(VRS) technology is due to Førsund & Hjalmarsson (1974) and has been implemented

for a piecewise linear technology by Banker, Charnes and Cooper (1984). Their DEA

formulation has served as the main model of most recent efficiency studies and is the

basic model in this paper.

In parallel with the non-parametric or mathematical programming approach to effi ciency

measurement, considerable research has been conducted in a parametric tradition

originating with Aigner and Chu (1968). Their deterministic approach was to estimate a

smooth production frontier with residuals restricted to be non-negative and interpreting

these residuals as a measure of inefficiency. Like in the non-parametric models, this

                                               

3  E.g. Färe & Lovell (1978) and Färe, Grosskopf  & Lovell (1985).
4  E.g. Charnes, Cooper & Rhodes (1978) who originated the name DEA. For an overview of the
literature on DEA see e.g. Seiford & Thrall (1990).
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interpretation is vulnerable to measurement errors and model mis-specification. Aigner,

Lovell and Schmidt (1977) and Meeusen and van den Broeck (1977) incorporate a

stochastic error term in addition to the inefficiency term in a composed error model of a

production or cost  frontier. To identify these terms separately in cross-section studies

explicit assumptions are needed for the functional form of the distribution of each term5.

With explicit distributions it is possible to construct statistical tests in such models.

The major drawbacks of the non-parametric methods is precisely that they have not had

access to tests that are known to have desirable properties in small samples, and in

addition have not been able to account for measurement errors.  The drawbacks of the

parametric stochastic frontier approach are chiefly the structure imposed on the data by

the choice of functional forms, both for the frontier and for the separate error

distributions, and in the context of production functions the diffi culty of modelli ng

multiple-input multiple-output technology6.

Recently some work has been done on developing stochastic non-parametric frontier

models (e.g. Petersen and Olesen, 1995). The methods suggested so far require,

however, either panel data or exogenous estimates of vital parameters such as constraint

violation probabili ties. The aim of the present paper is less ambitious. Firstly, no account

is taken of measurement errors. Secondly, the paper suggests no new statistical tests, but

scrutinises tests present in the literature that try to take the analysis of model mis-

specifi cation into the realm of the widely used non-parametric models. Hopefully, the

experimental evidence presented here point to research directions that may result in

better tests in the future.

One attraction of the non-parametric frontier methods is that the functional form is

perfectly flexible. On the face of it, the models are solveable when the number of

                                               

5  Panel studies often replace this with similarly strong assumptions on the time pattern of ineff iciency.
6  For an overview of the stochastic frontier parametric approach see e.g. Bauer (1990) or Greene
(1993b). Both approaches have seen an active and extensive literature in recent years, often written by
researchers working in both subfields. It is beyond the scope of this paper to give a full discussion of the
relative merits of the competing methods, see e.g. Fried, Lovell and  Schmidt (1993) and Diewert and
Mendoza (1996).
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dimensions becomes large, even when parametric methods would exhaust the degrees of

freedom. A full set of disaggregated inputs and outputs and the inclusion of all

potentially relevant variables does however create problems even in DEA. Firstly, the

DEA method will measure as effi cient all units that in some senses have extreme values

of the variables; in the variable returns to scale (VRS) specification this includes those

that have the lowest value of an input or the highest value of an output. These units are

measured as efficient by default. A variable that in fact is irrelevant to the analysis could

therefore destroy the efficiency measures for some units, even if the average efficiency is

not much affected. Secondly, a related phenomena is that inclusion of an extra variable,

as will be shown, increases the mean bias in the effi ciency estimators.

Thirdly, in common with the problem of multicolli nearity in parametric methods, any two

variables that are highly correlated and therefore have much of the same information

value will tend to destroy the rates of transformation and substitution on the frontier7.

Any use of these marginal properties such as returns to scale, relative shadow prices or

marginal costs will therefore be affected. Finally, on a more practical level, a model could

become unmanageable and not easy to understand if the dimensionality is very high.

Tulkens & Vanden Eeckaut (1991) reject the frontier concept altogether replacing it with

a concept of dominance. In the context of the Free Disposal Hull (FDH) specification

suggested by Deprins, Simar & Tulkens (1984) they take the view that the non-

parametric methods can be interpreted as measuring the relative efficiency of the

observed units with no reference to an underlying production possibili ty set. In such a

setting the properties of the frontier are by definition of no interest, nor are estimates of

bias in measured efficiency since the relative efficiency is observed without bias. This stil l

leaves open the question of model misspecification, and the problem of  units being

efficient by default.

In contrast this paper proceeds on the assumption that both the extent of  bias and the

properties of the underlying production or cost possibili ty set are of interest. The basic

                                               

7 See Olesen and Petersen (1991, 1996) for a discussion of multicolli nearity in the DEA model, and e.g.
Koutsoyiannis (1977) in econometric models.
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assumption is that there is a possibili ty set defined not only by technology in a narrow

sense, but also by the common constraints given by nature, custom, work practice,

government regulations, knowledge and organisational technology, including the set of

incentive mechanisms available to owners and management of the units under

observations. Another important  assumption is that there are variations between these

units in the objectives of the agents involved, and perhaps also in some of the constraints

facing them. To the extent that the differences in constraints are in some sense

unchangeable, these should be included in the model specification. If differences in

objectives, the use of incentive mechanisms or other changeable constraints, leads to

differences in actual behaviour between units so that some of them  are not on the

frontier of the possibili ty set, these units are deemed ineffi cient. The distribution of

inefficiency between firms is therefore not truly random. If we were able to model these

behavioural diff erences we would also have more information on how to eliminate

inefficiency. Since the Industrial Organisation literature has not so far come up with

models that can be tested empirically, we must instead model inefficiency as if it was

generated randomly8.

3. The model

3.1  The Data Generating Process

Given a vector y  of K outputs and a vector x  of  L inputs the production possibili ty or

technology set is defined by

P K L= ∈ℜ+
+( , )y x  y  x can be produced from < A (1)

which can be equivalently be described by the Shephard (1970) input requirement set

L P( )  ( , )y x y x= ∈< A (2)

                                               

8  See e.g. Førsund and Hjalmarsson (1987).
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The border of the input set  for y y≥ ≠0 0,  is known as the production isoquant,

defined by those points from which a proportional reduction in input usage is not

possible for a given output level:

� T TL L L( )  ( ),  ( ),  ,y x x y x y= ∈  ∉ ∀ ∈ 016= B (3)

The properties of these sets and their output equivalents are extensively discussed in

Shephard (1970).

The data generation process used for the simulations below follow assumptions A1 to

A4 of Kneip, Park & Simar (1996). These are briefly

A1) that the n observations are independently and identically distributed (i.i.d.)

random variables on the set P,

A2) that the support of the density of outputs y is compact. Further, by

A3) the input mix has a density function conditional on output levels, and the input

vector length has a density conditional on output levels and input mix. This

assumption implies that inefficiencies are radially generated and input-oriented.

Finally, by

A4) the density of the modulus must be such that one will observe points arbitrarily

near the frontier when the number of observations is sufficiently large.

In the simulations below, power curves are generated for the tests under examination.

These power curves consists of  5-10 runs of 1000 samples, generated with different true

values of a parameter, mainly the elasticity of scale. The null hypothesis is that one of

these values is true, e.g. constant returns. In addition to a basic trial A), some central

assumption is varied in subsequent trials, e.g. the sample size in trial B), the effi ciency

level in trial C), the ineffi ciency distributional form in trial D), the distribution of output

in trial E) and the number of inputs in trial F). Finally the G) trial tests for the inclusion of

an extra variable rather than the returns to scale.

The assumptions A1)-A4) above are operationalized by specifying a technology set

defined by a production function with one output, a single scale parameter and a Cobb-

Douglas core:
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The elasticity of scale is equal to the scale parameter E , but in all cases the null

hypothesis will assume constant returns to scale ( E = 1). In the base trial A and most of

the others the frontier is a simple function with one input and one output, y x= E , while

in trial F and G there will be multiple inputs. As is usual in Monte Carlo studies, the base

case under the null hypothesis is very simple, but any other base case would be more ad

hoc, and the variations below point to the direction of the change in results in more

realistic settings.

In each of the trials9 reported in this paper there is one run with the null hypothesis true

and 5-10 runs with the null hypothesis false, each run having s=1000 samples, each

sample j s= 1�  with a different set of observations N j , but the same sample size n of

i.i.d. generated observations ( , ) ,y xij  ij
jP i N∈ ∈ , fulfilli ng assumption A1) above. The

sample size n is 100 in most trials, but varies in trials B10.

By A2), the output quantity y is generated randomly from a distribution with a common

mean and variance

                                               

9  For simplicity I omit subscripting the trials.
10  The simulations of the 168000 samples were carried out partly in GAUSS on an IBM RS 6000
running UNIX, partly in GAUSS on a Pentium 90 PC and partly in a Borland Delphi 3.0 Pascal
program calling the XA solver on a Pentium II 233 PC. The latter ran about 5 times as fast as each of
the Pentium 90 PC and the RS 6000, while the Pascal/XA combination performed about 60 times as fast
as GAUSS. The largest trials (B6) each took 5 hours on Pascal/Pentium II but algorithms could be
further optimised for the purpose. The basic trial A has been run on all platforms to check the
consistency of results. Random Uniform numbers are drawn using internal 32-bit generators, while
algorithms for Normal, Lognormal, Exponential and Gamma  distributions are from Press et al. (1989).
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y f yij
f f~  ( ),  ,P V= =10 22 (6)

where f in all trials except E is the normal distribution11, yij ~  N( , )10 2 , truncated at 0

and 20 to comply with compactness and non-negativity12.

Less general than A3), the input mixes are generated independently of output level y as

proportional to two numbers drawn from the same distribution as y,

x

x
f l m Ll

ij

m
ij

l
ij

m
ij  l

ij
m
ij�

��
�
��

= ∈τ
τ

τ τ τ, , ( ), , , ,~ 1� (7)

When there is only one input, (7) is, of course, redundant. Together, (5) - (7) determine

a unique frontier point on the isoquant, y L yij  ij  ij, ( )*x2 7 ∈� . Fulfilli ng the second part of

assumption A3), the actual observed values are generated by multiplying the input

quantities  by a multiplicative inefficiency term for each observation

x xij
ij

ij
ij g= +1 γ γ γ3 8 * , ( )~ (8)

where the inefficiency term γ  is generated randomly from a one-sided distribution that is

usually halfnormal γ ij N~ ( , . )0 025 , but where the inefficiency level varies in trial C, and

the functional form varies in trial D. The trials are restricted to inefficiency distributions

g( )J that fulfil assumption A4) and have a positive density arbitrarily close to the

frontier (J → 0).

