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C.P. 6128, succursale Centre-ville, Montréal QC H3C 3J7, Canada
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FAX: (+1 514) 343 7221
e-mail: yves.sprumont@umontreal.ca

Kotaro Suzumura

Institute of Economic Research, Hitotsubashi University
Kunitachi, Tokyo 186-8603, Japan

FAX: (+81 42) 580 8353
e-mail: suzumura@ier.hit-u.ac.jp

This version: May 15, 2006

∗An earlier version of the paper was presented at Seoul National University, Victoria University of
Wellington, the University of Auckland, the 2005 polarization and conflict conference in Milan and the
2006 workshop on intergenerational resource allocation in Montréal. Financial support through grants
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Abstract

We analyze infinite-horizon choice functions within the setting of a simple lin-

ear technology. Time consistency and efficiency are characterized by stationary

consumption and inheritance functions, as well as a transversality condition. In

addition, we consider the equity axioms Suppes-Sen, Pigou-Dalton, and resource

monotonicity. We show that Suppes-Sen and Pigou-Dalton imply that the consump-

tion and inheritance functions are monotone with respect to time—thus justifying

sustainability—while resource monotonicity implies that the consumption and in-

heritance functions are monotone with respect to the resource. Examples illustrate

the characterization results.

Journal of Economic Literature Classification Numbers: D63, D71.

Keywords: Intergenerational resource allocation, infinite-horizon choice.



1 Introduction

The literature on ranking infinite consumption (or utility) streams has produced a num-

ber of negative results in the form of the incompatibility of seemingly mild axioms. For

example, following Koopmans (1960), Diamond (1965) establishes that anonymity is in-

compatible with the strong Pareto principle. Finite anonymity weakens anonymity by

restricting the application of the standard anonymity requirement to situations where

utility streams differ in at most a finite number of components. Diamond (1965) goes

on to show that strong Pareto, finite anonymity and a continuity requirement are incom-

patible if the social relation is required to be transitive and complete. Hara, Shinotsuka,

Suzumura and Xu (2005) adapt the well-known strict transfer principle due to Pigou

(1912) and Dalton (1920) to the infinite-horizon context. They show that this principle

is incompatible with strong Pareto and continuity even if the social preference is merely

required to be acyclical. Basu and Mitra (2003) show that strong Pareto, finite anonymity

and representability by a real-valued function are incompatible. Epstein (1986) establishes

the incompatibility of a set of standard axioms and a substitution property requiring the

possibility to improve upon any given constant stream by means of a stream with lower

initial consumption.

The main purpose of this paper is to suggest an alternative approach that may provide

a promising way to address issues involving intergenerational allocation problems with an

infinite horizon. Instead of searching for a ranking of infinite streams, we examine a

choice-theoretic model where a choice function is used to select a consumption stream

from each set of feasible streams. Because our focus is on the choice-theoretic aspect of

the model, we deliberately consider a simple setting where there is a single resource and

a linear and stationary technology with positive renewal. This implies that the feasibility

of a consumption stream is determined by the initial amount of the resource available,

and the choice function assigns a consumption stream (the chosen consumption stream,

given the feasibility constraint) to each possible initial amount.

We begin with an analysis of two fundamental properties whose versions formulated

for orderings have been used extensively in the literature, namely, efficiency and time

consistency. We provide characterizations of all infinite-horizon choice functions satis-

fying either of the two axioms and, moreover, identify all choice functions with both

properties. We then consider equity properties that are choice-theoretic versions of the

Suppes-Sen principle, the Pigou-Dalton transfer principle and resource monotonicity (see

Asheim, Mitra and Tungodden, 2006; Bossert, Sprumont and Suzumura, 2006; Hara,
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Shinotsuka, Suzumura and Xu, 2005, for equity properties imposed on rankings of infinite

streams). Again, classes of infinite-horizon choice functions possessing one of these prop-

erties are characterized, and further axiomatizations are obtained by adding efficiency or

time consistency.

The results we obtain are promising. Unlike in the case of orderings of infinite utility

streams, impossibilities can be avoided and rich classes of infinite-horizon choice functions

satisfying several desirable properties do exist. In particular, our choice-theoretic version

of the Suppes-Sen principle imposes full anonymity rather than merely finite anonymity

and our choice functions may be continuous in the initial endowment. Moreover, it turns

out that the notion of sustainability, which has played a major role in the literature

on intergenerational resource allocation, is closely linked to the Suppes-Sen and Pigou-

Dalton principles. Our conclusion from these results is that the choice-theoretic approach

to intergenerational resource allocation provides an interesting and viable alternative to

the models based on establishing orderings of infinite utility streams, and we propose to

explore this approach further.

Section 2 contains some basic definitions and a first well-known observation charac-

terizing sets of feasible consumption streams. In Section 3, we examine the fundamental

axioms of efficiency and time consistency. We characterize all efficient infinite-horizon

choice functions, all time-consistent infinite-horizon choice functions, and the class of

choice functions satisfying both requirements. Section 4 deals with the equity axioms

à la Suppes-Sen, Pigou-Dalton and resource monotonicity. We characterize all infinite-

horizon choice functions satisfying: (i) Suppes-Sen; (ii) efficiency and Pigou-Dalton; (iii)

time consistency and Suppes-Sen; (iv) efficiency, time consistency and Pigou-Dalton; (v)

efficiency, time consistency and resource monotonicity. As a by-product of our analysis,

we show that the conjunction of efficiency and Pigou-Dalton is equivalent to Suppes-Sen.

