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THE RATE OF CAPITAL RETIREMENT:

HOW IS IT RELATED TO

THE FORM OF THE SURVIVAL FUNCTION

AND THE INVESTMENT GROWTH PATH?�)

by

ERIK BI�RN

ABSTRACT

We discuss the relationship between the retirement process of the capital, as formalized by its

survival function, and the average retirement rate, and how this relationship is a�ected by changes

in the investment path. The e�ect of the survival function on the age distribution of the capital

goods, both those existing and those retired in each period, is also considered. These issues are

illustrated by means of parametric (convex and concave) functions and numerical examples. We

�nd that the retirement rate is a declining function of the growth rate of investment (except in

the exponential decay case) and quite sensitive to the value of this parameter over a reasonable

interval. Approximating the retirement rate by the inverse of the capital's maximal life-time or

twice this value (`double declining balance') will in many cases produce very inaccurate results.

The response of the capital/investment ratio and the retirement/investment ratio to changes in

the investment growth rate and in the curvature of the survival function is also investigated.

Keywords: Capital. Retirement. Survival function. Age distribution.

Exponential decay. Mortality rate

JEL classi�cation: C51, D24, E22, O47
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1 Introduction

The retirement of capital goods is a variable of considerable interest in economics and

econometrics, and retirement (mortality) rates are important for several research pur-

poses. In most countries, replacement investment accounts for a substantial part of gross

investment and GNP, according to national accounts calculations. The process describ-

ing how capital retires is a basic determinant of the age distribution of the capital stock,

as is also the time path of the investment in new assets. Using demographic analogues,

we may associate (gross) investment with the birth of capital and retirement with death.

From basic demography we know that the pattern of mortality rates of a population of

persons and the time pro�le of the births jointly determine the age distribution of the

population (when adjustment is made for migrations). Similarly, changes in the retire-

ment process and in the time path of new investments jointly determine the average age

of the capital and other characteristics of its age distribution (when purchases and sales

of used capital are adjusted for).

In this paper, we discuss the relationship between the retirement process of the cap-

ital, formalized by its survival function, and the average retirement rate, and how this

relationship is a�ected by changes in the investment growth path. The average retire-

ment rate of capital goods corresponds to the average mortality rate of a population of

persons and the ratio between the gross investment and the capital stock corresponds to

the birth rate. We will also discuss how changes in the survival function a�ects the age

distribution of the capital goods, partly in general terms, partly by means of parametric

(convex and concave) functions, and partly through numerical examples. An integra-

tion of our analysis into a model of the �rm's investment demand is, however, beyond

our scope. Neither do we present econometric illustrations of the relationships under

discussion.

It is well known that the average rate of capital retirement will be a constant inde-

pendent of the time path of gross investment in the particular case where the survival

function is exponentially declining in the age of the capital (exponential decay, declining

balance). Exponential decay is the only case in which changes in the investment pro�le

do not a�ect the average retirement rate; see Feldstein and Rothschild (1974, section 2).

Often exponential decay is considered a benchmark case of capital retirement, and it has

been argued that it is an acceptable simplifying approximation for long-term analysis, for

instance in modelling economic growth, cf. Jorgenson (1963, p. 251, 1974). Yet, average

retirement rates are applied by researchers even if exponential decay is not warranted,

for instance in the calculation of capital service prices. This practise may be criticized,
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see Bi�rn (1989, section 11.7).1

An examination of the relationship between the form of the retirement process and

the average retirement rate of capital under non-exponential decay is interesting for sev-

eral purposes. We may, for example, wish to interpret time series for the retirement rates

calculated from investment data by the perpetual inventory method with a given retire-

ment process on a `scale' comparable to the retirement rate under exponential decay.

Which is the appropriate `translation' of the retirement rate, �, if the retirement pattern

of the capital correponds to, say, simultaneous retirement at a �xed age N , or to linear

retirement up to a �xed life-time, N? Often � = 1=N is used as a `rule of translation'

for the former and � = 2=N for the latter.2 Under which conditions are these translation

rules valid, or acceptable, approximations? If direct registrations of the capital stock are

available, when will constancy of the implied retirement rate hold as a satisfactory ap-

proximation? A further, more general question is: How will the changes in the curvature

of the survival function a�ect the average retirement rate for di�erent growth pro�les of

gross investment?

The following sections are disposed as follows. In Section 2, we describe the model

and de�ne the basic concepts. Section 3 considers the age distribution of the capital and

the related age distribution of retirement. We next derive the relationship between the

overall retirement rates, the hazard rate of the mortality distribution of the capital, and

its age distribution. The hazard rates can be interpreted as age speci�c retirement rates.

In Section 4, we consider the special case with constant gross investment. We show that

in this case, the overall retirement rate coincides with the inverse of the total service ow

from one capital unit during its life-time.

Three parametric survival functions are de�ned in Section 5, characterized by, respec-

tively, exponentially declining survival function with in�nite maximal life-time (exponen-

tial decay), convex survival function with �nite maximal life-time, and concave survival

function with �nite maximal life-time. We discuss the way in which the curvature of the

survival function interferes with the growth rate of investment in determining the age

distribution of the capital and its average retirement rate. Three special cases { linear,

simultaneous, and immediate retirement { are considered in Section 6. The translation

formulae � = 1=N for the �rst and � = 2=N for the second hold under stationarity of

gross investment only and may be quite inaccurate otherwise. Numerical illustrations of

1Retirement, as the term is being used here, is distinctly di�erent from depreciation, which is related

to the decline in the value of the capital, rather than to its deterioration as an input in production. A

recent survey of empirical studies of depreciation is Jorgenson (1996).
2The latter is often denoted as the `double declining balance' pattern; cf., e.g., Fraumeni and Jorgen-

son (1980, p. 24).
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the sensitivity of the retirement rate and properties of the age distribution to changes

in the curvature of the survival function and the growth pattern of investment are given

in Section 7. A main conclusion is that the retirement rate is a declining function of

the growth rate of investment and quite sensitive to the value of this growth rate over a

reasonable interval. If, for example, the (continuous) growth rate of investment increases

from 0 to 5 per cent and all capital retires simultaneously at age 20, the retirement rate

decreases from 5 per cent to 2.9 per cent. With linear retirement over 20 years, the

corresponding retirement rate decreases from 10 per cent to 8.6 per cent.

2 Model and basic concepts

Let J(t) denote gross investment at time t, with t continuous. The investment brings an

increase in the productive capacity of the capital stock, which disappears gradually as

the age of the capital increases. This is characterized by the survival function, or survival

curve, B(s), indicating the proportion of the capacity of a capital stock which survives

at age s (� 0).3 It is assumed to be time invariant and satis�es

B(s) 2 [0; 1]; B 0(s) � 0; B(0) = 1; B(1) = 0:(1)

The capital volume of age s at time t, i.e., belonging to vintage t�s at time t, is

K(t; s) = B(s) J(t�s):(2)

We make the usual assumption that one unit of capital produces one unit of capital

services per unit of time, so that K(t; s) both has a stock interpretation and represents

the instantaneous ow of capital services produced at time t by the capital which is of

age s. Neo-classical theory of production implies that capital is malleable, i.e., capital

units belonging to di�erent vintages are perfect substitutes at any point in time, so that

the capital input in a production function at time t can be represented by the aggregate

K(t) =

Z
1

0
K(t; s)ds =

Z
1

0
B(s)J(t�s)ds:(3)

This variable, the gross capital stock, has the joint interpretation as the total number of

capital units at time t and the instantaneous ow of services `produced' by these units

3This function represents both the loss of e�ciency of existing capital units and their physical disap-

pearance. We may therefore, in principle, consider B(s) as the product of two factors, one indicating the

relative number of capital units surviving at age s (the survival function), the other indicating the relative

decline in e�ciency of each remaining unit (the e�ciency function). We will not focus on such a decom-

position here. However, for the purpose of measuring capital stocks from market data, the distinction

between the survival function and the e�ciency function is important; see Bi�rn (1998).
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at time t.4

The ow of capital goods retired at time t is the di�erence between the gross invest-

ment, J(t), and the increase in the gross capital stock, _K(t), the \dot" indicating the

time derivative. Using (1) and (3), the retirement at time t can be expressed as

D(t) = J(t)� _K(t) =

Z
1

0
b(s)J(t�s) ds(4)

where

b(s) = �B0(s); s � 0:(5)

The function b(s), denoted as the (relative) retirement function, or retirement (mortality)

curve, indicates the structure of the retirement process: b(s)ds is the share of an initial

investment of one unit which disappears from s to s + ds years after installation. From

(1) and (5) it follows that b(s) is non-negative with
R
1

0 b(s)ds = 1.