Figure 1 shows the generated observations in one typical sample with n=100. In the

output direction the observations are normally distributed, while the inputs are

halfnormally distributed away from the frontier which represents efficient input quantities

proportional with the output quantities.

                                               

11 See Johnson & Kotz (1970a ,1970b) for a full account of the properties of the distributions used.
12 This had no practical consequence, since several million draws were made before these bounds were
breached the first time.
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basic trial A, n=100, g~|N(0,0.5)|, with true null hypothesis E = 1.The solid line represents the mean and

sampling distribution of the true mean efficiency Ej
0 , the dashed lines are mean and sampling distribution

of the CRS mean estimated efficiency �Ej
0 , and the dotted lines  are mean and sampling distribution of the

VRS mean estimated efficiency �Ej
1 .
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3.2  The DEA Efficiency Estimators

Farrell (1957) technical input efficiency can be defined  by

E P  P( , , ) Min  ( , )y x  y x= ∈
T
T T< A (9)

which, for a feasible point ( , )y x ∈P is a number in the interval (0,1] corresponding to

the proportional scaling of all inputs necessary to bring the observation to the frontier

(isoquant). As noted by e.g. Färe & Lovell (1978) this is the reciprocal of the definition

of the Shephard (1970) input distance function, and results could equally well have been

represented by this measure. Among the properties of E(.) is the homogeneity of degree -

1 in inputs, and that it provides an equivalent characterisation of technology since the

efficiency measure for a point is 1 if and only if the point is on the

isoquant,x y y x∈ ⇔  =�L E P( )  , ,1 6 1 (Shephard, 1970, 67-68).

The efficiency can be calculated relative to the true technology if known, which in our

case is

E E  P E  P  E  Pij
ij  ij  ij

ij
ij

ij

ij  ij

ij

≡ = + =
+

=
+

( , , ) ( ,  , )  ( , , )* *y x  y  x  y x1
1

1

1

1
γ

γ γ
3 8

3 8  3 8
(10)
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where the last two equalities follows from the homogeneity of the efficiency measure and

the fact that the point yij ij, *x2 7  is on the isoquant. The efficiency measures can also be

calculated relative to an estimate of the technology such as the DEA variable returns to

scale estimate from sample j

� , , ,P y j sj j j i
i N j

VRS = ≥ ≥ ≥ =
%
&
K

'K

(
)
K

*K
∀ ∈

∈
∑Y x Xλ λ λ λ0 1 1� (11)

where Y Xj j,  are the vectors or matrices of observed outputs and inputs in sample j and

λ  is a vector of reference weights. This corresponds to the formulation in Banker,

Charnes & Cooper (1984), and is the minimum extrapolation estimator of the technology

satisfying convexity, free disposability of inputs and outputs and feasibility of observed

units (Banker, 1993).   Adding a homogeneity requirement gives the DEA constant

returns to scale estimator of technology

� ( , )( , ) � , , ,P y y P y j sj j j j
CRS VRS= ∈ > = ≥ ≥ ≥ ∀ ∈x x Y x XΛ Λ Λ 0 0 1> C = Bλ λ λ � (12)

where the removal of the restriction that referencing weights add to unity corresponds to

the formulation in Charnes et al. (1985).

In each trial DEA efficiency estimates �Eij
k  are calculated under a null hypothesis (k=0)

and under an alternative hypothesis (k=1). Except in last trial G, the null hypothesis is

that the true technology exhibits constant returns to scale, and the alternative hypothesis

is one of variable returns to scale. One can define a shorthand for the estimated

efficiencies under the null and alternate hypothesis as

� � ( , , � ), � � ( , , � )E E E P E E E Pij ij
CRS ij ij

j
CRS

ij ij
VRS ij ij

j
VRS0 1= = = =y x y x (13)
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Only input saving efficiency estimates are calculated, although in CRS the input and

output estimates will be the same. Figure 1 shows graphically the CRS and VRS

efficiency estimates for a unit A. In the figure, the number of VRS reference points is in

fact eight (some very close together), each being a vertex of the VRS frontier. For CRS

in the figure there is only one referencing observation, as will generally be the case with

one input and one output.

In reporting the results of the simulations, the arithmetic mean of efficiencies for a set of

observations are subscripted by their common index, i.e.

� � , � � , , ,E E n E E s kj
k

ij
k

i N

k
j
k

j

s

j

= = ∈ ⋅
∈ =
∑ ∑

1

0 1; @ (14)

including the dot · to indicate no  k  superscript index or hat for the average true

generated efficiency, and similarly for other measures such as the estimates of

inefficiency terms and its averages

�

�

, � � , � � , , ,J J J J Jij
k

ij
k j

k
ij
k

i N

k
j
k

j

s

E
n s k

j

= − = = ∈ ⋅
∈ =
∑ ∑1

1 01
1

; @ (15)

3.3  The Bias

Korostelev, Simar & Tsybakov (1995a) show that when the true frontier is nonconvex

and the inefficiency is uniformly distributed over an interval, although the FDH estimator

is a maximum likelihood estimator, the rate of convergence is slow. In Korostelev, Simar

& Tsybakov (1995b) they extend the results to a convex technology where the DEA

estimator is a maximum likelihood estimator. In this case they find a rate of convergence

higher than in the FDH case, but the rate is still decreasing in the number of dimensions

(number of inputs plus number of outputs).
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Banker (1993) also proves that the DEA output estimator is a maximum likelihood

estimator for a convex technology in a model with an additive inefficiency term that is

distributed with mode at 0 (i.e. at the frontier). He further proves that the DEA estimator

is consistent (i.e. asymptotically unbiased and with a vanishing variance) as long as the

cumulative density function is positive for all inefficiencies greater than 0, even without

mode at this value. Kneip, Park and Simar (1996) extend these results to a more general

multi-input multi-output, proving consistency if the assumptions A1-A4 above are

satisfied. They also investigate the rate of convergence, which they find depend on the

smoothness of the frontier and deteriorate for higher dimensionality (i.e. number of

outputs plus inputs). Gijbels et al. (1996) derive the asymptotic distribution of the DEA

frontier estimator, and suggest a bias-corrected estimator, but only for the one-input one-

output case. It is shown there that the bias is much more important than the standard

deviation for the mean square error of the estimates.

The problem of bias in DEA follows from the fact that the probability of observing a

truly efficient unit in a sample is less than one, and for most of the commonly specified

distributional forms in fact zero even if one will observe a unit arbitrarily close to the

frontier as the sample size increases. It will (almost) always be possible to be more

efficient than the most efficient of the observed units. In figure 1 one can see that the

CRS frontier lies to the right of the true frontier, even though CRS is the correct model

specification in this case. Maintaining the assumption of no measurement error, units will

generally be estimated as more efficient than they actually are if the model is correctly

specified. By construction, if the model k is correctly specified, the error Bij
k  of the

estimate will be greater or equal to zero13:

� , �E E B E Eij
k

ij ij
k

ij
k

ij≥ ≡ − ≥ 0 (16)

                                               

13 Allthough intuitive, the proof of this and subsequent statements on ranked and nested models require
some tedious definitions and manipulations, and are therefore in an appendix. Diewert and Mendoza
(1996) has an informal discussion of some of these results, using the term Le Chatelier Principles.
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Furthermore, as is commonly observed in the literature (e.g. Diewert and Mendoza,

1996), the VRS estimates will show greater or equal efficiency than the CRS estimates.

In figure 1 the VRS frontier is on or to the right of the CRS frontier. Färe & Primont

(1987) show that if an aggregated model is nested within a disaggregated model, the

measured �EVRS in the disaggregated model will be greater or equal than the measured

�EVRS in the aggregated model. These relationships follow from the principle that the

optimal value of a minimised variable can never become lower if a restriction is added to

the optimisation problem. This principle also implies that a model in which a variable is

included will give an efficiency estimate that is as least as high as in the same model with

the variable omitted, since including a variable is the same as adding an extra restriction

to the optimisation problem in (9) when P is replaced with (11) or (12). In general

therefore if model 0 is nested within model 1, in the sense that model 0 can be obtained

from model 1 as a special case:

� � ,E E B Bij ij ij ij
1 0 1 0≥ > (17)

if model 1 assumes the feasibility of all observations (see proposition 1 in the appendix).

Since the true model is equal to or nested within the null hypothesis model in the true

simulations in this paper, and since (16) and (17) holds for each individual observation, a

complete ranking exists also for the average efficiencies in each sample generated under

the true null hypothesis:

� � ,E E E B Bj j j j j
1 0 1 0≥ ≥ ≥ (18)

The average efficiency estimates �Ej
k in each sample are also the sample estimate of true

mean efficiency. In each trial there are 1000 samples, and averaging over these gives the

Monte Carlo estimate of the expected value of these mean efficiency estimates �E k  and

their bias B k . These obey the same ranking as in (18).
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Thus there is not only bias in estimators of each unit’s efficiency , but also in the

estimators of average efficiency, and furthermore the bias is at least as great in more

restricted models, i.e. with increasing dimensionally. If the null hypothesis is false, the

estimates are no longer nescessarily larger than the true efficiencies, but the ranking of

the two estimates remain valid14.

3.4  The Tests

On the basis of his consistency results basis, Banker (1993) suggests asymptotic tests for

comparing the efficiencies of to subsets of observations, N Na b, , and a null hypothesis

that the single parameter of the inefficiency distributions are equal. If the inefficiency

estimates �J ij  are independently and identically distributed (i.i.d.). and the underlying true

inefficiency distribution is halfnormal, the statistic

F

n

n
j
H

ij

a

i N

a

ij

b

i N

b

a

b

= ∈

∈

∑

∑

2

2

( )

( )

�

�

J

J

(19)

is asymptotically F-distributed with (n na b, ) degrees of freedom.