Section 5 provides some examples and Section 6 concludes.

2 Preliminaries

Let R+ and R++ denote the set of all non-negative real numbers and the set of all positive

real numbers, respectively. Analogously, Z+ and Z++ denote the set of all non-negative

integers and the set of all positive integers, respectively.

Define the set Y = RZ+

+ to be the set of all sequences y = (y0, y1, . . . , yt, . . .). We

interpret y as a consumption stream, where yt is the amount of a single resource consumed

in period t ∈ Z+. Time is measured relative to the present: period t is the tth period after
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today. The initial amount of the resource is x ∈ R+. We assume a linear and stationary

technology, entailing that in each period, the resource is renewed at the fixed positive rate

r ∈ R++.

We use the following notation for inequalities in Y . For all y, z ∈ Y , y ≥ z if and only

if yt ≥ zt for all t ∈ Z+, and y > z if and only if y ≥ z and y 6= z.

For x ∈ R+ and y ∈ Y , the sequence of resource stocks

k(x, y) = (k0(x, y), k1(x, y), . . . , kt(x, y), . . .) ∈ RZ+

generated by x and y is defined by k0(x, y) = x and

kt(x, y) = (1 + r)(kt−1(x, y)− yt−1)

for all t ∈ Z++. For x ∈ R+, the set of x-feasible consumption streams is

S(x) = {y ∈ Y | yt ∈ [0, kt(x, y)] for all t ∈ Z+}.

It is immediate that the set of x-feasible consumption streams can equivalently be ex-

pressed as in the following lemma; see, for instance, Epstein (1986) who made this obser-

vation in his analysis of the linear model in an intertemporal social choice setting.

Lemma 1 For all x ∈ R+,

S(x) =
{

y ∈ Y
∣∣∣ ∞∑

t=0

yt

(1 + r)t
≤ x

}
.

3 Efficient and time-consistent choice

An infinite-horizon choice function is a mapping C : R+ → Y such that C(x) ∈ S(x) for

all x ∈ R+. This function assigns a consumption stream to any given initial amount of

a single resource available in the economy. Note that consumption streams are undated:

whether the choice takes place today or tomorrow makes no difference if the same initial

endowment is present. This time-independence feature of a choice function ensures that

the choice of a starting period is irrelevant. For all t ∈ Z+, we write Ct(x) for the tth

component of the sequence C(x).

The first fundamental property of an infinite-horizon choice function is the familiar

efficiency axiom. It requires that no x-feasible consumption stream Pareto dominates the

chosen consumption stream with initial stock x.
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Efficiency. For all x ∈ R+ and for all y ∈ Y ,

y > C(x) ⇒ y 6∈ S(x).

Given Lemma 1, it is straightforward to characterize the class of efficient choice func-

tions. We omit the immediate proof of the following lemma stating the relevant result.

Lemma 2 An infinite-horizon choice function C satisfies efficiency if and only if

∞∑
t=0

Ct(x)

(1 + r)t
= x for all x ∈ R+. (C1)

Time consistency prevents deviations from chosen consumption streams as time pro-

gresses. Thus, for any x ∈ R+ and for any t, τ ∈ Z+, the consumption Ct+τ (x) in period

t + τ for the initial endowment x should be the same as the consumption Cτ (kt(x, C(x)))

in period τ for the initial endowment kt(x, C(x)).

Time consistency. For all x ∈ R+ and for all t, τ ∈ Z+,

Ct+τ (x) = Cτ (kt(x, C(x))).

We now characterize all infinite-horizon choice functions satisfying time consistency.

In order to express this class of choice functions, we use a function g : R+ → R+ that

indicates, for each initial level of the resource, the amount of the resource that is available

in the next period after the present consumption has taken place. Hence, we may refer

to g as the inheritance function. Consequently, g(x)/(1 + r) is the bequest that is left

behind, and x − (g(x)/(1 + r)) is the present consumption. Hence, we may refer to the

mapping x 7→ x− (g(x)/(1 + r)) as the consumption function.

For any function g : R+ → R+, let the function g0 : R+ → R+ be defined by g0(x) =

x for all x ∈ R+ and, for all t ∈ Z++, define the function gt : R+ → R+ by letting

gt(x) = g(gt−1(x)) for all x ∈ R+. As will become clear once our characterization of time

consistency is stated, the functions gt have a natural interpretation: they identify the

amount of the resource available in period t as a function of the initial endowment x only.

Because all these functions are determined once a function g is chosen, it is sufficient to

specify, for any initial endowment, the amount of the resource remaining at the beginning

of period one.

The following lemma characterizes all time-consistent choice functions.

4



Lemma 3 An infinite-horizon choice function C satisfies time consistency if and only if

there exists a function g : R+ → R+ such that

g(x) ≤ x(1 + r) for all x ∈ R+ (G1)

and

Ct(x) = gt(x)− gt+1(x)

1 + r
for all t ∈ Z+ and for all x ∈ R+. (CG)

Proof. ‘If.’ Let C be an infinite-horizon choice function and suppose there exists a

function g : R+ → R+ such that (G1) and (CG) are satisfied. Let x ∈ R+ and t ∈ Z+. By

(G1), it follows that

gt+1(x) = g(gt(x)) ≤ gt(x)(1 + r)

and, together with (CG), that

Ct(x) = gt(x)− gt+1(x)

1 + r
≥ 0.

