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RANDOM COEFFICIENTS IN

REGRESSION EQUATION SYSTEMS:

THE CASE WITH UNBALANCED PANEL DATA�)

by

ERIK BI�RN

ABSTRACT

We consider a framework for analyzing panel data characterized by: (i) a system of regressions

equations, (ii) random individual heterogeneity in both intercepts and slope coe�cients, and

(iii) unbalanced panel data, i.e., panel data where the individual time series have unequal length.

A Maximum Likelihood (ML) procedure for joint estimation of all parameters is described. Since

it is complicated to implement in numerical calculations, we consider simpli�ed procedures, in

particular for estimating the covariance matrices of the random coe�cients. An algorithm for

modi�ed ML estimation of all parameters is presented.

Keywords: Panel Data. Unbalanced Panels. Random Coe�cients. Heterogeneity.

Regression Equation Systems. Maximum Likelihood

JEL classi�cation: C13, C23, C33
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1 Introduction

A challenge in the analysis of economic relationships by means of micro data in general

and panel data in particular is how to treat heterogeneity regarding the form of the rela-

tionships across the units or groups in the data set. Many researchers assume a common

coe�cient structure, possibly allowing for unit speci�c (or time speci�c) di�erences in the

intercept terms of the equations (`�xed' or `random' e�ects) only. If the heterogeneity

has a more complex form, this approach may lead to ine�cient (and even inconsistent)

estimation of the slope coe�cients, and invalid inference.

A more appealing modelling approach is to allow for heterogeneity not only in the

intercepts, but also in the slope coe�cients. We may, for instance, want to investigate

heterogeneity in returns to scale coe�cients and elasticities of substitution across �rms in

factor demand, Engel and Cournot elasticities across households in commodity demand,

or accelerator coe�cients in investment equations. The challenge then becomes how to

construct a model which is su�ciently 
exible without being overparametrized. The

�xed coe�cients approach, in which each unit has its distinct coe�cient vector, with

no assumptions made about its variation between units, is very 
exible, but may easily

su�er from this overparametrization problem; the number of degrees of freedom may be

too low to permit reliable inference. The random coe�cients approach, in which speci�c

assumptions are made about the distribution from which the unit speci�c coe�cients

are `drawn', is far more parsimonious in general. The common expectation vector of

these coe�cients represents, in a precise way, the coe�cients of an average unit, e.g.,

the average scale elasticity or the average Engel elasticity, while its covariance matrix

gives readily interpretable measures of the degree of heterogeneity. Moreover, the random

coe�cients approach may be considered a parsimonious way of representing certain kinds

of disturbance heteroskedasticity in panel data analysis.

There is a growing number of methodological papers in the econometric literature

dealing with this random coe�cient problem for balanced panel data situations [see Long-

ford (1995) and Hsiao (1996) for recent surveys]. Early contributions to the econometric

literature on random coe�cients for linear, static single regression equations with balanced

panel data are Swamy (1970, 1971, 1974), Hsiao (1975), and Swamy and Mehta (1977).

Estimation problems for the covariance matrices of such models are discussed in Wans-

beek and Kapteyn (1982). Avery (1977) and Baltagi (1980) consider systems of regression

equations with random e�ects in the intercept term for balanced panels. Bi�rn (1981),

Baltagi (1985), and Wansbeek and Kapteyn (1989) consider a single regression equation

with random e�ects in the intercept term for unbalanced panels. The model under con-

sideration in the present paper can be considered a generalization of all the models in the
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papers mentioned above, except that we will allow for heterogeneity along the individual

dimension only. Sometimes a two-way decomposition with symmetric treatment of indi-

vidual and time e�ects is allowed for. An empirical application of some of the procedures

described in this paper is presented in Bi�rn, Lindquist, and Skjerpen (1998). In general,

far less has been done for unbalanced than for the formally simpler balanced cases. This

is surprising, since in practice, the latter is the exception rather than the rule. We may

waste a lot of observations if we force ourselves to use a balanced subpanel constructed

from an originally unbalanced data set.

