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Abstract

Koopmans’s (Econometrica 28, 287–309) axiomatization of discounted util-

itarianism is based on seemingly compelling conditions, yet this criterion leads

to hard-to-justify outcomes. The present analysis considers a class of sustain-

able recursive social welfare functions within Koopmans’s general framework.

This class is axiomatized by means of a weak new equity condition (“Hammond

Equity for the Future”) and general existence is established. Any member of the

class satisfies the key axioms of Chichilnisky’s (Social Choice and Welfare 13,

231–257) “sustainable preferences”. The analysis singles out one of Koopmans’s

original conditions as particularly questionable from an ethical perspective.
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1 Introduction

How should we treat future generations? From a normative point of view, what are

the present generation’s obligations towards the future? What ethical criterion for

intergenerational justice should be adopted if one seeks to respect the interests of

future generations?

These questions can be approached and answered in at least two ways:

1. Through an axiomatic analysis one can investigate on what fundamental ethi-

cal conditions various criteria for intergenerational justice are based, and then

proceed to evaluate the normative appeal of these conditions.

2. By considering different kinds of technological environments, one can explore

the consequences of various criteria for intergenerational justice, and compare

the properties of the intergenerational utility streams that are generated.

It is consistent with Rawls’ (1971) reflective equilibrium to do both: criteria for

intergenerational justice should be judged both by the ethical conditions on which

they build and by their consequences in specific environments. In particular, we may

question the appropriateness of a criterion for intergenerational justice if it produces

unacceptable outcomes in relevant technological environments. This view has been

supported by many scholars, including Atkinson (2001, p. 206), Dasgupta and Heal

(1979, p. 311), and Koopmans (1967).

When evaluating long-term policies, economists usually suggest to maximize

the sum of discounted utilities. On the one hand, such discounted utilitarianism

has been given a solid axiomatic foundation by Koopmans (1960). On the other

hand, this criterion has ethically questionable implications when applied to economic

models with resource constraints. This is demonstrated by Dasgupta and Heal (1974)

in the so-called Dasgupta-Heal-Solow (DHS) model of capital accumulation and

resource depletion (Dasgupta and Heal, 1974, 1979; Solow, 1974), where discounted

utilitarianism for any positive discount rate undermines the well-being of generations

in far future, even if sustainable streams with non-decreasing well-being are feasible.
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In this paper we revisit Koopmans’s framework. In Section 2 we consider con-

ditions that are sufficient to numerically represent the social welfare relation by

means of a recursive social welfare function. In this framework we introduce a new

equity condition (“Hammond Equity for the Future”), capturing the following ethi-

cal intuition: A sacrifice by the present generation leading to a uniform gain for all

future generations cannot lead to a less desirable stream of well-beings if the present

remains better-off than the future even after the sacrifice.

In Section 3 we point out that “Hammond Equity for the Future” is weak, as

it is implied by all the standard consequentialist equity conditions suggested in

the literature. We show that adding this condition leads to a class of sustainable

recursive social welfare functions, where the well-being of the present generation is

taken into account if and only if the future is better-off. Furthermore, we establish

general existence by means of an algorithmic construction. Finally, we show that any

member of the class of sustainable recursive social welfare functions satisfies the key

axioms of Chichilnisky’s (1996) “sustainable preferences”, namely “No Dictatorship

of the Present” and “No Dictatorship of the Future”. In a companion paper (Asheim,

Buchholz and Mitra, 2006) we demonstrate how a sustainable recursive social welfare

function can be used to solve the distributional conflicts in the DHS model.

In Section 4 we offer results that identify which of the conditions used by Koop-

mans (1960) to axiomatize discounted utilitarianism is particularly questionable

from an ethical perspective. The condition in question, referred to as “Indepen-

dent Present” by us and listed as Postulate 3′a by Koopmans (1960), requires that

the evaluation of two streams which differ during only the first two periods not

depend on what the common continuation stream is. It is only by means of “Inde-

pendent Present”—which in the words of Heal (2005) is “restrictive” and “surely not

innocent”—that Koopmans moves beyond the recursive form to arrive at discounted

utilitarianism. We single out “Independent Present” as the culprit by showing that

the addition of this condition contradicts both “Hammond Equity for the Future”

and the Chichilnisky (1996) conditions. All the proofs are relegated to an appendix.
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Koopmans (1960) has often been interpreted as presenting the definitive case

for discounted utilitarianism. In Section 5 we discuss how our results contribute

to a weakening of this impression, by exploring other avenues within the general

setting of his approach. We also investigate the scope for our new equity condition

“Hammond Equity for the Future” if we step outside the Koopmans framework by

not imposing that the social welfare relation is numerically representable.

2 Formal setting and basic result

Let R denote the set of real numbers and Z+ the set of non-negative integers. Denote

by 0x = (x0, x1, . . . , xt, . . . , ) an infinite stream, where xt ∈ Y is a one-dimensional

indicator of the well-being of generation t, and Y ⊆ R is an interval of admissible

well-beings which is not a singleton.1 We will consider the set X of infinite streams

bounded in well-being (see Koopmans, 1986b, p. 89); i.e., X is given by

X = {0x ∈ RZ+ | [inftxt, suptxt] ⊆ Y } .

By setting Y = [0, 1], this includes the important special case where X = [0, 1]Z+ ,

while allowing for cases where Y is not compact.

Denote by 0xT−1 = (x0, x1, . . . , xT−1) and Tx = (xT , xT+1, . . . , xT+t, . . . , ) the

T -head and T -tail of 0x. Write conz = (z, z, . . . ) for the stream of a constant level of

well-being equal to z ∈ Y . Throughout this paper we assume that the indicator of

well-being is at least ordinally measurable and level comparable; i.e. what Blackorby,

Donaldson and Weymark (1984) refer to as “level-plus comparability”.

For all 0x, 0y ∈ X, we write 0x ≥ 0y if and only if xt ≥ yt for all t ∈ Z+,

0x > 0y if and only if 0x ≥ 0y and 0x 6= 0y, and 0x � 0y if and only if xt > yt

for all t ∈ Z+.

1A more general formulation is, as used by Koopmans (1960), to assume that the well-being of

generation t depends on a n-dimensional vector xt that takes on values in a connected set Y. How-

ever, by representing the well-being of generation t by a scalar xt, we can focus on intergenerational

issues. In doing so, we follow, e.g., Diamond (1965), Svensson (1980), Chichilnisky (1996), Basu

and Mitra (2003) and Bossert, Sprumont and Suzumura (2005).
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A social welfare relation (swr) is a binary relation % on X, where for all 0x,

0y ∈ X, 0x % 0y entails that 0x is deemed socially at least as good as 0y. Denote

by ∼ and � the symmetric and asymmetric parts of %; i.e., 0x ∼ 0y is equivalent to

0x % 0y and 0y % 0x and entails that 0x is deemed socially indifferent to 0y, while

0x � 0y is equivalent to 0x % 0y and ¬ 0y % 0x and entails that 0x is deemed

socially preferable to 0y.

All comparisons are made at time 0; hence, the notation Tx % T ′y where T ,

T ′ ≥ 0 means 0x′ % 0y′ where, for all t, x′t = xT+t and y′t = yT ′+t.

A social welfare function (swf) representing % is a mapping W : X → R with

the property that for all 0x, 0y ∈ X, W (0x) ≥ W (0y) if and only if 0x % 0y. A

mapping W : X → R is monotone if 0x ≥ 0y implies W (0x) ≥ W (0y).

In the present section we impose conditions on the swr sufficient to obtain a nu-

merical representation in terms of an swf with a recursive structure (see Proposition

2 below), similar to but not identical to the one obtained by Koopmans (1960).

