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Abstract

The datistical properties of the efficiency estimators based on Data Envelopment
Anaysis (DEA) are largely unknown. Recent work by Simar et a. and Banker has shown
the consistency of the DEA estimators under specific assumptions, and Banker proposes
asymptotic tests of whether two subsamples have the same efficiency distribution. There
are difficulties arising from bias in small samples and lack of independence in nested
models. This paper suggest no new tests, but presents results on bias in simulations of
nested small sample DEA models, and examines the approximating powers of suggested

tests under various specifications of scale and omitted variables.
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1. Introduction

In the literaure on the measurenent of technicd efficiency of produdion the non-
parametric deterministic frontier method of charaderising production technology known
as Daa Envelopment Analysis (DEA) has gaéned ppulanty. Most gudies repprt DEA
efficiency without any evaluation of the modd spedficaion or of the sgnificance of the
edimates, #hough there ae exceptions. Rak orderteds have been usedto compare
efficiency in different groupsor suosamples. h contrad, however, to the paranetric
cost- and produdion function appoadestherehave been few atempts at onstructing
statisticd teds of the modd spedication. Some auhors have extendedthe sesitivity
analysis of operations reseach to DEA, while others have been concerned with the

theoreticd conditions for one spedicaion to be equvalent to ahother.

The assmption of no measwement error in the variablesimpliesthat the DEA technique
Is deerministic 9nce eab obsaved mint is assmedfeasble, but doesnot imply that the
efficiency measuwesthat ae cdculated ae without eror. Sncethesemeasues ae
cdculated from a fnite sample of observationsthey are liable to sampling error. While it
has pevioudy been uncommon to refer to the DEA measues as dsnators, it is
increasngly reagnisedthat thesemeasueshave datisticd propertiesthat deseve

attention (see . Smar, 1996).

The extent of biasis of interestin orderto getbetter esimatesof the level of efficiency
and the position of the frontier. Hypothessteds ae necessey to asseslternative model
spedficaions sud asvariable or constant returnsto scée, omittedvariables, pemissble
aggreg#on and convexity, and dsoto comparethe dficiency of different unit suosds
sud as pivately vs. publicly ownedfirms. While teds sut asthe Man-Whitney rank-
orderteds have been usedfor stbset @mparisons', the assmptions inderlying most
tests are not fulfill ed when testing model spedfi caion since such nodels generaly will be
nested.

! Seeeg. Valdmanis (1992)or Magnus®n (1996).



In recent developments, Banker (1993)has poven the consistency of the DEA
egimators wnder speific assmptions and suggeted datisticd teds of model
spedficaion, while Korostelev, Smar and Tsybakov (1995a, 199B) have been
concemed with the rde of convergence of non-paranetric frontier esimators. Kneip,
Park aad Smar (1996) &tendsthese reslisto amore generd modd. Smar and Wilson
(1995) sugges abootstrap method for egimating the bias ad confidence intervals of
efficiency egimates aad Smar and Wilson (1997) etend thisto suggest &estof returns
to scée’. Even though this appoach seens feasble, it would be adrantageousif smpler

tedhniques wee available.

Sofar, no teds have been suggetedthat can be own analyticdly to aleto
discriminate between competing nmodels, espedally in small samples. While suggesing
some of the tests analysed below, Banker (1993, p.1272) wasthat ... the results
should be interpreted very caudioudy, atleast util systematic evidenceis obtainedfrom
Monte Cato expelimentation with finite sanplesof varying 9zes”. Baker (1996)has
summarised aseries of Monte Carlo runs, some of which are similar to the ones inthe
presett article, oncluding that his teds outpeform COLSteds and the Welch means
tedsin many gtuations. Although resuts are pomising, Smar (1996, [d81) mints out
that the “...number of replications are definitely too small to draw any conclusions...”. In
Banker's sudies,there ae 1330 sanplesin ead trial, while the smulations reported
below arebasedon 1000 saiplesin ead trial. Furthermore, Banker generdly only
providesone esimate of power (ackof Type Il erors)in ead expeiment, while this

paper jots ppwer curvesbasedon five or ten sut edimates.

In addtion to the major undettaking of providing enough smulationsto draw d¢ear
conclusons aout the uséulnessof the suggeted appoximate hypothegs teds, this
paper ans at poviding some smulation evidence on the biasof the DEA efficiency
edimators. After abrief review of the dficiency measuwement literature, the subsedions
of secion 3 desdbe the dda generating processthe DEA efficiency egimators, ad the
suggetedteds, and these ardollowedby three resli subsedions desdhbing the basc

2 See Grosskopf (1996)for a survey of statistical inference in nonparametric models.



resuts for bias ad the returnsto scae teds, variations on the basc assmptions, and a
secion on teging for variable incluson. The paper desnot proposenew teds or bias
corredion methods one needsfirst a poper evaluation of those dread/ sugggeted.
Some substantive findings do however give grounds for conclusionsin empiricd work.
The smulations $ow that biasis important, and that the suggetedteds are & of
incorrect s$ze becausef this bias and the lack of independencein nedsed modds. Sme
of the teds b, nevertheless, pasthe sze citerium and retain considerable powerin

most simulations.

2. Efficiency measurement

The ideaof measuing tecdhnicd efficiency by a radal measure represgng the
proportional input redution possble for an obsewrved wit while gaying in the produdion
posshility set stems fom Debreu (1951) ad Farrdl (1957) ad hasbeen extendedin a
series of papersby Fére, Lovell and others® . Farrell's speification of the produdion
posshility set as apiecewselinearfrontier has dso been followed up usg linear
programming (LP) methods by Charnes, Cooper et a*. The decomposition of Farrell's
original measue relative to a onstant returnsto scde (CRS)tednology into sepaate
measuesof scde dficiency and technicd efficiency relative to avariable returnsto scée
(VRS) technology is dueto Fgrsuind & Hjalmars®n (1974) ad hasbeen implemented
for a pecewselineartedhnology by Banker, Chames and Cooper (1984).Their DEA
formulation has seved asthe main modd of most recent efficiency sSudies ad isthe

basic model in this paper.

In paralel with the non-parametric or mathematicd programming approad to effi ciency
measuement, considerable reseach hasbeen condudedin a paametric tradtion
originating with Aigner and Chu (1968).Their deeministic appoad wasto egimate a
smooth production frontier with resduals restricted to be non-negative and interpreting

theseresgduds as aneasue of inefficiency. Like in the non-parametric modds, this

3 Eg. Fae& Lovell (1978) and Fae, Grosslopf & Lovell (1985).

* E.g. Charnes, Gooper & Rhodes (1978)who originated the name DEA. For anoverview of the
literature on DEA see e.g. Seiford & Thrall (1990).



interpreation is vulnerable to measurenent errors and modd mis-spedication. Aigner,
Lovell and Sdimidt (1977) ad Meeusa and van den Broeck (1977)ncorporate a
stochagic eror term in addtion to the inefficiency term in a @mposed eror modd of a
produdion or cost frontier. To identify theseterms sepeeately in crosssedion sudes
explicit assmptions ae neededor the functional form of the dstribution of ead term?.

With explicit distributions it ispossble to construct statisticd tests insuch nodels.

The mgjor drawbacksof the non-parametric methodsis redsdy that they have not had
accesdgo tedsthat ae known to have degrable propertiesin small sanples, ad in
addtion have not been able to acount for measurenent errors. The dravbacksof the
parametric 2ochadic frontier appoad are dhiefly the gructure imposedon the dada by
the dhoice of functional forms, both for the frontier and for the sepeete eror
distributions, and in the context of production functions the diffi culty of modelling

multiple-input multiple-output technology®.

Receantly some work hasbeen done on developing gochadic non-parametric frontier
modds (eg. Paersar and Olese, 1995).The methods suggeed sofar requre,
however, dther panel data or exogenous esimatesof vital paameters sut as onstraint
violation probabili ties. The aim of the present paper is less ambitious. Firstly, no aceount
is taken of measurenent errors. Seondly, the paper suggésno new gatisticd teds, but
sautinisesteds esat in the literature that try to takethe analysis of modd mis-
spedfication into the redm of the widely used non-parametric models. Hopefully, the
expetimental evidence presetedhere mint to researi diredions that may resut in

better tests in the future.

One attradion of the non-parametric frontier methodsis that the functional formis

perfedly flexible. On the faceof it, the modds ae lveable when the number of

® Pand studies often replace this with similarly strong assumptions on the time patern of inefficiency.

® For anoverview of the stochastic frontier parametric appoach se e.g. Bauver (1990)or Greane
(199%). Both appoaches have seen an a&tive and extensive literature in recent years, otenwritten by
researchers working in both subfields. It is beyond the scope of this pager to give afull discusson of the
relative merits of the competing methods, seee.g. Fried, Lovell and Schmidt (1993) ad Diewert and
Mendoza (1996).



dimensions becomeslarge, ezen when paametric methods would exhaustthe degeesof
freedom. A full setof disaggregeedinputs and outputs and the incluson of al
potentialy relevant vanables dbeshowever creée pioblems even in DEA. Firstly, the
DEA method will measure as effi cient all units that in some senses have extreme values
of the variables in the variable returns to scde (VRS) spedicaion thisincludesthose
that have the lowestvalue of an input or the highestvalue of an output. These wits ae
measured asffecient by defaut. A varable thatin factisirrelevant to the analysis wuld
therefore desroy the dficiency measwesfor some wnits, even if the average &iciency is
not much affeded. Seondly, a réated henomena is that incluson of an extravarable,

aswill be shown, increases the mean bias inthe effi ciency estimators.

Thirdly, in common with the problem of multicolli neaity in parametric methods, any two
variablesthat ae highly correlated and therefore have much of the same information
value will tend to destroy the rates of transformation and substitution on the frontier’.
Any useof thesemarginal properties sub asreturnsto scéde, relative xadow pricesor
marginal costs will therefore be affeded. Finally, on a nore pradicd level, a nodel could

bewmme unmanageadle and not easy to understand if the dimensionality is very high.

Tulkens & Vanden Eeckaut (1991) jectthe frontier concept dtogether repaang it with
a onceptof dominance. In the cntext of the Free Dsposd Hull (FDH) spedication
suggetedby Depiins, Smar & Tulkens (1984)they takethe view that the non-
parametric methods can be interpreted asmeasuing the relative dficiency of the
observed units with no reference to an underlying production posshility set. In such a
sdting the popertiesof the frontier ae by ddinition of no intered, nor are esimatesof
biasin measuwed dficiency sncethe relativeefficiency is obseved wthout bias.This 4ill
leavesopen the quetion of modd misspedicaion, and the problem of units being
efficient by defaut.