In this paper, we consider a framework for analyzing panel data with the following

characteristics: (i) a system of linear, static regressions equations, (ii) random individual

heterogeneity in both intercepts and slope coe�cients, structured via their �rst and

second order moments, and (iii) unbalanced panel data.1 The model is presented in

Section 2. We show a way to treat constraints on coe�cients in di�erent equations.

Section 3 describes the main stages in Maximum Likelihood (ML) estimation and its

relationship to Generalized Least Squares (GLS). A basic di�culty with applying ML

in the present context stems from the unbalancedness of the panel in combination with

the rather complex way in which the covariance matrices of the random slack variables

enter the likelihood function. In Section 4, we consider a simpler, stepwise procedure for

estimation of these covariance matrices. Finally, Section 5 summarizes the preceeding

sections and presents a simpli�ed algorithm for modi�ed ML estimation.

2 Model and notation

We consider a linear, static regression model with G equations, indexed by g = 1; : : : ; G,

equation g having Kg regressors. The data are from an unbalanced panel, in which

the individuals are observed in at least 1 and at most P periods. In descriptions of

unbalanced panel data sets, the observations of a speci�c individual i is often indexed

as t = 1; : : : ; Ti, where Ti is the number of observations of individual i [see, e.g., Bal-

tagi (1995, section 9.3)]. Our notation convention is this paper is somewhat di�erent.

The individuals are assumed to be arranged in groups according to the number of times

they are observed. Let N
p
be the number of individuals observed in p periods (not nec-

essarily the same and not necessarily consecutive), let (ip) index individual i in group

p (i = 1; : : : ; Np; p = 1; : : : ; P ), and let t index the number of the running observation

(t = 1; : : : ; p). In unbalanced panels, t di�ers from the calendar period (year, quar-

1We assume that the selection rules for the unbalanced panels are ignorable, i.e., the way in which the

units or groups enter or exit is not related to the endogenous variables in the model. See Verbeek and

Nijman (1996, section 18.2) for an elaboration of this topic.
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ter etc.).2 The total number of individuals and the total number of observations are

then N =
P

P

p=1Np
and n =

P
P

p=1Np
p, respectively. Formally, the data set in group

p (p = 2; : : : ; P ) can be considered a balanced panel data set with p observations of each

of the Np units, while the data set in group 1 is a cross section. Rotating panels are

special cases of this kind of data, in which a share of the individuals which are included

in the panel in one period is replaced by a fresh sample drawn in the next period [see,

e.g., Bi�rn (1981)].

Two ways of formulating the model are convenient, depending on whether (a) the G

equations contain disjoint sets of coe�cients or (b) some, or all, of the equations have

some coe�cients in common. We �rst consider case (a), next describe the modi�cations

needed in case (b), and then describe a general formulation which includes both (a)

and (b).

When each equation has its distinct coe�cient vector, the total number of coe�cients

is K =
P

G

g=1Kg
. Let the (p � 1) vector of observations of the regressand in eq. g

from individual (ip) be y
g(ip), let its (p � K

g
) regressor matrix be Xg(ip) (including a

vector of ones associated with the intercept term), and let ug(ip) be the (p � 1) vector

of disturbances in eq. g from individual (ip). We allow for individual heterogeneity and

represent it, for equation g and individual (ip), by the random individual coe�cient vector

�
g(ip) (including the intercept) as

�
g(ip) = �

g
+ �

g(ip);(1)

where �
g
is a �xed constant vector and �

g(ip) its random shift variable. We assume that

Xg(ip), ug(ip), and �g(ip) are mutually independent, that ug(ip) and �g(ip) are independent

and homoskedastic across (ip), but correlated across g, and that

E[�
g(ip)] = 0

Kg;1; E[�
g(ip)�

0

h(ip)] = � �

gh
;(2)

E[u
g(ip)] = 0

p;1; E[u
g(ip)u

0

h(ip)] = � u

gh
I
p
; g; h = 1; : : : ; G;(3)

where 0m;n is the (m � n) zero matrix and I
p
is the (p � p) identity matrix. Eq. g for

individual (ip) is

y
g(ip) = X

g(ip)�g(ip) + u
g(ip) = X

g(ip)�g + �
g(ip);(4)

g = 1; : : : ; G; i = 1; : : : ; N
p
; p = 1; : : : ; P;