Let

�(s) =
b(s)

B(s)
= �

d lnB(s)

ds
;(6)

so that �(s)ds is the share of the remaining capital at age s which disappears from s to

s + ds years after installation. The di�erence between b(s) and �(s) follows from their

di�erent normalization: b(s) relates to normalization with respect to the initial invest-

ment, �(s) relates to normalization against the capital remaining. The latter corresponds

to age speci�c mortality rates in demography.5

The volume of retirement at time t can be decomposed by vintages by

D(t; s) = b(s)J(t�s) = �(s)K(t; s)(7)

which denotes the retirement of capital of age s at time t, i.e., belonging to vintage t�s

at time t, so that (4) can be written as

D(t) =

Z
1

0
b(s)J(t�s) ds =

Z
1

0
D(t; s)ds:(8)

4This contrasts with the putty-clay approach in which (i) each capital vintage is assumed to have

its speci�c input coe�cients ex post, determined at the time of investment [cf. Johansen (1959, 1972)],

(ii) capital is not malleable, and (iii) (planned and realized) retirement of capital is determined from

pro�tability conditions, e.g., formalized by means of a quasi-rent criterion [cf. Bi�rn and Frenger (1992)].
5In a probabilistic setting, B(s) can be interpreted as the survival probability, 1 � B(s) as the non-

survival probability, b(s) as the density function and �(s) as the failure rate or hazard rate function; see

Barlow and Proschan (1975, section 3.1) and Kalbeisch and Prentice (1980, section 1.2).
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3 The age distribution of capital and retirement

We next consider the age distributions of the capital and the retirement. Using (2) and

(3), the age distribution of the capital stock at time t can be characterized by the share

of the capital which at time t is of age s,

k(t; s) =
K(t; s)

K(t)
=

B(s)J(t�s)Z
1

0
B(s)J(t�s)ds

; s � 0:(9)

From (7) and (8) it follows that the age distribution of the retirement of capital at time

t can be characterized by the share of the retirement which at time t relates to capital

of age s as

d(t; s) =
D(t; s)

D(t)
=

�(s)K(t; s)Z
1

0
�(s)K(t; s)ds

=
b(s)J(t�s)Z
1

0
b(s)J(t�s)ds

; s � 0:(10)

Obviously, k(t; s) and d(t; s) are non-negative with
R
1

0 k(t; s)ds =
R
1

0 d(t; s)ds = 1.

From (7) we �nd that the age speci�c retirement rate at time t and age s is

�(t; s) =
D(t; s)

K(t; s)
= �(s);(11)

and from (3), (8), and (9) it follows that the overall retirement rate can be expressed as

�(t) =
D(t)

K(t)
=

Z
1

0
D(t; s)ds

Z
1

0
K(t; s)ds

=

Z
1

0
b(s)J(t�s)ds

Z
1

0
B(s)J(t�s)ds

=

Z
1

0
�(s)k(t; s)ds:(12)

This rate is an average of the age speci�c retirement rates, weighted by the age distri-

bution of gross capital at time t. It will therefore, in general, be time dependent. If,

however, �(s) is constant or the age distribution k(t; s) is time invariant, �(t) will be

constant. These are the only two cases in which �(t) will be time independent.

From (9) and (10) it follows that the relationship between the age distributions of

retirement and capital can be expressed as

d(t; s) =
�(s)k(t; s)Z
1

0
�(s)k(t; s)ds

:(13)

Using (12), this relationship can be rewritten as

d(t; s)

k(t; s)
=

�(s)

�(t)
;(14)
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i.e., the ratio between the age speci�c retirement and capital distributions at time t and

age s equals the ratio between the age speci�c retirement rate at age s and the overall

retirement rate at time t.

Let now (t; s) = J(t�s)=J(t); s � 0; denote the growth path of gross investment up

to time t. The rates k(t; s), d(t; s), and �(t) then can be expressed in a simpler form. The

age distribution of the capital can be expressed in terms of the survival function B(s)

and the growth path of investment (t; s) as

k(t; s) =
B(s)(t; s)Z
1

0
B(s)(t; s)ds

;(15)

the age distribution of the retirement can be expressed in terms of the retirement function

b(s) and the path (t; s) as

d(t; s) =
b(s)(t; s)Z
1

0
b(s)(t; s)ds

;(16)

and the overall retirement rate can be expressed in terms of the survival function B(s),

the retirement function b(s), and the growth path (t; s) as

�(t) =

Z
1

0
�(s)B(s)(t; s)ds

Z
1

0
B(s)(t; s)ds

=

Z
1

0
b(s)(t; s)ds

Z
1

0
B(s)(t; s)ds

:(17)

It follows from (15) { (17) that k(t; s), d(t; s), and �(t) are all time invariant for

any B(s) if and only if (t; s) is time invariant. The corresponds to a stable population

in demography [cf. Coale (1972) and Key�tz (1977)]. For (t; s) = J(t� s)=J(t) to

be independent of t for all t and s, it must be an exponential function of the form

(t; s) = e��s.6 The latter assumption will be speci�cally considered in Sections 5 { 7. If

�(s) is constant, which implies that B(s) is an exponential function [cf. (6)], �(t) will be

time invariant and equal to this constant for any (t; s). Hence, constancy of �(t) implies

that at least one of the functions B(s) or (t; s) must be exponential functions in s.

6Nickell comments on this result by saying that if �(t) \is to settle down to a constant level in the long

run in the absence of exponential decay, investment must settle to an exponential growth path in the long

run. This is, in fact the result of renewal theory which has been quoted ..... as a justi�cation for assuming

that the potential replacement-capital ratio is constant. Now, if investment was indeed moving on a �xed

exponential growth path, a proliferation of investment equations would hardly be required to explain this

movement and consequently any serious theoretical justi�cation of the assumption of a �xed potential

replacement-capital ratio for empirical work must fall back on exponential decay" [Nickell (1978, p. 119)].
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4 The constant investment case

If gross investment is constant, then (t; s) = 1 for all t and s, and as a consequence,

the age distributions of capital and retirement and the overall retirement rates will be

constant and depend on the form of the survival function only. Let us take a look at this

case.

Let � denote the total ow of services produced by one capital unit during its entire

life-time, i.e.,

� =

Z
1

0
B(s)ds:(18)

If gross investment is constant and equal to J , it follows from from (3) and (4) that

K(t) = K = �J;(19)

D(t) = D = J:(20)

Then the (constant) capital stock equals the (constant) gross investment times the per

unit of capital service ow during the unit's life-time; net investment, _K, is zero. This

corresponds to a stationary population in demography. Hence,

�(t) = � =
D

K
=

1

�
;(21)

i.e., under constant gross investment, the overall retirement rate is constant and equal

to the inverse of the total service ow per capital unit during its life-time.7

From (9) and (10) we �nd that under constant gross investment, the age distribution

of capital and retirement are time invariant and equal to

k(t; s) = k(s) =
B(s)

�
;(22)

d(t; s) = d(s) = b(s);(23)

for all t. Then we have
d(t; s)

k(t; s)
=

d(s)

k(s)
= �(s)�;(24)

so that the two age distributions will coincide if and only if the hazard rate �(s) is constant

and equal to the inverse of the total service ow per capital unit during its life-time. This

particular case is `exponential decay', which will be discussed in Section 5.

7If the survival function declines so rapidly that � < 1 { which is rather unlikely to occur in practice {

the overall retirement rate, with our continuous time formulation of the retirement process will exceed 1.
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5 Three parametric survival functions

In this section, we describe three examples with parametric survival functions. The

examples are charaterized by, respectively, (i) exponentially declining survival function

with in�nite maximal life-time, (ii) convex survival function with �nite maximal life-time,

and (iii) concave survival function with �nite maximal life-time. Example (i) is one-

parametric, Examples (ii) and (iii) are two-parametric, with one parameter representing

the maximal life-time and the other describing the curvature of the function.