In contrastthis paper pceedson the assmption that both the extent of bias ad the

properties of the underlying production or cost posshility set are of interest. The basic

7 See Olesen and Petersen (1991, 1996jor a discussion of multicolli nearity in the DEA model, and e.g.
Koutsoyiannis (1977) inecnometric models.



asumption isthat there is aposshility set defined not only by tedhnology in anarrow
sense, but also by the common constraints given by nature, custom, work pradice,
govemment reguations, knowledge ad organisaiona technology, including the setof
incentive medchanisms available to owners ad management of the wits under
obsevations. Anotherimportant assmption is that there ae variations between these
unitsin the objedivesof the agatsinvolved, and pehaps #s0in some of the constraints
fadng them. To the extent that the dfferencesin constraints aein some sase
unchangedle, these bould be includedin the modd spedfication. If differencesin
objedives,the useof incentive medchanisms or other diangedle wnstraints, leadsto
differencesin adud behaviour between units sothat some of them are not on the
frontier of the posshility set, these units are deaned ineffi cient. The distribution of
inefficiency between firms s therefore not truly random. If we wee dle to modd these
behavioural diff erences we would also have nore information on how to eliminate
inefficiency. Sncethe Indudrial Organisaion literature hasnot sofar mwme up wth
moddsthat can be teged empiricaly, we mustinsteadmodd inefficiency as if it was

generaed randomly®.

3. The model

3.1 The Data Geneating Process

Given a \edor y of K outputs and avedor x of L inputsthe production posshility or

tedhnology set is defined by

P={(y,x) 0O%™|y can be producedromx} (1)

which can be equvalently be desabed by the Shephard (1970)nput requrement set

L(y) = {x|(y,x) OP} (2)

8 Seee.q. Farsund and Hjalmasn (1987).



The borderof the input setfor y >0,y # 0 is known asthe produdion isoquant,

defined by those mints from which a poportional redudion in input usages not

possble for agiven output level:

A(y) = {xx OL(y)¢ x OL(y).@ 0[01)} (3)

The propetiesof these sts and their output equvalents ae extensively discussedin
Shephard (1970).

The data generation process used for the smulations below follow assumptions Al to
A4 of Kneip, Park& Simar (1996).These ardoriefly
A1) that the n obsewrations areindepeadently and identicdly distributed .i.d.)
random variables on the set P,

A2) that the supjrt of the density of outputs y is mmpad. Further, by

A3) the input mix has adensity function conditional on output levels, and the input
vedor length has adensity conditional on output levels and input mix. This
assunption impliesthat inefficiencies are raidlly generaed and input-oriented.
Findly, by

A4) the density of the nodulus must be such that one will observe points arbitrarily

nearthe frontier when the number of obsevations is suficiently large.

In the smulations below, power cuves ae gaeratedfor the teds under examination.
These pwer curves onsists of 5-10 runs of 1000 saples, geeraed with different true
valuesof a paameter, mainly the dadicity of scde. The null hypothess is that one of
thesevauesistrue, eg. constant returns. In addtion to abagc trial A), some central
asumption isvaried in subsequent trials, e.g. the sample size intria B), the effi ciency
level in trial C), the ineffi ciency distributional form in trial D), the distribution of output
in trial E) and the number of inputs intrial F). Finally the G) trial tests for the inclusion of

an extravariable rather than the returns to scde.

The assmptions Al)-A4) ebove ae opeationadizedby spedying atedinology set
definedby a poodudion function with one output, a sngle scée paraneter and a bb-

Douglas ore:



L AL
P ={(y,x)|F(y.x)< 0}, F(y,x)=y—[[| x;’"} ,Za, =1 (4)

It follows that the frontier of the set is defined by F(y,x) =0 and the isoquant by

aL(y) ={x

ym o T, Sa 1} (5)

The dadicity of scdeis equato the scée paameter 3, butin dl caseghe null
hypothesis will assume constant returnsto scde (5 =1). In the base trial A and most of

the othersthe frontier is a #mple function with one input and one output, y = x# , while
in trial F and G there will be nrultiple inputs. As isusual in Monte Carlo studies, the base
case uderthe null hypothegsis very smple, but any other base case auld be more ad
hoc, and the variations below point to the dredion of the changein resutsin more

redistic settings.

In ead of the trials’ reportedin this papethereis one run with the null hypothess true
and 5-10 runs with the null hypothedgs false, eals run having s=1000 saples, each

sample j =1..s with adifferent set of observations N, but the same sample size n of
i.i.d. gmeraedobsewnations (y’,x") OP,i ON;, fulfili ng asuumption A1) above. The

sample size nis 100in most trials, but variesin trials B™.

By A2), the output quantity y is generated randomly from adistribution with acommon

mean and variance

® For simplicity | omit subscripting the trials.

9 The simulations of the 168000samples were carried out patly in GAUSS on an BM RS 6000
running UNIX, patly in GAUSS on aPentium 90PC and patly in aBorland Delphi 3.0 Pascal
programcalling the XA solver on a Pentium Il 233 PC. The latter ran about 5 times as fast as each of
the Pentium 90PC and the RS 6000,whil e the Pascal/’XA combination performed aout 60 tines as fast
as GAUSS. The largest trials (B6) each took 5 hours on Pascal/Pentium 11 but algorithms could be
further optimised for the purpose. The basic trial A has been run on all plaforms to ched the
consisency of results.Random Uniform numbers ae drawn using internal 32bit generators, while
algorithms for Normal, Lognormal, Exmnential and Gamma ditributions are from Presset al. (1989).
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Yl ~ f(y)u =10 § =2 (6)

wheref in all trials except E isthe normal distribution™, y* ~ N(10,2), truncaed at 0

and 20to comply with compadness ad non-negdivity™.

Less geerd than A3), the input mixes are geeraedindepedently of outputlevel y as

proportional to two numbers drawn from the same distribution asy,

ij ij B -
[%j:%,ﬂ,rk f(r),1,m0L,... L (7)

When there is only one input, (7)is, of course, redundant. Together, (5) - (7) dtermine
a wiquefrontier pint on theisoquant, (y',x™) OaL(y"). Fulfill ng the second part of

asumption A3), the actual observed values are generated by multiplying the input

guantities by amultiplicative inefficiency term for ead obsevation
x! = (1+ Yij )X*ij’ Vi~ a(y) (8)

where the inefficiency term y is ganeraed randomly from aone-sded dstribution thatis
usually halfnormal y; ~|N(0,0.25)|, but where the inefficiency level variesin trial C, and
the functional form variesintrial D. Thetrials ae redrictedto inefficiency distributions
g(y) that fulfil assmption A4) and have a wsitive density arbitrarily closeto the
frontier (¥ - 0).

Figure 1 bowsthe generadedobsewnationsin one typicd sample with n=100. hthe
output dredion the obsewations arenormally distributed, while the inputs are
halfnormally distributed awa from the frontier which represats dficient input quantities

proportional with the output quantities.

1 See Johnson & Kotz (1970a,197M) for afull account of the properties of the distributions usd.

12 This had no practical consequence, since several million draws were made before these bounds were
breached the first time.
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True front
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Figure 1: Simulated data, n=100, g~[N(0,0.5)/, p =1, with x and y normalised around their mean. True

efficiency for observation A is E,; = DE/AE, CRS estimate E,“* = CE/AE, VRS estimate

E, " = BE/AE. The distance between the true frontier and the CRS front is exaggerated.

707
60
50
407
30
20

10 |

0.7 0.72 0.74 0.76 0.78 0.8 0.82 0.84

Figure 2: Frequency distribution in intervals of 0.002 of sample means of true efficiency and estimates in
basic trial A, n=100, g~[N(0,0.5)|, with true null hypothesis # =1.The solid line represents the mean and

sampling distribution of the true mean efficiency E?, the dashed lines are mean and sampling distribution
of the CRS mean estimated efficiency E°, and the dotted lines are mean and sampling distribution of the

VRS mean estimated efficiency éjl.
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3.2 The DEA Efficiency Edimators

Farrdl (1957)tedhnicd input dficiency can be ddined by

E(y.x, P) = Min,{é|(y, 6x) OP} (9)

which, for a feasible point (y,x) OPis anumberin the interval (0,1] correspmpnding to

the poportional scding of al inputs necessgy to bring the obsevation to the frontier
(isoquant). As notedby e.g. Fare& Lovell (1978)thisisthe regprocd of the ddinition

of the Shephard (1970)nput dstance function, and resuts muld equdly well have been
represatedby this measure Among the piopettiesof E(.) isthe homogeneity of degree -
lininputs, and thatit provides @& equvalent characerisaion of tedhnology sncethe
efficiency measurdor a point is 1if and only if the point is on the

isoquant, x OAL(y) = E(y,x,P)=1 (Shephard, 1970, 67-68).

The dficiency can be cdculated réative to the truetedhnology if known, which in our

cases

1

E, = E(y', X", P) = E(y",(L+y, X", P) = (Y X" P) =

(1+ yij)
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where the last two equalities follows from the homogeneity of the efficiency measure and

the fact that the poinfty’,x” ) is on the isoquant. The efficiency measures can also be

calculated relative to an estimate of the technology such as the DEA variable returns to

scale estimate from sample

QVRS:{YJ.)\Zy,xzxj)\,)\zo,v;)\i :1}DjD1..s (11)
N

where Y, X, are the vectors or matrices of observed outputs and inputs in $angle

A is a vector of reference weights. This corresponds to the formulation in Banker,
Charnes & Cooper (1984), and is the minimum extrapolation estimator of the technology
satisfying convexity, free disposability of inputs and outputs and feasibility of observed
units (Banker, 1993). Adding a homogeneity requirement gives the DEA constant

returns to scale estimator of technology

PR =y (A AX) DR A>0b={Y A 2 yx =X 2,42 0}0j01.. s (12)

where the removal of the restriction that referencing weights add to unity corresponds to

the formulation in Charnes et al. (1985).