2Subscripts symbolizing the calendar period may be attached. This may be convenient for data

documentation purposes and in formulating dynamic models, but will not be necessary for the static

model we consider in this paper. For example, in a data set with P = 20, from the years 1971 { 1990,

some individuals in the p = 18 group may be observed in the years 1971 { 1988, some in 1972 { 1989,

etc. Others in the p = 18 group may be observed with gaps in the series, e.g., in 1971 { 1980 and 1982 {

1989, etc. This may be indicated by separate subscripts.
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where we interpret

�
g(ip) = X

g(ip)�g(ip) + u
g(ip)(5)

as a gross disturbance vector, representing both the genuine disturbances and the random

variation in the coe�cients. It follows from (2) and (3) that these gross disturbance

vectors are independent across individuals and heteroskedastic, with3

E[�
g(ip)] = 0

p;1; E[�
g(ip)�

0

h(ip)] = X
g(ip)�

�

gh
X

0

h(ip) + � u

gh
I
p
:(6)

The heteroskedasticity of �
g(ip) is due to the random components of the slope coe�cients.

When some coe�cients occur in at least two equations { which may re
ect, for in-

stance, cross-equational (e.g., symmetry) constraints resulting from micro units' optimiz-

ing behaviour4 { the total number of free coe�cients, K, is less than
P

G

g=1Kg
. We then

replace (1) by

�(ip) = � + �(ip);(7)

where �(ip) is the random (K�1) vector containing all the coe�cients in the model, � is

a �xed vector and �(ip) is its random shift variable. We reinterpret Xg(ip) as the (p�K)

matrix (including a vector of ones associated with the intercept term) of regressors in the

g'th equation whose k'th column contains the observations on the variable corresponding

to the k'th coe�cient in �(ip) (k = 1; : : : ; K). If the latter coe�cient does not occur in

the g'th equation, the k'th column of Xg(ip) is set to zero.5 We retain (3) and replace

(2), (4), and (5) by

E[�(ip)] = 0
K;1; E[�(ip)�

0

(ip)] = � �;(8)

y
g(ip) = X

g(ip)�(ip) + u
g(ip) = X

g(ip)� + �
g(ip);(9)

�
g(ip) = X

g(ip)�(ip) + u
g(ip);(10)

g = 1; : : : ; G; i = 1; : : : ; N
p
; p = 1; : : : ; P;

It follows from (3), (8), and (10) that with this modi�cation of the model, (6) is replaced

by

E[�
g(ip)] = 0

p;1; E[�
g(ip)�

0

h(ip)] = X
g(ip)�

�
X

0

h(ip) + � u

gh
I
p
:(11)

We stack, for each individual, the y's, �'s, u's, and �'s by equations, and de�ne, for

individual (ip),

y(ip) = (y 0

1(ip)
; : : : ;y 0

G(ip)
) 0; �(ip) = (� 0

1(ip); : : : ; �
0

G(ip))
0;

u(ip) = (u 0

1(ip); : : : ;u
0

G(ip))
0; �(ip) = (� 0

1(ip); : : : ;�
0

G(ip))
0

3Strictly, these properties hold conditionally on (X
g(ip);Xh(ip)).

4These (deterministic) coe�cient restrictions relate to both the expectation and the random part of

the coe�cients.
5This interpretation is, of course, also valid when di�erent equations have di�erent regressors.
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and let

�u =

26664
� u

11 � � � � u

1G

...
...

� u

G1 � � � � u

GG

37775 :
In the case where each equation has its distinct coe�cient vector, we de�ne

X(ip) =

26664
X1(ip) � � � 0

...
. . .

...

0 � � � X
G(ip)

37775 ; � =

26664
�1

...

�
G

37775 ; � � =

26664
� �

11 � � � � �

1G

...
...