In characterizing the convex and the concave survival functions and their properties

we need the following function, de�ned by the integral

F (i; z) =

Z 1

0
ez�(1� �)id� =

Z 1

0
ez(1��)�id� = ez

Z 1

0
e�z��id�; i = 0; 1; 2; : : : ;(25)

where the second equality is obtained by substituting � = 1� �. Some properties of this

function to be used below are proved in the Appendix.

Exponential decay

This, probably the most famous example of a survival function of capital in the literature,

is the case where the function declines exponentially at the rate �, which is its only

parameter, and we have

B(s) = e��s; � � 0; s � 0;(26)

b(s) = � e��s;(27)

�(s) = �;(28)

� =
1

�
:(29)

This distribution thus has a constant hazard rate, equal to �. We also �nd

k(t; s) = d(t; s) =
e��s(t; s)Z
1

0
e��s(t; s)ds

;(30)

�(t) = �;(31)

so that this survival function is characterized by identical age distributions of capital and

retirement and a constant overall retirement rate.

Assume now constant rate of investment growth at the rate �, J(t�s) = J(t)e��s,

i.e.,

(t; s) = e��s; for all s; t:(32)

8



Then the ratio between capital and gross investment, which may be interpreted as the

inverse birth rate of capital, can, for an arbitrary survival function, be written as

K(t)

J(t)
=

Z
1

0
B(s)e��sds:(33)

Similarly, the ratio between retirement and gross investment, which can be interpreted

as the death to birth ratio of capital, can be written as

D(t)

J(t)
=

Z
1

0
b(s)e��sds:(34)

Under exponential decay and exponential investment growth, we get the following par-

ticular expressions for the capital stock and retirement:

K(t) =
J(t)

� + �
;(35)

D(t) =
J(t)�

� + �
:(36)

It is easy to show that net investment then equals

_K(t) =
J(t)�

� + �
;

which implies that the net investment/gross investment ratio is larger the larger is the

growth rate of the investment. There is proportionality between K(t), D(t), _K(t), and

J(t). If � and � are positive, the net investment/retirement ratio equals �=�. The

capital/gross investment ratio and the retirement/gross investment ratio are smaller the

larger is the past growth rate of the investment. If investment is declining, with � > ��,

retirement will exceed gross investment, i.e., net investment will be negative. The two

age distributions coincide in this case,

k(t; s) = d(t; s) = (� + �)e�(�+�)s;(37)

i.e., they follow an exponential decay retirement function with the parameter � replaced

by (� + �) .

Under constant investment (� = 0), we have in particular

K(t) =
J(t)
�

=
D(t)
�

k(t; s) = d(t; s) = b(s) = �e��s:

Then the age distribution of capital and retirement both coincide with the retirement

function.
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Convex survival function

In this example, the survival function is two-parametric and convex. One parameter, N ,

is the maximal life-time, the other, � , characterizes the curvature of the survival function.

It is given by8

B(s) =

�
1�

s

N

�
�

; N > 0; � � 1; 0 � s � N;(38)

b(s) =
�

N

�
1�

s

N

�
��1

;(39)

�(s) =
�

N � s
;(40)

� =
N

�+1
:(41)

The retirement function and the survival function belong to the same class of functions,

as was also the case for exponential decay. The hazard rate is a monotonically increasing

function of the capital's age, increasing in � , and goes to in�nity at the maximal age N .

The total per unit service ow is proportional to the maximal life-time and monotonically

decreasing in � . The survival function is strictly convex for � > 1 and linear for � = 1.

Inserting (38) and (39) into (15) { (17), we �nd the following expressions for the age

distributions of capital and retirement and the (time dependent) overall retirement rate

for an arbitrary growth path of investment, (t; s):

k(t; s) =

�
1�

s

N

�
�

(t; s)

Z
N

0

�
1�

s

N

�
�

(t; s)ds

;(42)

d(t; s) =

�
1�

s

N

�
��1

(t; s)

Z
N

0

�
1�

s

N

�
��1

(t; s)ds

;(43)

�(t) =
�

N

Z
N

0

�
1�

s

N

�
��1

(t; s)ds

Z
N

0

�
1�

s

N

�
�

(t; s)ds

:(44)

We again assume exponentially growing investment, (32). Since, from (A.1) and (A.5),

by substituting � = s=N and i = � ,

Z
N

0

�
1�

s

N

�
�

e��sds = NF (�;��N) =
N

�+1
[1� �NF (�+1;��N)];

8This survival function is also considered in Bi�rn (1989, section 11.2.2).
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we can write the relationship between capital, gross investment, and retirement at time

t as

K(t) = J(t)NF (�;��N) = J(t)
N

�+1
[1� �NF (�+1;��N)];(45)

D(t) = J(t)�F (��1;��N) = J(t)[1� �NF (�;��N)]:(46)

From (32), (42), and (43) it then follows that

k(t; s) =
e��s

NF (�;��N)

�
1�

s

N

�
�

;(47)

d(t; s) =
e��s

NF (��1;��N)

�
1�

s

N

�
��1

:(48)

From (45) and (46) we �nd that the overall retirement rate is time invariant and can

be written as the following function of N , � , and �:

�(t) = � =
�

N

F (��1;��N)

F (�;��N)
=

�+1

N

1� �NF (�;��N)

1� �NF (�+1;��N)
;(49)

where we in the second equality have used (A.5). If we approximate F (�;��N) and

F (� +1;��N) by the �rst term in their Taylor expansions, which are 1=(� +1) and

1=(�+2), respectively [cf. (A.6)], we �nd the following approximation formula for the

retirement rate, provided that �N is not too large:

� �
�+1

N

1�
�N

�+1

1�
�N

�+2

�
�+1

N

�
1�

�
1

�+1
�

1

�+2

�
�N

�
=

�+1

N
�

�

�+2
:(50)

Under constant investment (� = 0), this survival function implies

K(t) = J(t) N
�+1 ;

k(t; s) = �+1
N

�
1� s

N

�
�

;

d(t; s) = �
N

�
1� s

N

�
��1

;

� = �+1
N

:

Comparing the last expression with (49) and (50), we see that we can interpret the

retirement rate when gross investment grows at the rate � as obtained by multipliying

its value under constant investment by a correction factor which is one for � = 0 and in

general depends on �N . Approximately, when � is not too large, this correction simply

implies that we should deduct a share 1=(� + 2) of the growth rate of investment. This

share declines from 1=3 to zero as � increases from 1 to in�nity. Numerical illustrations

are given in Section 7.
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Concave survival function

In this example, the survival function is two-parametric and concave. Again, one param-

eter, N , is the maximal life-time, the other, �, characterizes the curvature of the survival

function. It is given by9

B(s) = 1�

�
s

N

�
�

; N > 0; � � 1; 0 � s � N;(51)

b(s) =
�

N

�
s

N

�
��1

;(52)

�(s) =

�

N

�
s

N

�
��1

1�

�
s

N

�
� =

�s��1

N� � s�
;(53)

� =
N�

� + 1
:(54)

In this case, the retirement function and the survival function do not belong to the

same class of functions. The hazard rate is a monotonically increasing function of the

capital's age and goes to in�nity at the maximal age N . The total per unit service ow

is proportional to the maximal life-time and monotonically increasing in �. The survival

function is strictly concave for � > 1 and linear for � = 1.