In each trial DEA efficiency estimate!%,jk are calculated under a null hypothekisQ)

and under an alternative hypothe&isX). Except in last trial G, the null hypothesis is
that the true technology exhibits constant returns to scale, and the alternative hypothesis
is one of variable returns to scale. One can define a shorthand for the estimated

efficiencies under the null and alternate hypothesis as

éi? — chRs = E(y ij’X ij, E{:Rs)’ 'El — ’E/RS = Hy ij’Xij, Alijs) (13)
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Only input saving efficiency estimates are calculated, although in CRS the input and
output estimates will be the same. Figure 1 shows graphically the CRS and VRS
efficiency estimates for a unit A. In the figure, the number of VRS reference points is in
fact eight (some very close together), each being a vertex of the VRS frontier. For CRS
in the figure there is only one referencing observation, as will generally be the case with

one input and one output.

In reporting the results of the simulations, the arithmetic mean of efficiencies for a set of

observations are subscripted by their common index, i.e.
E-yEn B3 E /s 1o (14
ILN; =1

including the dot - to indicate nk superscript index or hat for the average true
generated efficiency, and similarly for other measures such as the estimates of

inefficiency terms and its averages

1 —
=k
E;

Ak
Vi =

1 ;’T:;f’ﬁ/n ;’k:Z}_A/';/S, kO{0,10 (15)

3.3 The Bias

Korostelev, Simar & Tsybakov (1995a) show that when the true frontier is nonconvex
and the inefficiency is uniformly distributed over an interval, although the FDH estimator
is a maximum likelihood estimator, the rate of convergence is slow. In Korostelev, Simar
& Tsybakov (1995b) they extend the results to a convex technology where the DEA
estimator is a maximum likelihood estimator. In this case they find a rate of convergence
higher than in the FDH case, but the rate is still decreasing in the number of dimensions

(number of inputs plus number of outputs).
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Banker (1993) also proves that the DEA output estimator is a maximum likelihood
estimator for a convex technology in a model with an additive inefficiency term that is
distributed with mode at O (i.e. at the frontier). He further proves that the DEA estimator
is consistent (i.e. asymptotically unbiased and with a vanishing variance) as long as the
cumulative density function is positive for all inefficiencies greater than 0, even without
mode at this value. Kneip, Park and Simar (1996) extend these results to a more general
multi-input multi-output, proving consistency if the assumptions A1-A4 above are
satisfied. They also investigate the rate of convergence, which they find depend on the
smoothness of the frontier and deteriorate for higher dimensionality (i.e. number of
outputs plus inputs). Gijbels et al. (1996) derive the asymptotic distribution of the DEA
frontier estimator, and suggest a bias-corrected estimator, but only for the one-input one-
output case. It is shown there that the bias is much more important than the standard

deviation for the mean square error of the estimates.

The problem of bias in DEA follows from the fact that the probability of observing a

truly efficient unit in a sample is less than one, and for most of the commonly specified
distributional forms in fact zero even if one will observe a unit arbitrarily close to the
frontier as the sample size increases. It will (almost) always be possible to be more
efficient than the most efficient of the observed units. In figure 1 one can see that the
CRS frontier lies to the right of the true frontier, even though CRS is the correct model
specification in this case. Maintaining the assumption of no measurement error, units will

generally be estimated as more efficient than they actually are if the model is correctly

specified. By construction, if the model k is correctly specified, the eB,j‘omf the

estimate will be greater or equal to Zéro

Ef2E.B=E-F=20 (16)

13 Allthough intuitive, the proof of this and subsequent statements on ranked and nested models require
some tedious definitions and manipulations, and are therefore in an appendix. Diewert and Mendoza
(1996) has an informal discussion of some of these results, using the term Le Chatelier Principles.
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Furthermore, as is commonly observed in the literature (e.g. Diewert and Mendoza,
1996), the VRS estimatesivshow greater or equal efficiency than the CRS estimates.
In figure 1 the VRS frontier is on or to the right of the CRS frontier. Fare & Primont
(1987) show that if an aggregated model is nested within a disaggregated model, the
measuredE"™® in the disaggregated model will be greater or equal than the measured
EY®S in the aggregated model. These relationships follow from the principle that the
optimal value of a minimised variable can never become lower if a restriction is added to
the optimisation problem. This principle also implies that a model in which a variable is
included will give an efficiency estimate that is as least as high as in the same model with
the variable omitted, since including a variable is the same as adding an extra restriction
to the optimisation problem in (9) whétis replaced with (11) or (12). In general

therefore if model O is nested within model 1, in the sense that model O can be obtained

from model 1 as a special case:
E 2§, B>§ (17)
if model 1 assumes the feasibility of all observations (see proposition 1 in the appendix).

Since the true model is equal to or nested within the null hypothesis model in the true
simulations in this paper, and since (16) and (17) holds for each individual observation, a
complete ranking exists also for the average efficiencies in each sample generated under

the true null hypothesis:

E'>E°>E, B'2B (18)

The average efficiency estimatéé in each sample are also the sample estimate of true

mean efficiency. In each trial there are 1000 samples, and averaging over these gives the

Monte Carlo estimate of the expected value of these mean efficiency estinfasesl

their biasB*. These obey the same ranking as in (18).
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Thus there is not only bias in estimators of each unit’s efficiency , but also in the
estimators of average efficiency, and furthermore the bias is at least as great in more
restricted models, i.e. with increasing dimensionally. If the null hypothesis is false, the
estimates are no longer nescessarily larger than the true efficiencies, but the ranking of

the two estimates remain vatftd

3.4 The Tests

On the basis of his consistency results basis, Banker (1993) suggests asymptotic tests for
comparing the efficiencies of to subsets of observatibiisN®, and a null hypothesis
that the single parameter of the inefficiency distributions are equal. If the inefficiency

estimatesy; are independently and identically distributed (i.i.d.). and the underlying true

inefficiency distribution is halfnormal, the statistic

" =—imz(%a):/ "
S

is asymptotically F-distributed wittn{, n®) degrees of freedom.

(19)

If the inefficiency estimates are i.i.d. and the underlying distribution is exponential, the

statistic

i
F,© =1z (20)

% In fact, when >1 the true technology defined by (4) is not convex, and does not therefore fulfil the

assumptions underlying the alternate hypothesis estif&te A parallel run of trial A below with a

local linearisation reveals that this has only negligible effect on the bias and power results for this range
of B. Even in the extreme case of a scale elasticity of 1.5 there are only 4% of the observations with a

negative biasB,} . Since the interest lies around the true null, the much simpler formulation in (4) is
chosen.
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is asymptotically F-distributed with (2, n2) degrees of freedom.

If no parametric assumptions are maintained about the inefficiency distributions, Banker

further suggests using a Kolmogorov-Smirnov type of nonparametric test of the equality

of two distributions. Applied to the distributions of i.i.d. efficiency estimﬁ?slé}’,

and denoting the estimated cumulative distribution function of theS&(e5, $’( B,

the statistic

D = Max.{S}(E)- $( B} (21)

is asymptotically distributed with a rejection probability of

a b P .
P D.*>[ nn j z|= e, 250 (22)

which makes it applicable for testing one-sided hypotheses (Johnson & Kotz, 1970b).

For comparison, the simple T-statitifor the equality of group means is reported:

T = Mea”.?w(Eii)_ Meanltfa(E?) (23)
anvanmb@?)* ”avarima(E“?)[“ 1}

n°+n* -2

n°

which, if sample means are i.i.d. normal, is T-distributed with n° -2 degrees of
freedom. By the central limit theorem the sample means will be approximately normal
unless sample size is very small. The expression greatly simplifiesnéiven® as is the
case in the reported simulations. Finally the T-test for paired observations is also

reported:

15 See e.g. Bhattacharyya & Johnson (1977, p.295-296).
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- _ Mean,, € - E)

\/V&riDN (é':) B E'la)
n-1

T

(24)

which, if mean difference in efficiency is normal with zero expected value, is T-

distributed withn-1 degrees of freedom.

Banker (1993) investigates the asymptotic properties of the tests (19)-(20) for disjoint
groups, but does not consider the usefulness of the tests for nested models, and leaves
open their approximating powers in small samples. In the Monte Carlo studies
summarised in Banker (1996), however, these tests are explicitly applied to nested
models, where they are formulated with full sample estimates bo&haiadb above.

Thefull sample testappear by substituting into (19)-(24) for each sample

Sa _ 0 ~ra _ 2

i i =i
£ = £, 7 =71, (25)
N*=N°"=N,rf=r=n

Since DEA estimators are generally not independently and identically distributed (i.i.d.),
there are theoretical problems with all five tests. The first four assume independence

between all observations Bf (or y ), which is obviously not fulfiled for nested models

if all observations are included in the calculations under both the null and the alternative
hypothesis. There will then be a strong dependence resulting from measuring efficiency
for the same observations under both models. This strong dependence will not be present

however, if the sample is split into two equal size $gt$1N;, =N, Non N,=0 so that

e.g. half the observations are used when calculating the null hypothesis variables, and the
other half are used when calculating the alternative hypothesis variables. The full sample
is still used as reference sets in the calculation of the technology estimates in (11) and

(12). In the simulationsplit sample testare calculated by substituting in (19)-(23)
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éi?zégjaf’iej‘:f’gj’UDNjo
éi? = Ej! 77:1) = 77\1/1" VU N, (26)
N*=N,,, N°= N, f=rf=n2

and superscripting the estimate means and their biaseS wigthSk = Meanmjk(Ejk).

Splitting the sample can not be done for the paired T-test in (24), because there would be

no pairing of estimates.

Even if one has removed the strong dependence by splitting the sample, there is a weak
dependence between estimated efficiencies, since they can be calculated relative to the
same referencing observations. This weak dependence will diminish as the sample size

increases, but to avoid it one can partition the observations also in the technology

estimates. Let the technology estimate for hypotrmﬁ}Rk calculated from (11) or

(12), but so that only the observations in each subset enter the m‘dﬁja@}s. Then

in the simulationsseparate reference set test® calculated by substituting in (19)-(23)

E; = AFJ.QO: Euj(yjj, X, AFJBO)af/iej‘ :}ERO_:LUDNJ'O

uj

E}J:E,Tl: Evj(yfi,)Q'J,Al;jfel)’ﬁ:}/ém—l,vDNjo (27)
Vj

N*=N;;, N°= N, f=rf=n2

again superscripting averages wWRh

In addition to their dependence, the estimators of nested models are not identically
distributed since, as is shown in (17) above, by adding an extra restriction the model
specification itself makes the bias of a model greater than the bias of a model that is
nested within it. If the samples are split, this difference holds only in expected values, and
not necessarily for all samples. As both estimators are consistent, this effect should
diminish as sample size increases. The simulations in the next section aim to shed light on
how serious the bias and dependence affect the applicability of the various tests in finite

samples.
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Finally, all but the paired T-test in (24) are based on comparisons of the magnitude of the
sample average of the estimates or their squares, rather than on some measure of the
differences between the individual unit estimates. They do not use the information
contained in the paired nature of the estimates, and will therefore generally not have the

full potential power.