If the inefficiency estimates are i.i.d. and the underlying distribution is exponential, the

statistic

F

n

nj
E

ij
a

i N

a

ij
b

i N

b

a

b

= ∈

∈

∑
∑

�

�

J

J
(20)

                                               

14 In fact, when β >1 the true technology defined by (4) is not convex, and does not therefore fulfil the

assumptions underlying the alternate hypothesis estimate �Pj
VRS. A parallel run of trial A below with a

local linearisation reveals that this has only negligible effect on the bias and power results for this range
of β . Even in the extreme case of a scale elasticity of 1.5 there are only 4% of the observations with a

negative bias Bij
1 . Since the interest lies around the true null, the much simpler formulation in (4) is

chosen.
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is asymptotically F-distributed with  ( 2 2n na b, ) degrees of freedom.

If no parametric assumptions are maintained about the inefficiency distributions, Banker

further suggests using a Kolmogorov-Smirnov type of nonparametric test of the equality

of two distributions. Applied to the distributions of  i.i.d. efficiency estimates � , �E Eij
a

ij
b ,

and denoting the estimated cumulative distribution function of these as S E S Ej
a

j
b( ), ( ) ,

the statistic

D S E S Ej E j
a

j
b+ = −Max ( ) ( )= B (21)

is asymptotically distributed with a rejection probability of

Pr ,D
n n

n n
z e zj

a b

a b
z+

−
−>

+
�
��

�
��

�

�
�
�

�

�
�
�

= >

1

2
2 2

0  (22)

which makes it applicable for testing one-sided hypotheses (Johnson & Kotz, 1970b).

For comparison, the simple T-statistic15 for the equality of group means is reported:

T
E E

n E n E

n n n n

j
i N ij

b

i N ij
a

b

i N ij
b a

i N ij
a

b a b a

b a

b a

=
−

+
+ −

+�
! 

"
$#

∈ ∈

∈ ∈

Mean � Mean �

Var ( � ) Var ( � )

3 8 3 8

2

1 1
(23)

which, if sample means are i.i.d. normal, is T-distributed with n na b+ − 2  degrees of

freedom. By the central limit theorem the sample means will be approximately normal

unless sample size is very small. The expression greatly simplifies when n na b=  as is the

case in the reported simulations. Finally the T-test for paired observations is also

reported:

                                               

15  See e.g. Bhattacharyya & Johnson (1977, p.295-296).
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T
E E

E E

n

j
P i N ij

b
ij
a

ij
b

ij
a

i N

=
−

−
−

∈

∈

Mean (� � )

Var ( � � )

1

(24)

which, if mean difference in efficiency is normal with zero expected value, is T-

distributed with n-1 degrees of freedom.

Banker (1993) investigates the asymptotic properties of  the tests (19)-(20) for disjoint

groups, but does not consider the usefulness of the tests for nested models, and leaves

open their approximating powers in small samples. In the Monte Carlo studies

summarised in Banker (1996), however, these tests are explicitly applied to nested

models, where they are formulated with full sample estimates both for a and b above.

The full sample tests appear by substituting into (19)-(24) for each sample j

� � , � � ,

� � , � � ,

,

E E

E E

N N N n n n

ji
a

ij ij
a

ij

ij
b

ij ij
b

ij

a b
j

a b

= =

= =

= = = =

0 0

1 1

J J

J J (25)

Since DEA estimators are generally not independently and identically distributed (i.i.d.),

there are theoretical problems with all five tests. The first four assume independence

between all observations of E  (or γ ), which is obviously not fulfilled for nested models

if all observations are included in the calculations under both the null and the alternative

hypothesis. There will then be a strong dependence resulting from measuring efficiency

for the same observations under both models. This strong dependence will not be present

however, if the sample is split into two equal size sets N N N N Nj j j j j0 1 0 1∪ = ∩ = ∅,  so that

e.g. half the observations are used when calculating the null hypothesis variables, and the

other half are used when calculating the alternative hypothesis variables. The full sample

is still used as reference sets in the calculation of the technology estimates in (11) and

(12). In the simulations, split sample tests are calculated by substituting in (19)-(23)
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� � , � � ,

� � , � � ,

, , /

E E u N

E E v N

N N N N n n n

ij
a

uj ij
a

uj j

ij
b

vj ij
b

vj j

a
j

b
j

a b

= = ∈

= = ∈

= = = =

0 0
0

1 1
1

0 1 2

J J

J J (26)

and superscripting the estimate means and their biases with S e.g. � Mean �E Ej
Sk

i N ij
k

jk
= ∈ 3 8 .

Splitting the sample can not be done for the paired T-test in (24), because there would be

no pairing of estimates.

Even if one has removed the strong dependence by splitting the sample, there is a weak

dependence between estimated efficiencies, since they can be calculated relative to the

same referencing observations. This weak dependence will diminish as the sample size

increases, but to avoid it one can partition the observations also in the technology

estimates. Let the technology estimate for hypothesis k be �Pj
Rk  calculated from (11) or

(12),  but so that only the observations in each subset enter the matrices Y Xj
k

j
k,  . Then

in the simulations, separate reference set tests are calculated by substituting in (19)-(23)

 

� � ( , , � ), �

�

,

� � ( , , � ), �

�

,

, , /

E E E y x P
E

u N

E E E y x P
E

v N

N N N N n n n

ij
a

uj
R

uj
uj uj

j
R

ij
a

uj
R j

ij
b

vj
R

vj
vj vj

j
R

ij
b

vj
R j

a
j

b
j

a b

= = = − ∈

= = = − ∈

= = = =

0 0
0 0

1 1
1 0

0 1

1 1

1 1

2

J

J (27)

again superscripting averages with R.

In addition to their dependence, the estimators of nested models are not identically

distributed since, as is shown in (17) above, by adding an extra restriction the model

specification itself makes the bias of a model greater than the bias of a model that is

nested within it. If the samples are split, this difference holds only in expected values, and

not necessarily for all samples. As both estimators are consistent, this effect should

diminish as sample size increases. The simulations in the next section aim to shed light on

how serious the bias and dependence affect the applicability of the various tests in finite

samples.
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Finally, all but the paired T-test in (24) are based on comparisons of the magnitude of the

sample average of the estimates or their squares, rather than on some measure of the

differences between the individual unit estimates. They do not use the information

contained in the paired nature of the estimates, and will therefore generally not have the

full potential power.

The null hypothesis in each of the simulations below is that the assumptions underlying

P0 are true. Since model 0 is nested in model 1, this latter could equally well describe

technology when the null is true, implying P P P= =1 0 . Even if the null is not true, it is

always assumed that P P= 1 . Since we know from the nested character of the models

and proposition 2 of the appendix that P P1 0⊆ , the null and alternate hypothesis can be

formalised as:

 H P P P H P P P0
1 0

1
1 0: , := = = ⊂ (28)

This is equivalent to equal true efficiencies H E E H E Eij ij ij ij0
1 0

1
1 0: , := >   for all

observations i in the sample j, and the tests are based on comparisons of the estimates of

these efficiencies. This implies one-sided tests where the null/hypothesis is rejected if the

test statistic exceeds the critical value of the theoretical distribution. The rejection rate

r t tt ( ) Pr *⋅ = >2 7  for some statistic t and critical value t* is generally a function of the true

characteristics of the technology, which in the simulations is manipulated by a parameter.

Two types of error can occur by this procedure, rejection of a true null hypothesis (Type

I error), or the non-rejection of a false null hypothesis (Type II error). The size

(significance level) of a test is defined as the rejection probability if the null hypothesis is

true, rt(true null)=Pr(Type I error), and the power of the test defined as rejection

probability when it is false,  rt(false null)=1-Pr(Type II error). While much of the
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Table 1. Results from tr ial A. Mean efficiencies, estimates and bias with
different scale parameters.

Common conditions: Number of samples s=1000, Sample size n=100, One
input/one output, Normal distribution of output y N~ ,10 21 6 .

Halfnormal distributions of ineff iciencies γ ~ , .N 0 0251 6
implying E(γ)=0.399 and E(Ε)=0.745.

Scale parameter β 0.6 0.8 1 1.2 1.4

True generated variables

E Ej j= Mean 3 8 0.7450 0.7448 0.7452 0.7443 0.7451

SD j jE3 8 (0.0141) (0.0149) (0.0152) (0.0145) (0.0145)

Mean SDj i ijE3 84 9 0.1441 0.1436 0.1437 0.1439 0.1439

γ γ= Meanj j3 8 0.3989 0.3992 0.3985 0.4004 0.3988

CRS Estimates

� Mean �E Ej j
0 0= �

�
�
�

0.6430 0.7197 0.7500 0.7354 0.7208

SD �

j jE 0�
�

�
�

(0.0442) (0.0227) (0.0151) (0.0166) (0.0198)

Mean SD �

j i ijE04 94 9 0.1396 0.1413 0.1446 0.1433 0.1424

B Bj j
0 0= Mean 3 8 -0.1021 -0.0251 0.0048 -0.0089 -0.0243

MSE Ej( � )0 0.0124 0.0011 0.0003 0.0004 0.0010

MSE( � )Eij
0 0.0150 0.0014 0.0000 0.0004 0.0015

VRS Estimates
� Mean �E Ej j

1 1= 4 9 0.7706 0.7681 0.7668 0.7651 0.7651

SD �

j jE14 9 (0.0144) (0.0145) (0.0150) (0.0146) (0.0148)

Mean SD �

j i ijE14 94 9 0.1496 0.1490 0.1488 0.1488 0.1487

B Bj j
1 1= Mean 3 8 0.0256 0.0233 0.0216 0.0208 0.0200

MSE( � )Ej
1 0.0009 0.0008 0.0007 0.0006 0.0006

MSE( � )Eij
1 0.0021 0.0020 0.0018 0.0017 0.0017

In the row headers, Meanj j  jj

s
z z s3 8 =

=∑ 1
 for a variable z, SD Meanj j  j  j jj

s
z z z s3 8  3 84 9= −

=∑ 1

2

. If

the index is i it runs over the list of units 1..n instead. The mean square errors are

MSE � Mean � E( )E E Ej
k

j j
k�

�
�
� = −�

! 
"
$#

�
��

�
��

2

 and MSE � Mean Mean �E E Eij
k

j i ij
k

ij4 9 = −�
�

�
�

�
��

�
��

2
.
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literature assumes that the size is under the control of the researcher (e.g. Greene, 1993a,

p.126), Engle (1984) characterises a test as best if it has the maximum power among all

tests with size less than or equal to some particular level. In the simulations, only 5%

tests will be reported, so the best test will be the among those with  (true null) 5%rt ≤ .