Inserting (51) and (52) into (15) { (17), we �nd the following expressions for the age

distributions of capital and retirement and the (time dependent) overall retirement rate

for an arbitrary growth path of investment, (t; s):

k(t; s) =

�
1�

�
s

N

�
�
�
(t; s)

Z
N

0

�
1�

�
s

N

�
�
�
(t; s)ds

;(55)

d(t; s) =

�
s

N

�
��1

(t; s)

Z
N

0

�
s

N

�
��1

(t; s)ds

;(56)

�(t) =
�

N

Z
N

0

�
s

N

�
��1

(t; s)ds

Z
N

0

�
1�

�
s

N

�
�
�
(t; s)ds

:(57)

We again assume exponentially growing investment, (32). Since, from (A.1) and (A.5),

by substituting � = s=N and i = �,

Z
N

0

�
s

N

�
�

e��sds = Ne��NF (�; �N) =
N

�+1
e��N [1 + �NF (� + 1; �N)];

9This survival function is also considered in Bi�rn (1989, section 11.2.1).
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so that Z
N

0

�
1�

�
s

N

�
�
�
e��sds = Ne��N [F (0; �N)� F (�; �N)];

we can write the relationship between capital, gross investment, and retirement at time t

as

K(t) = J(t)Ne��N [F (0; �N)� F (�; �N)];(58)

D(t) = J(t)�e��NF (��1; �N) = J(t)e��N [1 + �NF (�; �N)]:(59)

From (32), (55), and (56) it follows that

k(t; s) =
e��s

Ne��N [F (0; �N)� F (�; �N)]

�
1�

�
s

N

�
�
�
;(60)

d(t; s) =
e��s

Ne��NF (��1; �N)

�
s

N

�
��1

:(61)

From (58) and (59) we �nd that the overall retirement rate is time invariant and can

be written as the following function of N , �, and �:

�(t) = � =
�

N

F (��1; �N)

F (0; �N)� F (�; �N)
:(62)

If we approximate F (�� 1; �N), F (0; �N) and F (�; �N) by the �rst and second term

in their Taylor expansions, which are 1=� + �N=(�(�+1)), 1 + �N=2 and 1=(�+1) +

�N=((�+1)(�+2)), respectively, [cf. (A.6)] we �nd the following approximation formula

for the retirement rate provided that �N is not too large:

� �
�

N

1

�
+

�N

�(�+1)�
1 +

�N

2

�
�

�
1

�+1
+

�N

(�+1)(�+2)

�(63)

=
1

N

1 +
�N

�+1
�

�+1
+

�
1

2
�

1

(�+1)(�+2)

�
�N

=
�+1

�N

1 +
�N

�+1

1 +
�+3

2(�+2)
�N

:

�
�+1

�N

�
1�

�
�+3

2(�+2)
�

1

�+1

�
�N

�
=

�+1

�N
�

�
(�+1)(�+3)

2�(�+2)
�

1

�

�
�:

Under constant investment (� = 0), when we use (A.2), this survival function implies

K(t) = J(t) N�
�+1 ;

k(t; s) = �+1
N�

h
1�

�
s
N

�
�
i
;

d(t; s) = �
N

�
s
N

�
��1

;

� = �+1
N�

:
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Comparing the last expression with (62) and using (A.2), we see that we can interpret

the retirement rate when gross investment grows at the rate � as obtained by multiplying

its value under constant investment by a correction factor which is one for � = 0 and in

general depends on �N . Approximately, when � is not too large, this correction implies

that we should deduct a share of the growth rate of investment which increases from 1=3

to 1=2 as � increases from 1 to in�nity. Numerical illustrations are given in Section 7.

6 Linear, simultaneous, and immediate retirement

Let us briey consider retirement processes characterized by linear retirement, simulta-

neous retirement at a �nite positive age, and immediate retirement after the �rst service

period. They are special cases of the second and third examples in Section 5. We still

assume a constant rate of investment growth.

Linear retirement

Linear retirement, in which a constant proportion, 1=N , of the initial investment vanishes

in each period is the special case of both the convex survival function (38) with � = 1

and of the concave survival function (51) with � = 1, and we have

B(s) = 1�
s

N
;

b(s) =
1

N
:

It follows from (45) and (46) with � = 1 that capital and retirement become

K(t) = J(t)NF (1;��N) = J(t)
1

�

�
1�

1

�N
(1� e��N )

�
;

D(t) = J(t)F (0;��N) = J(t)
1

�N
(1� e��N ):

The overall retirement rate, obtained from (49), is

� =
1

N

F (0;��N)

F (1;��N)
=

1

N

1� e��N

1�
1

�N
(1� e��N )

:

Simultaneous retirement

Simultaneous retirement (often called \sudden death" or \one-horse shay"), in which all

capital invested vanishes completely at age N , can be considered the special case of the

concave survival function (51) with � !1,

B(s) = 1� lim
�!1

�
s

N

�
�

=

8<
:

1; s < N;

0; s = N:
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It follows from (58) and (59), by inserting � ! 1 and using (A.3) and (A.4), that

capital and retirement become

K(t) = J(t)Ne��NF (0; �N) = J(t)NF (0;��N);

D(t) = J(t�N) = J(t)e� �N :

The overall retirement rate, obtained from (62), is

� =
1

NF (0; �N)
=

e��N

NF (0;��N)
:

Immediate retirement

This case, in which all capital goods vanish immediately after investment, may be con-

sidered the special case of the convex survival function (38) with � !1, so that

B(s) = lim
�!1

�
1�

s

N

�
�

=

8<
:

1; s = 0;

0; s > 0:

Since K(t) is a stock concept and J(t) and D(t) are ow concepts, this speci�cation,

however, is not convenient. Instead, we consider immediate retirement as the special

case of simultaneous retirement where the life-time is N = 1. We then get

K(t) = J(t)e��F (0; �) = J(t)F (0;��);

D(t) = J(t)e��;

and the overall retirement rate becomes

� =
1

F (0; �)
=

e� �

F (0;��)
:

If we let � go to zero { which has the interpretation that investment is constant over the

age interval (0; 1) { we simply get K(t) = D(t) = J(t) and � = 1, which agree with our

intuitive understanding of immediate retirement when the life-time is arbitrarily short.

7 Numerical illustrations

In this section, we present numerical illustrations, relating to the two-parametric convex

and concave survival functions described in Section 5, under exponential investment

growth. Using a demographic analogue, what we describe here are characteristics of

a stable population of capital assets for di�erent parameter values. Six values of the

maximal life-time N are considered, 6, 10, 20, 30, 50, and 100 years, and six values of the
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curvature parameters � and � are speci�ed for each class of functions. The six panels of

the tables below, a { f, represent the six values of the curvature parameters. Seven values

of the (continuous) growth rate of investment, �, are considered, ranging from -5 to +15

per cent. Tables 1 { 3 illustrate the convex class, Tables 4 { 6 illustrate the concave class

of survival functions.10

Tables 1 and 4 contain the retirement rates (in per cent). Tables 2, 3, 5, and 6 describe

properties of the implied age distributions. Tables 2 and 5 give the capital/investment

ratio (K=J) { which is analogous to the inverse birth rate of capital { and Tables 3 and

6 give the retirement/investment ratio (D=J) { which is analogous to the death to birth

ratio.

Retirement rates

From the columns of Tables 1 and 4 we see that the retirement rate under exponen-

tial investment growth shows considerable sensitivity to the growth rate. The relative

sensitivity is larger the higher is the maximal life-time. In the concave class with the

curvature parameter � = 2 and the maximal life time N = 6, for example, the retirement

rate declines from � = 27:3 per cent for � = �0:05 via � = 25 per cent for � = 0 to

� = 19:2 per cent for � = 0:15. With � = 2; N = 50, the retirement rate declines from

� = 5:97 per cent for � = �0:05 via � = 3 per cent for � = 0 to � = 0:55 per cent

for � = 0:15. For each value of the maximal life time N , the sensitivity of � is smaller

the higher is the curvature parameter � for the convex class of functions, and larger the

higher is the curvature parameter � for the concave class.

The rows for � = 0 in Tables 1 and 4, which represent the constant investment case,

give the value � = 1=� = (� + 1)=N for the convex class of survival functions [cf. (41),

(49), and (50)] and the value � = (� + 1)=(�N) for the concave class [cf. (54), (62), and

(63)], as can be easily checked. The `double declining balance' hypothesis, corresponding

to � = 2=N , is represented by the � = 0 rows for � = 1 in Table 1 and for � = 1 in

Table 4 (linear retirement). The `inverse life-time' hypothesis, corresponding to � = 1=N ,

is represented by the � = 0 rows for � = 011 in Table 1 and (approximately) for � = 1000

in Table 4 (simultaneous retirement)

The formulae (50) and (63) give very good approximations to the exact � value for

� 2 (�0:01;+0:01), N � 50 and fairly good approximations for � 2 (�0:05;�0:01),

10The function F (i; z) is evaluated by means of (A.6) (by truncating the expansion after a suitable

number of terms), and the calculations are performed by means of routines in the Gauss software code

constructed by the author.
11Strictly, (38) is de�ned for � � 1 only. The case � = 0 gives, however, simultaneous retirement. even

if (39) and (40) and expressions derived from them are unde�ned.
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N � 20 and � 2 (0:01; 0:05), N � 20. For � = 0:01; � = 1; N = 30 in the convex

class, the exact formula gives for example � = 6:35 per cent and the approximate formula

� = 6:33 per cent. For � = 0:05; � = 1; N = 20 the exact formula gives � = 8:59 per cent

and the approximate formula � = 8:33 per cent. For � = �0:01; � = 2; N = 30 in the

concave class, the exact formula gives � = 5:46 per cent and the approximate formula

� = 5:44 per cent. For � = �0:05; � = 2; N = 20, the exact formula gives � = 10:00 per

cent and the approximate formula � = 9:68 per cent.