To obtain a numerical representation, we impose two “technical” conditions.

Condition O (Order) % is complete and transitive.

Condition RC (Restricted Continuity) For all 0x, 0y ∈ X, if 0x satisfies xt = z for

all t ≥ 1, and 0xn ∈ X for n ∈ N satisfy limn→∞ supt |xn
t − xt| = 0 with, for each

n ∈ N, ¬ 0xn ≺ 0y (resp. ¬ 0xn � 0y), then ¬ 0x ≺ 0y (resp. ¬ 0x � 0y).

Condition RC is weaker than ordinary supnorm continuity.

Condition C (Continuity) For all 0x, 0y ∈ X, if 0xn ∈ X for n ∈ N satisfy

limn→∞ supt |xn
t − xt| = 0 with, for each n ∈ N, ¬ 0xn ≺ 0y (resp. ¬ 0xn � 0y),

then ¬ 0x ≺ 0y (resp. ¬ 0x � 0y).

Condition C is entailed by Koopmans’s (1960) Postulate 1. As the analysis of Section

3 will show, the weaker continuity condition RC will enable us to show existence of

sustainable recursive social welfare functions.

The central condition in Koopmans’s (1960) analysis is the stationarity postulate
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(Postulate 4). Combined with Koopmans’s Postulate 3b, the stationarity postulate

is equivalent to the following independence condition (where we borrow the name

that Fleurbaey and Michel, 2003, use for this condition in a slightly stronger form).

Condition IF (Independent Future) For all 0x, 0y ∈ X with x0 = y0, 0x % 0y if

and only if 1x % 1y.

Condition IF means that an evaluation concerning only generations from the next

period on can be made as if the present time (time 0) was actually at time 1; i.e.,

as if generations {0, 1, . . . } would have taken the place of generations {1, 2, . . . }.

With the well-being of each generation t expressed by a one-dimensional indicator

xt, it is uncontroversial to ensure through the following condition that a higher value

of xt cannot lead to a socially less preferred stream.

Condition M (Monotonicity) For all 0x, 0y ∈ X, if 0x > 0y, then ¬ 0y � 0x.

Condition M is obviously implied by the “Strong Pareto” condition.

Condition SP (Strong Pareto) For all 0x, 0y ∈ X, if 0x > 0y, then 0x � 0y.

With condition M we need not impose Koopmans’s (1960) extreme streams postu-

late (Postulate 5) and can consider the set of infinite streams bounded in well-being.

As the fifth and final condition of our basic representation result (Proposition

2), we impose the following efficiency condition.

Condition RD (Restricted Dominance) For all x, z ∈ Y , if x < z, then (x, conz) ≺

conz.

To evaluate the implications of RD, consider the following three conditions.

Condition WS (Weak Sensitivity) There exist 0x, 0y, 0z ∈ X such that (x0, 1z) �

(y0, 1z).

Condition SP implies condition RD, which in turn implies condition WS. Condition

WS coincides with Koopmans’s (1960) Postulate 2.
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Condition DF (Dictatorship of the Future) For all 0x, 0y ∈ X such that 0x � 0y,

there exist y, ȳ ∈ Y with y ≤ xt, yt ≤ ȳ for all t ∈ Z+ and T ′ ∈ Z+ such that, for

any 0z, 0v ∈ [y, ȳ]Z+ , (0zT−1, Tx) � (0vT−1, Ty) for all T > T ′.

Condition NDF (No Dictatorship of the Future) Condition DF does not hold.

Conditions NDF generalizes one of Chichilnisky’s (1996) two main axioms to our

setting where we consider the set of infinite streams bounded in well-being.

Proposition 1 Assume that the swr % satisfies conditions O and IF. Then WS

is equivalent to NDF.

Since RD strengthens WS, it follows from Proposition 1 that RD ensures “No

Dictatorship of the Future”, provided that the swr satisfies conditions O and IF.

To appreciate why we cannot replace RD with an even stronger efficiency condition,

we refer to the analysis of Section 3 and the impossibility result of Proposition 4.

To state Proposition 2, introduce the following notation:

U := {U : Y → R | U is continuous and non-decreasing; U(Y ) is not a singleton}

UI := {U : Y → R | U is continuous and increasing}

V(U) := {V : U(Y )2 → R | V satisfies (V.0), (V.1), (V.2), and (V.3)} ,

where, for all U ∈ U , U(Y ) := {u ∈ R | ∃x ∈ Y s.t. u = U(x)} denotes the range of

U , and the properties of the aggregator function V , (V.0)–(V.3), are as follows:

(V.0) V (u, w) is continuous in (u, w) on U(Y )2.

(V.1) V (u, w) is non-decreasing in u for given w.

(V.2) V (u, w) is increasing in w for given u.

(V.3) V (u, w) < w for u < w, and V (u, w) = w for u = w.

Proposition 2 The following two statements are equivalent.

(1) The swr % satisfies conditions O, RC, IF, M, and RD.
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(2) There exists a monotone swf W : X → R representing % and satisfying, for

some U ∈ UI and V ∈ V(U), W (0x) = V (U(x0),W (1x)) for all 0x ∈ X and

W (conz) = U(z) for all z ∈ Y .

For a given representation W (with associated utility function U) of an swr

satisfying conditions O, RC, IF, M, and RD, we will refer to U(xt) as the utility

of generation t and W (0x) as the welfare derived from the infinite stream 0x.

3 Hammond Equity for the Future

Discounted utilitarianism satisfies conditions O, RC, IF, M, and RD. Hence, these

conditions do not by themselves prevent “Dictatorship of the Present”, in the ter-

minology of Chichilnisky (1996).

Condition DP (Dictatorship of the Present) For all 0x, 0y ∈ X such that 0x � 0y,

there exist y, ȳ ∈ Y with y ≤ xt, yt ≤ ȳ for all t ∈ Z+ and T ′ ∈ Z+ such that, for

any 0z, 0v ∈ [y, ȳ]Z+ , (0xT−1, Tz) � (0yT−1, Tv) for all T > T ′.

Condition NDP (No Dictatorship of the Present) Condition DP does not hold.

Condition NDP generalizes the other of Chichilnisky’s (1996) two main axioms to

our setting where we consider the set of infinite streams bounded in well-being.

Hence, to ensure “No Dictatorship of the Present” we must impose an equity

condition that rules out swrs that allow for such dictatorship. We do so by a

condition which—combined with RC—entails that the interest of the present are

taken into account only if the present is worse-off than the future. Consider a stream

(x, conz) having the property that well-being is constant from the second period on.

For such a stream we may unequivocally say that, if x < z, then the present is worse-

off than the future. Likewise, if x > z, then the present is better-off than the future.

Condition HEF (Hammond Equity for the Future) For all x, y, z, v ∈ Y , if

x > y > v > z, then ¬(x, conz) � (y, conv).
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For streams where well-being is constant from the second period on, condition

HEF states the following: If the present is better-off than the future and a sacrifice

now leads to a uniform gain for all future generations, then such a transfer from the

present to the future cannot lead to a less desirable stream, as long as the present

remains better-off than the future. To appreciate the weakness of condition HEF,

consider first the standard “Hammond Equity” condition (Hammond, 1976) and a

weak version of Lauwers’ (1998) non-substitution condition.

Condition HE (Hammond Equity) For all 0x, 0y ∈ X, if 0x and 0y satisfy that

there exists a pair τ ′, τ ′′ such that xτ ′ > yτ ′ > yτ ′′ > xτ ′′ and xt = yt for all t 6= τ ′,

τ ′′, then ¬ 0x � 0y.