This criteria presuposes that the null hypothesis is the conservative choice since it is the

hypothesis which is not rejected if the tests are inconclusive. There are both

methodological and economic reasons for choosing the model that is nested within as the

null. Firstly this model is simpler and therefore avoids problems of extreme observations

being efficient by default and of multicolinearity discussed above. Secondly, it is likely to

be statistically more efficient, in that estimators will converge faster. Thirdly, it is in most

cases the supposition which is least likely to have undesirable social consequences. In the

case of testing for returns to scale, rejecting CRS could mean that there are market

imperfections that require costly government intervention. Similarly, when testing for

inclusion of irrelevant variable, producers will have a selfinterest in results that show

them to be more efficient. Since including more variables is shown above to give

efficiency estimates (and bias) that are at least as high, and since producers are normally

better organised than consumers, there could well be reasons to counterweigh an

inclination to blow up the number of variables.

4. The Results

4.1  Bias and Testing for Returns to Scale: The Basic Results

Bias

The results of trial A is reported in detail in table 1. This simulation has a sample size of

100 and a halfnormal distribution of inefficiencies with a theoretical mean γ of 0.3989,

and also serves as a basis of comparison for subsequent trials. The central column

represents results when the null hypothesis of constant returns to scale is true (β =1).

The mean of the 100,000 true efficiencies E  is 0.7452, and this is approximately

constant across different values of the scale parameter. Similarly the mean true
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Figure 3: Bias and power curves for tests in trial A.
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inefficiency is fairly constant.  In the CRS model, mean estimated �E 0  when the null is

true is as expected slightly higher (0.7500) while the VRS estimate �E1  is 0.7668.

The frequency distributions of the sample means E E Ej j j, � , �
0 1 are shown in figure 2. The

figure shows the magnitude of the bias in each model, which is clearly greater for the

VRS estimators than the CRS estimators, in accordance with (18). The figure also shows

that the distributions are nearly normal in shape and have approximately the same spread.

The Kolmogorov-Smirnov test  is not able to reject the normality of any of these

distributions16. Even though the underlying distribution of Eij  is decidedly non-normal,

with a sample size of 100 the central limit theorem seems to have some strength.

The second row of table 1 is the standard deviation of the sample mean true efficiencies,

which is the Monte Carlo estimate of the standard error of the sample mean. As

expected, the mean of the standard deviations in each sample divided by the n = 10

provides a reasonable estimator of this standard error (See e.g. Greene, 1993a, p.91).

For the T-test at least, the problem lies in the bias and dependence and not in non-

normality of the mean estimates.

The estimator bias as a function of the scale parameter is listed in table 1, and is also

shown in panel a) of figure 3. The CRS estimator full sample bias B 0 has a slightly

positive maximum when CRS is true at β =1, but drops to negative values away from the

null both with true increasing and decreasing returns to scale. Ideally, the bias  should be

                                               

16 The adjusted Kolmogorov-Smirnov statistic D n for the two-sided test has a value of 0.579, 0.568

and 0.651 for the distributions of E E Ej j j, � , �
0 1  respectively, which compares with a critical value of

0.819 at the 10% significance level.
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zero at  β =1, but otherwise this is satisfactory. The problem lies more in the bias of the

VRS estimators, which although stable across scale parameters, are consistently high at

2-2.5%. A common criteria for evaluating estimators is the mean square error (MSE),

which is also reported in table 1. The CRS efficiency measures are
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Table 2. Results from tr ial A. Corr elations and power curves for tests.

Scale parameter, E 0.6 0.8 1 1.2 1.4

Estimate correlation

Mean �
� , �

j i ij ijE Eρ 0 14 94 9 0.8586 0.9439 0.9642 0.9604 0.9493

�
� , �ρ j j jE E0 1�

�
�
�

0.3503 0.6214 0.8776 0.8387 0.7505

�
� , �ρ j j

S
j
SE E0 1�

�
�
�

0.0182 0.0652 -0.0044 -0.0142 0.0296

Split sample bias

B BS
j j

S0 0= Mean 3 8 -0.1024 -0.0254 0.0051 -0.0088 -0.0243

B BS
j j

S1 1= Mean 3 8 0.0263 0.0236 0.0216 0.0206 0.0197

Separate reference set bias

B BR
j j

R0 0= Mean 3 8 -0.0762 -0.0120 0.0097 -0.0008 -0.0126

B BR
j j

R1 1= Mean 3 8 0.0414 0.0390 0.0365 0.0365 0.0343

Full sample rejection rates in percent (5% tests)

FH 99.9 47.6 0.2 5.6 41.3

FE 99.9 42.2 0.0 3.4 33.6

D+ 99.6 46.0 0.2 7.3 37.4

T 100.0 78.8 2.3 29.5 76.4

TP 100.0 100.0 99.4 100.0 100.0

Split sample rejection rates in percent (5% tests)

FH 89.4 33.3 9.6 16.6 29.5

FE 88.0 27.7 6.2 11.0 23.0

D+ 89.3 33.1 8.0 15.8 27.2

T 95.7 50.7 12.8 25.3 42.8

Separate reference set rejection rates in percent (5% tests)

FH 83.0 37.6 16.5 25.0 33.6

FE 81.4 31.6 10.1 20.7 29.4

D+ 82.7 32.7 12.4 23.1 31.2

T 91.6 51.5 22.9 34.9 46.5

In the row headers, � , ( )( ) ( ) ( )ρ j j j  j  jj

s

jj

s

jj

s
z w  z z w w  z z  w w3 8 = − −  −  −

= = =∑ ∑ ∑1

2

1

2

1
 for two

variable z, w. If the index is i it runs over the list of units 1..n instead. The definition of mean is given

in table 1. The grey marks the test that is best by the criteria of size less than 5% and maximum power.
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good estimators with very low MSE both as estimators �Eij
0  of the efficiency of individual

units, and as estimators �Ej
0  of the sample mean efficiencies. In fact the CRS estimators

are better than the VRS estimators by the MSE criteria even for quite a wide range of

non-CRS scale parameter values17. This statistical efficiency supports the choice of CRS

as the conservative null hypothesis.

Tests

All the tests suggested above rely on an expectation that the efficiency distributions will

be approximately equal when the null hypothesis is true. The fact that there is a

difference in mean bias between the CRS and VRS estimators at β =1, will tend to

increase the values of the test statistics, and therefore make rejection more likely.

The dependence between the two estimators will work in the opposite direction, since

the effi ciency estimates will tend to be more equal. The first line of table 2 show the

linear dependence of the estimates within the sample, while the second shows the

correlation between the sample mean CRS and VRS estimates. It is this latter strong

dependence that motivates the split sample tests. The third line shows any remaining

dependence between split sample means, which could justify the separate reference set

tests. This dependence seems to be negligible or non-existent.

While the bias in the split sample estimators is approximately the same as in the full

sample, the halving of the size of the separate reference sets increases noticeably the bias

for both the CRS and VRS estimators. This can also be seen in panel a) of figure 3,

where both the level and the difference between the biases has increased.

The consequences of these biases and dependencies for the different tests are tabulated in

the lower half of table 2 and shown in panels b)-d) of figure 3. The paired T-tests is

seriously affected by the bias, and reject far too many under the null hypothesis. All the

                                               

17 The MSE of the individual eff iciency estimates becomes less for VRS than CRS again at the scale
elasticity β =15. , outside the right of table 1.
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Table 3. Results from trial B. Differing sample sizes.

Common conditions: Number of samples s=1000, One input/one output, Normal distribution of outputy N~ ,10 21 6 . Halfnormal distributions of inefficiencies

γ ~ , .N 0 0 251 6  implying E(γ)=0.399 and E(Ε)=0.745.

Trial B1 B2 (B3=A) B4 B5 B6

Sample size, n 20 50 100 200 500 1000

Scale parameter, β 0.8 1 1.2 0.8 1 1.2 0.8 1 1.2 0.8 1 1.2 0.8 1 1.2 0.8 1 1.2

CRS bias, B0 0.010 0.023 0.016 -0.011 0.009 -0.001 -0.025 0.005 -0.009 -0.037 0.002 -0.016 -0.052 0.001 -0.022 -0.060 0.000 -0.027

VRS bias, B1 0.072 0.070 0.067 0.038 0.037 0.035 0.023 0.022 0.021 0.014 0.012 0.011 0.007 0.006 0.005 0.004 0.003 0.002

Full sample rejection rates in percent (5% tests)

FH 12.2 4.7 7.2 18.4 1.3 3.5 47.6 0.2 5.6 85.1 0.0 19.3 100.0 0.0 83.3 100.0 0.0 99.8

FE 11.5 3.6 4.2 15.1 1.1 2.6 42.2 0.0 3.4 81.8 0.0 13.4 99.8 0.0 74.9 100.0 0.0 99.7

D+ 15.5 5.5 8.0 20.2 2.5 5.1 46.0 0.2 7.3 81.2 0.0 18.8 99.6 0.0 69.9 100.0 0.0 98.7

T 22.2 10.2 13.1 44.2 7.6 16.7 78.8 2.3 29.5 98.0 0.6 63.8 100.0 0.0 98.5 100.0 0.0 100.0

TP 99.2 96.5 98.2 99.9 99.2 99.9 100.0 99.4 100.0 100.0 99.8 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Split sample rejection rates in percent (5% tests)

FH 23.5 15.4 18.1 24.4 12.1 18.0 33.3 9.6 16.6 54.3 10.7 22.1 88.8 8.0 44.3 99.2 8.3 70.4

FE 11.3 12.6 13.3 19.2 7.4 12.4 27.7 6.2 11.0 49.9 5.3 15.1 88.7 3.7 37.1 99.3 2.5 69.6

D+ 3.9 8.1 9.1 22.4 11.6 14.6 32.7 12.4 23.1 58.0 7.1 23.8 92.3 7.7 44.5 99.7 7.6 80.9

T 21.1 15.6 16.2 31.7 16.5 23.3 50.7 12.8 25.3 73.2 12.2 37.8 97.1 10.6 63.5 99.9 9.0 89.0
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other full sample tests shown in panel a) have sizes less than the theoretical 5%

significance level. Among these the T-test stands out as clearly more powerful and is

therefore best by our criteria. The two F-tests and the Kolmogorov-Smirnov test have

essentially the same power curve, but since the true inefficiency distribution is

halfnormal, it is not surprising that the halfnormal F-test does slightly better than the

other two. All these tests are unbiased in the sense that the rejection rate is lowest at the

true hypothesis scale parameter value (Greene, 1993a, p.127) .