� �

G1 � � � � �

GG

37775 :
In the case where some coe�cients occur in at least two equations, we de�ne X(ip) as

X(ip) =

26664
X1(ip)

...

X
G(ip)

37775
and reinterpret � and �� as explained above. We can then write the model for both cases

as

y(ip) = X(ip)� + �(ip); �(ip) = X(ip)�(ip) + u(ip);(12)

�(ip) � IID(0
K;1;�

�); u(ip) � IID(0
Gp;1; Ip 
�u);(13)

E[�(ip)] = 0
Gp
; E[�(ip)�

0

(ip)] = 
(ip) = X(ip)�
�
X

0

(ip) + I
p

�u;(14)

where 
 is the Kronecker product operator and 
(ip) is the gross disturbance covariance

matrix of individual (ip) de�ned by the last equality in (14).

3 The Maximum Likelihood problem

We now describe the Maximum Likelihood problem for joint estimation of the coe�cients

and the disturbance covariance matrices in the model (12) { (14), and consider the main

stages in its solution. We make the additional assumption that the random components

of the coe�cients and the disturbances are normally distributed and replace (13) by

�(ip) � IIN (0
K;1;�

�); u(ip) � IIN (0
Gp;1; Ip 
�u):

Then the �(ip)jX(ip)'s are independent across (ip) and distributed as N(0
Gp;1;
(ip)), with


(ip) de�ned as in (14). The log-density function of y(ip)jX(ip) is

L(ip) = �
Gp

2
ln(2�)�

1

2
ln j
(ip)j �

1

2
[y(ip) �X(ip)�]

0
�1
(ip)

[y(ip) �X(ip)�]:
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Let Q(ip) be the quadratic form in this expression, i.e.,

Q(ip) = [y(ip) �X(ip)�]
0
�1

(ip)
[y(ip) �X(ip)�] = �

0

(ip)

�1
(ip)
�(ip):(15)

The log-likelihood function of all y's conditionally on all X 's for group p, i.e., the indi-

viduals observed p times, can be written as

L(p) =

NpX
i=1

L(ip) = �
GNpp

2
ln(2�)�

1

2

NpX
i=1

ln j
(ip)j �
1

2

NpX
i=1

Q(ip);(16)

and the log-likelihood function of all y's conditionally on all X's in the data set is

L =
PX
p=1

L(p) = �
Gn

2
ln(2�)�

1

2

PX
p=1

NpX
i=1

ln j
(ip)j �
1

2

PX
p=1

NpX
i=1

Q(ip):(17)

Two Maximum Likelihood (ML) problems are of interest: group speci�c estimation

and joint estimation for all groups. The ML estimators of (�;�u;��) for group p are the

values that maximize L(p). The ML estimators of (�;�u;��) based on the complete data

set are the values that maximize L. Both problems are subject to
(ip) =X(ip)�
�
X

0

(ip)+

I
p

�u [cf. (14)].

The structure of the group speci�c problem is more complicated than the ML problem

for systems of regression equations in standard situations with balanced panel data and

constant coe�cients and random intercept terms [cf. Avery (1977) and Baltagi (1980)],

since di�erent individuals have di�erent `gross' disturbance covariance matrices, 
(ip),

depending on X(ip) when �
� is non-zero. The structure of the joint estimation problem {

for the complete unbalanced panel { is still more complicated since the various y,X , and


 matrices have di�erent number of rows, re
ecting the di�erent number of observations

of the individuals. Although the dimensions of�u and �� are the same for all individuals,

the dimensions of X(ip) and Ip, and hence of 
(ip), di�er.

We describe these ML problems in turn.

ML estimation for group p

We set the derivatives of L(p) with respect to �;�u;�� equal to zero, and obtain the

�rst order conditions
NpX
i=1

 
@Q

(ip)

@�

!
= 0K;1;(18)

8>>>>>><>>>>>>:

NpX
i=1

 
@ ln j
(ip)j

@�u
+
@Q

(ip)

@�u

!
= 0G;G;

NpX
i=1

 
@ ln j
(ip)j

@��
+
@Q(ip)

@��

!
= 0K;K :

(19)
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These equations de�ne the solution to the ML problem for group p if p = 2; 3; : : : ; P ,

each value of p giving a distinct set of estimators. If p = 1, (18) is solvable with respect

to �, conditionally on �u and ��, but (19) is unsolvable.