Condition WNS (Weak Non-Substitution) For all x, y, z, v ∈ Y , if v > z, then

¬(x, conz) � (y, conv).

By assuming, in addition, that well-beings are at least cardinally measurable

and fully comparable, we may also consider weak versions of the Lorenz Domination

and Pigou-Dalton principles. Such equity conditions have been used in the setting

of infinite streams by, e.g., Birchenhall and Grout (1979), Asheim (1991), Fleurbaey

and Michel (2001), and Hari, Shinotsuka, Suzumura and Xu (2005).

Condition WLD (Weak Lorenz Domination) For all 0x, 0y ∈ X, if 0x and 0y

satisfy that there exists T > 1 such that 0yT−1 Lorenz dominates 0xT−1 and Tx =

Ty, then ¬ 0x � 0y.

Condition WPD (Weak Pigou-Dalton) For all 0x, 0y ∈ X, if 0x and 0y satisfy that

there exist a positive number ε and a pair τ ′, τ ′′ such that xτ ′−ε = yτ ′ ≥ yτ ′′ = xτ ′′+ε

and xt = yt for all t 6= τ ′, τ ′′, then ¬ 0x � 0y.

While it is clear that condition HEF is implied by WNS—as HEF in contrast

to WNS does not preclude that a finite improvement for the first generation can

compensate for a uniform loss for all future generations, provided that the present

is worse-off than the future—it is perhaps less obvious that, under O and M, HEF
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is not stronger than each of HE, WPD, and WLD.

Proposition 3 Assume that the swr % satisfies conditions O and M. Then each

of HE, WPD, and WLD implies HEF.

Note that condition HEF involves a comparison between a sacrifice by a single

generation and a uniform gain for each member of an infinite set of generations that

are worse-off. Hence, contrary to the standard “Hammond Equity” condition, if

well-beings are made (at least) cardinally measurable and fully comparable, then

the transfer from the better-off present to the worse-off future specified in condition

HEF increases the sum of well-beings obtained by summing the well-beings of a

sufficiently large number T of generations. This entails that condition HEF is

implied by both the Pigou-Dalton principle of transfers and the Lorenz Domination

principle, independently of what specific cardinal scale of well-beings is imposed

(provided that conditions O and M are satisfied). Hence, “Hammond Equity for

the Future” can be endorsed from both an egalitarian and utilitarian point of view.

In particular, condition HEF is much weaker and more compelling than the standard

“Hammond Equity” condition.

However, in line with the Diamond-Yaari impossibility result (Diamond, 1965)

on the inconsistency of equity and efficiency conditions under continuity,2 the equity

condition HEF is in conflict with the following weak efficiency condition under RC.

Condition RS (Restricted Sensitivity) There exists x, z ∈ Y with x > z such that

(x, conz) � conz.

Condition SP implies condition RS, which in turn implies condition WS.

Proposition 4 There is no swr % satisfying conditions RC, RS, and HEF.

2The Diamond-Yaari impossibility result states that the equity condition of “Weak Anonymity”

(deeming two streams socially indifferent if one is obtained from the other through a finite permu-

tation of well-beings) is inconsistent with the efficiency condition SP under C. See also Basu and

Mitra (2003) and Fleurbaey and Michel (2003).
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Impossibility results arising from HEF are further explored in Asheim, Mitra

and Tungodden (2006). Here we concentrate on swrs that exist under HEF. We

note that it follows from Proposition 4 that RD is the strongest efficiency condition

compatible with HEF under RC, when comparing streams (x, conz) where well-

being is constant from the second period on with constant streams conz.

The following result establishes that “Dictatorship of the Present” is indeed ruled

out by adding condition HEF to conditions O, RC, IF, and M.

Proposition 5 Assume that the swr % satisfies conditions O, RC, IF, and M.

Then HEF implies NDP.

How does the basic representation result of Proposition 2 change by imposing

also condition HEF on a swr % satisfying conditions O, RC, IF, M, and RD? To

investigate this question, introduce the following notation:

VS(U) := {V : U(Y )2 → R | V satisfies (V.0), (V.1), (V.2), and (V.3′)} ,

where, (V.3′) is given as follows:

(V.3′) V (u, w) < w for u < w, and V (u, w) = w for u ≥ w.

Note that, for each U ∈ U , VS(U) ⊆ V(U).

Proposition 6 The following two statements are equivalent.

(1) The swr % satisfies conditions O, RC, IF, M, RD, and HEF.

(2) There exists a monotone swf W : X → R representing % and satisfying, for

some U ∈ UI and V ∈ VS(U), W (0x) = V (U(x0),W (1x)) for all 0x ∈ X and

W (conz) = U(z) for all z ∈ Y .

We refer to a mapping satisfying property (2) of Proposition 6 as a sustainable

recursive swf. Proposition 6 does not pose the question whether there exists a

sustainable recursive swf for any U ∈ UI and V ∈ VS(U). This question of existence

is resolved through the following proposition, which also characterizes the asymptotic

properties of such welfare functions.
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Proposition 7 For all U ∈ UI and V ∈ VS(U), there exists a monotone mapping

W : X → R satisfying W (0x) = V (U(x0),W (1x)) for all 0x ∈ X and W (conz) =

U(z) for all z ∈ Y . Any such mapping W satisfies, for each 0x ∈ X,

limT→∞W (Tx) = lim inft→∞U(xt) .

By combining Propositions 6 and 7 we obtain our first main result.

Theorem 1 There exists a class of swrs % satisfying conditions O, RC, IF, M,

RD, and HEF.

The proof of the existence part of Proposition 7 is based on an algorithmic con-

struction. For any 0x ∈ X and each T ∈ Z+, consider the following finite sequence:

w(T, T ) = lim inft→∞ U(xt)

w(T − 1, T ) = V (U(xT−1), w(T, T ))

· · ·

w(0, T ) = V (U(x0), w(1, T ))


(1)

Define the mapping Wσ : X → R by

Wσ(0x) := limT→∞w(0, T ) . (W)

In the proof of Proposition 7 we show that Wσ is a sustainable recursive swf.

It is an open question whether Wσ is the unique sustainable recursive swf given

U ∈ UI and V ∈ VS(U). As reported in the following proposition, we can show

uniqueness if the aggregator function satisfies a condition introduced by Koopmans,

Diamond, and Williamson (1964, p. 88): V ∈ V(U) satisfies the property of weak

time perspective if there exists a continuous increasing transformation g : R → R

such that g(w)− g(V (u, w)) is a non-decreasing function of w for given u.

Proposition 8 Let U ∈ UI and V ∈ VS(U). If V satisfies the property of weak time

perspective, then there exists a unique monotone mapping W : X → R satisfying

W (0x) = V (U(x0),W (1x)) for all 0x ∈ X and W (conz) = U(z) for all z ∈ Y . This

mapping, Wσ, is defined by (W).
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The property of weak time perspective does not follow from the conditions we

have imposed, but it is satisfied in special cases; e.g., with V given by

V (u, w) =


(1− δ)u + δw if u < w

w if u ≥ w ,

(2)

where δ ∈ (0, 1).3 We can also show that the set of supnorm continuous sustainable

recursive swfs contains at most Wσ. However, even though Wσ is continuous in the

weak sense implied by condition RC, it need not be supnorm continuous.

Once we drop one of the conditions RC, IF, and RD, and combine the remaining

two conditions with O, M, and HEF, new possibilities open up. It is clear that:

• The mapping W : X → R defined by W (0x) := lim inft→∞U(xt) for some

U ∈ UI represents an swr satisfying O, RC, IF, M, and HEF, but not RD.

• The maximin swr satisfies O, RC, M, RD, and HEF, but not IF.