The position of the power curves is the result of the interaction of the relative bias in an

upward direction and the dependence in a downward direction. It is not therefore

surprising that removing dependence by splitting the sample in panel b) of figure 3 shifts

the power curves up. Not only are the sizes of tests too high, but the reduction in

degrees of freedom flattens the power curves so that at both extremes of the size

parameter these tests have less power than the full sample tests.

The separate reference set test are even worse. The reduced estimated technology

increases the relative bias without eliminating any real dependency. The result is power

curves that reject true null hypothesis too often and more often than the split sample tests

with common reference set. The results for all other trial are similar and the separate

reference set tests will henceforth not be reported.

The problem with strong dependence between efficiency estimators when calculating the

statistics using the full sample for both null and alternative models is illustrated in figure

4. The F H  statistic calculated under the true assumption of halfnormal inefficiency terms

has a distribution clearly different from the theoretical F value, starting at 1 and

increasing much more rapidly than the theoretical F-distribution with 100,100 degrees of

freedom18.  The critical value from the theoretical distribution rejects far too few cases at

the 95% level of significance.

                                               

18 Since this statistic by (15) and (17) is bound to be greater or equal to 1, an alternative test would be to
truncate the F-distribution. In fact, this truncated distribution fares even worse in the region where
rejection takes place.
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Figure 4 also shows the halfnormal F H  is shown when calculated with randomly split

samples. Here the two distributions are very similar, but with a clear shift outwards for

the observed F H . Use of the theoretical critical value would reject  the null hypothesis in

10.8% of the iterations, about twice as many as should have been rejected (5%). It is

obviously the impact of the different bias in the two models that is creating this shift, and

it is clear that if one had a correct estimator of the difference in bias, the tests could also

be corrected. As it is, however, the split sample tests fail the size criteria19.

While such figures suggest that one could tabulate an alternative critical value from the

Monte Carlo simulated distributions of the test statistics, the steepness of the of the full

sample distribution conveys that the critical values could be quite sensitive to the model

assumptions.

4.2  Testing for Returns to Scale: Varying the Assumptions

Sample size

Table 3 reports the summary results of the B set of trials, where the sample size is varied

from 20 to 1000. The bias reduces clearly with sample size in all cases, for the efficiency

estimate in the VRS case the reduction is from around seven per cent to less than half of

one per cent. In fact, when β =1, the logarithm of the bias is almost linear in the

logarithm of sample size with a regression equation of

ln( ) . . ln( ), .B n Rj
0 20949 0959 0998= −  −  =  (29)

in the CRS case, and

ln( ) . . ln( ), .B n Rj
1 20259 0782 0999= −  −  =  (30)

                                               

19 Analogous graphs for the other tests show a very similar picture.
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in the VRS case. This supports the finding by Korostelev, Simar & Tsybakov (1995a)

that the rate of convergence is a power function of the sample size.

Figure 5 shows the interaction of sample size and scale parameter in determining the

bias. The β =1line from lower left to upper right represents the biases under the null

hypothesis but varying scale. The n=100 line from lower right to upper left represent the

bias across different scale parameters and corresponds to panel a) of figure 3. The VRS

bias surface is almost invariant with respect to the scale parameter, but converges clearly

towards zero as the sample size increases away and to the right in the figure. The CRS

bias surface responds much sharper to changes in the scale parameter, as it should, and

particularly for low scale elasticities and large sample sizes to the right in the figure.  For

the largest sample size of 1000, the two surfaces almost touch at zero bias when the null

hypothesis is true, giving support to the asymptotic properties of the estimators and the

tests.

The lower parts of table 3 shows how the full sample tests reject the null hypothesis in

far too few cases, except when the sample is very small. The strong dependence between

estimators destroys the sizes. The paired T-test however rejects in far too many cases for

all sample sizes, due to the one-sided nature of the bias. In a sense, this test is too

powerful when bias is not corrected.

The split sample F-test with a (true) halfnormal assumption tends to get asymptotically

closer to the correct rejection level of 5% as the sample size increases, but always rejects

in too many cases. The split sample F-test with an exponential assumption overshoots

and rejects too few in the largest samples. The split sample T-test performs similarly to

the FH -test in the sense that it consistently over-rejects, but it has a higher rejection rate

than the halfnormal F-test. Even when the split sample tests have sizes below the

specifi ed 5%, they are not as powerful as the full sample tests which are still best.

Among the full sample tests the T-test is best for sample sizes above 50, but has too

many Type I errors to meet the size criteria in the smallest samples. The halfnormal F-

test does best when the sample size is 20, and the D+ test does best for n=50, but as

figure 6a) shows, in both cases the power functions are so flat that it is diff icult to speak
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Figure 6: Power curves for full sample tests in trials B.
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a) Mean efficiency 0.68 (C3)
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Figure 7: Power curves for full sample tests in trials C.
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Table 4. Results from tr ial C. Different efficiency levels.

Common conditions: Number of samples s=1000, Sample size n=100, One input/one output,
Normal distribution of output with y N~ ,10 21 6 , Halfnormal distributions of

inefficiencies.

Trial C1 C2 (=A) C3

Distribution of
inefficiencies  J N 0 01, .1 6 N 0 025, .1 6 N 0 05, .1 6

Expected efficiency E(E) 0.816 0.745 0.683

Scale parameter, E 0.8 1 1.2 0.8 1 1.2 0.8 1 1.2

CRS bias, B0 -0.037 0.003 -0.015 -0.025 0.005 -0.009 -0.018 0.006 -0.004

VRS bias, B1 0.017 0.016 0.014 0.023 0.022 0.021 0.028 0.027 0.026

Full sample rejection rates in percent (5% tests)

FH 79.9 0.1 17.3 47.6 0.2 5.6 29.8 0.1 2.2

FE 77.7 0.1 15.0 42.2 0.0 3.4 22.5 0.1 1.0

D+ 81.2 0.3 24.2 46.0 0.2 7.3 24.7 0.7 3.2

T 94.7 2.1 60.5 78.8 2.3 29.5 60.7 3.8 18.2

TP 100.0 99.8 100.0 100.0 99.4 100.0 100.0 99.6 100.0

Split sample rejection rates in percent (5% tests)

FH 50.3 11.0 21.9 33.3 9.6 16.6 27.5 11.6 17.8

FE 48.0 6.1 16.7 27.7 6.2 11.0 19.5 5.9 11.2

D+ 56.0 8.4 22.0 33.1 8.0 15.8 22.6 8.7 13.3

T 71.2 14.3 35.4 50.7 12.8 25.3 36.8 15.4 24.2
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of any power at all. Returns to scale are not really testable for sample sizes less than 100.

For the largest samples, all full sample tests are good.

Efficiency level

Table 4 reports the results from the C trials where the level of inefficiency varies. Bias is

clearly increasing with inefficiency. However, bias is a fairly constant proportion of the

estimated inefficiency term, varying from 2% to 2.5%  for the CRS estimator when CRS

is true and from 10% to 12%  for the VRS estimator. This would indicate that a bias

correction term should be multiplicative.

The suggested hypothesis tests in table 4 and figure 7 show a picture very similar to that

in the previous trials. Full sample tests, except the paired T-test, pass the size criteria,

while the split sample test do not. Even though the exponential F-test almost has a small

enough size, the full sample tests are all more powerful with decreasing returns to scale,

and the full sample T-test is also more powerful with increasing returns to scale.

However, none of the tests are very powerful for values of the scale parameter above 1,

especially when the efficiency levels are low as in C3.
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b) Exponen tial inefficien cy 
dis tribution (D3)
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Figure 8: Power curves for full sample tests in trials D.

a) Uniform output  
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b) Logno rmal output  
dis tribution (E3)
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Figure 9: Power curves for full sample tests in trials E.
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Table 5. Results from tr ial D. Different ineff iciency distr ibution functions.

Common conditions: Number of samples s=1000, Sample size n=100, One input/one output,
Normal distribution of output with y N~ ,10 21 6 , Distributions of

inefficiencies with E(γ)=0.3989.

Trial D1 (=A) D2 D3

Distribution of
inefficiency γ

Halfnormal: |N(0,0.25)| Gamma(2,0.1995) Exponential (0.3989)

Scale parameter, E 0.8 1 1.2 0.8 1 1.2 0.8 1 1.2

CRS bias, B0 -0.025 0.005 -0.009 -0.004 0.019 0.011 -0.033 0.003 -0.013

VRS bias, B1 0.023 0.022 0.021 0.043 0.042 0.041 0.018 0.016 0.015

Full sample rejection rates in percent (5% tests)

FH 47.6 0.2 5.6 46.2 1.7 10.1 40.0 0.3 1.6

FE 42.2 0.0 3.4 43.8 1.2 8.5 45.0 0.0 1.4

D+ 46.0 0.2 7.3 54.3 5.0 19.0 59.3 0.0 8.7

T 78.8 2.3 29.5 77.7 17.6 42.6 71.8 0.2 12.2

TP 100.0 99.4 100.0 100.0 99.9 100.0 100.0 98.8 100.0

Split sample rejection rates in percent (5% tests)

FH 33.3 9.6 16.6 36.1 16.3 21.7 36.2 17.9 29.2

FE 27.7 6.2 11.0 29.7 9.7 15.1 31.0 9.5 19.2

D+ 33.1 8.0 15.8 36.4 12.4 19.9 37.9 7.0 14.5

T 50.7 12.8 25.3 51.3 19.8 31.9 43.4 10.4 23.8
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Table 6. Results from tr ial E. Different distr ibutions of output y.