Conditions (18) coincide with the conditions that solve the Generalized Least Squares

(GLS) problem for � for group p, conditionally on �u and ��, and we �nd that the

solution value is

b�GLS(p) =

24NpX
i=1

X
0

(ip)

�1
(ip)
X(ip)

35�1 24NpX
i=1

X
0

(ip)

�1
(ip)
y(ip)

35 :(20)

By inserting this value of � into the expressions for Q(ip) in (16), we obtain the concen-

trated log-likelihood function for group p; p = 2; : : : ; P . This can be maximized with

respect to �u and �� (subject to the symmetry conditions) to give the group speci�c

estimators of these covariance matrices. We do not elaborate the details of the latter

maximization.

ML estimation for all groups jointly

We set the derivatives of L with respect to �;�u;�� equal to zero and obtain the �rst

order conditions
PX
p=1

NpX
i=1

 
@Q(ip)

@�

!
= 0K;1;(21)

8>>>>>><>>>>>>:

PX
p=1

NpX
i=1

 
@ ln j
(ip)j

@�u
+
@Q

(ip)

@�u

!
= 0G;G;

PX
p=1

NpX
i=1

 
@ ln j
(ip)j

@��
+
@Q

(ip)

@��

!
= 0K;K :

(22)

These equations de�ne the solution to the overall ML problem.

Conditions (21) coincide with the conditions that solve the GLS problem for � for

the complete data set, conditionally on �u and ��, and we �nd that the solution value

is

b�GLS =

24 PX
p=1

NpX
i=1

X
0

(ip)

�1
(ip)
X(ip)

35�1 24 PX
p=1

NpX
i=1

X
0

(ip)

�1
(ip)
y(ip)

35 :(23)

By inserting this solution into (17), we obtain the concentrated log-likelihood function,

which can be maximized with respect to �;�u, and �� (subject to the symmetry con-

ditions) to give the estimators of these covariance matrices. We do not elaborate the

details of the latter procedure.
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4 Simpli�ed estimation procedures

To implement the full ML procedure outlined above in numerical computations may

be complicated. We therefore in this section present simpli�ed, stepwise estimation

procedures. The procedures we present for estimating the covariance matrices �u and

��, in particular, are simpler than solving (19), respectively (22), after having inserted the

solution values for � (conditionally on �u and ��) from (20) and (23), respectively. We

�rst describe the estimation of �, next the estimation of�u and ��, then the reestimation

of �, and �nally the reestimation of �u and ��.

First step estimation of �

Consider �rst the estimation of the expected coe�cient vector �. We start by computing

individual speci�c OLS estimators separately for all individuals which have a su�cient

number of observations to permit such estimation. This means that in each equation, the

number of observations p must exceed the number of coe�cients, including the intercept

term.6 Let q denote the lowest value of p for which OLS estimation of all G equations is

possible. The estimator of the coe�cient vector for individual (ip) (formally treated as

�xed) is

b�(ip) =

26664
b�1(ip)

...b�
G(ip)

37775 = [X 0

(ip)X(ip)]
�1
X

0

(ip)y(ip) =

26664
(X0

1(ip)X1(ip))
�1
X

0

1(ip)y1(ip)

...

(X0

G(ip)XG(ip))
�1
X

0

G(ip)yG(ip)

37775 ;(24)

i = 1; : : : ; Np; p = q; : : : ; P:

By inserting from (12) and using (14) it follows that the estimator is unbiased, with

covariance matrix

V(b�(ip)) = [X 0

(ip)X(ip)]
�1[X 0

(ip)

�1
(ip)
X(ip)][X

0

(ip)X(ip)]
�1:(25)