Using (CG) and the definition of k(x, y), we obtain

kt(x, C(x)) = gt(x). (1)

Because g is non-negative-valued, (CG) and (1) together imply

Ct(x) = gt(x)− gt+1(x)

1 + r
= kt(x, C(x))− gt+1(x)

1 + r
≤ kt(x, C(x)).

Hence, C(x) ∈ S(x) and C is a well-defined infinite-horizon choice function.

To establish time consistency, let x ∈ R+ and t, τ ∈ Z+. By (CG),

Ct+τ (x) = gt+τ (x)− gt+τ+1(x)

1 + r
. (2)

By (1) and (CG),

Cτ (kt(x, C(x))) = Cτ (g
t(x)) = gτ (gt(x))− gτ+1(gt(x))

1 + r
= gt+τ (x)− gt+τ+1(x)

1 + r

which, together with (2), proves that C is time consistent.

‘Only if.’ Suppose C is an infinite-horizon choice function that satisfies time consis-

tency. Define the function g : R+ → R+ by letting

g(x) = (1 + r)(x− C0(x)) (3)
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for all x ∈ R+. By feasibility, C0(x) ∈ [0, x], and the definition of g immediately implies

g(x) ∈ [0, x(1+ r)] for all x ∈ R+, establishing that g indeed maps into R+ and that (G1)

is satisfied.

It remains to be shown that (CG) is satisfied. We proceed by induction. Solving (3)

for C0(x), we obtain

C0(x) = x− g(x)

1 + r
= g0(x)− g1(x)

1 + r
. (4)

Now suppose

Ct(x) = gt(x)− gt+1(x)

1 + r
(5)

for some t ∈ Z+. By definition, k1(x, C(x)) = (1 + r)(x − C0(x)) = g(x). Thus, using

time consistency and (5), we obtain

Ct+1(x) = Ct(k1(x, C(x))) = Ct(g(x)) = gt(g(x))− gt+1(g(x))

1 + r
= gt+1(x)− gt+2(x)

1 + r

which completes the proof.

We now characterize all infinite-horizon choice functions satisfying both efficiency and

time consistency.

Theorem 1 An infinite-horizon choice function C satisfies efficiency and time consis-

tency if and only if there exists a function g : R+ → R+ such that (CG), (G1) and

lim
t→∞

gt(x)

(1 + r)t
= 0 for all x ∈ R+ (G2)

are satisfied.

Proof. ‘If.’ Let C be an infinite-horizon choice function and suppose there exists a func-

tion g : R+ → R+ such that (CG), (G1) and (G2) are satisfied. Then, by Lemma 3, C is a

well-defined infinite-horizon choice function that satisfies time consistency. Furthermore,

∞∑
t=0

Ct(x)

(1 + r)t
= x− lim

t→∞

gt(x)

(1 + r)t
.

By invoking Lemma 2, (G2) implies that C satisfies efficiency.

‘Only if.’ Suppose C is an infinite-horizon choice function that satisfies efficiency and

time consistency. Then, by Lemma 3, there exists a function g : R+ → R+ such that (CG)

and (G1) are satisfied. By invoking Lemma 2, efficiency and (CG) imply that

x =
∞∑

t=0

Ct(x)

(1 + r)t
= x− lim

t→∞

gt(x)

(1 + r)t
.
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Hence, g satisfies (G2).

Condition (G2) is of course a capital value transversality condition, which has been

used to characterize efficient capital accumulation at least since Malinvaud (1953).

The properties (G1) and (G2) of a function g : R+ → R+ are independent, as is

straightforward to verify. That (CG) must be satisfied is a consequence of the time-

consistency requirement, and (G1) ensures that this is done without violating the resource

constraints. Property (G2) is required for the efficiency axiom.

4 Imposing equity axioms

We now examine the consequences of imposing certain equity axioms, in addition to

efficiency and time consistency.

The first of the equity axioms that we consider—Suppes-Sen—requires that no x-

feasible consumption stream has a permutation which Pareto dominates the chosen con-

sumption stream with initial stock x. The term ‘permutation’ signifies a bijective mapping

π of Z+ onto itself. The Suppes-Sen axiom is a straightforward adaptation of the Suppes-

Sen principle for orderings (cf. Suppes, 1966; Sen, 1970) to the present infinite-horizon

choice-theoretic setting.

Suppes-Sen. For all x ∈ R+ and for all y, y′ ∈ Y , if y′ is a permutation of y, then

y′ > C(x) ⇒ y 6∈ S(x).

Clearly, the Suppes-Sen axiom implies efficiency. Note that we do not restrict the scope

of the axiom to finite permutations (that is, permutations π with the property that there is

a t ∈ Z+ such that π(τ) = τ for all τ ≥ t). In contrast to the Suppes-Sen axiom formulated

for orderings of infinite utility streams, allowing for infinite permutations does not lead

to an impossibility in the choice-theoretic setting, given our technological environment.