• Leximin and undiscounted utilitarian swrs for infinite streams satisfy O, IF,

M, RD, and HEF, but not RC (cf. Proposition 12).

It follows from Propositions 1, 5, and 6 that any sustainable recursive swf rep-

resents an swr satisfying NDF and NDP. Chichilnisky (1996) defines “sustainable

preferences” by imposing NDF and NDP as well as conditions O, C, and SP. When

showing existence, she considers swrs violating condition IF, and it is open ques-

tion whether “sustainable preferences” can be combined with IF. Hence, through

showing general existence for our sustainable recursive swf, we demonstrate that

NDF and NDP can be combined with IF and numerical representability—thus be

imposed within the Koopmans framework—provided that efficiency and continuity

conditions are appropriately weakened.

3Note that an swr % represented by a sustainable recursive swf with aggregator function given

by (2) satisfies the following restricted form of the IP condition introduced in the next section:

For all 0x, 0y, 0z, 0v ∈ X such that (x0, x1, 2z), (y0, y1, 2z), (x0, x1, 2v), (y0, y1, 2v) are non-

decreasing, (x0, x1, 2z) % (y0, y1, 2z) if and only if (x0, x1, 2v) % (y0, y1, 2v).
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4 Independent Present

The following condition is invoked as Postulate 3′a in Koopmans’s (1960) character-

ization of discounted utilitarianism.

Condition IP (Independent Present) For all 0x, 0y, 0z, 0v ∈ X, (x0, x1, 2z) %

(y0, y1, 2z) if and only if (x0, x1, 2v) % (y0, y1, 2v).

In words, condition IP requires that the evaluation of two streams which differ

during only the first two periods not depend on what the common continuation

stream is. We suggest in this section that this condition may not be compelling,

both through an intuitive argument, and through formal results.

We claim that it might be consistent with ethical intuition to accept that the

stream (1, 4, 5, 5, 5, . . . ) is socially better than (2, 2, 5, 5, 5, . . . ), while not accepting

that (1, 4, 2, 2, 2, . . . ) is socially better than (2, 2, 2, 2, 2, . . . ). It is not obvious that

we should treat the conflict between the worst-off and the second worst-off generation

presented by the first comparison in the same manner as we treat the conflict between

the worst-off and the best-off generation put forward by the second comparison.

Turn now to the formal results. Koopmans (1960) characterizes discounted util-

itarianism by means of conditions IF, WS, and IP. However, it turns out that

conditions IF, WS, and IP contradict HEF under RC and M. Furthermore, this

conclusion is tight, in the sense that an swr exists if any one of these conditions is

dropped. We report this as our second main result.

Theorem 2 There is no swr % satisfying conditions RC, IF, M, WS, HEF, and

IP. If one of the conditions RC, IF, M, WS, HEF, and IP is dropped, then there

exists an swr % satisfying the remaining five conditions as well as condition O.

In the following proposition, we reproduce Koopmans’s (1960) characterization

of discounted utilitarianism within this paper’s formal setting.

Proposition 9 The following two statements are equivalent.
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(1) The swr % satisfies conditions O, RC, IF, M, WS, and IP.

(2) There exists a monotone swf W : X → R representing % and satisfying, for

some U ∈ U and δ ∈ (0, 1), W (0x) = (1− δ)U(x0) + δW (1x) for all 0x ∈ X.

Strengthening WS to RD in statement (1) is equivalent to replacing U by UI in

statement (2).

Furthermore, we note that the discounted utilitarian swf exists and is unique.

Proposition 10 For all U ∈ U and δ ∈ (0, 1), there exists a unique monotone

mapping W : X → R satisfying W (0x) = (1 − δ)U(x0) + δW (1x) for all 0x ∈ X.

This mapping, Wδ, is defined by, for each 0x ∈ X,

Wδ(0x) = (1− δ)
∑∞

t=0
δtU(xt) .

Propositions 9 and 10 have the following implication.

Proposition 11 There is no swr % satisfying conditions O, RC, IF, M, IP,

NDP, and NDF.

To summarize, it follows from Theorem 2 and Propositions 1 and 11 that, within

a Koopmans framework where O, RC, IF, M, and WS are imposed, condition IP

contradicts both HEF and NDP. Hence, in such a framework, IP is in conflict with

consequentialist equity conditions that respect the interests of future generations.

5 Concluding remarks

Koopmans (1960) has often been interpreted as presenting the definitive case for dis-

counted utilitarianism. In Sections 2 and 3 we have sought to weaken this impression

by exploring other avenues within the general setting of his approach. In particular,

by not imposing condition IP, used by Koopmans (1960) to characterize discounted

utilitarianism, we were able to combine our new equity condition HEF with the

essential features of the Koopmans framework: (a) numerical representability, (b)
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condition IF which includes Koopmans’s stationarity postulate, and (c) sensitivity

for the interests of the present generation. This leads to a non-empty class of sus-

tainable recursive social welfare functions. We have argued that condition HEF

is weak, as it is implied by all the standard consequentialist equity conditions sug-

gested in the literature, yet strong enough to ensure that the Chichilnisky (1996)

conditions are satisfied. In a companion paper (Asheim, Buchholz and Mitra, 2006)

we demonstrate how a sustainable recursive social welfare function can be used to

solve in an appealing way the interesting distributional conflicts that arise in the

DHS model of capital accumulation and resource depletion. In particular, it leads

to growth and development at first when capital is productive, while protecting the

generations in the distant future from the grave consequences of discounting when

the vanishing resource stock undermines capital productivity.

In this final section we note that even wider possibilities open up if we are willing

to give up numerical representability by not imposing RC. In particular, we are then

able to combine the equity condition HEF and the independence condition IP with

our basic conditions O and IF, while strengthening our efficiency conditions M and

RD to condition SP.

Proposition 12 There exists an swr % satisfying conditions O, IF, SP, HEF,

and IP.

The proof of this proposition employs the leximin and undiscounted utilitarian swrs

for infinite streams that have been axiomatized in recent contributions (see Asheim

and Tungodden, 2004; Basu and Mitra, 2005; Bossert, Sprumont and Suzumura,

2005).

We end by making the observation that continuity is not simply a “technical”

condition without ethical content. In a setting where RC (or a stronger continuity

condition like C) is combined with RS (or a stronger efficiency condition like SP), it

follows from Proposition 4 that condition HEF is not satisfied. Hence, on this basis

one may claim that, in combination with a sufficiently strong efficiency condition,

continuity rules out swfs that protect the interests of future generations by implying
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that the equity condition HEF does not hold. In the main analysis of this paper we

have avoided the trade-off between continuity and numerical representability on the

one hand, and the ability to impose the equity condition HEF on the other hand,

by weakening the efficiency condition in an appropriate way.

Appendix: Proofs

Proof of Proposition 1. Part I: WS implies NDF. Assume that the swr % satisfies

conditions O and WS. By WS, there exist 0x, 0y ∈ X with 1x = 1y such that 0x � 0y.

Let 0z, 0v ∈ X be given by 0z = 0v = 0x. We have that, for any y, ȳ ∈ Y satisfying

y ≤ xt, yt ≤ ȳ for all t ∈ Z+, 0z, 0v ∈ [y, ȳ]Z+ . Still, for all T > 0, (0zT−1, T x) =

0x = (0xT−1, T y) = (0vT−1, T y), implying by O that (0zT−1, T x) ∼ (0vT−1, T y). This

contradicts DF.