An estimator of the common expectation of the individual coe�cient vectors, �, based

on the observations from the individuals observed p times is the unweighted sample mean7

of the individual speci�c OLS estimators as

b�(p) =
1

Np

NpX
i=1

b�(ip) =
1

Np

NpX
i=1

[X 0

(ip)X(ip)]
�1[X 0

(ip)y(ip)]; p = q; : : : ; P:(26)

From (25) it follows, since all b�(ip)'s are uncorrelated, that

V(b�(p)) =
1

N2
p

NpX
i=1

[X 0

(ip)X(ip)]
�1[X 0

(ip)

�1
(ip)
X(ip)][X

0

(ip)X(ip)]
�1:(27)

6We here neglect possible equality constraints between di�erent equations.
7Estimators constructed from weighted means will be considered below.
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An estimator of the common expectation of the individual coe�cient vectors, �,

based on observations of all individuals observed at least q times can be obtained as the

unweighted sample mean8 of all the N 0 =
P

P

p=qNp individual speci�c estimators, i.e.,

b� =
1

N 0

PX
p=q

NpX
i=1

b�(ip) =
1

N 0

PX
p=q

NpX
i=1

[X 0

(ip)X(ip)]
�1[X 0

(ip)y(ip)]:(28)

From (25) it follows that

V(b�) = 1

(N 0)2

PX
p=q

NpX
i=1

[X 0

(ip)X(ip)]
�1[X 0

(ip)

�1
(ip)
X(ip)][X

0

(ip)X(ip)]
�1:(29)

This is our simplest way of estimating the expected coe�cient vector and its covariance

matrix conditional on �u and ��.

First step estimation of �u and ��

Consider next the estimation of �u and ��. We construct the (Gp � 1) OLS residual

vector corresponding to u(ip),

bu(ip) =

26664
bu1(ip)

...buG(ip)

37775 = y(ip) �X(ip)
b�(ip);

and rearrange it into the (G� p) matrix

cU (ip) =

26664
bu 0

1(ip)

...bu 0

G(ip)

37775 ; i = 1; : : : ; Np;

p = q; : : : ; P;

whose element (g; t) is the t'th OLS residual of individual (ip) in the g'th equation.

We estimate, from observations on the individuals observed p times, the disturbance

covariance matrix �u by the analogous sample moments in residuals, i.e.,

b�u

(p) =
1

N
p
p

NpX
i=1

cU (ip)
cU 0

(ip); p = q; : : : ; P;(30)

and estimate from (24) and (26) the covariance matrices of the random coe�cient vector

by its empirical counterparts, i.e.,9

b��

(p) =
1

Np

NpX
i=1

(b�(ip) �
b�(p))(

b�(ip) �
b�(p))

0; p = q; : : : ; P:(31)

8Alternatively, the �(ip)'s could have been weighted by p, the number of observations in each group.

Other estimators constructed from weighted means will be considered below.
9This estimator is consistent if both p and Np go to in�nity and is always positive de�nite. It is not,

however, unbiased in �nite samples. Other estimators for formally similar balanced situations exist. See

Hsiao (1986, pp. 83 { 84).

9



Inserting b�u

(p) and
b��

(p) into (14), we get the following estimator of the covariance matrix


(ip) based on the observations of the individuals observed p times :

b
(ip)p = X(ip)
b� �

(p)X
0

(ip) + I
p

 b�u

(p); i = 1; : : : ; Np; p = q; : : : ; P:(32)

This estimator can be inserted into (25) and (27) to give estimators of V(b�(ip)) and

V(b�(p)).

An estimator of �u based on observations from all individuals observed at least q

times can be obtained as

b�u

=
1

n0

PX
p=q

NpX
i=1

cU (ip)
cU 0

(ip) =
1

n0

PX
p=q

Npp
b�u

(p);(33)

where n0 =
P

P

p=qNpp. The corresponding estimator of the covariance matrices of the

coe�cients is b��

=
1

N 0

PX
p=q

NpX
i=1

(b�(ip) �
b�)(b�(ip) �

b�) 0:(34)

Inserting b�u

and b��

into (14), we get the following estimator of the individual speci�c

gross disturbance matrix 
(ip) based on all observations :10

b
(ip) = X(ip)
b� �

X
0

(ip) + I
p

 b�u

; i = 1; : : : ; Np; p = 1; : : : ; P:(35)