This is established by combining our next result, which characterizes all choice functions

satisfying the Suppes-Sen principle, with the fact that, for any initial resource stock, there

exists a non-empty set of efficient and non-decreasing streams.

Lemma 4 An infinite-horizon choice function C satisfies Suppes-Sen if and only if (C1)

and

Ct(x) ≤ Ct+1(x) for all x ∈ R+ and for all t ∈ Z+ (C2)

are satisfied.
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Proof. ‘If.’ Assume (C1) and (C2) are satisfied. Since the sequence 〈1/(1 + r)t〉t∈Z+ is

decreasing and the sequence 〈Ct(x)〉t∈Z+ is non-decreasing, if y is a permutation of C(x),

then
∞∑

t=0

yt

(1 + r)t
≥ x.

Hence, for all y, y′ ∈ Y such that y′ is a permutation of y, y′ > C(x) implies

∞∑
t=0

yt

(1 + r)t
> x.

By Lemma 1, y 6∈ S(x). Thus, C satisfies Suppes-Sen.

‘Only if.’ Let x ∈ R+. Suppose first that
∑∞

t=0 Ct(x)/(1+ r)t < x. Then by Lemma 1,

there exists y ∈ S(x) such that y > C(x). Thus, there is an x-feasible consumption stream

which Pareto-dominates the chosen consumption stream with initial stock x, entailing that

C does not satisfy Suppes-Sen. Together with feasibility, this contradiction implies that

we must have
∑∞

t=0 Ct(x)/(1 + r)t = x. By way of contradiction, suppose there exists

τ ∈ Z+ such that Cτ (x) > Cτ+1(x). Construct y ∈ Y as follows:

yt =


Ct(x) if t 6∈ {τ, τ + 1},

Cτ+1(x) if t = τ,

Cτ (x) + r(Cτ (x)− Cτ+1(x)) if t = τ + 1.

Then

∞∑
t=0

yt

(1 + r)t
=

∑
t6∈{τ,τ+1}

Ct(x)

(1 + r)t
+

1

(1 + r)τ

(
Cτ+1(x) +

Cτ (x) + r(Cτ (x)− Cτ+1(x))

1 + r

)

=
∞∑

t=0

Ct(x)

(1 + r)t
= x,

implying by Lemma 1 that y ∈ S(x). Construct y′ ∈ Y from y by permuting yτ and

yτ+1. Since r(Cτ (x)−Cτ+1(x)) > 0, we have that y′ > C(x). Thus, there is an x-feasible

consumption stream with a permutation which Pareto-dominates the chosen consumption

stream with initial stock x, entailing that C does not satisfy Suppes-Sen.

As is apparent from the proof, the Suppes-Sen principle as stated in the lemma can

be replaced with its finite counterpart, restricting its conclusion to finite permutations.

In our setting, the two properties are equivalent and we chose to use the general version

in order to illustrate that, unlike the model based on orderings of infinite streams, our

approach does not lead to an impossibility when infinite permutations are permitted.

8



The observation that the Suppes-Sen axiom can allow for infinite permutations with-

out leading to an impossibility in the choice-theoretic setting is robust with respect to

modifications in our technological assumptions. To see this, consider the technological

assumptions of immediate productivity and eventual productivity, as defined by Asheim,

Buchholz and Tungodden (2001, p. 259). The assumption of immediate productivity

states that if y ∈ Y with yτ > yτ+1 for some τ ∈ Z+ is feasible, then y′ ∈ Y constructed

by

y′t =


yt if t 6∈ {τ, τ + 1},

yτ+1 if t = τ,

yτ if t = τ + 1

is feasible and inefficient. The assumption of eventual productivity states that, for any

initial resource stock(s) and time, there exists an efficient and equally-distributed stream.

The class of technologies that satisfy the assumptions of immediate productivity and even-

tual productivity includes the simple linear and stationary technologies that we consider

throughout this paper. However, this class is far wider than this, as illustrated by Asheim,

Buchholz and Tungodden (2001, Examples 1–3).

In a technology satisfying eventual productivity, the choice function assigning to any

initial resource stock(s) and time the efficient and equally-distributed stream is an efficient,

time consistent choice function satisfying even the infinite permutation Suppes-Sen axiom.

Hence, provided that the assumption of eventual productivity is satisfied, the Suppes-Sen

axiom can allow for infinite permutations without leading to an impossibility in the choice-

theoretic setting. If we add immediate productivity, we obtain a generalization of Lemma

4: An infinite-horizon choice function satisfies Suppes-Sen if and only if, for any initial

resource stock(s) and time, the chosen stream is efficient and non-decreasing. Also the

latter result allows for the version of Suppes-Sen axiom that includes infinite permutations,

although it continues to hold if the axiom is replaced by its finite permutation counterpart.

The second of the equity axioms—Pigou-Dalton—requires that no x-feasible consump-

tion stream can be generated from the chosen consumption stream with initial stock x

through a transfer of consumption from a better-off to a worse-off generation. The axiom

is a straightforward adaptation of the Pigou-Dalton transfer principle (cf. Pigou, 1912;

Dalton, 1920) for social welfare orderings to the present choice-theoretic setting.