Part II: NDF implies WS. Assume that the swr % satisfies conditions O, IF and

NDF. Suppose that WS does not hold, e.g., for all 0x′, 0y′ ∈ X with 1x′ = 1y′, we have

that 0x′ ∼ 0y′. By NDF, there exists 0x, 0y ∈ X such that 0x � 0y, since DF holds

trivially otherwise. Let 0z, 0v be arbitrary streams in X. We have that T−1x ∼ (zT−1, T x)

for all T > 0 since WS does not hold. By IF and the above argument,

T−2x = (xT−2, T−1x) ∼ (xT−2, zT−1, T x) ∼ (T−2zT−1, T x) .

By invoking O and applying IF and the above argument repeatedly, it follows that 0x ∼

(0zT−1, T x) for all T > 0. Likewise, 0y ∼ (0vT−1, T y) for all T > 0. By O, (0zT−1, T x) �

(0vT−1, T y) for all T > 0. This contradicts NDF.

The following lemma is useful for proving Proposition 2 and subsequent results.

Lemma 1 Assume that the swr % satisfies conditions O, RC, M. Then, for all 0x ∈ X,

there exists z ∈ Y such that conz ∼ 0x. If condition RD is added, then z is unique.

Proof. Assume that the swr % satisfies conditions O, RC, and M. By O, M, and the

definition of X, there exists z ∈ Y such that inf{v ∈ Y | conv % 0x} ≤ z ≤ sup{v ∈ Y |

conv - 0x}. By O and RC, conz ∼ 0x.

If condition RD is added, then by O, M, and RD we have that

conv = (v, conv) - (v, conz) ≺ conz if v < z , (3)
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so that inf{v ∈ Y | conv % 0x} = sup{v ∈ Y | conv - 0x} and z is unique.

Proof of Proposition 2. Part I: (1) implies (2). Assume that the swr % satisfies

conditions O, RC, IF, M, and RD. In view of Lemma 1, determine W : X → Y by, for

all 0x ∈ X, W (0x) = z where conz ∼ 0x. By O and (3), W (0x) ≥ W (0y) if and only if

0x % 0y. By M, W is monotone.

Let U ∈ UI be given by U(x) = x for all x ∈ Y , implying that U(Y ) = Y . Hence,

by construction of W , W (conz) = z = U(z) for all z ∈ Y . It follows from IF that, for

given x0 ∈ Y , there exists an increasing transformation V (U(x0), ·) : Y → Y such that,

for all 1x ∈ X, W (x0, 1x) = V (U(x0), W (1x)). This determines V : Y × Y → Y , where

V (u, w) is increasing in w for given u, establishing that V satisfies (V.2). By M, V (u, w) is

non-decreasing in u for given w, establishing that V satisfies (V.1). Since ¬(x, conz) ≺ conv

(resp. ¬(x, conz) � conv) if and only if

V (x, z) = V (U(x),W (conz)) = W (x, conz) ≥ v (resp. ≤ v),

RC implies that V satisfies (V.0). Finally, since

V (z, z) = V (U(z),W (conz)) = W (conz) = z

V (x, z) = V (U(x),W (conz)) = W (x, conz) < W (conz) = z if x < z ,

by invoking RD, it follows that V satisfies (V.3). Hence, V ∈ V(U).

Part II: (2) implies (1). Assume that the monotone mapping W : X → R is an swf

and satisfies, for some U ∈ UI and V ∈ V(U), W (0x) = V (U(x0),W (1x)) for all 0x ∈ X and

W (conz) = U(z) for all z ∈ Y . Since the swr % is represented by the swf W , it follows that

% satisfies O. Moreover, % satisfies M since W is monotone, % satisfies IF since V satisfies

(V.2), and % satisfies RD since U ∈ UI and V satisfies (V.3). The following argument shows

that % satisfies RC.

Let 0x, 0y ∈ X, and let xt = z for all t ≥ 1. Let 0xn ∈ X for n ∈ N, with the property

that limn→∞ supt |xn
t − xt| = 0 and, for each n ∈ N, ¬ 0xn ≺ 0y. We have to show that

¬ 0x ≺ 0y, or equivalently, W (0x) ≥ W (0y). Define ε(n) for n ∈ N by, for each n ∈ N,

ε(n) := supt |xn
t − xt|, so that limn→∞ ε(n) = 0. For each n ∈ N,

V (U(x0 + ε(n)), U(z + ε(n))) = V (U(x0 + ε(n)),W (con(z + ε(n))))

= W (x0 + ε(n), con(z + ε(n))) ≥ W (0xn) ≥ W (0y)
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since W is monotone and represents %, and ¬ 0xn ≺ 0y. This implies that

W (0x) = V (U(x0),W (conz)) = V (U(x0), U(z)) ≥ W (0y)

since U and V are continuous and limn→∞ ε(n) = 0. The same kind of argument can be

used to show that ¬ 0x � 0y if, for each n ∈ N, ¬ 0xn � 0y.

Proof of Proposition 3. Assume x > y > v > z. We must show under O and M

that each of HE, WLD, and WPD implies ¬(x, conz) � (y, conv).

Since x > y > v > z, there exist an integer T and utilities x′, z′ ∈ [0, 1] satisfying

y > x′ ≥ v > z′ > z and x− x′ = T (z′ − z).

By O (completeness) and HE, (x′, z′, conz) % (x, conz), and by M, (y, conv) % (x′, z′,

conz). By O (transitivity), (y, conv) % (x, conz).

Consider next WLD and WPD. Let 0x0 = (x, conz), and define 0xn for n ∈ {1, . . . , T}

inductively as follows:

xn
t = xn−1

t − (z′ − z) for t = 0

xn
t = z′ for t = n

xn
t = xn−1

t for t 6= 0, n .

By O (completeness) and WLD, 0xT % 0 x0, and by M, (y, conv) % 0xT . By O

(transitivity), (y, conv) % (x, conz) since 0x0 = (x, conz).

By O (completeness) and WPD, 0xn % 0 xn−1 for n ∈ {1, . . . , T}, and by M, (y, conv)

% 0xT . By O (transitivity), (y, conv) % (x, conz) since 0x0 = (x, conz).

Proof of Proposition 4. Suppose there exists an swr % satisfying conditions RC,

RS, and HEF.

Step 1: By RS, there exists x, z ∈ Y with x > z such that (x, conz) � conz. Define

a = x− z. We claim that there is b ∈ (0, a) such that

(x, conz) � (z + b, conz) .

If not, ¬ (x, conz) � (z + b, conz) for every b ∈ (0, a). By letting b → 0 and using RC,

¬ (x, conz) � conz. This contradicts (x, conz) � conz and establishes our claim.

Step 2: For every c ∈ (0, b), noting that x > z+b > z+c > z, HEF implies ¬(x, conz) �

(z + b, con(z + c)). By letting c → 0 and using RC, we get

¬(x, conz) � (z + b, conz) .
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This contradicts the claim proved in Step 1, and establishes the proposition.

Proof of Proposition 5. Assume that the swr % satisfies conditions O, RC, M,

IF, and HEF. Let 0x, 0y ∈ X satisfy 0x � 0y, and let y, ȳ ∈ Y satisfy y ≤ xt, yt ≤ ȳ for

all t ∈ Z+. For any T ∈ Z+ with xT−1 > y, Proposition 4 implies that (xT−1, cony) � cony

would contradict RC and HEF. Hence, since xT−1 ≥ y, it follows from O and M that

(xT−1, cony) ∼ cony for all T > 0. By IF and the above argument,

(T−2xT−1, cony) = (xT−2, xT−1, cony) ∼ (xT−2, cony) ∼ cony .

By invoking O and applying IF and the above argument repeatedly, (0xT−1, cony) ∼ cony

for all T > 0. Likewise, (0yT−1, cony) ∼ cony for all T > 0.