Capital/investment ratios

By examining the columns of Tables 2 and 5, we see how changes in the investment growth

rate, for each given maximal life-time and each value of the curvature parameter, a�ects

an important property of the age distribution of the capital, the capital/investment ratio,

or the inverse birth ratio of capital. As a benchmark case, we may consider the constant

investment case, where K=J = N=(�+1) for the convex class and K=J = N�=(�+1) for

the concave class. These constants also represent the total number of services per capital

unit during its life time and the inverse retirement rates under constant investment.

The latter can be con�rmed by comparing the � = 0 rows in Tables 2 and 5 with the

corresponding rows in Tables 1 and 4.

Increasing � implies a growing and gradually younger stock of capital (decreasing

K=J). A few examples illustrate this. In the convex class with � = 2; N = 6, the

capital/investment ratio declines from K=J = 2:16 for � = �0:05 via K=J = 2:00 for

� = 0 to K=J = 1:62 for � = 0:15. With � = 2; N = 50, the ratio declines from

K=J = 35:6 for � = �0:05 via K=J = 16:7 for � = 0 to K=J = 5:1 for � = 0:15.

In the concave class with � = 2; N = 6, the capital/investment ratio declines from

K=J = 4:49 for � = �0:05 via K=J = 4:00 for � = 0 to K=J = 2:92 for � = 0:15. With

� = 2; N = 50, the ratio declines from K=J = 103:4 for � = �0:05 via K=J = 33:3 for

� = 0 to K=J = 6:4 for � = 0:15. For each N and �, increasing � leads to a younger

stock of capital for the convex class (decreasing K=J), and increasing � leads to an older

stock of capital for the concave class (increasing K=J).

Retirement/investment ratios

By examining the columns of Tables 3 and 6 we see how changes in the investment growth

rate, for each given maximal life-time and each value of the curvature parameter, a�ects

another basic property of the age distribution of the capital, the retirement/investment

ratio, or the death to birth ratio of the capital. As a benchmark case, we may consider

the constant investment case, in which D=J = 1 for any survival functions.

Increasing � leads to a decline in the death to birth ratio. This is also an indication
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of a gradually younger capital stock. A few examples illustrate this. In the convex

class with � = 2; N = 6, the retirement/investment ratio declines from D=J = 1:11 for

� = �0:05 to D=J = 0:75 for � = 0:15, whereas with � = 2; N = 50, the ratio declines

from D=J = 2:78 for � = �0:05 to D=J = 0:23 for � = 0:15. In the concave class with

� = 2; N = 6, the retirement/investment ratio declines from D=J = 1:22 for � = �0:05

to D=J = 0:56 for � = 0:15, whereas with � = 2; N = 50, the ratio declines from

D=J = 6:17 for � = �0:05 to D=J = 0:04 for � = 0:15. For each N and �, increasing �

leads to a decreasing/increasing D=J ratio for the convex class if � is negative/positive,

and increasing � leads to increasing/decreasing D=J ratio for the concave class if � is

negative/positive.

8 Concluding remarks

In this paper, we have investigated the relationship between the retirement process of

the capital, formalized by its survival function, and the average retirement rate and

how this relationship is a�ected by changes in the investment path. As is well known,

the average retirement rate will be a constant independent of the investment path and

equal for all capital vintages only in the particular case where the survival function is

exponentially declining (exponential decay). This is often regarded as a benchmark case

in the literature. Otherwise, the average retirement rate will depend on both the growth

pro�le of gross investment and the parameters describing the survival function. An

interesting question for practical purposes is: How sensitive is it? Can constant average

retirement rate be defended as a useful practical simpli�cation?

Our numerical illustrations of how the average retirement rate responds to changes

in the curvature of survival functions and to the growth pattern of investment under

non-exponential survival functions show considerable sensitivity to both. The survival

functions we have considered are two-parametric and characterized by the maximal life-

time and a curvature parameter indicating the degree of convexity or concavity. We �nd

that the retirement rate is a declining function of the growth rate of investment and

quite sensitive to its value over a reasonable interval. Furthermore, we have illustrated

how two basic properties of the age distribution of the capital, the capital/investment

ratio and the retirement/investment ratio, are a�ected by changes in the growth rate of

investment and in the form of the survival function.

Simultaneous retirement (sudden death) at a �xed age N , and linear retirement up

to a �xed life-time, N are often applied in practical research or in national accounting.

Which is the appropriate `translation' of the retirement rate, �, in these cases? We
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have shown, as particular cases of our parametric functions, that the `translation' rules

� = 1=N for the former and � = 2=N for the latter hold under constant investment, but

may be very inaccurate otherwise.

Some limitations of the paper should be mentioned: First, an integration of our

analysis into a model of the �rm growth process is beyond our scope. Second, although

our formulae in the �rst part of the paper can be used to represent cases with cyclical

variation in the retirement rates and in the age distribution of the capital following from

cyclical variations in investment, we have not illustrated such situations numerically in

the last part. Third, due to lack of reliable empirical information on survival functions,

we have not presented econometric evidence on the parameters and relationships under

discussion.
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Table 1:

Table 1. Retirement rate, per cent.

Convex survival functions.

Curvature Parameter = � .
Maximal life time = N .

Rate of investment growth, per cent = �

a. � = 0

� N = 6 N = 10 N = 20 N = 30 N = 50 N = 100

-5 19.29148 12.70747 7.90988 6.43608 5.44713 5.03392

-1 17.17167 10.50833 5.51666 3.85830 2.54149 1.58198

0 16.66667 10.00000 5.00000 3.33333 2.00000 1.00000

1 16.17167 9.50833 4.51666 2.85830 1.54149 0.58198

5 14.29148 7.70747 2.90988 1.43608 0.44713 0.03392

10 12.16369 5.81977 1.56518 0.52396 0.06784 0.00045

15 10.27677 4.30825 0.78594 0.16851 0.00830 0.00000

b. � = 1

� N = 6 N = 10 N = 20 N = 30 N = 50 N = 100

-5 35.08496 21.80997 11.96106 8.78465 6.43968 5.17555

-1 33.67001 20.33893 10.34459 7.01699 4.36199 2.39221

0 33.33333 20.00000 10.00000 6.66667 4.00000 2.00000

1 33.00332 19.67218 9.67763 6.34966 3.69348 1.71828

5 31.74829 18.46742 8.59141 5.37158 2.90097 1.23949

10 30.31943 17.18282 7.61594 4.63567 2.47898 1.11106

15 29.03567 16.11473 6.95350 4.22470 2.30622 1.07143

c. � = 2

� N = 6 N = 10 N = 20 N = 30 N = 50 N = 100

-5 51.30766 31.34766 16.45308 11.56598 7.81152 5.48109

-1 50.25226 30.25378 15.25763 10.26153 6.26953 3.29062

0 50.00000 30.00000 15.00000 10.00000 6.00000 3.00000

1 49.75224 29.75372 14.75738 9.76097 5.76797 2.78442

5 48.80485 28.83987 13.92211 8.99707 5.12694 2.35877

10 47.71383 27.84422 13.13035 8.36575 4.71755 2.19514

15 46.71877 26.99121 12.54863 7.96303 4.50917 2.13198
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Table 1:

Table 1 (cont.). Retirement rate, per cent.

Convex survival functions.

Curvature Parameter = � .
Maximal life time = N .