Common conditions: Number of samples s=1000, Sample size n=100, Halfnormal ineff iciency
distribution γ~|N(0,0.25)|, One input/one output, Distribution of output with

E(y)=10, SD(y)= 2 .

Trial E1 (=A) E2 E3

Distribution of output y Normal(10,2) Uniform(10 ± 6 )  Lognormal(10, 2 ,10- 6 )

Scale parameter, E 0.8 1 1.2 0.8 1 1.2 0.8 1 1.2

CRS bias, B0 -0.025 0.005 -0.009 -0.022 0.005 -0.009 -0.012 0.005 -0.012

VRS bias, B1 0.023 0.022 0.021 0.023 0.022 0.021 0.021 0.020 0.019

Full sample rejection rates in percent (5% tests)

FH 47.6 0.2 5.6 41.9 0.5 4.4 10.1 0.2 13.0

FE 42.2 0.0 3.4 33.6 0.2 2.8 5.7 0.1 10.0

D+ 46.0 0.2 7.3 40.1 0.5 5.6 9.6 0.4 14.5

T 78.8 2.3 29.5 80.4 3.0 26.6 42.5 1.4 34.4

TP 100.0 99.4 100.0 100.0 99.7 100.0 100.0 99.8 100.0

Split sample rejection rates in percent (5% tests)

FH 33.3 9.6 16.6 31.3 10.6 19.5 21.0 9.7 20.1

FE 27.7 6.2 11.0 24.4 5.5 13.0 14.6 5.1 12.6

D+ 33.1 8.0 15.8 29.7 7.8 14.4 17.3 7.4 17.4

T 50.7 12.8 25.3 45.3 12.4 27.2 30.5 11.8 28.0
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Inefficiency distribution shape

The functional form of the distribution of the inefficiency term is varied in the D trials

reported in table 5 and figure 8. These trials are calibrated with a common expected

inefficiency term γ , but through the transformation in (10), this does not give rise to a

common mean efficiency level E . The exponential distribution has the greatest density at

full efficiency, while the gamma distribution has a mode below 0.9 and a zero density at 1

(Johnson & Kotz, 1970a). This means that the Gamma distribution does not belong to

the class that make the DEA estimators maximum likelihood estimators, but since it has a

positive density arbitrarily close to the frontier, it still satisfies assumption A4) necessary

for consistency.

This naturally gives rise to a greater average bias in the gamma-distributed case, and the

least bias with the exponential distribution. The variation is quite large, and  it does not

seem possible to construct any bias-correction measure without knowing the true

distributional form. Again, the tests show much the same pattern. Interestingly, in the

exponential case the F-test that assumes the correct distribution does only slightly better

than the halfnormal F-test, even though both have less power than the  T-test and the D+

test. The T-test is most affected by the higher bias of the Gamma-distribution, resulting

in failure the size criteria. For this distribution the Kolmogorov-Smirnov test is best.

Output distribution shape

Table 6 and figure 9 report the results of trial E where the generated distribution of the

output y is varied. These distributions are calibrated to have the same mean and standard

deviation. The Lognormal distribution, which has three parameters, is in addition

constructed to have the same lower bound as the uniform distribution, but has like the

normal distribution no upper bound.

The CRS estimates are nearly identical for the three trials. In the VRS case the bias is

slightly lower when the output is lognormally distributed. This does not lead to

noticeable differences in the tests, and in all cases the T-test is best, with the F-tests and

D+ test also meeting the size criteria.
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Table 7. Results from tr ial F. Different number of inputs.

Common conditions: Number of samples s=1000, Sample size n=100, Halfnormal ineff iciency
distribution γ~|N(0,0.25)|, Normal distribution of output, Input mix as ratio

of normally distributed numbers, all N(10,2), Cobb-Douglas production
function with equal share parameters.

Trial F1 (=A) F2 F3

Number of inputs, L 1 2 3

Scale parameter, E 0.8 1 1.2 0.8 1 1.2 0.8 1 1.2

CRS bias, B0 -0.025 0.005 -0.009 0.001 0.019 0.011 0.021 0.036 0.030

VRS bias, B1 0.023 0.022 0.021 0.046 0.044 0.042 0.065 0.063 0.061

Full sample rejection rates in percent (5% tests)

FH 47.6 0.2 5.6 44.2 2.0 6.2 47.1 3.7 11.5

FE 42.2 0.0 3.4 42.9 1.9 4.7 50.3 4.8 10.6

D+ 46.0 0.2 7.3 37.6 2.9 9.0 39.2 5.1 8.6

T 78.8 2.3 29.5 75.9 10.9 28.6 74.6 15.6 30.7

TP 100.0 99.4 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Split sample rejection rates in percent (5% tests)

FH 33.3 9.6 16.6 32.7 19.3 23.6 34.7 18.9 26.3

FE 27.7 6.2 11.0 28.4 14.4 16.7 31.7 16.0 20.7

D+ 33.1 8.0 15.8 28.7 13.5 17.5 28.0 15.6 18.7

T 50.7 12.8 25.3 44.9 23.8 26.9 42.0 22.3 29.1
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b) Three inpu ts (F3)
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Figure 10: Power curves for full sample tests in trials F.
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Figure 11: Power curves for full sample tests in trials G.
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Dimensionality

All previous trials have had the same dimensionality with one input and one output, but

in the F trials reported in table 7 the number of inputs is varied. The production frontier

is no longer linear, but is a Cobb-Douglas core with equal factor share parameters

α l L= 1  in the frontier function in (4). This represents two types of shift in the analysis.

Firstly the computational burden of the simulations is greatly increased. Secondly, Kneip,

Park and Simar (1996) notes that there is a qualitative step in the deterioration of the

rate of convergence of the efficiency estimators.

Table 7 shows indeed that increasing dimensionality leads to dramatic increases in the

bias of the estimators. In the true CRS case bias increases by a factor of four from the

one-input to the two-input case, doubling again to the three-input case. The VRS

estimate biases increase more slowly, by approximately 100% and 50% respectively, so

that the differences between the CRS and VRS estimators are in fact only moderately

increased from 0.017 to 0.027.

This is reflected in the tests, whose rejection rates generally increases somewhat. Even

though bias increases markedly with increased dimensionality, since this happens for both

estimators, the sizes of the tests are only moderately affected. The full sample T-test fails

the size criteria when there are multiple inputs, so that the full sample F and D+ tests

contend for best place. There is not much difference between them, but none are

particularly powerful if there are increasing returns to scale in the true technology.

4.3  Testing for Variable Inclusion

The final set of trials differs from the others in that the null hypothesis is not that the

production function exhibits constant returns to scale, but rather that there is only one

relevant input. The trials have observations that are generated under the same

assumptions that underlie the basic model, with halfnormal inefficiency, a sample size of

100, a CRS technology assumption, one input and one output. In these trials an extra
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variable x2 is generated that has the same random normal distribution as the output, but is

irrelevant to the production technology.

The null hypothesis is the true one that the extra variable is not relevant to the

production technology, while the alternative hypothesis is that x2  should be included in

the analysis as an input. In both cases the DEA model is solved as a CRS problem, but in

model 1 there is an added restriction due to the extra variable; there is in other words an

extra dimension. By proposition 6 in the appendix the one-input model is nested within

the two-input model in the same way as the CRS model is nested within the VRS model.

Under the true null hypothesis there is the same strict ordering of estimators as in (18),

but when the null hypothesis is false the 1-input bias may be negative.

The data are generated with the factor share parameter α 2  varying from 0 to 0.5. The

difference between the trials is that in G1, x2  is generated in the specified data

generating process, with the result that it is highly correlated with x1, while in the other

trials the two potential inputs are less correlated. In empirical work the first case would

usually be more realistic.

For the first two trials, both input levels depend on the output. With β α= =1 02, , i.e.

when the null hypothesis is true, the frontier level of x1
*  is determined directly from the

output level y . In trials G1 and G2, the frontier mapping of the second input is then

determined by the ratio of two normal numbers, as specified in (7). In G1 both the

relevant and the irrelevant inputs are multiplied by the same inefficiency term in (8). The

result is a set of power curves that are one-sided, but otherwise remarkably similar to

those in the base trial A. The full sample test minus the paired T-test and plus the split

sample exponential F-test meet the size criteria, but the T-test is again best.

In the second trial G2, the specified DGP is  violated by introducing an input-specific

inefficiency term in (8), since there could often be reason to believe that slacks will vary

for the different inputs in real production activities. This reduces substantially the

correlation between the input levels, at the same time increasing the bias of the two-input

estimates. The result for the tests can be seen from figure 11b) to be an upward shift of
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Table 8. Results from tr ial G. Testing for relevance of second input.

Common conditions: Number of samples s=1000, Sample size n=100, Halfnormal ineff iciency
distribution γ~|N(0,0.25)|, Normal distribution of output, Input mix as

ratio of normally distributed numbers, all N(10,2), Cobb-Douglas
production functions, CRS models E = 1.

Trial G1 G2 G3 G4

Second input x2

dependent on output y
Yes Yes No No

Common inefficiency J Yes No Yes No

Second input share D 2 0 0.2 0.4 0 0.2 0.4 0 0

Input correlation

Mean � ,j i
ij  ijx xρ 1 23 84 9

0.770 0.735 0.715 0.227 0.159 0.124 0.687 0.002

1-input estimate bias, B0 0.005 -0.027 -0.073 0.005 -0.027 -0.074 0.005 0.005

2-input estimate bias, B1 0.012 0.018 0.019 0.043 0.059 0.064 0.012 0.043

Full sample rejection rates in percent (5% tests)

FH 0.1 43.4 98.4 80.7 100.0 100.0 0.0 79.4

FE 0.0 34.4 95.7 52.0 99.6 100.0 0.0 51.6

D+ 0.0 38.0 94.4 29.8 97.9 100.0 0.0 31.1

T 0.4 70.7 99.7 65.4 99.9 100.0 0.1 64.4

TP 92.2 100.0 100.0 100.0 100.0 100.0 94.4 99.9

Split sample rejection rates in percent (5% tests)

FH 7.5 33.3 73.4 52.0 92.7 99.9 7.0 50.4

FE 3.2 23.6 67.7 31.5 82.9 99.5 3.2 29.9

D+ 5.3 27.3 72.7 26.4 76.6 98.0 4.8 26.9

T 8.5 43.4 84.6 40.7 89.6 99.8 7.1 42.1

The definition of mean is given in table 1 and correlation in table 2.
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all power curves, so that no test now meet the size criteria. However, the Kolmogorov-

Smirnov test, and this time the split-sample variant, comes closest by having the least

proportion of Type I errors.