Pigou-Dalton. For all x ∈ R+ and for all y, y′ ∈ Y , if there exist ε ∈ R++ and τ, τ ′ ∈ Z+

such that yτ = y′τ − ε ≥ y′τ ′ + ε = yτ ′ and yt = y′t for all t ∈ Z+\{τ, τ ′}, then

y′ = C(x) ⇒ y 6∈ S(x).
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Unlike the Suppes-Sen principle, Pigou-Dalton does not imply efficiency. However,

it rules out all violations of efficiency that do not involve equally-distributed streams.

As will become clear in the proof of the following theorem, efficiency could therefore be

replaced with a weaker axiom that applies to equal distributions only. We chose to keep

the standard efficiency axiom for clarity and ease of exposition.

We now characterize all infinite-horizon choice functions satisfying efficiency and the

Pigou-Dalton principle. Interestingly, this is the same class as the one identified in the

previous lemma.

Lemma 5 An infinite-horizon choice function C satisfies efficiency and Pigou-Dalton if

and only if (C1) and (C2) are satisfied.

Proof. ‘If.’ Assume (C1) and (C2) are satisfied. By Lemma 2, C satisfies efficiency.

Since the sequence 〈1/(1 + r)t〉t∈Z+ is decreasing and the sequence 〈Ct(x)〉t∈Z+ is non-

decreasing, if yτ = Cτ (x)− ε ≥ Cτ ′(x) + ε = yτ ′ for some ε ∈ R++ and yt = Ct(x) for all

t ∈ Z+ \ {τ, τ ′}, then
∞∑

t=0

yt

(1 + r)t
> x.

By Lemma 1, y 6∈ S(x). Thus, C satisfies Pigou-Dalton.

‘Only if.’ Suppose
∑∞

t=0 Ct(x)/(1 + r)t < x. Then by Lemma 1, there exists y ∈ S(x)

such that y > C(x). Thus, there is an x-feasible consumption stream which Pareto

dominates the chosen consumption stream with initial stock x, entailing that C does not

satisfy efficiency. Therefore, using feasibility, we must have
∑∞

t=0 Ct(x)/(1 + r)t = x.

Now suppose there exists τ ∈ Z+ such that Cτ (x) > Cτ+1(x). Construct y ∈ Y as

follows:

yt =


Ct(x) if t 6∈ {τ, τ + 1},

Cτ (x)− ε if t = τ,

Cτ+1(x) + ε if t = τ + 1,

where 0 < ε ≤ (Cτ (x)− Cτ+1(x))/2, so that yτ = Cτ (x)− ε ≥ Cτ+1(x) + ε = yτ+1. Then

∞∑
t=0

yt

(1 + r)t
=

∑
t6∈{τ,τ+1}

Ct(x)

(1 + r)t
+

1

(1 + r)τ

(
Cτ (x)− ε +

Cτ+1(x) + ε

1 + r

)

=
∞∑

t=0

Ct(x)

(1 + r)t
− rε

(1 + r)τ+1
< x,

implying by Lemma 1 that y ∈ S(x). Thus, an x-feasible consumption stream can be

generated from the chosen consumption stream with initial stock x through a transfer of

10



consumption from a better-off to a worse-off generation, entailing that C does not satisfy

Pigou-Dalton.

The following corollary is an immediate consequence of the previous two lemmas.

Corollary 1 An infinite-horizon choice function C satisfies Suppes-Sen if and only if C

satisfies efficiency and Pigou-Dalton.

The following theorem identifies all choice functions satisfying time consistency in

addition to Suppes-Sen (or, equivalently, in addition to efficiency and Pigou-Dalton).

Theorem 2 An infinite-horizon choice function C satisfies time consistency and Suppes-

Sen (or efficiency, time consistency and Pigou-Dalton) if and only if there exists a function

g : R+ → R+ such that (CG), (G1), (G2),

x ≤ g(x) for all x ∈ R+ (G3)

and

x− g(x)

1 + r
≤ g(x)− g2(x)

1 + r
for all x ∈ R+ (G4)

are satisfied.

Proof. ‘If.’ Suppose there exists a function g : R+ → R+ such that (CG), (G1), (G2),

(G3) and (G4) are satisfied. By Theorem 1, C satisfies time consistency and efficiency.

Thus, by Lemma 2, (C1) is satisfied. By (CG) and (G4), it follows that

Ct(x) = gt(x)− gt+1(x)

1 + r
= gt(x)− g(gt(x))

1 + r

≤ g(gt(x))− g2(gt(x))

1 + r
= gt+1(x)− gt+2(x)

1 + r
= Ct+1(x)

for all x ∈ R+ and for all t ∈ Z+. Hence, by Lemma 4, C satisfies Suppes-Sen.

‘Only if.’ Assume that C satisfies time consistency and Suppes-Sen. By Lemma 4,

(C1) and (C2) are satisfied and, by Lemma 2, C satisfies efficiency. By Theorem 1, there

exists a function g : R+ → R+ satisfying (CG), (G1) and (G2).

To show (G3), suppose there exists x ∈ R+ such that x > g(x). By (CG) and (G2), it

follows that
∞∑

t=0

Ct(x)

(1 + r)t
= x > g(x) =

∞∑
t=0

Ct+1(x)

(1 + r)t
,

contradicting (C2).
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To show (G4), suppose there exists x ∈ R+ such that

x− g(x)

1 + r
> g(x)− g2(x)

1 + r
.