The null hypothesis in each of the simulations below is that the assumptions underlying
P°are true. Since model 0 is nested in model 1, this latter could equally well describe
technology when the null is true, implyirfg= P = P°. Even if the null is not true, it is
always assumed thd& = P'. Since we know from the nested character of the models
and proposition 2 of the appendix tHat[] P°, the null and alternate hypothesis can be

formalised as:

HyP=P=P, H:P=POP (28)

This is equivalent to equal true efficienciely: E; = E?, H;:E > E° for all
observations i in the sample |, and the tests are based on comparisons of the estimates of

these efficiencies. This implies one-sided tests where the null/hypothesis is rejected if the

test statistic exceeds the critical value of the theoretical distribution. The rejection rate

(D= Pr(t >t*) for some statisticand critical valu¢ is generally a function of the true

characteristics of the technology, which in the simulations is manipulated by a parameter.

Two types of error can occur by this procedure, rejection of a true null hypothesis (Type
| error), or the non-rejection of a false null hypothesis (Type Il error) silee

(significance level) of a test is defined as the rejection probability if the null hypothesis is
true, r(true null)=Pr(Type | error), and tlpowerof the test defined as rejection

probability when it is falsey(false null)=1-Pr(Type Il error). While much of the
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Table 1. Reslts romtrial A. M ean efficiencies, d¢gmates and bias wih
different scale parameters.

Common conditions: Number of samples s=1000,Sampk size n=100,0ne
input/one output, Normal distribution of output y ~ N(10,3 .
Halfnormal distributions of inefficiencies y ~|N(0,0.25)
implying Ef)=0.399 axd E(E)=0.745.

Scale parameter 3 0.6 0.8 1 1.2 1.4
True generated variables
E = Mean, (—]) 0.7450  0.7448  0.7452 0.7443  0.7451
SD, (E,. ) (0.0141) (0.0149) (0.0152) (0.0145) (0.0145)
Mean, (SDi (Ei- ) 0.1441  0.1436  0.1437 0.1439  0.1439
7 =Mean, (71) 0.3989  0.3992 0.3985  0.4004  0.3988
CRS Estimates
EO =M ean(Eo) 0.6430  0.7197 0.7500  0.7354  0.7208
] ]
SD(EO) (0.0442) (0.0227) (0.0151) (0.0166) (0.0198)
J ]
Mean, (SDi( Jo) ) 0.1396  0.1413  0.1446 01433  0.1424
B = Mean, (30) -0.1021  -0.0251 0.0048  -0.0089  -0.0243
MSE(EJO) 0.0124  0.0011 0.0003  0.0004  0.0010
MSE(E}) 0.0150  0.0014  0.0000  0.0004  0.0015
VRS Estimates
E' = Mean, ( Ejl) 0.7706 0.7681 0.7668 0.7651 0.7651
SD, (éjl) (0.0144) (0.0145) (0.0150) (0.0146) (0.0148)
Memj(gDi(éi} ) 0.1496  0.1490  0.1488  0.1488  0.1487

B! = Mean, ( le) 0.0256 0.0233 0.0216 0.0208 0.0200

MSE(E}) 0.0009 0.0008 0.0007 0.0006 0.0006
MSE(éi}) 0.0021 0.0020 0.0018 0.0017 0.0017

In the row headers, Mean,(z;)= Z;zj/s for avariable z, SDj(zj):\/Z;(ZJ —Meaanjj )zj )Z/S. If

theindex isi it runs over the list of units 1..n instead. The mean squae errors are

MSE(EJ'() = Meanj([Ejk - E(E):D and MSH(E}) = |\/|eanj(l\/leani([léijk ~E, ZD .



23

literature assumes that the size is under the control of the researcher (e.g. Greene, 1993a,
p.126), Engle (1984) characterises a tediessif it has the maximum power among all
tests with size less than or equal to some particular level. In the simulations, only 5%

tests will be reported, so the best test will be the among those with  (trug null) 5%

This criteria presuposes that the null hypothesis is the conservative choice since it is the
hypothesis which is not rejected if the tests are inconclusive. There are both
methodological and economic reasons for choosing the model that is nested within as the
null. Firstly this model is simpler and therefore avoids problems of extreme observations
being efficient by default and of multicolinearity discussed above. Secondly, it is likely to
be statistically more efficient, in that estimators will converge faster. Thirdly, it is in most
cases the supposition which is least likely to have undesirable social consequences. In the
case of testing for returns to scale, rejecting CRS could mean that there are market
imperfections that require costly government intervention. Similarly, when testing for
inclusion of irrelevant variable, producers will have a selfinterest in results that show

them to be more efficient. Since including more variables is shown above to give
efficiency estimates (and bias) that are at least as high, and since producers are normally
better organised than consumers, there could well be reasons to counterweigh an

inclination to blow up the number of variables.

4. The Results

4.1 Bias and Testing for Returns to Scale: The Basic Results
Bias

The results of trial A is reported in detail in table 1. This simulation has a sample size of
100 and a halfnormal distribution of inefficiencies with a theoretical npeaf0.3989,
and also serves as a basis of comparison for subsequent trials. The central column

represents results when the null hypothesis of constant returns to scale fs=trjie (

The mean of the 100,000 true efficiencEsis 0.7452, and this is approximately

constant across different values of the scale parameter. Similarly the mean true
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Figure 3: Bias and power curves for tests in trial A.
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inefficiency is fairly constant. In the CRS model, mean estim&t®avhen the null is

true is as expected slightly higher (0.7500) while the VRS estilatés 0.7668.

The frequency distributions of the sample meﬁpsEjO, El are shown in figure 2. The

figure shows the magnitude of the bias in each model, which is clearly greater for the

VRS estimators than the CRS estimators, in accordance with (18). The figure also shows
that the distributions are nearly normal in shape and have approximately the same spread.
The Kolmogorov-Smirnov test is not able to reject the normality of any of these

distributions®. Even though the underlying distribution Bf is decidedly non-normal,

with a sample size of 100 the centirait theorem seems to have some strength.

The second row of table 1 is the standard deviation of the sample mean true efficiencies,
which is the Monte Carlo estimate of the standard error of the sample mean. As
expected, the mean of the standard deviations in each sample divided/hy:tite

provides a reasonable estimator of this standard error (See e.g. Greene, 1993a, p.91).
For the T-test at least, the problem lies in the bias and dependence and not in non-

normality of the mean estimates.

The estimator bias as a function of the scale parameter is listed in table 1, and is also

shown in panel a) of figure 3. The CRS estimator full sampleﬁ)?atms a slightly

positive maximum when CRS is true @t 1, but drops to negative values away from the

null both with true increasing and decreasing returns to scale. Ideally, the bias should be

'8 The adjusted Kolmogorov-Smirnov statisﬁb\/ﬁ for the two-sided test has a value of 0.579, 0.568
and 0.651 for the distributions (Ej, IAE]-O, El respectively, which compares with a critical value of
0.819 at the 10% significance level.
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zero at =1, but otherwise this is satisfactory. The problem lies more in the bias of the
VRS estimators, which although stable across scale parameters, are consistently high at
2-2.5%. A common criteria for evaluating estimators is the mean square error (MSE),

which is also reported in table 1. The CRS efficiency measures are
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Table 2. Resllts rom trial A. Corr elations and power curves fao teds.

Estimate correlation
N 3
Meanj( b (Ej’ }) ) 0.8586 0.9439 0.9642 0.9604 0.9493
p (Eo El) 0.3503 0.6214 0.8776 0.8387 0.7505
i ||
~ (Eso Est 0.0182 0.0652 -0.0044 -0.0142 0.029¢
P\ 7 E
Split sampk bias
B = Mean. (§SO) -0.1024 -0.0254 0.0051 -0.0088 -0.0243
] ]
BS! = Mean. (gm) 0.0263 0.0236 0.0216 0.0206 0.0197
] ]
Separate reference set bias
BRO = Mean,(ERo) -0.0762 -0.0120 0.0097 -0.0008 -0.0124
] ]
BR = Mean. (§R1) 0.0414 0.0390 0.0365 0.0365 0.0343
] ]
Full sampeé rgjection rates in percent (5% fests)
= 99.9 47.6 0.2 5.6 413
FE 99.9 422 0.0 34 33.6
D* 99.6 46.0 0.2 7.3 374
T 1000 788 2.3 295 76.4
T 1000 1000 994 1000 1000
Split sampke rgection rates in percent (5% tsts)
= 894 333 9.6 16.6 29.5
FE 88.0 277 6.2 110 230
D* 89.3 331 8.0 158 27.2
T 95.7 50.7 128 253 42.8
Separate reference set rejection rates in percent (5% sts)
= 830 37.6 165 250 33.6
FE 814 316 101 20.7 294
D* 827 327 124 231 312
T 916 515 229 349 46.5

In the row headers, p,(z;,w; )= Z;(ZJ -2)(w, —W)/\/[Zj_l(zj —‘2)2][211(Wj —\Tv)z] for two

variable z,w. If theindex isi it runs over the list of units 1..ninstead. The definition of mean is given

in table 1. The grey marks the test that is best by the criteria of size less than 5% ad maximum pwer.
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Figure 4: Cumulative density functions for observed and theoretical halfnormal F-statistic in base trial A

n=100, g~IN(0,0.25)|, with true null hypothesis =1. F" is the observed CDF for the full sample statistic

which should compare with the theoretical Fio,100, F* s for the split sample statistic, and F* s for the

separate reference set statistic, the last two should compare with the theoretical Fsp so.
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Figure 5: Bias as function of scale parameter and sample size in trial B.
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good estimators with very low M SE both as estimators E? of the dficiency of individual

units, and as esmators Ejo of the sanple mean efficiencies.In factthe CRS esmators

are better than the VRS etimators by the MSE citeria even for quite a wde range of
non-CRS scke paameter values’. This datisticd efficiency supprts the choice of CRS

asthe conservative null hypothesis.
Tests

All the teds sugge®d dove rdy on an expedation that the dficiency distributions will
be appoximately equad when the null hypothessistrue. The factthat thereis a

differencein mean biasbetween the CRS ad VRS esimators at g=1, will tend to

increasethe valuesof the test satistics, and therefore makergedion more likely.