Rate of investment growth, per cent = �

d. � = 3

� N = 6 N = 10 N = 20 N = 30 N = 50 N = 100

-5 67.70771 41.06957 21.14513 14.56018 9.40887 5.95496

-1 66.86827 40.20269 20.20543 13.54154 8.21391 4.22903

0 66.66667 40.00000 20.00000 13.33333 8.00000 4.00000

1 66.46826 39.80264 19.80524 13.14113 7.81277 3.82447

5 65.70565 39.06386 19.12235 12.50917 7.26932 3.44133

10 64.81863 38.24470 18.44938 11.95350 6.88267 3.26259

15 63.99986 37.52750 17.93025 11.57137 6.66214 3.18427

e. � = 4

� N = 6 N = 10 N = 20 N = 30 N = 50 N = 100

-5 84.19718 50.88505 25.94119 17.66868 11.13855 6.56805

-1 83.50120 50.16867 25.17070 16.83944 10.17701 5.18824

0 83.33333 50.00000 25.00000 16.66667 10.00000 5.00000

1 83.16785 49.83530 24.83724 16.50581 9.84285 4.85160

5 82.52903 49.21425 24.25800 15.96488 9.36918 4.50315

10 81.77993 48.51601 23.67037 15.46761 9.00630 4.31844

15 81.08197 47.89465 23.20141 15.10799 8.78340 4.23004

f. � = 5

� N = 6 N = 10 N = 20 N = 30 N = 50 N = 100

-5 100.73780 60.75411 30.79721 20.84382 12.94851 7.28450

-1 100.14378 60.14440 30.14597 20.14756 12.15082 6.15944

0 100.00000 60.00000 30.00000 20.00000 12.00000 6.00000

1 99.85806 59.85866 29.86016 19.86163 11.86450 5.87130

5 99.30814 59.32250 29.35648 19.38789 11.44380 5.55167

10 98.65903 58.71297 28.83385 18.93737 11.10334 5.36570

15 98.04970 58.16366 28.40606 18.59937 10.88266 5.27054
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Table 2:

Table 2. Capital/Investment ratio.

Convex survival functions.

Curvature Parameter = � .
Maximal life time = N .

Rate of investment growth, per cent = �

a. � = 0

� N = 6 N = 10 N = 20 N = 30 N = 50 N = 100

-5 6.99718 12.97443 34.36564 69.63378 223.64988 2948.26318

-1 6.18365 10.51709 22.14028 34.98588 64.87213 171.82818

0 6.00000 10.00000 20.00000 30.00000 50.00000 100.00000

1 5.82355 9.51626 18.12692 25.91818 39.34693 63.21206

5 5.18364 7.86939 12.64241 15.53740 18.35830 19.86524

10 4.51188 6.32121 8.64665 9.50213 9.93262 9.99955

15 3.95620 5.17913 6.33475 6.59261 6.66298 6.66666

b. � = 1

� N = 6 N = 10 N = 20 N = 30 N = 50 N = 100

-5 3.32392 5.94885 14.36564 26.42252 69.45995 569.65264

-1 3.06091 5.17092 10.70138 16.61960 29.74425 71.82818

0 3.00000 5.00000 10.00000 15.00000 25.00000 50.00000

1 2.94089 4.83742 9.36538 13.60607 21.30613 36.78794

5 2.72121 4.26123 7.35759 9.64174 12.65668 16.02695

10 2.48019 3.67879 5.67668 6.83262 8.01348 9.00005

15 2.27089 3.21391 4.55508 5.20164 5.77827 6.22222

c. � = 2

� N = 6 N = 10 N = 20 N = 30 N = 50 N = 100

-5 2.15947 3.79540 8.73127 15.23003 35.56796 207.86105

-1 2.03036 3.41836 7.01379 10.79735 18.97702 43.65637

0 2.00000 3.33333 6.66667 10.00000 16.66667 33.33333

1 1.97036 3.25164 6.34623 9.29284 14.77547 26.42411

5 1.85857 2.95509 5.28482 7.14435 9.87466 13.58922

10 1.73269 2.64241 4.32332 5.44492 6.79461 8.19999

15 1.62025 2.38145 3.62995 4.35483 5.12579 5.83704
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Table 2:

Table 2 (cont.). Capital/Investment ratio.

Convex survival functions.

Curvature Parameter = � .
Maximal life time = N .

Rate of investment growth, per cent = �

d. � = 3

� N = 6 N = 10 N = 20 N = 30 N = 50 N = 100

-5 1.59470 2.77242 6.19382 10.46006 22.68155 104.71663

-1 1.51818 2.55085 5.20686 7.97350 13.86210 30.96910

0 1.50000 2.50000 5.00000 7.50000 12.50000 25.00000

1 1.48218 2.45082 4.80648 7.07157 11.34717 20.72766

5 1.41431 2.26943 4.14553 5.71129 8.15041 11.84647

10 1.33657 2.07277 3.51501 4.55508 5.92323 7.54000

15 1.26582 1.90376 3.03672 3.76345 4.61635 5.49926

e. � = 4

� N = 6 N = 10 N = 20 N = 30 N = 50 N = 100

-5 1.26267 2.17936 4.77528 7.89348 6.29049 63.77331

-1 1.21210 2.03382 4.13724 6.31336 10.89679 23.87639

0 1.20000 2.00000 4.00000 6.00000 10.00000 20.00000

1 1.18810 1.96714 3.87038 5.71239 9.22267 17.08934

5 1.14248 1.84453 3.41787 4.76988 6.95934 10.52283

10 1.08956 1.70893 2.96997 3.92656 5.26141 6.98400

15 1.04078 1.58996 2.61770 3.32138 4.20461 5.20020

f. � = 5

� N = 6 N = 10 N = 20 N = 30 N = 50 N = 100

-5 1.04452 1.79359 3.87639 6.31161 12.58097 43.77331

-1 1.00864 1.69078 3.43101 5.22260 8.96795 19.38194

0 1.00000 1.66667 3.33333 5.00000 8.33333 16.66667

1 0.99149 1.64315 3.24042 4.79349 7.77333 14.55329

5 0.95870 1.55467 2.91066 4.10040 6.08132 9.47717

10 0.92031 1.45533 2.57507 3.45574 4.73859 6.50800

15 0.88457 1.36680 2.30383 2.97625 3.86359 4.93327
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Table 3:

Table 3. Retirement/Investment ratio.

Convex survival functions.

Curvature Parameter = � .
Maximal life time = N .

Rate of investment growth, per cent = �

a. � = 0

� N = 6 N = 10 N = 20 N = 30 N = 50 N = 100

-5 1.34986 1.64872 2.71828 4.48169 12.18249 148.41316

-1 1.06184 1.10517 1.22140 1.34986 1.64872 2.71828

0 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000

1 0.94176 0.90484 0.81873 0.74082 0.60653 0.36788

5 0.74082 0.60653 0.36788 0.22313 0.08208 0.00674

10 0.54881 0.36788 0.13534 0.04979 0.50337 0.00005

15 0.40657 0.22313 0.04979 0.01111 0.00055 0.00000

b. � = 1

� N = 6 N = 10 N = 20 N = 30 N = 50 N = 100

-5 1.16620 1.29744 1.71828 2.32113 4.47300 29.48263

-1 1.03061 1.05171 1.10701 1.16620 1.29744 1.71828

0 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000

1 0.97059 0.95163 0.90635 0.86394 0.78694 0.63212

5 0.86394 0.78694 0.63212 0.51791 0.36717 0.19865

10 0.75198 0.63212 0.43233 0.31674 0.59933 0.10000

15 0.65937 0.51791 0.31674 0.21975 0.13326 0.06667

c. � = 2

� N = 6 N = 10 N = 20 N = 30 N = 50 N = 100

-5 1.10797 1.18977 1.43656 1.76150 2.77840 11.39305

-1 1.02030 1.03418 1.07014 1.10797 1.18977 1.43656

0 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000

1 0.98030 0.96748 0.93654 0.90707 0.85225 0.73576

5 0.90707 0.85225 0.73576 0.64278 0.50627 0.32054

10 0.82673 0.73576 0.56767 0.45551 0.66027 0.18000

15 0.75696 0.64278 0.45551 0.34678 0.23113 0.12444
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Table 3:

Table 3 (cont.). Retirement/Investment ratio.

Convex survival functions.

Curvature Parameter = � .
Maximal life time = N .