The final two trials violate the DGP further, by removing the dependence of the second

input on the output level, instead assuming an independent “optimal” i nput drawn from

the same distribution. The generated x2
*  are thereby not on the isoquant, and generating

observations with positive output shares would be meaningless. By varying the

inefficiency assumptions two different correlations with the first input are achieved. The

results, both for bias when the null hypothesis is true, and for the size of the tests, are

quite similar to the first two G trials. In deciding the variable specifi cation of a model, it

is clearly important to measure the extent of correlation. If correlation is low, a

conservative test is advisable.

These simulations are based on comparing 1-input and 2-input estimates, which, as noted

earlier, implies a qualitative step in the increase in bias. One would therefore expect the

relative increase to be less when comparing L-input to L+1-input estimates when L>1,

and rejection rates would therefore generally be lowered. This would make the full

sample tests usable for considerably lower input correlations than 0.7.

Finally, it should be noted that variable aggregation implies very similar model changes

as does variable exclusion. By proposition 6 in the appendix, an aggregated model is

nested in a disaggregated one, and has therfore equal or lower efficiency estimates.

Although I offer no simulations to support it, this would imply that the tests should be

usable for approximately the same ranges of sample sizes and variable correlations.

5. Conclusion

The simulations show that bias is important, and that it varies systematically, increasing

with dimensionality, and decreasing with sample size, average efficiency and a high

density of observations near the frontier. The size and power of the suggested tests are

both increased by this bias, offsetting the reduced size and power stemming from the
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dependence of the efficiency estimators. Although the last set of trials show that the tests

suggested so far in the literature are in no way perfect, there are some substantive

findings that should give grounds for conclusions in empirical work.

Firstly, the full sample tests generally do better than the split sample tests, the latter being

not very powerful. In fact correcting for dependency does not seem helpful unless one

can also correct for bias. Secondly, the T-test seems less affected by the dependence in

the full samples, so that if bias is low due to e.g. large samples, low dimensionally, and

inefficiency distributions which are dense near the frontier, the T-test is quite useful. If,

however, bias is somewhat higher, due to medium sample size, higher dimensionality and

inefficiency distributions that have their mode away from the frontier, the F-tests and the

Kolmogorov-Smirnov tests seem best. There is not much difference between these.

Finally, if bias is expected to be very high due to sample size less than about 100, none of

these test will be very good.

Empirical analysis could therefore be done using the full sample tests, if proper

consideration is taken of the inaccuracies reported above, notably that the tests are

approximations and that the sample size should not be to small.

At this point it would have been possible to tabulate corrected critical values for the

different tests in each trial, by sorting the 1000 Monte Carlo values of the null hypothesis

run, and reporting e.g. the 10th and 50th value. For example, for the full sample

halfnormal F test, the theoretical critical value in the A trials is 1.392, but the Monte

Carlo estimate for the critical value is 1.230. Using corrected critical values for all the

full sample tests in trials A ensures correct size and maximises their power. The problem

is that these critical values depend on those factors which determine the relative bias, and

these factors are often quite specific to each application. It would require quite a large

set of tables to have corrected critical values for all categories, unless the systematic

variations could be approximated by simple formulas. These would still only be

approximations, since as pointed out by Gijbels et al. (1996) the true value of the bias

depends on the density of the efficiencies near the frontier and the curvature of the

frontier at each point.
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The results show that some of the evaluated tests are useful, but at the same time better

tests and less biased efficiency estimators are needed for cases with small samples and

large dimensionality. Possibly, the only way forward is through bootstrapping along the

lines of Simar & Wilson (1997), but further theoretical work building on Korostelev et

al. (1995a,1995b) and/or further experimental work could result in bias correction

formulas that give better estimators of efficiency, and at the same time gives access to

better testing tools.
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Appendix A. Ranked and nested DEA models

The purpose of this appendix is to prove that certain DEA models are nested, in that the

efficiency measures of one model as a special case can be equal to those of the other, and

that these models also are ranked, in that one knows the sign of the difference if the

measures are not equal.

Let { , , }1� K  be the set of all possible outputs and { , , }1� L  be the set of all possible

inputs. Let further P K L⊂ ℜ+
+  be a set of the non-negative quantities

( , ) ( , , , , , )y x  y  y x  xK L=
>
=1 1 0� �   which defines either the true production technology

( , )y x y  x can be produced from < A , or an estimate of this set. The technology P  is

assumed to satisfy certain regularity conditions, notably that the input requirement set

L y  x y x P( )  ( , )= ∈< A  is closed and convex for all output vectors y K∈ℜ+ .

Definition 1: The Farrell (1957) Technical Input Efficiency measure of an output-input

vector ( , )y x  with respect to the technology set P  is

E y x P
Min y x P y x P

, ,
( , )  , ( , )

,
1 6 < A < A=

∈ ∈ ≠ ∅
∞

%
&
'

T

T T  T T

otherwise
(A.1)

where the second part includes the case L y( ) = ∅  and the axis of essential inputs.

As noted by many authors (see e.g. Färe and Lovell, 1978), the first part of this definition

is the inverse of the Shephard (1970) input distance function, and has therefore

corresponding properties to those derived for the input distance function. Among these

are that E y x P, ,1 6  is homogenous of degree -1 in inputs, and that it provides an

equivalent characterisation of technology P y x E y x P= ≤, , ,1 6 1 6= B1  (Shephard, 1970, p.

68, 71).

Definition 2: Let P0 be the technology set under the hypothesis H0, and P1 the

technology set under H1.  The hypothesis H0 is nested within H1  if and only if there
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exists a P1* such that E y x P  E y x P, ,  , , *
0
0 12 7 2 7=  for all admissable P0

0  when H0 is true

and for all observed points ( , )y x .

The parametric statistical literature uses the term nested  loosely in the sense that model

0 is a special case of model 1, i.e. that model 0 can be obtained from model 1 by

imposition of  restrictions on the parameters, implying a loss of fit (see e.g. Green,

1990). Pesaran (1987) suggests a formal definition of nestedness in the parametric case,

claiming that there previously had not existed any satisfactory formal definition. His

definition uses the Kullback-Leibler information criterion (KLIC) for the distance

between the two models in the range of variation of the data, and defines H0 as nested in

H1 if for any true parameter vector in H0, the infinum over the parameters in H1 of the

KLIC distance is zero. At the same time he notes that “ the classification of the

hypothesis of interest into the nested and the non-nested categories does not depend on

the particular distance measure used” (p.70). Since the Farrell efficiency measure (as

the reciprocal of the Shephard distance function) is a measure of distance, this could be

used instead.

As an example, take a one-input one-output linear parametric production function as the

frontier of the production technology, with H P  y x y ax0 0 0: ( , )= − ≤< A  with one

parameter a and H P  y x y b cx1 1 0: ( , )= − − ≤< Awith two parameters b,c. Now for any

true a, e.g. a0, there are a set of parameters b,c, i.e. b*=0, c*=a0  that ensures that

E y x P  E y x P, ,  , , *
0
0 12 7 2 7=  for all possible observations of ( , )y x . In the estimation of

parametric functions, this could be expressed as a restriction of the parameter b.

In non-parametric methods there are no direct parameters to be restricted, but as will be

seen the notion of loss of fit carries over in that the distance from inefficient observations

to the frontier is greater or equal in model 0. Paradoxically, this entails a less restrictive

definition of the estimator of the technology set P. Definition 2 above is chosen since it

closely follows the concepts behind Pesaran’s definition, requiring that the set P1*  is one

that minimizes the distance E y x P  E y x P, ,  , , *
0
0 12 7 2 7− between the sets, and that this

distance then is zero. The definition gives rise to the same categorisation of models as in

the parametric literature, i.e. a constant returns model is nested within a variable returns
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model, a model excluding one variable is nested within the model including this variable,

etc. Following Greene (1990), the terms model and hypothesis will be used equivalently.

Definition 3: Model 0  is ranked within model 1 if E y x P E y x P, ,  , ,0 12 7 2 7≤  for all

points  for all ( , )y x K L∈ℜ+
+ .

Definition 4: Model i assumes feasibili ty if  all observed points ( , )y x  Pi0 0 ∈  .

Proposition 1:  If model 0 is ranked within model 1  and the latter model is an estimator

�P1 that assumes  feasibility, then model 0 is nested within model 1.

Proof: When model 0 is true, for any true P0
0 ,  there is a possiblity of observing the point

y E y x P xo o o o, , , 0
02 74 9  corresponding to every other observation ( , )y xo o , i.e. the true

frontier mapping of each observation is also observed. By the homogeneity of –1 of the

Farrell input measure with respect to inputs E y E y x P x Po o o o, , , ,0
0

0
0 12 74 9 = . When this

point is observed, it is in the model 1 estimate by the feasibili ty assumption, and then we

know that E y E y x P x Po o o o, , , , �0
0 1 12 74 9 ≤ . Combining this with the ranking assumption

E y x P  E y x P, ,  , , �0 12 7 3 8≤ , we get

1 10
0

0
0

0
0 1= ≤ ≤E y E y x P x P E y E y x P x Po o o o  o o o o, , , ,  , , , , �2 74 9 2 74 9 . This can only be true if

E y E y x P x P  E y E y x P x Po o o o  o o o o, , , ,  , , , , �0
0

0
0

0
0 1 12 74 9 2 74 9= = , which by homogeneity

implies E y x P  E y x Po o  o o, ,  , , �0
0 12 7 3 8= .  There is thus some set of observations that make

the Farrell efficiency measures equal for all observations for any true P0
0 .

Note that the converse is not true. Nestedness and feasibili ty are not suffi cient to ensure

ranking, as can be seen from the example of linear production frontiers described

previously.