Let 0z, 0v ∈ [y, ȳ]Z+ be given by 0z = 0v = cony. Since (0xT−1, cony) ∼ cony ∼

(0yT−1, cony) for all T > 0, we have by O that (0xT−1, T z) ∼ (0yT−1, T v) for all T > 0.

This contradicts DP.

The following result is useful for the proof of Proposition 6.

Lemma 2 Assume that the swr % satisfies conditions O, RC, IF, M, RD, and HEF.

Then, for all 0x ∈ X and T ∈ Z+, T x - T+1x.

Proof. Assume that the swr % satisfies conditions O, RC, IF, M, RD, and HEF. By the

interpretation of T x, it is sufficient to show that we will arrive at a contradiction if 0x � 1x.

Therefore, suppose 0x � 1x. By Lemma 1, there exist z0, z1 ∈ Y such that conz0 ∼ 0x

and conz1 ∼ 1x, where, by O, (3), and 0x � 1x, it follows that z0 > z1. Furthermore, since

1x ∼ conz1, it follows by IF that (x0, 1x) ∼ (x0, conz1). Hence, 0x ∼ (x0, conz1).

If x0 ≤ z0, then,

0x ∼ (x0, conz1) ≺ (x0, conz0) by (3) and condition IF since z1 < z0

- (z0, conz0) = conz0 ∼ 0x by conditions O and M since x0 ≤ z0.

This contradicts condition O, ruling out this case.

If x0 > z0, then, by selecting some v ∈ (z1, z0),

0x ∼ (x0, conz1) - (z0, conv) by conditions O and HEF since x0 > z0 > v > z1

≺ (z0, conz0) ∼ 0x by (3) and condition IF since v < z0.

This contradicts condition O, ruling out also this case.
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Proof of Proposition 6. Part I: (1) implies (2). Assume that the swr % satisfies

conditions O, RC, IF, M, RD, and HEF. By Proposition 2, the swr % is represented

by a monotone swf W : X → R satisfying, for some U ∈ UI and V ∈ V(U), W (0x) =

V (U(x0),W (1x)) for all 0x ∈ X and W (conz) = U(z) for all z ∈ Y . It remains to be shown

that V (u, w) = w for u > w, implying that V satisfies (V.3′) and, thus, V ∈ VS(U).

Therefore, since V (u, w) is non-decreasing in u for given w ∈ U(Y ) and V (u, w) = w for

u = w, suppose that V (u, w) > w for some u, w ∈ U(Y ) with u > w. Since U ∈ UI , the

properties of W imply that there exist x, z ∈ Y with x > z such that

W (x, conz) = V (U(x),W (conz)) = V (U(x), U(z))

= V (u, w) > w = U(z) = W (conz) .

Since the swr % is represented by the swf W , it follows that (x, conz) � conz. This

contradicts Lemma 2.

Part II: (2) implies (1). Assume that the monotone mapping W : X → R is an swf and

satisfies, for some U ∈ UI and VS ∈ V(U), W (0x) = V (U(x0),W (1x)) for all 0x ∈ X and

W (conz) = U(z) for all z ∈ Y . By Proposition 2, it remains to be shown that the swr %,

represented by the swf W , satisfies HEF. The following argument shows that % satisfies

HEF.

Let x, y, z, v ∈ Y satisfy x > y > v > z. We have to show that ¬(x, conz) � (y, conv),

or equivalently, W (x, conz) ≤ W (y, conv). By the properties of W ,

W (x, conz) = V (U(x),W (conz)) = V (U(x), U(z)) = U(z)

< U(v) = V (U(y), U(v)) = V (U(y),W (conv)) = W (y, conv) ,

since x > y > v > z, U ∈ UI , and V ∈ VS(U)

Proof of Proposition 7. Fix U ∈ UI and V ∈ VS(U). The proof has two parts.

Part I: limT→∞W (T x) = lim inft→∞U(xt). Assume that the monotone mapping W :

X → R satisfies W (0x) = V (U(x0),W (1x)) for all 0x ∈ X and W (conz) = U(z) for all

z ∈ Y . Hence, by Proposition 6, the swf W represents a swr % satisfying O, RC, M, RD,

IF, and HEF. By Lemma 1, for all 0x ∈ X, there exists z ∈ Y such that conz ∼ 0x. By

Lemma 2, W (tx) is non-decreasing in t.

Step 1: limt→∞W (tx) exists. Suppose W (τx) > lim supt→∞ U(xt) for some τ ∈ Z+.

By the premise and the fact that U ∈ UI , there exists z ∈ Y satisfying

W (τx) ≥ U(z) > lim supt→∞U(xt)
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and T ≥ τ such that z > v := supt≥T xt. By RD, O, and M, conz � (v, conz) % T x,

and hence, by O, conz � T x. However, since W (tx) is non-decreasing in t, W (T x) ≥

W (τx) ≥ U(z). This contradicts that W is an swf. Hence, W (tx) is bounded above by

lim supt→∞ U(xt), and the result follows since W (tx) is non-decreasing in t.

Step 2: limt→∞W (tx) ≥ lim inft→∞ U(xt). Suppose limt→∞W (tx) < lim inft→∞

U(xt). By the premise and the fact that U ∈ UI , there exists z ∈ Y satisfying

limt→∞W (tx) ≤ U(z) < lim inft→∞U(xt)

and T ≥ 0 such that z < v := inft≥T xt. By O, M, and RD, conz - (z, conv) ≺ conv - T x,

and hence, by O, conz ≺ T x. However, since W (tx) is non-decreasing in t, W (T x) ≤

limt→∞W (tx) ≤ U(z). This contradicts that W is an swf.

Step 3: limt→∞W (tx) ≤ lim inft→∞ U(xt). Suppose limt→∞W (tx) > lim inft→∞

U(xt). By Lemma 1, there exists, for all t ∈ Z+, zt ∈ Y such that conzt ∼ tx. Since

U ∈ UI , z ∈ Y defined by z := limt→∞ zt satisfies U(z) = limt→∞W (tx). By the premise

and the fact that U ∈ UI , there exists x ∈ Y satisfying

lim inft→∞U(xt) < U(x) < U(z)

and a subsequence (xtτ , ztτ )τ∈Z+ such that, for all τ ∈ Z+, xtτ ≤ x < ztτ . Then

conztτ ∼ tτ x = (xtτ , tτ+1x) - (xtτ+1−1, tτ+1x) ∼ (xtτ+1−1, conztτ+1) - (x, conz) ,

since zt is non-decreasing in t. By O, RC, and the definition of z, conz - (x, conz). Since

x < z, this contradicts RD.

Part II: Existence. Let 0x ∈ X, implying that there exist y, ȳ ∈ Y such that, for all

t ∈ Z+, y ≤ xt ≤ ȳ. For each T ∈ Z+, consider {w(t, T )}T
t=0 determined by (1).

Step 1: w(t, T ) is non-increasing in T for given t ≤ T . Given T ∈ Z+,

w(T, T + 1) = V (U(xT ), w(T + 1, T + 1)) ≤ w(T + 1, T + 1) = lim inf
t→∞

U(xt) = w(T, T )

by (1) and (V.3′). Thus, applying (V.2), we have

w(T − 1, T + 1) = V (U(xT−1), w(T, T + 1)) ≤ V (U(xT−1), w(T, T )) = w(T − 1, T ) .

Using (V.2) repeatedly, we then obtain

w(t, T + 1) ≤ w(t, T ) for all t ∈ {0, ..., T − 1} ,

which establishes that w(t, T ) is non-increasing in T for given t ≤ T .
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Step 2: w(t, T ) is bounded below by U(y). By (1), (V.1), (V.2), and (V.3′), w(T, T ) =

lim inft→∞ U(xt) ≥ U(y), and for all t ∈ {0, ..., T − 1},

w(t + 1, T ) ≥ U(y) implies w(t, T ) = V (U(xt), w(t + 1, T )) ≥ V (U(y), U(y)) = U(y) .