By (CG),

C0(x) = x− g(x)

1 + r
> g(x)− g2(x)

1 + r
= C1(x),

again contradicting (C2).

Condition (G3) ensures sustainable development in the sense that the current con-

sumption can potentially be shared by all future generations. In the context of a station-

ary technology with only one resource (or capital good), this requires that the resource

stock is maintained from the current period to the next, which is just what condition

(G3) entails. Condition (G4) complements (G3) by requiring that the potential for shar-

ing present consumption with future generations actually materializes. Hence, Theorem

2 means that both the Suppes-Sen axiom and the Pigou-Dalton axiom can be used to

justify sustainability in the present choice-theoretic setting.

Theorem 2 thereby echoes similar results when infinite-horizon social choice is analyzed

through social welfare relations.

• In particular, Asheim, Buchholz and Tungodden (2001) show how the Suppes-Sen

principle for social welfare relations can be used to rule out unsustainable consump-

tion streams as maximal elements under technological conditions satisfied by the

simple linear model considered here. Given such technological assumptions, this

result also implies that social welfare relations like those considered in Asheim and

Tungodden (2004), Basu and Mitra (2006), and Bossert, Sprumont and Suzumura

(2006), which all satisfy the Suppes-Sen principle, yield sustainable consumption

streams as maximal elements as long as maximal elements exist.

• Asheim (1991) shows in a similar way how the Pigou-Dalton principle for social

welfare relations can be used to rule out unsustainable consumption streams.

Another equity axiom that appears to be natural in this context is resource mono-

tonicity. It requires that no one should be worse off as a consequence of an increase in the

initial level of the resource. See Thomson (2006) for a discussion of resource monotonicity

in a variety of economic models and further references. Formulated for infinite-horizon

choice functions, the axiom is defined as follows.
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Resource monotonicity. For all x, x′ ∈ R+,

x > x′ ⇒ C(x) ≥ C(x′).

Adding resource monotonicity to efficiency and time consistency leads to the choice

functions characterized in the following theorem.

Theorem 3 An infinite-horizon choice function C satisfies efficiency, time consistency

and resource monotonicity if and only if there exists a function g : R+ → R+ such that

(CG), (G1), (G2),

g is non-decreasing in x (G5)

and

x 7→ x− g(x)

1 + r
is non-decreasing in x (G6)

are satisfied.

Proof. ‘If.’ Assume that there exists a function g : R+ → R+ such that (CG), (G1), (G2),

(G5) and (G6) are satisfied. By Theorem 1, C satisfies efficiency and time consistency.

Let x > x′. By (G5), we have that

gt(x) ≥ gt(x′)

for all t ∈ Z+. Consequently, since (CG) and (G6) are satisfied, it follows that

Ct(x) = gt(x)− gt+1(x)

1 + r
= gt(x)− g(gt(x))

1 + r

≥ gt(x′)− g(gt(x′))

1 + r
= gt(x′)− gt+1(x′)

1 + r
= Ct(x

′)

for all t ∈ Z+. Hence, C satisfies resource monotonicity.

‘Only if.’ Assume that C satisfies time consistency, efficiency and resource monotonic-

ity. By Theorem 1, there exists a function g : R+ → R+ such that (CG), (G1) and (G2)

are satisfied.

To show (G5), suppose there exist x, x′ ∈ R+ such that x > x′, but g(x) < g(x′). By

(CG) and (G2), it follows that

∞∑
t=1

Ct(x)

(1 + r)t−1
= g(x) < g(x′) =

∞∑
t=1

Ct(x
′)

(1 + r)t−1
,

contradicting resource monotonicity.

13



To show (G6), suppose there exist x, x′ ∈ R+ such that x > x′, but

x− g(x)

1 + r
< x′ − g(x′)

1 + r
.

By (CG),

C0(x) = x− g(x)

1 + r
< x′ − g(x′)

1 + r
= C0(x

′),

again contradicting resource monotonicity.

Note that the proof of (G5) relies on efficiency, whereas (G6) is established without

using this axiom.

It follows from Theorems 2 and 3 that the classes of choice functions characterized

in Theorem 1 can be narrowed down considerably by adding equity axioms. However,

Suppes-Sen or Pigou-Dalton, on the one hand, and resource monotonicity, on the other

hand, do so in different ways.

• By Theorem 2, Suppes-Sen or efficiency and Pigou-Dalton in combination with time

consistency imply that, for given x ∈ R+, gt(x) and gt(x) − (gt+1(x)/(1 + r)) are

monotone with respect to t, while

• by Theorem 3, resource monotonicity in combination with efficiency and time con-

sistency implies that gt(x) and gt(x)− (gt+1(x)/(1 + r)) are monotone with respect

to x for given t ∈ Z+.

5 Examples

To ensure that the choice functions in the examples of this section are well-defined it is

important that the renewal rate r is positive, as we have assumed throughout. Consider

first the steady-state example, where consumption is equalized across generations.

Example 1. The infinite-horizon choice function C1 of this example corresponds to the

case in which the function g is the identity mapping, defined by g(x) = x for all x ∈ R+.