The dependence between the two estimators will work in the opposite diredion, since
the effi ciency estimates will tend to be nore equal. The first line of table 2 show the
linear depedence of the esimates wthin the sanple, while the seond shows the
correlation between the sample mean CRS and VRS estimates. It is this latter strong
dependence that motivates the split sample tests. The third line shows any remaining
depadence between sgit sample means, which could jugify the sepeate reference set

tests. This dependence seemsto be regligible or non-existent.

While the bias inthe split sample estimators isapproximately the same as inthe full
sanple, the halving of the sze of the sepeate reference sés increasesoticedly the bias
for boththe CRS ad VRS eimators. This can dsobe sea in panel a) of figure 3,

where both the level and the dfference between the biaseshasincreased.

The mnsequacesof thesebiases ad depadenciesfor the dfferent teds ae tabulatedin
the lower half of table 2 aad shown in panels b)-d) of figure 3.The pared T-tedsis
saioudy afededby the bias, ad rejectfartoo many underthe null hypothess. All the

" The MSE of the individual efficiency estimates beames less for VRS than GRS again atlte scale
elagticity =15, outside the right of table 1.
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Table 3. Results from trial B. Differing sample sizes.

Common conditions:  Number of samples s=1000, One input/one output, Normal distribution of gutphif10,2) . Halfnormal distributions of inefficiencies
y ~|N(0,0.25) implying E§)=0.399 and E£)=0.745.

Trial Bl B2 (B3=A) B4 B5 B6
Sample sizen 20 50 100 200 500 1000
Scale parameterf3 0.8 1 1.2 0.8 1 1.2 0.8 1 1.2 0.8 1 1.2 0.8 1 1.2 0.8 1 1.2

CRS biasB® 0.010 0.023 0.016 -0.011 0.009 -0.001 -0.025 0.005 -0.009 -0.037 0.002 -0.016 -0.052 0.001 -0.022 -0.060 0.000 -0.027
VRS biasB' 0.072 0.070 0.067 0.038 0.037 0.035 0.023 0.022 0.021 0.014 0.012 0.011 0.007 0.006 0.005 0.004 0.003 0.002

Full sample rejection rates in percent (5% tests)
F' 122 47 7.2 184 13 35 476 0.2 5.6 85.1 0.0 19.3 100.0 0.0 83.3 100.0 0.0 1[99.8

FF 115 3.6 42 151 11 26 422 0.0 3.4 8138 0.0 134 9938 0.0 749 100.0 0.0 | 99.7
D* 155 55 8.C 20.2 25 5.1 46.0 0.2 7.3 812 0.0 188 99.6 0.0 69.9 100.0 0.0 [98.7
T 222 10.2 131 44.2 76 16 788 23 295 980 0.6 63.8 100.0 0.0 985 100.0 0.0 100.0
T 99.2 965 982 999 992 999 100.0 99.4 100.0 100.0 99.8 100.0 100.0 100.0 100.0 100.0 100.p 100.0

Split sample rejection rates in percent (5% tests)
F' 235 154 181 244 121 180 333 96 16.6 543 10.7 221 88.8 8.0 443 99.2 8.3| 70.4

FF 113 126 133 19.2 7.4 124 27.7 6.2 11.0 499 53 151 88.7 3.7 371 993 25| 69.6
D* 3.9 8.1 91 224 116 146 327 124 231 58.0 71 238 923 7.7 445 99.7 7.6 | 80.9
T 211 156 16.2 317 165 233 6507 128 253 732 122 378 971 106 635 999 9.0/ 89.0
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other full sanple teds sown in panel a) have szeslessthan the theoreticd 5%
significance level. Among thesethe T-test sandsout as tealy more powerful and is
therefore bestby our aiteria. The two F-teds and the Kolmogorov-Smirnov testhave
esseatialy the sane pwer cuve, but gncethe trueinefficiency distribution is
halfnormal, it is rot surprising that the ralfnormal F-test does dlightly better than the
othertwo. All theseteds ae inbiasedn the sesethat the rejedion rate is lowest atthe

true hypothess scée paraneter value (Greee, 1993a, 127) .

The position of the power cuvesisthe resut of the interadion of the relative biasin an
upward drecion and the depadencein a cownward dredion. It is not therdore
surprising that removing dependence by splitting the sample in panel b) of figure 3shifts
the ppwer cuves up. Mt only are the szesof teds too high, but the redudion in
degeesof freedm flattensthe power cuves sathat atboth extremesof the sze

parameter theseteds have less pwer than the full sanple teds.

The sepeete reference setest ae even worse. The reduced d@snatedtednology
increases the relative bias without eliminating any red dependency. The result is power
curvesthat rgjecttrue null hypotheds too often and more often than the spit sample teds
with common reference set. The results for all other trial are smilar and the separate

reference set tests will henceforth not be reported.

The problem with strong dep@&dence between efficiency edimators when cdculating the
statistics using the full sample for both null and aternative nodels is illustrated in figure
4.The F" gatistic cdculated underthe true assmption of hafnormal inefficiency terms
has a dstribution clealy different from the theoreticd F value, s$arting at 1 ad

increasng much more rapdly than the theoreticd F-distribution with 100100 degreesf
freebm™. The aiticd valuefrom the theoreticd distribution rejeds far too few cases at

the 95%level of sgnificance.

18 Sincethis statistic by (15) and (17) i bound to be greater or equal b 1, an akrnative test would be to
truncate the F-distribution. In fact, this truncated distribution fares even worse in the region where
rejection takes place.
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Figure 4 dso $rows the halfnormal F" is shown when cadculated with randomly split
samples. Here the two distributions are very similar, but with aclea shift outwards for
the obsaved F". Useof the theoreticd criticd value would rgect the null hypothessin
10.8% of the iterations, dout twice asmany as $ould have been rgeded (5%). It is
obvioudy the impactof the dfferent biasin the two moddsthatis aeding this sift, and
it is dearthatif one had a orrect esimator of the dfferencein bias,the teds could dso

be mrreded.Asit is, however, the sgit sanple teds fail the sze aiteria®.

While sud figures suggeghat one could tabulate an dtemative ciiticd value from the
Monte Calo dmulated dstributions of the test s$atistics,the seemessof the of the full
sample dstribution conveys that the aiticd values ould be qlite sasitive to the model

assuptions.

4.2 Testingfor Returns to Scée: Varying the Assunptions
Sample size

Table 3reports the summary resuts of the B setof trials, where the sanple szeisvaried
from 20to 1000.The bias reducesleatty with sanple szein dl casesfor the dficiency
edimate in the VRS casé¢he redudion is from around seven per cait to lessthan half of

one per cet. Infad, when g=1, the logarithm of the bias isamost linea in the

logarithm of sample size with aregresson equation of

In(B?) = —0949 - 0959In(n), R?=0998 (29)

inthe CRS case,,d

In(B}) = -0259-0782In(n ), R?=099%9 (30)

19 Analogous graphs for the other tests show avery similar picture.
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inthe VRS caseThis supjprts the finding by Korostelev, Smar & Tsybakov (1995a)

that the rate of convergenceis a wer function of the sanple sze.

Figure 5 $owsthe interadion of sanple sze and scde paameter in deermining the

bias.The g =1line from lower left to upper ight represats the biases nderthe null

hypothess but varying scée. The n=100line from lower right to uppereft represat the
bias acoss dfferent scde paameters and correspndsto panel a) of figure 3.The VRS
bias sufaceis dmostinvariant with respecto the scée paameter, but converges tealy
towards zeo asthe sanple szeincreases awaand to theright in the figure. The CRS
bias sufacerespnds much sharperto changesin the scée paameter, asit should, and
paticularly for low scde dadicities ad large sanple szesto the right in the figure. For
the largest sanple szeof 1000,the two sufaces Bmost touch at zerobias when the null
hypothessistrue, gving supprt to the aymptotic propettiesof the esimators and the

teds.

The lower parts of table 3 shows how the full sample testsrejed the null hypothesis in
fartoo few cases,xeept when the sanple is very small. The drong dep@&dence between
edimators desroysthe szes.The pared T-testhowever rejedsin far too many casesor
al sanple szes, dudo the one-sidednature of the bias.In a sase,thistestistoo

powerful when biasis not correded.

The split sample F-test with a(true) halfnormal assumption tends to get asymptoticaly
closerto the correctrgedion level of 5% asthe sanple szeincreasesbut dways reeds
in too many cases. The split sample F-test with an exponential assumption overshoots
and rgedstoo few in the largest samples. The split sample T-test performssimilarly to
the F -test in the sense that it consistently over-rejeds, but it has a higher rejedion rate
than the halfnormal F-ted. Even when the spit sanple teds have szesbelow the

speafied 5%, they are not as powerful asthe full sample tests which are till best.

Among the full sanple tedsthe T-testis bestfor sanple szes &dove 50,but hastoo
many Type | @rorsto meetthe sze citeriain the smallest saples.The hafnormal F-
test abesbest vhen the sanple szeis 20, ad the D" test does kest for =50, but as

figure 6a) Bows, in both caseghe pwer functions ae soflat thatit is dfficult to speak
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Table 4. Reslts from trial C. Different efficiencylevds.

Common conditions: Number of sampés s=1000, Samelsize n=100, ne input/one output,
Normal distribution of outputwith y ~ N(10,3 , Halfnormal distributions of

inefficiencies.
Trial C1 C2 (=A) C3
neffdenion o IN(0,01) IN(0,025) IN(0,05)
Expeded effciency E(E) 0.816 0.745 0.683
Scale paameter, S 0.8 1 12 0.8 1 12 0.8 1 12
CRSbhias, B° -0.037 0.003 -0.015 -0.025 0.005 -0.009 -0.018 0.006 -0.004
VRShias,B" 0.017 0.016 0.014 0.023 0.022 0021 0.028 0.027 0.026
Full sampeé rgjection rates in percent (5% fests)
F' 799 01 173 476 0.2 56 298 0.1 22
FF 777 01 150 422 00 34 225 01 1.0
D" 812 03 242 460 0.2 73 247 0.7 32
T 947 21 605 788 23 295 607 38 182
T° 1000 998 1000 1000 994 1000 1000 996 1000
Split sampke rgection rates in percent (5% tsts)
F'' 503 110 219 333 96 166 275 116 178
FE 480 6.1 16.7 277 6.2 110 195 5.9 112
D" 560 84 220 331 80 158 226 87 133
T 712 143 354 507 128 253 368 154 242
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of any power at d. Reurnsto scée arenot redly tegable for sanple szeslessthan 100.