Hence, it follows by induction that w(t, T ) is bounded below by U(y).

Step 3: Definition and properties of Wσ. By steps 1 and 2, limT→∞ w(t, T ) exists for

all t ∈ Z+. Define the mapping Wσ : X → R by (W). We have that Wσ is monotone

by (1), (V.1), and (V.2). As w(0, T ) = V (U(x0), w(1, T )) and V satisfies (V.0), we have

that Wσ(0x) = V (U(x0),Wσ(1x)). Finally, if 0x = conz for some z ∈ Y , then it follows

from (1) and (V.3′) that w(t, T ) = U(z) for all T ∈ Z+ and t ∈ {0, ..., T}, implying that

Wσ(0x) = U(z).

Proof of Proposition 8. Suppose there exists a monotone mapping W : X → R satis-

fying W (0y) = V (U(y0),W (1y)) for all 0y ∈ X and W (conz) = U(z) for all z ∈ Y such that

W (0x) 6= Wσ(0x). Since V satisfies the property of weak time perspective, there is a contin-

uous increasing transformation g : R → R such that |g(W (0x)) − g(Wσ(0x))| = ε > 0, and

furthermore, |g(W (tx))− g(Wσ(tx))| = |g(V (U(xt),W (t+1x)))− g(V (U(xt),Wσ(t+1x)))| ≤

|g(W (t+1x))− g(Wσ(t+1x))| for all t ∈ Z+. It now follows, by induction, that

|g(W (T x))− g(Wσ(T x))| ≥ ε > 0

for all T ∈ Z+. However this contradicts that, for all T ∈ Z+,

limT→∞W (T x) = lim inft→∞U(xt) = limT→∞Wσ(x)

by Proposition 7, since g is a continuous increasing transformation.

For the proofs of the results of Section 4, the following notation is useful, where 0z =

(z0, 1z) = (z0, z1, 2z) ∈ X is a fixed but arbitrary reference stream:

x0 %z
0 y0 means (x0, 1z) % (y0, 1z)

1x 1%
z

1y means (z0, 1x) % (z0, 1y)

(x0, x1) 0%
z
1 (y0, y1) means (x0, x1, 2z) % (y0, y1, 2z)

2x 2%
z

2y means (z0, z1, 2x) % (z0, z1, 2y)

x1 %z
1 y1 means (z0, x1, 2z) % (z0, y1, 2z) .
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Say that %z
0 is sensitive if there exist 0x, 0y, 0z ∈ X such that x0 �z

0 y0, and likewise for

1%
z, 0%

z
1, 2%

z, and %z
1. Say that %z

0 is independent of 0z if, for all 0x, 0y, 0z, 0v ∈ X,

x0 %z
0 y0 if and only if x0 %v

0 y0, and likewise for 1%
z, 0%

z
1, 2%

z, and %z
1.

In this notation and terminology, condition IF implies that 1%
z is independent of 0z,

condition WS states that %z
0 is sensitive, while condition IP states that 0%z

1 is independent

of 0z. The following result indicates that imposing condition IP is consequential.

Lemma 3 Assume that the swr % satisfies conditions IF and IP. Then %z
0, 1%

z, 0%
z
1,

2%
z, and %z

1 are independent of 0z.

Proof. Assume that the swr % satisfies conditions IF and IP. By repeated application

of IF, 1%
z and 2%

z are independent of 0z, while IP states that 0%
z
1 is independent of

0z. By IF, (x1, 2z) % (y1, 2z) is equivalent to (z0, x1, 2z) % (z0, y1, 2z), which, by

IP, is equivalent to (z0, x1, 2v) % (z0, y1, 2v), which in turn, by IF, is equivalent to

(x1, 2v) % (y1, 2v), which finally, by IF, is equivalent to (v0, x1, 2v) % (v0, y1, 2v), where

0v ∈ X is some arbitrary stream. Hence, %z
0 and %z

1 are independent of 0z.

Proof of Theorem 2. Part I: This part is proved in three steps.

Step 1: By Lemma 3, IF and IP imply that %z
0 is independent of 0z.

Step 2: By condition WS, there exist 0x, 0y, 0z ∈ X such that x0 �z
0 y0. This rules out

that x0 = y0, and by M, x0 < y0 would lead to a contradiction. Hence, x0 > y0. Since %z
0

is independent of 0z, this implies RS.

Step 3: By Proposition 4, there is no swr % satisfying RC, RS, and HEF.

Part II: To establish this part, consider dropping a single condition.

Dropping IP. Existence follows from Theorem 1 since RD implies WS.

Dropping HEF. Existence follows from Propositions 9 and 10.

Dropping WS. All the remaining conditions are satisfied by the swf % being represented

by the mapping W : X → R defined by W (0x) := lim inft→∞xt.

Dropping M. All the remaining conditions are satisfied by the swf % being represented

by the mapping W : X → R defined by W (0x) := −x0 + lim inft→∞xt.

Dropping IF. All the remaining conditions are satisfied by the swf % being represented

by the mapping W : X → R defined by W (0x) := min{x0, x1}.

Dropping RC. Existence follows from Proposition 12 since SP implies M and WS.
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Proof of Proposition 9. Part I: (1) implies (2). Assume that the swr % satisfies

conditions O, RC, IF, M, WS, and IP.

By WS, %z
0 is sensitive. By IF, (x1, 2z) � (y1, 2z) implies (z0, x1, 2z) � (z0, y1, 2z).

Since %z
0 is sensitive, there exist 0x, 0y, 0z ∈ X such that x1 �z

1 y1, meaning that %z
1 is

sensitive. This implies that 1%
z is sensitive and, by applying IF, that 2%

z is sensitive. By

Lemma 3, %z
0, 1%

z, 0%
z
1, 2%

z, and %z
1 are independent of 0z.

By O and M, there exists a continuous function Ũ : Y → R satisfying Ũ(z) ≥ Ũ(v)

if and only if conz % conv. In view of Lemma 1, determine W̃ : X → R by, for all

0x ∈ X, W̃ (0x) = Ũ(y) where cony ∼ 0x. By O, W̃ (0x) ≥ W̃ (0y) if and only if 0x %

0y. By construction of W̃ , W̃ (conz) = Ũ(z) for all z ∈ Y . By IF, for given x0 ∈ Y ,

there exists an increasing transformation Ṽ (Ũ(x0), ·) : R → R such that, for all 1x ∈ X,

W̃ (x0, 1x) = Ṽ (Ũ(x0), W̃ (1x)). This determines Ṽ : Ũ(Y )2 → R. Since ¬(x, conz) ≺ conv

(resp. ¬(x, conz) � conv) if and only if

Ṽ (Ũ(x), Ũ(z)) = Ṽ (Ũ(x), W̃ (conz)) = W̃ (x, conz) ≥ Ũ(v) (resp. ≤ Ũ(v)),

RC implies that Ṽ is continuous in (u, w) on Ũ(Y )2.