This implies gt(x) = x for all x ∈ R+ and for all t ∈ Z+. (G1) and (G2) are satisfied

because

g(x) = x ≤ x(1 + r)

and

lim
t→∞

gt(x)

(1 + r)t
= lim

t→∞

x

(1 + r)t
= 0

14



for all x ∈ R+. According to (CG),

C1
t (x) = gt(x)− gt+1(x)

1 + r
= x− x

1 + r
=

xr

1 + r
(6)

for all x ∈ R+ and for all t ∈ Z+, that is, every generation consumes the same amount.

In addition to satisfying time consistency and efficiency, the infinite-horizon choice

function C1 is characterized by a g-function for which the conditions of (G3) and (G4)

hold with equality. By Theorem 2 this entails that C1 satisfies both Suppes-Sen and

Pigou-Dalton. Furthermore, both g(x) and x − (g(x)/(1 + r)) are non-decreasing in x.

Hence, by Theorem 3, the choice function satisfies resource monotonicity, as can easily be

verified directly from (6).

A generalization of the choice function C1 of Example 1 is obtained by letting g be

a linear function such that both g(x) and x − (g(x)/(1 + r)) are non-decreasing in x, so

that resource monotonicity is satisfied.

Example 2. The infinite-horizon choice function C2,a of this example is obtained by

letting g(x) = ax for all x ∈ R+, where a ∈ [0, 1 + r] is a parameter. Obviously, the

steady-state case is obtained for a = 1. It follows that gt(x) = atx for all x ∈ R+ and for

all t ∈ Z+. Clearly, (G1) is satisfied because

g(x) = ax ≤ x(1 + r)

for all x ∈ R+. (G2) is satisfied if and only if a < 1 + r because

lim
t→∞

gt(x)

(1 + r)t
= lim

t→∞

atx

(1 + r)t
= lim

t→∞

( a

1 + r

)t

x = 0.

Hence, the case where a = 1 + r illustrates how (G2) can be violated by excessive accu-

mulation of the resource.

Substituting into (CG), it follows that

C2,a
t (x) = gt(x)− gt+1(x)

1 + r
= atx− at+1x

1 + r
=

at(1 + r − a)x

1 + r
(7)

for all x ∈ R+ and for all t ∈ Z+.

In addition to satisfying efficiency and time consistency for a < 1 + r, the infinite-

horizon choice function C2,a is characterized by a g-function for which the conditions of

(G3) and (G4) hold if and only if a ≥ 1. By Theorem 2 this entails that C2,a satisfies

efficiency, time consistency, Suppes-Sen and Pigou-Dalton if and only if a ∈ [1, 1 + r). If
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a ∈ (1, 1 + r), then consumption is increasing in t, and the consumption of generations t

such that

t >
ln(r)− ln(1 + r − a)

ln(a)

is higher than that of the steady-state, at the expense of earlier generations. Moreover,

the consumption of generation t approaches infinity as t approaches infinity.

Both g(x) and x − (g(x)/(1 + r)) are non-decreasing in x for any a ∈ [0, 1 + r].

Hence, by Theorem 3, the choice function satisfies time consistency, efficiency and resource

monotonicity if and only if a ∈ [0, 1 + r), as can easily be verified directly from (7).

Therefore, C2,a satisfies resource monotonicity, but not Suppes-Sen and Pigou-Dalton,

if and only if a ∈ [0, 1). If a ∈ (0, 1), then consumption is decreasing in t, and the

consumption of generations t such that

t <
ln(r)− ln(1 + r − a)

ln(a)

is higher than that of the steady-state, at the expense of later generations. Moreover, the

consumption of generation t approaches zero as t approaches infinity.

Example 2 shows, in the case where a < 1, that gt(x) and gt(x) − (gt+1(x)/(1 + r))

can be non-decreasing with respect to x, without gt(x) and gt(x)− (gt+1(x)/(1+r)) being

non-decreasing with respect to t. In particular, a choice function can satisfy resource

monotonicity without satisfying Suppes-Sen and Pigou-Dalton. In the following pair

of examples, we show that a choice function can satisfy Suppes-Sen and Pigou-Dalton

without satisfying resource monotonicity.

Example 3. The infinite-horizon choice function C3 of this example is obtained by setting

r = 1, so that 1 + r = 2, and by letting g be given by:

g(x) =

 3
2
x if 0 ≤ x ≤ 1,

4
3
x if x > 1 .

Clearly, (G1) is satisfied. Also, x ≤ g(x) for all x ∈ R+ so that (G3) is satisfied, and

x − g(x)/2 is an increasing function of x so that (G6) is satisfied. By combining these

observations we obtain that x − g(x)/2 ≤ g(x) − g2(x)/2 for all x ∈ R+ so that (G4) is

satisfied. Furthermore, if x ∈ R++, then C3 behaves as C2,a with a ∈ (0, 1 + r) when t

goes to infinity, implying that (G2) is satisfied. If x = 0, then (G2) is trivially satisfied.

Hence, it follows from Theorem 2 that the infinite-horizon choice function C3 satisfies
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efficiency, time consistency, Suppes-Sen and Pigou-Dalton. However,

g(1) = 3
2

> 17
12

= g
(

17
16

)
.

Hence, (G5) does not hold, and it follows from Theorem 3 that C3 does not satisfy resource

monotonicity.

Example 4. The infinite-horizon choice function C4 of this example is obtained by setting

r = 1, so that 1 + r = 2, and by letting g be given by:

g(x) =

 4
3
x if 0 ≤ x ≤ 1,

3
2
x if x > 1.