For the largest samples, all full sample tests are good.

Efficiency level

Table 4reports the resuts from the Ctrials where the level of inefficiency varies. Basis
clealy increasng with inefficiency. However, biasis afairly constant proportion of the
edimatedinefficiency term, varying from 2%to 25% for the CRS esmator when CRS
istrue and from 10%to 12% for the VRS eimator. This would indicae that abias

corredion term should be multiplicative.

The suggeted hypothesstedsin table 4 and figure 7 ®ow a pcturevery smilar to that
inthe previoustrias. Full sanple teds, exceptthe paredT-ted, passhe sze citeria,
while the split sample test do not. Even though the exponential F-test amost has asmall
enough sze,the full sanpleteds ae d more pwerful with deceasng returnsto scée,
and the full sample T-testis dsomore powerful with increasng returnsto scée.
However, none of the teds ae very powerful for valuesof the scée paameter dove 1,

esped@ly when the dficiency levels ae low asin C3.
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Table 5. Raultsfrom trial D. Different inefficiency distribution functions.

Common conditions:.  Number of samplkes s=1000,Sampk size n=100,One input/one output,
Normal distribution of outputwith y ~ N(10,3 , Distributions of

inefficiencieswith E(y)=0.3989.

Trial D1 (=A) D2 D3
Distribution of  Halfnormal: |[N(0,0.25)| Gamma(2,0.1995) Exponential (0.3989
inefficiency y
Scale paameter, S 0.8 1 12 0.8 1 12 0.8 1 12
CRShias, B° -0.025 0.005 -0.009 -0.004 0.019 0.011 -0.033 0.003 -0.013
VRShbias,B" 0.023 0.022 0.021 0.043 0.042 0.041 0.018 0.016 0.015
Full sampeé rgjection rates in percent (5% fests)
F" 476 02 56 462 17 101 400 03 16
FF 422 00 34 438 12 85 450 00 14
D" 460 0.2 7.3 543 50 190 593 0.0 8.7
T 788 23 295 777 176 426 718 02 122
T° 1000 994 1000 1000 999 1000 1000 988 1000
Split sampke rgection rates in percent (5% tsts)
F' 333 96 166 361 163 217 362 179 292
FF 277 6.2 110 297 97 151 310 95 192
D" 331 80 158 364 124 199 379 70 145
T 507 128 253 513 198 319 434 104 238
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Table 6. Raultsfrom trial E. Different distributions of output y.

Common conditions:.  Number of samples s=1000,Sampk size n=100, Halfnormal inefficiency
distribution y~|N(0,0.25)|, Qhe input/one output, Distibution of outputwith

E(y)=10, SD(y)= V2 .

Trial E1l (=A) E2 E3
Distribution of aitput y Normal(102) Uniform(10 +/6 ) Lognamal(10,4/2 10-v/6 )
Scale paameter, 0.8 1 12 0.8 1 12 0.8 1 12
CRShias, B -0.025 0.005 -0.009 -0.022 0.005 -0.009 -0.012 0.005 -0.012
VRShias,B" 0.023 0.022 0.021 0.023 0.022 0.021 0.021 0.020 0.019
Full sampeé rgjection rates in percent (5% fests)
F" 476 02 56 419 05 44 101 02 130
FE 422 0.0 34 336 0.2 2.8 5.7 0.1 100
D" 460 0.2 73 401 0.5 5.6 9.6 0.4 145
T 788 23 295 804 30 266 425 14 34.4
T° 1000 994 1000 1000 997 1000 1000 998 1000
Split sampke rgection rates in percent (5% tsts)
F' 333 96 166 313 106 195 210 9.7 201
FF 277 6.2 110 244 55 130 14.6 51 126
D" 331 8.0 158 297 7.8 144 17.3 7.4 174
T 507 128 253 453 124 272 305 118 280
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Inefficiency distribution shape

The functional form of the dstribution of the inefficiency termis variedin the Dtrials
reportedin table 5 and figure 8.Thesetrials are chbrated with a @mmon expeded

inefficiency term y , but through the transformation in (10), this does not giveriseto a

common mean efficiency level E. The exponentia distribution hasthe gedest desty at
full efficiency, while the ganma dstribution has amode below 0.9 and a zero desity at 1
(Johnson & Kotz, 1970a)This means that the Ganma dstribution doesnot belong to
the class that make the DEA estimators meximum likelihood estimators, but since it has a
positive density arbitrarily close to the frontier, it still satisfies assumption A4) necessey

for consistency.

This naturaly givesriseto a geder averagebiasin the ganme-distributed case, ra the
leastbias wth the exponentia distribution. The vanationis gute large, ad it doesnot
sean possble to construct any biascorredion measue without knowing the true
distributional form. Again, the tests show much the same pattern. Interestingly, in the
exponential casethe F-testthat assmesthe @rrect dstribution doesonly dightly better
than the halfnormal F-test, even though both have lesspower than the T-test and the D*
test. The T-test is nost affeded by the higher bias of the Gammea-distribution, resulting

in failure the size criteria. For this distribution the Kolmogorov-Smirnov test is best.

Output distribution shape

Table 6 and figure 9 reprt the resits of trial E wherethe generaed dstribution of the
outputy isvaried. These dktributions ae cdibratedto have the sane mean and gandard
deviation. The Lognormal distribution, which has three parameters, is inaddition
constructed to have the same lower bound as the uniform distribution, but has like the

normal distribution no upperbound.

The CRS egmates ae nealy identicd for the threetrias. In the VRS casehe biasis
dightly lower when the output is lognormally distributed. This does not leal to
noticedle dfferencesin theteds, and in dl casegshe T-testis bed, with the F-tegs and

D" test &someding the sze citeria.
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Table 7. Raultsfrom trial F. Different number of inputs.

Common conditions:.  Number of samplkes s=1000,Sampke size n=100, Halfnormal inefficiency
distribution y~|N(0,0.25), Normal dstribution of output, hput mix aratio
of normally distributed numbers, all N(10,2), @bb-Douglas production

function with equalshare paameters.

Trial F1EA) F2 F3
Number of inputs, L 1 2 3
Scale paameter, S 0.8 1 12 0.8 1 12 0.8 1 12
CRShias, B° -0.025 0.005 -0.009 0.001 0.019 0.011 0.021 0.036 0.030
VRShbias,B" 0.023 0.022 0.021 0.046 0.044 0.042 0.065 0.063 0.061
Full sampeé rgjection rates in percent (5% fests)
F' 476 0.2 56 442 2.0 6.2 471 37 115
FE 422 0.0 34 429 19 47 503 48 106
D" 460 0.2 73 376 29 9.0 392 51 8.6
T 788 23 295 759 109 286 746 156 307
T° 1000 994 1000 1000 1000 1000 1000 1000 1000
Split sampke rgection rates in percent (5% tsts)
F' 333 96 166 327 193 236 347 189 263
FF 277 6.2 110 284 144 167 317 160 207
D" 331 80 158 287 135 175 280 156 187
T 507 128 253 449 238 269 420 223 291
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Dimensionality

All previous trials have had the same dimensionality with one input and one output, but
in the F trials reported in table 7 the number of inputs is varied. The production frontier

is no longer linear, but is a Cobb-Douglas core with equal factor share parameters
a, = %_ in the frontier function in (4). This represents two types of shift in the analysis.

Firstly the computational burden of the simulations is greatly increased. Secondly, Kneip,
Park and Simar (1996) notes that there is a qualitative step in the deterioration of the

rate of convergence of the efficiency estimators.

Table 7 shows indeed that increasing dimensionality leads to dramatic increases in the
bias of the estimators. In the true CRS case bias increases by a factor of four from the
one-input to the two-input case, doubling again to the three-input case. The VRS
estimate biases increase more slowly, by approximately 100% and 50% respectively, so
that the differences between the CRS and VRS estimators are in fact only moderately
increased from 0.017 to 0.027.

This is reflected in the tests, whose rejection rates generally increases somewhat. Even
though bias increases markedly with increased dimensionality, since this happens for both
estimators, the sizes of the tests are only moderately affected. The full sample T-test fails
the size criteria when there are multiple inputs, so that the full sample F aest®

contend for best place. There is not much difference between them, but none are

particularly powerful if there are increasing returns to scale in the true technology.

4.3 Testing for Variable Inclusion

The final set of trials differs from the others in that the null hypothesis is not that the
production function exhibits constant returns to scale, but rather that there is only one
relevant input. The trials have observations that are generated under the same
assumptions that underlie the basic model, with halfnormal inefficiency, a sample size of

100, a CRS technology assumption, one input and one output. In these trials an extra
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variablex, is generated that has the same random normal distribution as the output, but is

irrelevant to the production technology.

The null hypothesis is the true one that the extra variable is not relevant to the

production technology, while the alternative hypothesis is thahould be included in

the analysis as an input. In both cases the DEA model is solved as a CRS problem, but in
model 1 there is an added restriction due to the extra variable; there is in other words an
extra dimension. By proposition 6 in the appendix the one-input model is nested within
the two-input model in the same way as the CRS model is nested within the VRS model.
Under the true null hypothesis there is the same strict ordering of estimators as in (18),

but when the null hypothesis is false the 1-input bias may be negative.

The data are generated with the factor share parammetearying from 0 to 0.5. The
difference between the trials is that in G4,is generated in the specified data
generating process, with the result that it is highly correlated xyjtivhile in the other

trials the two potential inputs are less correlated. In empirical work the first case would

usually be more realistic.

For the first two trials, both input levels depend on the output. B/, a, =0, i.e.

when the null hypothesis is true, the frontier levekpfs determined directly from the
output levely. In trials G1 and G2, the frontier mapping of the second input is then

determined by the ratio of two normal numbers, as specified in (7). In G1 both the
relevant and the irrelevant inputs are multiplied by the same inefficiency term in (8). The
result is a set of power curves that are one-sided, but otherwise remarkably similar to
those in the base trial A. The full sample test minus the paired T-test and plus the split

sample exponential F-test meet the size criteria, but the T-test is again best.