Rate of investment growth, per cent = �

d. � = 3

� N = 6 N = 10 N = 20 N = 30 N = 50 N = 100

-5 1.07974 1.13862 1.30969 1.52300 2.13408 6.23583

-1 1.01518 1.02551 1.05207 1.07974 1.13862 1.30969

0 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000

1 0.98518 0.97549 0.95194 0.92928 0.88653 0.79272

5 0.92928 0.88653 0.79272 0.71444 0.59248 0.40768

10 0.86634 0.79272 0.64850 0.54449 0.70384 0.24600

15 0.81013 0.71444 0.54449 0.43548 0.30755 0.17511

e. � = 4

� N = 6 N = 10 N = 20 N = 30 N = 50 N = 100

-5 1.06313 1.10897 1.23876 1.39467 1.81452 4.18867

-1 1.01212 1.02034 1.04137 1.06313 1.10897 1.23876

0 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000

1 0.98812 0.98033 0.96130 0.94288 0.90777 0.82911

5 0.94288 0.90777 0.82911 0.76151 0.65203 0.47386

10 0.89104 0.82911 0.70300 0.60734 0.73693 0.30160

15 0.84388 0.76151 0.60734 0.50179 0.36931 0.21997

f. � = 5

� N = 6 N = 10 N = 20 N = 30 N = 50 N = 100

-5 1.05223 1.08968 1.19382 1.31558 1.62905 3.18867

-1 1.01009 1.01691 1.03431 1.05223 1.08968 1.19382

0 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000

1 0.99009 0.98357 0.96760 0.95207 0.92227 0.85447

5 0.95207 0.92227 0.85447 0.79498 0.69593 0.52614

10 0.90797 0.85447 0.74249 0.65443 0.76307 0.34920

15 0.86731 0.79498 0.65443 0.55356 0.42046 0.26001
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Table 4:

Table 4. Retirement rate, per cent.

Concave survival functions.

Curvature Parameter = �.
Maximal life time = N .

Rate of investment growth, per cent = �

a. � = 1

� N = 6 N = 10 N = 20 N = 30 N = 50 N = 100

-5 35.08496 21.80997 11.96106 8.78465 6.43968 5.17555

-1 33.67001 20.33893 10.34459 7.01699 4.36199 2.39221

0 33.33333 20.00000 10.00000 6.66667 4.00000 2.00000

1 33.00332 19.67218 9.67763 6.34966 3.69348 1.71828

5 31.74829 18.46742 8.59141 5.37158 2.90097 1.23949

10 30.31943 17.18282 7.61594 4.63567 2.47898 1.11106

15 29.03567 16.11473 6.95350 4.22470 2.30622 1.07143

b. � = 2

� N = 6 N = 10 N = 20 N = 30 N = 50 N = 100

-5 27.27980 17.34218 10.00000 7.65851 5.96757 5.10736

-1 25.44116 15.44361 7.94977 5.45596 3.46844 2.00000

0 25.00000 15.00000 7.50000 5.00000 3.00000 1.50000

1 24.56615 14.56857 7.07460 4.58057 2.59237 1.12081

5 22.90287 12.96184 5.60405 3.23783 1.47723 0.41574

10 20.98180 11.20811 4.22469 2.16496 0.83149 0.20398

15 19.22876 9.71349 3.24744 1.53313 0.55030 0.13453

c. � = 3

� N = 6 N = 10 N = 20 N = 30 N = 50 N = 100

-5 24.65389 15.83099 9.32958 7.27079 5.80413 5.08403

-1 22.69281 13.80653 7.14642 4.93078 3.16620 1.86592

0 22.22222 13.33333 6.66667 4.44444 2.66667 1.33333

1 21.75946 12.87317 6.21297 3.99719 2.23215 0.92979

5 19.98593 11.16076 4.64894 2.57378 1.06190 0.21930

10 17.94009 9.29788 3.20119 1.47026 0.43860 0.06019

15 16.07784 7.72135 2.20539 0.86319 0.21197 0.02671
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Table 4:

Table 4 (cont.). Retirement rate, per cent.

Concave survival functions.

Curvature Parameter = �.
Maximal life time = N .

Rate of investment growth, per cent = �

d. � = 4

� N = 6 N = 10 N = 20 N = 30 N = 50 N = 100

-5 23.33183 15.06714 8.98805 7.07225 5.72011 5.07212

-1 21.31660 12.98600 6.74284 4.66637 3.01343 1.79761

0 20.83333 12.50000 6.25000 4.16667 2.50000 1.25000

1 20.35826 12.02764 5.78443 3.70785 2.05458 0.83728

5 18.53924 10.27291 4.18638 2.25894 0.87506 0.14521

10 16.44555 8.37275 2.72774 1.16724 0.29043 0.02381

15 14.54601 6.77681 1.75087 0.60052 0.10782 0.00711

e. � = 5

� N = 6 N = 10 N = 20 N = 30 N = 50 N = 100

-5 22.53442 14.60503 8.78020 6.95095 5.66861 5.06486

-1 20.48994 12.49276 6.49982 4.50688 2.92101 1.75604

0 20.00000 12.00000 6.00000 4.00000 2.40000 1.20000

1 19.51851 11.52132 5.52833 3.53532 1.94919 0.78311

5 17.67658 9.74596 3.91554 2.07760 0.77181 0.10978

10 15.56072 7.83108 2.46026 1.00386 0.21957 0.01166

15 13.64646 6.23279 1.50579 0.47074 0.06612 0.00237

f. � = 1000

� N = 6 N = 10 N = 20 N = 30 N = 50 N = 100

-5 19.30802 12.71726 7.91448 6.43886 5.44834 5.03409

-1 17.18833 10.51832 5.52164 3.86160 2.54345 1.58290

0 16.68333 10.01000 5.00500 3.33667 2.00200 1.00100

1 16.18833 9.51832 4.52164 2.86160 1.54345 0.58290

5 14.30802 7.71727 2.91449 1.43886 0.44835 0.03409

10 12.17987 5.82898 1.56880 0.52561 0.06818 0.00046

15 10.29236 4.31658 0.78842 0.16928 0.00836 0.00000
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Table 5:

Table 5. Capital/Investment ratio.

Concave survival functions.

Curvature Parameter = �.
Maximal life time = N .

Rate of investment growth, per cent = �

a. � = 1

� N = 6 N = 10 N = 20 N = 30 N = 50 N = 100

-5 3.32392 5.94885 14.36564 26.42252 69.45995 569.65264

-1 3.06091 5.17092 10.70138 16.61960 29.74425 71.82818

0 3.00000 5.00000 10.00000 15.00000 25.00000 50.00000

1 2.94089 4.83742 9.36538 13.60607 21.30613 36.78794

5 2.72121 4.26123 7.35759 9.64174 12.65668 16.02695

10 2.48019 3.67879 5.67668 6.83262 8.01348 9.00005

15 2.27089 3.21391 4.55508 5.20164 5.77827 6.22222

b. � = 2

� N = 6 N = 10 N = 20 N = 30 N = 50 N = 100

-5 4.48837 8.10230 20.00000 37.61501 103.35194 931.44422

-1 4.09146 6.92347 14.38897 22.44185 40.51149 100.00000

0 4.00000 6.66667 13.33333 20.00000 33.33333 66.66667

1 3.91142 6.42320 12.38452 17.91930 27.83679 47.15178

5 3.58386 5.56736 9.43036 12.13912 15.43870 18.46468

10 3.22770 4.71518 7.03003 8.22033 9.23234 9.80010

15 2.92152 4.04637 5.48022 6.04846 6.43074 6.60741

c. � = 3

� N = 6 N = 10 N = 20 N = 30 N = 50 N = 100

-5 5.08805 9.23276 23.09691 44.03753 124.35752 1190.09138

-1 4.60982 7.80852 16.26963 25.44026 46.16381 115.48455

0 4.50000 7.50000 15.00000 22.50000 37.50000 75.00000

1 4.39378 7.20816 13.86391 20.01126 30.93915 51.81916

5 4.00225 6.18783 10.36383 13.20344 16.49648 19.15967

10 3.57909 5.18192 7.57507 8.71820 9.57983 9.94017

15 3.21773 4.40115 5.81213 6.30390 6.57377 6.65482
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Table 5:

Table 5 (cont.). Capital/Investment ratio.

Concave survival functions.

Curvature Parameter = �.
Maximal life time = N .