Clearly, (G1) is satisfied. Also, x ≤ g(x) for all x ∈ R+ so that (G3) is satisfied, and g(x)

is an increasing function of x so that (G5) is satisfied. Furthermore, if x ∈ R++, then C4

behaves as C2,a with a ∈ (0, 1 + r) when t goes to infinity, implying that (G2) is satisfied.

If x = 0, then (G2) is trivially satisfied. To verify that (G4) is satisfied, note that

x− g(x)
2

=
(
1− 2

3

)
x = 1

3
x ≤ 4

9
x =

(
4
3
− 8

9

)
x = g(x)− g2(x)

2
if 0 ≤ x ≤ 3

4
,

x− g(x)
2

=
(
1− 2

3

)
x = 1

3
x = 1

3
x =

(
4
3
− 1

)
x = g(x)− g2(x)

2
if 4

3
< x ≤ 1,

x− g(x)
2

=
(
1− 3

4

)
x = 1

4
x ≤ 3

8
x =

(
3
2
− 9

8

)
x = g(x)− g2(x)

2
if x > 1.

Hence, it follows from Theorem 2 that the infinite-horizon choice function C4 satisfies

efficiency, time consistency, Suppes-Sen and Pigou-Dalton. However,

1− g(1)
2

= 1− 2
3

= 1
3

> 5
18

= 10
9
− 5

6
= 10

9
− g(10/9)

2
.

Hence, (G6) does not hold, and it follows from Theorem 3 that C4 does not satisfy resource

monotonicity.

Examples 2, 3 and 4 show that the conditions characterizing Suppes-Sen and Pigou-

Dalton—namely that gt(x) and gt(x) − gt+1(x)/(1 + r) are monotone with respect to

t—are independent of the conditions characterizing resource monotonicity—namely that

gt(x) and gt(x)− gt+1(x)/(1 + r) are monotone with respect to x.

We conclude with an example showing that condition (G5) is not necessary for an

infinite-horizon choice function to satisfy time consistency and resource monotonicity, as

long as efficiency is not imposed.
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Example 5. The infinite-horizon choice function C5 of this example is obtained by setting

r = 1, so that 1 + r = 2, and by letting g be given by:

g(x) =

 2x if 0 ≤ x ≤ 1,

2(x− 1
2
) if x > 1.

Clearly (G1) is satisfied, while condition (G5) is not satisfied, since

g(1) = 2 > 3
2

= g
(

5
4

)
.

Resource monotonicity still holds since, by substituting into (CG), it follows that

C5(x) =


(0, 0, . . . ) if x = 0,(

0, . . . , 0︸ ︷︷ ︸
n+1 times

, 1
2
, 1

2
, . . .

)
if x ∈

(
(1

2
)n+1, (1

2
)n

]
for n ∈ Z+,

(
1
2
, 1

2
, . . .

)
if x > 1.

It is straightforward to verify that C5 does not satisfy efficiency; in particular, increas-

ing the initial resource stock beyond x does not lead to increased consumption for any

generation, provided that x > 1.

Examples 1 and 2 provide infinite-horizon choice functions that are continuous in the

initial endowment, even though there are no continuous orderings satisfying strong Pareto

and finite anonymity that rationalize them. This observation serves to further underline

the gains that are possible from adopting a choice-theoretic approach.

6 Concluding remarks

We conclude this paper with some thoughts on possible directions where the approach of

this paper might be taken in future work. An issue that suggests itself naturally when

considering a choice function is its rationalizability by a relation defined on the objects of

choice—in our case, infinite consumption streams. The rationalizability of choice functions

with arbitrary domains has been examined thoroughly in contributions such as Richter

(1966) and Hansson (1968) and, more recently, Bossert, Sprumont and Suzumura (2005)

and Bossert and Suzumura (2005). While the generality of the results obtained in these

papers allows for their application in our intergenerational setting, it might be possible to

obtain new observations due to the specific structure of the domain considered here. Note
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that the existence of a rationalizing ordering does not conflict with the impossibility results

established for such orderings in the earlier literature: the existence of a rationalization

of an infinite-horizon choice function satisfying requirements such as Suppes-Sen does not

imply that the choice function is rationalizable by an ordering that possesses properties

such as the Suppes-Sen principle formulated for binary relations.

An interesting difference emerges when the technology parameter r is equal to zero

instead of positive, as we have assumed throughout the paper. In that case, Suppes-

Sen and the conjunction of efficiency and Pigou-Dalton no longer are equivalent—in fact,

their implications are strikingly different. If r = 0, then the Pigou-Dalton principle rules

out the choice of any unequal stream. Thereby the principle becomes incompatible with

efficiency because, for any finite initial endowment x, the only possible equal choice is

zero consumption in every period, which clearly violates efficiency if x is positive. On the

other hand, Suppes-Sen reduces to efficiency because no stream that is not dominated

according to the efficiency criterion is dominated by a permutation of any feasible stream.

As mentioned earlier, we made the conscious choice to work with a simple model in

order to emphasize the novel aspect of the paper—the choice-theoretic approach in an

infinite-horizon setting. It might turn out to be of interest to explore possible generaliza-

tions in future work.
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