In the second trial G2, the specified DGP is violated by introducing an input-specific
inefficiency term in (8), since there could often be reason to believe that slacks will vary
for the different inputs in real production activities. This reduces substantially the
correlation between the input levels, at the same time increasing the bias of the two-input

estimates. The result for the tests can be seen from figure 11b) to be an upward shift of
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Table 8. Raultsfrom trial G. Testing for relevance ¢ second input.

Common conditions. Number of samples s=1000,Sampk size n=100, Halfnormal inefficiency

distribution y~|N(0,0.25), Normal distribution of output, lhput mix as
ratio of normally distributed numbers, all N(10,2), @bb-Douglas

production functions, CRS models f=1.

Trial Gl G2 G3 G4
Second input x, Yes Yes No No
dependent on outputy

Common inefficiency y Yes No Yes No
Secad input share «, 0 0.2 04 0 0.2 0.4 0 0
Input correlation  0.770 0.735 0.715 0.227 0.159 0.124 0.687 0.002

Meanj(f)i(xlij,xij )
1l-inputestimate bias, B° 0.005 -0.027 -0.073 0.005 -0.027 -0.074 0.005 0.005
2-inputestimate bias, B 0.012 0.018 0.019 0.043 0.059 0.064 0.012 0.043
Full sampeé rgjection rates in percent (5% fests)
F 0.1 434 984 807 1000 1000 0.0 794
=5 00 344 957 520 996 1000 0.0 516
D* 00 380 944 298 979 1000 0.0 311
T 04 707 997 654 999 1000 0.1 64.4
T° 922 1000 1000 1000 1000 1000 94.4 99.9
Split sampke rgection rates in percent (5% tsts)

F 75 333 734 520 927 999 7.0 504
=5 32 236 677 315 829 995 32 299
D* 53 273 727 264 766 980 4.8 26.9
T 85 434 846 407 896 998 7.1 421

The definition of mean i given in teble 1 and correlation in teble 2.
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al power cuves, sahat no testnow meetthe sze citeria. However, the Kolmogorov-
Smirnov ted, and thistime the sgit-sample variant, comes ¢osestby having the least

proportion of Type | errors.

Thefinal two trials violate the DGPfurther, by removing the depadence of the seond

input on the output level, instead assuming an independent “optimal” i nput drawn from
the same distribution. The generated X, arethereby not on the isoquant, and generaing

obsewations with positive output dares vould be meaningless. B varying the
inefficiency assunptionstwo dfferent correlations with the firstinput ae adieved. The
resuts, both for bias when the null hypothessistrue, and for the sze of theteds, ae
quite similar to the first two Gtrials. In deading the variable spedfi cation of a mode, it
is dealy important to measue the extent of correlation. If correlation islow, a

conservative test is advisable.

These smulations are based on comparing 1-input and 2-input estimates, which, as noted
edlier, implies a quitative g¢epin the increasan bias. he would therefore expectthe
relative increase to be less when comparing L-input to L+1-input estimates when L>1,
and rgedion rates would therefore generdly be lowered.This would makethe full

sample tests usable for considerably lower input correlations than 0.7.

Finally, it should be noted that variable aggregation implies very smilar model changes
as aesvarnable excluson. By proposition 6 in the appedix, an aggregéed modd is
nededin a dsaggegaedone, ad hastherfore equéor lower dficiency egimates.
Although | offer no amulationsto supyrt it, this would imply that the teds sould be

usable for approximately the same ranges of sample sizes and variable correlations.

5. Condusion

The smulations dow that biasis important, and that it varies ystematicdly, increasng
with dimensionality, and decreasg with sample sze, arerage #iciency and ahigh
density of obsewations nearthe frontier. The sze and power of the suggetedteds are

both increased by this bias, offsetting the reduced size and power stemming from the
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depeandence of the dficiency egimators. Although the last sebf trials $ow that the teds
suggeted sofarin the literaure arein no way peffed, there are ame sibstantive

findingsthat sould gve gooundsfor conclusonsin empirica work.

Firstly, the full sample tests generally do better than the split sample tests, the ktter being
not very powerful. In fact orreaing for depexdency doesnot seen helpful unlessone
can dso orrectfor bias. Seondly, the T-test semsless #ededby the depadencein
the full samples, so that if bias is bw dueto e.g. large samples, low dimensionally, and
inefficiency distributions which are dansenearthe frontier, the T-testis qute uséul. If,
however, bias issomewhat higher, due to medium sample size, higher dimensionality and
inefficiency distributions that have their mode awg from the frontier, the F-teds and the
Kolmogorov-Smirnov teds seen bed. There is not much difference between these.
Findly, if biasis expededto be very high dueto sample szelessthan about 100,none of
these test will be very good.

Empiricd analysis could therdore be done usng the full sample teds, if proper
consideration is taken of the inaccuadesreported dove, notably that the teds ae

approximations and that the sample size should not be to small.

At this point it would have been possble to tabulate correded citica vauesfor the
differet tedsin ead trial, by sorting the 1000 Monte Cato valuesof the null hypothess
run, and reporting eg. the 10" and 50" value. For example, for the full sanple
halfnormal F teg, the theoreticd criticd valuein the A trialsis 1392, but the Monte
Carlo egimate for the ciiticd valueis 1230. Usng correded citicd vauesfor dl the
full sample tests intrials A ensures corred size and meximises their power. The problem
isthat these citicd values deped on thosefadors which deermine the relative bias, ad
thesefadors areoften quite spetfic to ead apgicaion. It would requre qute alarge
setof tablesto have mrreded citicd valuesfor dl caegories, ulessthe g/stematic
variations could be approximated by simple formulas. These would still only be
appoximations, snce as pintedout by Gijbels et & (1996)the true value of the bias
depaxdson the density of the dficienciesnearthe frontier and the cuvature of the

frontier at eal point.
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The resuts dow that ome of the evaluatedteds ae uséul, but atthe sane time better
teds and lesshiased #iciency esimators ae neededor cases \h small sanples ad
large dimensionality. Possbly, the only way forward is through bootstrapping along the
linesof Smar & Wilson (1997),but further theoreticd work building on Korostelev et
a. (1995a199%) and/or further experimental work could resut in bias ©rredion
formulasthat gve better esimators of efficiency, and atthe sane time gves accest
better testing todls.
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Appendix A. Ranked and nested DEA models

The purpseof this appedix isto prove that cetain DEA modds arenestedin that the
efficiency measuesof one modd as a sped case cabe equéto thoseof the other, and
that thesemodds dso ae ranked in that one knows the sgn of the dfferenceif the

measues ae not equad

Let {1,...,K} bethe setof al possble outputs and {1,...,L} bethe setof al possble

inputs. Let further PO OX*" be aset of the ron-negative quantities
>
(Y:X)=(Yis-+» Y s Xiie- X ) O which defines éther the true podudion technology

{(y, x)|y can be producedrbm x} , Or an estimate of this set. Thetechnology P is

asumed to satisfy certain regularity conditions, notably that the input requirement set
L(y) = {X(y,x) OP} is dosed ad convex for al outputvedors y OO .

Definition 1: TheFarrdl (1957)Tedhnicd Input Efficiency measure of an output-input

vecto (y,x) with respect to the technologytse is

I\/Lin{9|(y,9x)DP}6{ (g, x)OP}# 0

. (A1)
oo, othawise

E(y,x,P)z{

where the second part includes the cagg) = [0 and the axis of essential inputs.

As noted by many authors (see g. Fare ad Lovell, 1978),the first partof this ddinition
isthe inverseof the Shephard (1970)nput dstance function, and hastherdore
correspnding propettiesto those deilvedfor the input dstance function. Among these

arethat E(y, x, P) is homogenousof degree -Ininputs, and thatit provides an
equvalent charagerisaion of technology P = {(y x)|E(y, X, P) < 1} (Shephard, 1970, p.

68, 71).

Definition 2: Let P°be the technology set under the hypothe$jsahid P the
technology set under't The hypothesis Hs nested within H' if and only if there
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exists aP* such thaE(y, x, P’) = E(y,x, P*) for all admissabé Py when H’ is true

andfor all observed pointgy, X) .

The paametric datisticd literature useghe term nestedloosely in the sesethat model
Ois a speia caseof modd 1,i.e.thatmodd O can be obtained from modd 1 by
imposition of restrictions on the parameters, implying a bss of fit (see e.g. Green,
1990). Pesara(1987) suggds aformal definition of negednessin the paranetric case,
claiming that there previoudly had not existed any satisfadory formal definition. His
definition useshe Kullback-Leibler information criterion (KLIC) for the dstance
between the two modés in the range of variation of the daa, ad ddines H asnegedin
H* if for any true parameter vedor in H, the infinum over the parameters in H' of the
KLIC dstanceis zeo. At the sane time he notesthat “the clasdication of the
hypothesis of interest into the nested and the non-nested categories does not depend on
the particular distance measure use.70). Sncethe Farrdl efficiency measure (as
the redprocd of the Shephard dstance function) is ameasureof distance,this could be

usedinstead.

As an example, take aone-nput one-output linear parenetric produdion function asthe
frontier of the production technology, with H®: P° = {(y, x)|y —ax < 0} with one
parameter aand H: P = {(y, x)|y -b-cx< O}With two parameters b,c. Now for any
truea, eg. a’, there ae a sebf paametersb,c, i.e. b'=0, c =a° that ensuresthat
E(y,x,R’) = E(y,x, P*) for al possble obsavations of (y,X) . In the estimation of

parametric functions, this muld be expressed as eedriction of the paameter b.

In non-parametric methods there are no dired parametersto be restricted, but as will be
sea the notion of lossof fit cariesover in that the dstance from inefficient obsevations
to the frontier is greaer or equal in model 0. Paradoxicdly, this entails a less restrictive

definition of the esimator of the technology set P. Dénition 2 eove is chosen sinceit

closdy follows the mncepts behind Pesean's definition, requring that the setP" is one

that minimizesthe dstance |E(y, x, ) - E(y, x, P )| between the sets, and that this

distancethenis zeo. The ddinition givesriseto the sane cdegorisaion of modds asin

the paametric literature, i.e. a onstant returns modd is neged within avariable returns
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model, a model excluding one variable is nested within the model including this variable,

etc. Following Greae (1990) the terms modd and hypothess will be used equivalently.