Hence, on the set of streams in X of the form (x0, x1, conv), % is represented by

W̃ (x0, x1, conv) = Ṽ (x0, W̃ (x1, conv)) = Ṽ (x0, Ṽ (x1, Ũ(v))), which is continuous in (x0, x1,

v) on Y 3. Since %z
0, %z

1, and 2%
z are sensitive (in the case of 2%

z also within the set of

constant streams, by O, M, and WS), and %z
0, 1%

z, 0%
z
1, 2%

z, and %z
1 are all independent

of 0z, it now follows from standard results for additively separable representations (Debreu,

1960; Gorman, 1968; Koopmans, 1986a) that there exist continuous functions U0 : Y → R,

U1 : Y → R, and U : Y → R, such that W0 : {0x ∈ X | xt = v for all t ≥ 2} → R defined by

W0(x0, x1, conv) = U0(x0) + U1(x1) + U(v) (4)

is an swf. By repeated applications of IF, it follows from Lemma 1 that W0 can be extended

to all 0x ∈ X:

W0(0x) = U0(x0) + U1(x1) + U(W ∗(2x)) ,

where W ∗ : X → Y maps any 0y ∈ X into some z ∈ Y satisfying conz ∼ 0y. It follows

from IF that W1 : X → R defined by

W1(0x) = U1(x0) + U(W ∗(1x)) ,

is also an swf. The additively separable structure between time 0 and times 1, 2, . . . means
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that, for all 0x ∈ X, W1(0x) = δW0(0x) + ε, U1(x0) = δU0(x0) + ε, and

U(W ∗(1x)) = δ
(
U1(x1) + U(W ∗(2x))

)
+ ε . (5)

Furthermore, by inserting conz in (5) and keeping in mind that U(W ∗(conz)) = U(z), we

obtain U(z) = δ
(
U1(z) + U(z)

)
+ ε, or equivalently,

U1(z) = 1−δ
δ U(z)− ε

δ (6)

for all z ∈ Y . By defining W : X → R by, for all 0x ∈ X, W (0x) = U(W ∗(0x)), it follows

from (5) and (6) that the swf W satisfies W (0x) = (1− δ)U(x0) + δW (1x) for all 0x ∈ X,

where δ ∈ (0, 1) since both %z
0 and 1%

z are sensitive. By M, W is monotone and U is

non-decreasing. By WS, U(Y ) is not a singleton; hence, U ∈ U .

If WS is strengthened to RD, then it follows from (3), (4), and repeated applications

of IF that U(Y ) is increasing; hence, U ∈ UI .

Part II: (2) implies (1). Assume that the monotone mapping W : X → R is an swf and

satisfies, for some U ∈ U and δ ∈ (0, 1), W (0x) = (1−δ)U(x0)+δW (1x) for all 0x ∈ X. Note

that, for each U ∈ U and each δ ∈ (0, 1), V : U(Y )2 → R defined by V (u, w) = (1− δ)u+ δw

is an element of V(U); hence,

{V : U(Y )2 → R | V (u, w) = (1− δ)u + δw for some δ ∈ (0, 1)} ⊆ V(U) .

Also, W (conz) = (1− δ)U(z) + δW (conz) implies W (conz) = U(z). Hence, by Proposition 2,

if U ∈ UI , it remains to be shown that the swr %, represented by the swf W , satisfies IP.

The following argument shows that % satisfies IP.

Let 0x, 0y, 0z, 0v ∈ X, and let (x0, x1) 0%
z
1 (y0, y1), or equivalently, W (x0, x1, 2z) ≥

W (y0, y1, 2z). We have to show that (x0, x1) 0%
v
1 (y0, y1), or equivalently, W (x0, x1, 2v) ≥

W (y0, y1, 2v). By the properties of W ,

W (x0, x1, 2z)−W (y0, y1, 2z) = (1− δ)
[(

U(x0)− U(y0)
)

+ δ
(
U(x1)− U(y1)

)]
= W (x0, x1, 2v)−W (y0, y1, 2v) ,

since W (0x′) = (1− δ)
(
U(x′0) + δU(x′1)

)
+ δ2W (2x′) for all 0x′ ∈ X.

If U ∈ U\UI , then above analysis goes through, except that it does not follow that the

swr % satisfies RD. Instead, the property that U(Y ) is not a singleton implies that swr %

satisfies WS.

Proof of Proposition 10. Fix U ∈ U and δ ∈ (0, 1), and let 0x ∈ X, implying that

there exist y, ȳ ∈ Y such that, for all t ∈ Z+, y ≤ xt ≤ ȳ.
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Part I: Existence. For each T ∈ Z+, consider the following finite sequence:

w(T, T ) = U(ȳ)

w(T − 1, T ) = (1− δ)U(xT−1) + δw(T, T ) = (1− δ)U(xT−1) + δU(ȳ)

· · ·

w(0, T ) = (1− δ)U(x0) + δw(1, T ) = (1− δ)
∑T−1

t=0
δtU(xt) + δT U(ȳ)

Since w(t, T ) is non-increasing in T for given t ≤ T and bounded below by U(y), limT→∞

w(t, T ) exists for all t ∈ Z+. Define the monotone mapping Wδ : X → R by

Wδ(0x) := limT→∞w(0, T ) = (1− δ)
∑∞

t=0
δtU(xt) .

As w(0, T ) = (1− δ)U(x0) + δw(1, T ), we have that Wδ(0x) = (1− δ)U(x0) + δWδ(1x).

Part II: Uniqueness. Suppose there exists a monotone mapping W : X → R satisfying

W (0y) = (1 − δ)U(y0) + δW (1y)) for all 0y ∈ X such that W (0x) 6= Wδ(0x). Since

W (tx)−Wδ(tx) = δ
(
W (t+1x)−Wδ(t+1x)

)
for all t ∈ Z+,

|W (T x)−Wδ(T x)| = 1
δT |W (0x)−Wδ(0x)| > U(ȳ)− U(y)

for some T ∈ Z+. However this contradicts that, for all T ∈ Z+,

U(y) = W (cony) ≤ W (T x) ≤ W (conȳ) = U(ȳ)

(and likewise for Wδ(T x)) by the facts that W is monotone and W (conz) = (1 − δ)U(z) +

δW (conz) implies W (conz) = U(z).

Proof of Proposition 11. Assume that the swr % satisfying conditions O, RC, IF,

M, IP, and NDF. By Proposition 1, O, IF, and NDF imply WS. Hence, by Propositions

9 and 10, the swr % is represented by Wδ : X → R defined by, for each 0x ∈ X,

Wδ(0x) = (1− δ)
∑∞

t=0
δtU(xt) ,

for some U ∈ U and δ ∈ (0, 1). This implies DP, thus contradicting NDP.

Proof of Proposition 12. Asheim and Tungodden (2004), Basu and Mitra (2005), and

Bossert, Sprumont and Suzumura (2005) define different kinds of incomplete leximin and

undiscounted utilitarian swrs, each of which is given an axiomatic characterization. Denote

by % one such incomplete swr. It can be verified that % is reflexive, transitive and satisfies

IF, SP, HEF (with (x, conz) - (y, conv) if x > y > v > z), and IP. Completeness (and
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thereby condition O) can be satisfied by invoking Arrow’s (1951) version of Szpilrajn’s (1930)

extension theorem (see also Svensson, 1980).

Since % satisfies conditions SP and HEF (with (x, conz) - (y, conv) if x > y >

v > z), so will any completion. Since, for all 0x, 0y, 0z ∈ X, (x0, x1) 0%
z
1 (y0, y1) or

(x0, x1) 0-
z
1 (y0, y1), and % satisfies IP, so will any completion. However, special care

must be taken to ensure that the completion satisfies IF.

Consider X2
0 = {(0x, 0y) ∈ X2 | x0 6= y0}, and invoke Arrow’s (1951) version of

Szpilrajn’s (1930) extension theorem to complete % on this subset of X2. For any (0x, 0y) ∈

X with 0x 6= 0y, let 0x be at least as good as 0y if and only if T x is at least as good as T y

according to the completion of % on X2
0, where T := min{t | xt 6= yt}. Since % satisfies IF,

this construction constitutes a complete swr satisfying IF.
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