Rate of investment growth, per cent = �

d. � = 4

� N = 6 N = 10 N = 20 N = 30 N = 50 N = 100

-5 5.45499 9.93330 25.07491 48.25666 138.86777 1386.53744

-1 4.92208 8.34307 17.41298 27.27496 49.66652 125.37454

0 4.80000 8.00000 16.00000 24.00000 40.00000 80.00000

1 4.68203 7.67599 14.73964 21.24113 32.73769 54.42842

5 4.24823 6.54754 10.88568 13.77612 17.02110 19.43554

10 3.78135 5.44284 7.85685 8.95476 9.71777 9.97625

15 3.38455 4.59204 5.96984 6.41004 6.61909 6.66351

e. � = 5

� N = 6 N = 10 N = 20 N = 30 N = 50 N = 100

-5 5.70307 10.41121 26.45365 51.25708 149.56422 1541.72574

-1 5.13085 8.70113 18.18241 28.51535 52.05607 132.26823

0 5.00000 8.33333 16.66667 25.00000 41.66667 83.33333

1 4.87365 7.98638 15.31785 22.04918 33.90760 56.08184

5 4.40984 6.78152 11.21637 14.12909 17.32559 19.57030

10 3.91225 5.60818 8.02551 9.08772 9.78515 9.98835

15 3.49083 4.70970 6.05848 6.46382 6.63741 6.66561

f. � = 1000

� N = 6 N = 10 N = 20 N = 30 N = 50 N = 100

-5 6.98909 12.95796 34.31138 69.49967 223.04288 2933.51031

-1 6.17729 10.50605 22.11588 34.94544 64.78981 171.55690

0 5.99401 9.99001 19.98002 29.97003 49.95005 99.90010

1 5.81790 9.50722 18.11056 25.89597 39.31662 63.17527

5 5.17919 7.86332 12.63505 15.53070 18.35419 19.86456

10 4.50859 6.31753 8.64394 9.50063 9.93228 9.99954

15 3.95376 5.17690 6.33376 6.59227 6.66295 6.66666
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Table 6:

Table 6. Retirement/Investment ratio.

Concave survival functions.

Curvature Parameter = �.
Maximal life time = N .

Rate of investment growth, per cent = �

a. � = 1

� N = 6 N = 10 N = 20 N = 30 N = 50 N = 100

-5 1.16620 1.29744 1.71828 2.32113 4.47300 29.48263

-1 1.03061 1.05171 1.10701 1.16620 1.29744 1.71828

0 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000

1 0.97059 0.95163 0.90635 0.86394 0.78694 0.63212

5 0.86394 0.78694 0.63212 0.51791 0.36717 0.19865

10 0.75198 0.63212 0.43233 0.31674 0.19865 0.10000

15 0.65937 0.51791 0.31674 0.21975 0.13326 0.06667

b. � = 2

� N = 6 N = 10 N = 20 N = 30 N = 50 N = 100

-5 1.22442 1.40511 2.00000 2.88075 6.16760 47.57221

-1 1.04091 1.06923 1.14389 1.22442 1.40511 2.00000

0 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000

1 0.96089 0.93577 0.87615 0.82081 0.72163 0.52848

5 0.82081 0.72163 0.52848 0.39304 0.22806 0.07677

10 0.67723 0.52848 0.29700 0.17797 0.07677 0.01999

15 0.56177 0.39304 0.17797 0.09273 0.03539 0.00889

c. � = 3

� N = 6 N = 10 N = 20 N = 30 N = 50 N = 100

-5 1.25440 1.46164 2.15485 3.20188 7.21788 60.50457

-1 1.04610 1.07809 1.16270 1.25440 1.46164 2.15485

0 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000

1 0.95606 0.92792 0.86136 0.79989 0.69061 0.48181

5 0.79989 0.69061 0.48181 0.33983 0.17518 0.04202

10 0.64209 0.48181 0.24249 0.12818 0.04202 0.00598

15 0.51734 0.33983 0.12818 0.05441 0.01393 0.00178
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Table 6:

Table 6 (cont.). Retirement/Investment ratio.

Concave survival functions.

Curvature Parameter = �.
Maximal life time = N .

Rate of investment growth, per cent = �

d. � = 4

� N = 6 N = 10 N = 20 N = 30 N = 50 N = 100

-5 1.27275 1.49667 2.25375 3.41283 7.94339 70.32687

-1 1.04922 1.08343 1.17413 1.27275 1.49667 2.25375

0 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000

1 0.95318 0.92324 0.85260 0.78759 0.67262 0.45572

5 0.78759 0.67262 0.45572 0.31119 0.14895 0.02822

10 0.62186 0.45572 0.21431 0.10452 0.02822 0.00238

15 0.49232 0.31119 0.10452 0.03849 0.00714 0.00047

e. � = 5

� N = 6 N = 10 N = 20 N = 30 N = 50 N = 100

-5 1.28515 1.52056 2.32268 3.56285 8.47821 78.08629

-1 1.05131 1.08701 1.18182 1.28515 1.52056 2.32268

0 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000

1 0.95126 0.92014 0.84682 0.77951 0.66092 0.43918

5 0.77951 0.66092 0.43918 0.29355 0.13372 0.02149

10 0.60877 0.43918 0.19745 0.09123 0.02149 0.00116

15 0.47638 0.29355 0.09123 0.03043 0.00439 0.00016

f. � = 1000

� N = 6 N = 10 N = 20 N = 30 N = 50 N = 100

-5 1.34945 1.64790 2.71557 4.47498 12.15214 147.67552

-1 1.06177 1.10506 1.22116 1.34945 1.64790 2.71557

0 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000

1 0.94182 0.90493 0.81889 0.74104 0.60683 0.36825

5 0.74104 0.60683 0.36825 0.22347 0.08229 0.00677

10 0.54914 0.36825 0.13561 0.04994 0.00677 0.00005

15 0.40694 0.22347 0.04994 0.01116 0.00056 0.00000
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Appendix: Properties of the function (25)

In this appendix, we prove some useful properties of the auxiliary function (25), de�ned
by the intergral

F (i; z) =

Z 1

0
ez�(1� �)id� =

Z 1

0
ez(1��)�id� = ez

Z 1

0
e�z��id�; i = 0; 1; 2; : : : :(A.1)

It is straightforward to show that

F (i; 0) =
1

i+1
;(A.2)

lim
i!1

F (i; z) = 0 for all z;(A.3)

lim
i!1

(i+1)F (i; z) = 1 for all z:(A.4)

If z 6= 0, the function satis�es the recursion

8<
:

F (0; z) = 1
z (e

z � 1);

F (i; z) = 1
z [iF (i�1; z)� 1]; i = 1; 2; : : : ;

(A.5)

i.e.,

F (0;�z) = e�zF (0; z) = 1
z (1� e�z);

F (i;�z) = 1
z [1� iF (i�1;�z)]; i = 1; 2; : : : ;

which can be shown by integration by parts. For i = 1 and i = 2, we have in particular
(when z 6= 0)

F (1; z) = 1
z

h
1
z (e

z � 1)� 1
i
;

F (2; z) = 1
z

h
2
z

�
1
z (e

z � 1)� 1
�
� 1

i
;

i.e.,

F (1;�z) = 1
z

h
1� 1

z (1� e�z)
i
;

F (2;�z) = 1
z

h
1� 2

z

�
1� 1

z (1� e�z)
�i

:

If z is small and i is large, the above recursion may give inaccurate results in numerical
calculations. A better way of keeping the accuracy under control is to represent F (i; z)
by its Taylor expansion. Expanding ez by Taylor's formula, we get, for i = 0,

F (0; z) =
1

z
(1 + z +

z2

2!
+

z3

3!
+ � � � � 1) = 1 +

z

1 � 2
+

z2

1 � 2 � 3
+

z3

1 � 2 � 3 � 4
+ � � � :

Substituting this expression in (A.5), it follows that

F (1; z) =
1

z
[F (0; z)� 1] =

1

2
+

z

2 � 3
+

z2

2 � 3 � 4
+

z3

2 � 3 � 4 � 5
+ � � � ;

F (2; z) =
1

z
[2F (0; z)� 1] =

1

3
+

z

3 � 4
+

z2

3 � 4 � 5
+

z3

3 � 4 � 5 � 6
+ � � � ;
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and in general,

F (i; z) =
1

i+1
+

z

(i+1)(i+2)
+

z2

(i+1)(i+2)(i+3)
+ � � � =

1X
j=1

i! zj�1

(i+j)!
;(A.6)

i = 0; 1; 2; : : : ;

which can be veri�ed by induction.
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