Definition 3: Model O isranked within model 1 ifE(y,x, P°) < E(y, x, P*) for all

points for all (y,x) 00",
Definition 4: Model i assumegeasibility if all observed point§y®, x°) OP' .

Proposition 1: If model 0 is rankedithin model 1 and the latter model is an estimator

P that assumedeasibility, then model 0O is nesteithin model 1.

Proof: When modd Oistrue,for any true P’, there is apossblity of observing the point
(y°, E(y°,x°, Fgo)x") correspnding to every other obsevation (y°, x°), i.e.thetrue
frontier mappng of eat obseavation is dsoobseaved. By the homogeneity of —1 of the
Farrdl input measure \ith respecto inputs E(y°, E(y°, X°, F{f)x", F{)O) =1. When this
point is observed, it is inthe nmodel 1 estimate by the feasibility assumption, and then we
know that E(y°, E(y°, x°, F{f)x", ﬁ’l) < 1. Combining this with the ranking assumption
E(y,x,P%)< E(y,x, If>1) , we get

1= E(y", E(y°, x°, R))X°, F{f) < E(y°, E(y°, x°, BY)X°, f’l) < 1. Thiscan only be true if
E(y°, E(y°, x°, B)X°, F{)O) = E(y", E(y°,x°, BY)x°, f’l) =1, which by homogeneity
implies E(y°,x°, ) = E(y°,x°,P!). Thereis thus some set of observations that make

the Farrell eficiency measues equbfor dl obsevations for any true P,

Note that the converse isnot true. Nestedness and feasibility are not suffi cient to ensure
ranking, as ca be sea from the example of linear podudion frontiers desabed

previoudy.

Proposition 2: Model 0 is rankea\vthin model 1, if and only iP* O P°.
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Proof: Considerfirst a mint (y,x) where {6|(y, ex) O Pl} =[. Then by definition (A.1)
E(y,x,P") = sothat ay valueof E(y,x,P°)< E(y,X, P*). Consider next the point
(y, E(y, X, Pl)x) where {6|(y, ex) O Pl} # [0 . Sncethe dficiency measue isthen the
optimal value of @ in (A.1), this point will be on the boundary of P*, and therefore

(y, E(y. X, Pl)x) OP*. When P* O P° this implies that (y, E(y. X, Pl)x) OP°. Thiscan
equivalently bewritten as E(y, E(y, X, Pl)x, PO) <1, and dncethe dficiency measueis
homogenous indegree -1 in inputs, this implies ranking E(y, X, P°) < E(y,x, Pl).
Conversdy consider ay point (y,x) O P*, which equvalently can be expressed as
E(y,x, P*) < 1. When the modeis ae ranked E(y, x, P°) < E(y,x, P*), we must have

E(y,x,P°) <1, which by the same equivalence inplies (y,x) OP°, so that P* O P°.

Proposition 3:Let P° and P'be sets dined by a set of restrictions on the inputs and
outputs P° ={(y,x) O0{*"|g (y,x) < 0,i =1,...,1 }and
P*={(y,) 00" g (y,9)<0,i =1...,1,1 +1...,1 + J} i.e.with J added restrictions,

then model 0 is rankeadithin model 1.

Proof: Consider a pint (Y, X) which satisfies all the restrictions

g(y,x)<0,i =1,...,1,...,1 +J sothat (y,x) OP", then that point will also satisfy the
first | of these restrictions, implying (y,x) O P°. Hence all points in P* will also be in
P°, sothat P* O P°and by proposition 2, E(y,x,P°)< E(y,x, P*). Note that this does

not imply nestedness unless one also asaumes feasibility in model 1.

Definition 5: Given N observations of input-output vect¢ys,x"),n=1,...,N the

DEA Constant Returns to Sc4feRS) estimator of the technology sdfirtel over
outputsl...,K, and inputsl... L, is



lf\)CRS —

Yk _ni/lnyl‘: <0,

N
AX =% <0,

n=

A,20n=1...,N

k=1,...K,,l =1..

L
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(A.2)

Definition 6: Given N observations of input-output vect¢ys,x"),n=1,...,N the

DEA Variable Returns to Sca(¢RS) estimator of the technology sl overK,

outputs ad L, inputsis

FSVRS —

A, =1
n=1
A,20n=1...,
k=1...,K,,l =

(A.3)

Definition 5 correspndsto the original Farrdl (1957)input measure aformulated by

Chames et & (1985), wile ddinition 6 correspndsto the formulation of Banker,

Chames and Cooper (1984). Bth definititons assme feashility, convexity and free

disposal. Note that not al possibleinputs and outputs needto be redrictedin these

definitions; if eg. L, < L then some potential inputs are assumed not to metter for this

tedhnology, and are freenon-negdive variables. The modds may be misspediedin that

the input-output list used desnot correspnd to the true input-output list.

Proposition 4: The DEA CRS estimator of technololéfﬁsis ranked and nestegithin

the DEA VRS estimatd?"™ when déined over the same inputs and outputs.
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N N
Proof: Note that the restriction z A, =1 can be written as g,,,(y,X) = z A,—1<0
n=1 n=1

N
and g,.,(y,x) = =) 4, +1<0, so that P is P®*® with the addition of these two
n=1

regrictions. Therefore by proposition 3 P*™® O P*® and by proposition 2

E(yx,P™) < E(y,x,P"®). Since all DEA models assimethe feasibili ty of observed
points, by proposition 1, P*is nested within  P"™.

3. CRS

Proposition 5:The DEA CRS estimator of technology ™ ~with L, inputsis ranked

CRS

and nesteavthin the DEA CRS estimatdf’L1 with L > L, inputs when déned over

the same outputs, and the DEA VRS estimator of technéloGywith L, inputs is

ranked and nestedithin the DEA VRS estimatd?_ " with L, > L, inputs when

defined over the same outputs.

Proof: Writing the redrictions for the etra L, — L, inputs as

CRS

N
G, (¥ =Y 2" =% 0,1 = Lo+1..., Ly, then P, is P with the addition
n=1

of these @tra redrictions. Therefore by proposition 3, P, 0 R, and by

proposition 2, E(y, x, |5LD°RS) < E(y.x,R,“). Anally, sncethe CRS etimator asstnes

CRS)

feasibility of observations, by proposition 1, the smaller model with L, inputs isnested in

the largerone with L, inputs. By the samereasoning, P_"™ 0 R,

E(y.x P, ") < E(y.x,P,"™), and the smaller model is nested in the larger one.

Proposition 6:The DEA CRS estimator of technoloéffRvaith input s déined as a
linear aggregation of inputstand u, =ax ¥ x, B0, >0 is ranked and nested
within the DEA CRS estimatd®™when déined over the separate inputs t and u
entered directly, and the same outputs and other inputs, and th&/REA&stimator of

technologyf’SVRSwith input s déined as a linear aggregation of inputst and u,

x;=ox, B x, B0, >0 isranked and nestesithin the DEA VRS estimator
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FA{YLTS\Ahen déined over the separate inputs t and u entered directly, and the same

outputs and other inputs.

Proof: Thisis dso povedby Fare ad Pimont (1987). Note thatin the aggregeed
N

model restriction | can bewrittenas g, (y,x) = ) A,(exB xip=(Bx + x,)=<0,
n=1

N

while in the dsaggregeedthe two redrictions g,.,(Y,X) = Zﬂnxt” -% <0 and

n=1
N
0.,(Y,X) = Zﬂnxj - X, £0 areincludedinstead. But Bice a fpsitive linear
n=1

aggegdion of the two latter redrictions impliesthe aggegdedredriction,
09,.,(¥Y,X) B 0,.,(¥,X) =9, (y,X), the aggregeed resriction can be includedin the
disaggreged modd definition without changing the extent of the sé. Then the

disaggregeedmodd RS is P with the addtion of two extraregrictions, ad

therdore Piopositions 1,2 and 3 apjy. The sane reasning holdsfor the VRS case.

Proposition 7:The true technolgg P is ranked and nestesithin the DEA CRS

5CRS
P

estimator if @) the latter is déned over the same true set of relevant outputs and

inputs, b) the true technology himee disposability of inputs and outputs, is convex and

linearly homogenous, and c) inputs and outputs are obsewdeout error, andfurther

that the true technolggP"™ is ranked and nestesithin the DEA VRS estimatd?*™

if @) the latter is dBned over the same true set of relevant outputs and inputs, b) the
true technology hasee disposability of inputs and output and is convex, and c) inputs

and outputs are observedthout error.
R N N
Proof: Note that any point in P can be written as [Zﬂny” -9, Zﬂnx;’ + sxj,

N
Zﬂn =14,20, where §' >0, § >0 arethe dackvariablesform the optimal solution
of (A.3).Firstly, (yn : x”) OPY® dnceby the assmption of no measuement error, dl

N N
obseved wints ae feasble. Seondly, [z Ay, z ﬂnxf“j OP"™ dncethisis a onvex
n=1 n=1
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combination of the obsavationsthat ae in the truetednology sd. Finaly,

N N
[z Ay -9, z A X+ SXJ OPY® by the assumption of free disposabili ty of inputs and
n=1 n=1

outputs. Therefore P 0 P™ and E(y,x,P"™) < E(y,x,P"™), and thetrue CRS

tedhnology is ranked and neded within the DEA CRS emator.

N N

In the same nanner, any point in P can be written as [z AY' =8 Y AN+ sxj,
n=1 n=1

A, 20, which can be rdormulated as a mportionally scded pint

N N N
o1y ny 1 _ - L
A nZ:lﬂny N> ’nzlﬂm A Sx} nZﬂn =1 u, =20 by dividing and multiplying by

N N 1 N 1 .
AN=F A, .Snce n-—¢, X' +—=s* |[OP“® by the assmptions of
nZ n [nzﬂny /\ ;:un | /\ j y p
feasibility of observations, convexity and free disposal, the origind

N N
pointsA EEZﬂnyn ‘%sy, Zﬂnxf“ +%sz 0P by the assmption of linear

5 CRS

homogeneity. Therefore P“® 0 P and E(y,x, P™®)< E(y,xﬁCRS), and the true

CRStednology isranked and neded within the DEA CRS eimator.
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