Proposition 2:  Model 0 is ranked within model 1, if and only if P P1 0⊆ .
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Proof: Consider first a point ( , )y x where θ θ( , )y x P∈ = ∅1> C . Then by definition (A.1)

E y x P, , 12 7 = ∞  so that any value of E y x P  E y x P, ,  , ,0 12 7 2 7≤ . Consider next the point

y E y x P x, , , 12 74 9  where θ θ( , )y x P∈ ≠ ∅1> C . Since the efficiency measure is then the

optimal value of T  in (A.1), this point will be on the boundary of P1, and therefore

y E y x P x P, , , 1 12 74 9 ∈ . When P P1 0⊆  this implies that y E y x P x P, , , 1 02 74 9∈ . This can

equivalently be written as E y E y x P x P, , , ,1 0 12 74 9 ≤ , and since the efficiency measure is

homogenous in degree -1 in inputs, this implies ranking E y x P  E y x P, ,  , ,0 12 7 2 7≤ .

Conversely consider any point y x P,1 6∈ 1, which equivalently can be expressed as

E y x P, , 1 12 7 ≤ . When the models are ranked E y x P  E y x P, ,  , ,0 12 7 2 7≤ , we must have

E y x P, , 0 12 7 ≤ , which by the same equivalence implies y x P,1 6∈ 0 , so that P P1 0⊆ .

Proposition 3: Let P0  and P1be sets defined by a set of restrictions on  the inputs and

outputs P y x  g y x i IK L
i

0 0 1= ∈ℜ  ≤ =+
+( , )  ( , ) ,  , ,�< Aand

P y x  g y x i I I I JK L
i

1 0 1  1= ∈ℜ  ≤ = + ++
+( , )  ( , ) ,  , , ,  , ,� �< A  i.e. with J added restrictions,

then model 0 is ranked within model 1.

Proof: Consider a point ( , )y x which satisfies all the restrictions

g y x  i  I  I Ji ( , ) , , , , ,≤ =  +0 1� �  so that ( , )y x P∈ 1 , then that point will also satisfy the

first I  of these restrictions, implying y x P,1 6∈ 0 . Hence all points in P1 will also be in

P0 , so that P P1 0⊆ and by proposition 2, E y x P  E y x P, ,  , ,0 12 7 2 7≤ . Note that this does

not imply nestedness unless one also assumes feasibili ty in model 1.

Definition 5: Given N observations of input-output vectors ( , ), , ,y x n  Nn n = 1�  the

DEA Constant Returns to Scale (CRS) estimator of the technology set defined over

outputs 1 0, ,� K  and inputs 1 0, ,� L   is
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(A.2)

Definition 6: Given N observations of input-output vectors ( , ), , ,y x n  Nn n = 1�  the

DEA Variable Returns to Scale (VRS) estimator of the technology set defined over K0

outputs and L0   inputs is

� ,

,

,

,

, , , ,

, , , , ,

P y x

y y

x x

n N

k K l L

VRS

k n k
n

n

N

n l
n

l
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n
n
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(A.3)

Definition 5 corresponds to the original Farrell (1957) input measure as formulated by

Charnes et al. (1985), while definition 6 corresponds to the formulation of Banker,

Charnes and Cooper (1984). Both definititons assume feasibili ty, convexity and free

disposal. Note that not all possible inputs and outputs need to be restricted in these

definitions; if e.g. L L0 <  then some potential inputs are assumed not to matter for this

technology, and are free non-negative variables. The models may be misspecified in that

the input-output list used does not correspond to the true input-output list.

Proposition 4: The DEA CRS estimator of technology �PCRS is ranked and nested within

the DEA VRS estimator �PVRS when defined over the same inputs and outputs.
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Proof: Note that the restriction O n
n

N

=
=

∑ 1
1

 can be written as g y xI n
n

N

+
=

= − ≤∑1
1

1 0( , )  O

and g y xI n
n

N

+
=

= −  + ≤∑2
1

1 0( , )  O , so that �PVRS  is �PCRS  with the addition of these two

restrictions. Therefore by proposition 3 � �P PVRS CRS⊆  and by proposition 2

E y x P  E y x PCRS VRS, , � , , �3 8 3 8≤ . Since all DEA models assume the feasibili ty of observed

points, by proposition 1, �PCRS is nested within  �PVRS .

Proposition 5: The DEA CRS estimator of technology �PL
CRS

0
with L0   inputs is  ranked

and nested within the DEA CRS estimator �PL
CRS

1
with L L1 0>  inputs  when defined over

the same outputs, and the DEA VRS estimator of technology �PL
VRS

0
with L0   inputs is

ranked and nested within the DEA VRS estimator �PL
VRS

1
with L L1 0>  inputs  when

defined over the same outputs.

Proof: Writing the restrictions for the extra L L1 0−  inputs as

g y x  x x l L LI l L  n l
n

l
n

N

+ −
=

= − ≤ = +∑0
0 1

1
0 1( , )  ,  , ,O � , then �PL

CRS

1
 is �PL

CRS

0
 with the addition

of these extra restrictions. Therefore by proposition 3, � �P PL
CRS

L
CRS

1 0
⊆  , and by

proposition 2, E y x P  E y x PL
CRS

L
CRS, , � , , �

0 1
3 8 3 8≤ . Finally, since the CRS estimator assumes

feasibili ty of observations, by proposition 1, the smaller model with L0  inputs is nested in

the larger one with L1  inputs. By the same reasoning, � �P PL
VRS

L
VRS

1 0
⊆ ,

E y x P  E y x PL
VRS

L
VRS, , � , , �

0 1
3 8 3 8≤ , and the smaller model is nested in the larger one.

Proposition 6: The DEA CRS estimator of technology �Ps
CRS with input s defined as a

linear aggregation of  inputs t and u, x x xs t u= +  > >D E D E, ,0 0  is  ranked and nested

within the DEA CRS estimator � ,Pt u
CRS when defined over the separate inputs t and u

entered directly, and  the same outputs and other inputs, and the DEA VRS estimator of

technology �Ps
VRS with input s defined as a linear aggregation of  inputs t and u,

x x xs t u= +  > >D E D E, ,0 0  is ranked and nested within the DEA VRS estimator
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�
,Pt u
VRS when defined over the separate inputs t and u entered directly, and  the same

outputs and other inputs.

Proof: This is also proved by Färe and Primont (1987). Note that in the aggregated

model restriction I can be written as g y x  x  x  x xI n t
n

u
n

t u
n

N

( , )  (  ) (  )= + − + ≤
=

∑O D E  D E  0
1

,

while in the disaggregated the two restrictions g y x  x xI n t
n

t
n

N

+
=

= − ≤∑1
1

0( , )  O  and

g y x  x xI n u
n

u
n

N

+
=

= − ≤∑2
1

0( , )  O  are included instead. But since a positive linear

aggregation of the two latter restrictions implies the aggregated restriction,

D Eg y x g y x g y xI I I+ ++ =1 2( , ) ( , ) ( , ) , the aggregated restriction can be included in the

disaggregated model definition without changing the extent of the set. Then the

disaggregated model  � ,Pt u
CRS  is �Ps

CRS  with the addition of two extra restrictions, and

therefore Propositions 1,2 and 3 apply. The same reasoning holds for the VRS case.

Proposition 7: The true technology PCRS  is ranked and nested within the DEA CRS

estimator �PCRS  if a) the latter is defined over the same true set of relevant outputs and

inputs, b) the true technology has free disposability of inputs and outputs, is convex and

linearly homogenous, and c) inputs and outputs are observed without error, and further

that the true technology PVRS  is ranked and nested within the DEA VRS estimator �PVRS

if a) the latter is defined over the same true set of relevant outputs and inputs, b) the

true technology has free disposability of inputs and output and is  convex, and c) inputs

and outputs are observed without error.

Proof: Note that any point in �PVRS   can be written as O On
n y

n

N

n l
n x

n

N

y s  x s− +
�
��

�
��= =

∑ ∑
1 1

, ,

O On
n

N

n
=

∑ = ≥
1

1 0, ,  where s sk
y

l
x≥ ≥0 0,  are the slack variables form the optimal solution

of  (A.3). Firstly, y x Pn n  VRS,2 7 ∈  since by the assumption of no measurement error, all

observed points are feasible. Secondly, O On
n

n

N

n l
n

n

N
VRSy x P

= =
∑ ∑�

��
�
�� ∈

1 1

,  since this is a convex
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combination of the observations that are in the true technology set. Finally,

O On
n y

n

N

n l
n x

n

N
VRSy s  x s P− +

�
��

�
�� ∈

= =
∑ ∑

1 1

,  by the assumption of free disposabili ty of inputs and

outputs. Therefore  �P PVRS VRS⊆  and  E y x P  E y x PVRS VRS, ,  , , �2 7 3 8≤ , and the true CRS

technology is  ranked and nested within the DEA CRS estimator.

In the same manner, any point in �PCRS  can be written as O On
n y

n

N

n l
n x

n

N

y s  x s− +
�
��

�
��= =

∑ ∑
1 1

, ,

O n ≥ 0,  which can be reformulated as a proportionally scaled point

Λ
Λ Λ

⋅ −  +
�
��

�
��= =

∑ ∑P Pn
n y

n

N

n l
n x

n

N

y s x s
1 1

1 1

, ,  P Pn
n

N

n
=

∑ = ≥
1

1 0,  by dividing and multiplying by

Λ =
=

∑O n
n

N

1

. Since P Pn
n y

n

N

n l
n x

n

N
CRSy s x s P− +

�
��

�
�� ∈

= =
∑ ∑1 1

1 1Λ Λ
,  by the assumptions of

feasibili ty of observations, convexity and free disposal,  the original

pointsΛ
Λ Λ

⋅ −  +
�
��

�
�� ∈

= =
∑ ∑P Pn

n y

n

N

n l
n x

n

N
CRSy s x s P

1 1

1 1

,  by the assumption of linear

homogeneity. Therefore  �P P
CRS CRS⊆  and  E y x P  E y x PCRS CRS, ,  , , �2 7 3 8≤ , and the true

CRS technology is ranked and nested within the DEA CRS estimator.
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