This estimator can be inserted into (29) to give an estimator of V(b�).
Since (26) and (28) imply

1

N 0

PX
p=q

NpX
i=1

(b�(ip) �
b�)(b�(ip) � b�) 0 = 1

N 0

PX
p=q

NpX
i=1

(b�(ip) �
b�(p))(

b�(ip) �
b�(p))

0

+
1

N 0

PX
p=q

Np(b�(p) �
b�)(b�(p) � b�) 0;

we can rewrite b��

as

b��

=
1

N 0

PX
p=q

Np
b��

(p) +
1

N 0

PX
p=q

Np(b�(p) �
b�)(b�(p) �

b�) 0:(36)

The interpretation of this equation is that it separates b��

into components representing

within group variation in the �'s (�rst term) and between group variation (second term).

10Note that b�u

and b� �

are constructed from observations from individuals observed at least q times,

whereas b
(ip) is constructed for all individuals.
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Second step estimation of �

When the 
(ip)'s have been estimated from (35), (asymptotically) more e�cient estima-

tors of the expected coe�cient vector � can be constructed. So far, individual speci�c

OLS estimators of the coe�cient vector have been our point of departure, cf. (24). One

modi�cation is to use individual speci�c GLS estimators instead. Replace b�(ip) by
11

e�(ip) = [X 0

(ip)

�1
(ip)
X(ip)]

�1[X 0

(ip)

�1
(ip)
y(ip)]; i = 1; : : : ; Np; p = q; : : : ; P:(37)

By inserting from (12) and using (14) it can be shown that this estimator is unbiased

and has covariance matrix

V(e�(ip)) = [X 0

(ip)

�1
(ip)
X(ip)]

�1:(38)

This estimator vector is more e�cient than b�(ip) since it can be shown from (25) and

(38) that V(b�(ip)) � V(e�(ip)) is positive de�nit. A revised estimator of � based on the

observations from the individuals observed p times can then be de�ned as the unweighted

mean of the individual speci�c GLS estimators

e�(p) =
1

Np

NpX
i=1

e�(ip) =
1

Np

NpX
i=1

[X 0

(ip)

�1
(ip)
X(ip)]

�1[X 0

(ip)

�1
(ip)
y(ip)]; p = q; : : : ; P:(39)

From (38) it follows, since all e�(ip)'s are uncorrelated, that

V(e�(p)) =
1

N2
p

NpX
i=1

[X 0

(ip)

�1
(ip)
X(ip)]

�1:(40)

A revised estimator of � based on observations of all individuals observed at least q times

can be obtained as the unweighted mean12

e� =
1

N 0

PX
p=q

NpX
i=1

e�(ip) =
1

N 0

PX
p=q

NpX
i=1

[X 0

(ip)

�1
(ip)
X(ip)]

�1[X 0

(ip)

�1
(ip)
y(ip)]:(41)

From (38) it follows, since all e�(ip)'s are uncorrelated, that

V(e�) = 1

(N 0)2

PX
p=q

NpX
i=1

[X 0

(ip)

�1
(ip)
X(ip)]

�1:(42)

Variants of e�(p) and
e� exist. Instead of using the unweighted means of the individual

speci�c GLS estimators, (39) and (41), we may use matrix weighted means. Of particular

11We here and in the following proceed as if the 
(ip)'s are known. In practice, we may either use

the estimators b
(ip) or estimate these covariance matrices from recomputed GLS residuals, as will be

described below.
12Alternatively, the e�(ip)'s could have been weighted by p.
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interest is weighting the subestimators by their respective inverse covariance matrices.

Our estimator of � based on the observations from the individuals observed p times then

becomes

�
�

(p) =

24NpX
i=1

V(e�(ip))
�1

35�1 24NpX
i=1

V(e�(ip))
�1 e�(ip)

35(43)

=

24NpX
i=1

X
0

(ip)

�1
(ip)
X(ip)

35�1 24NpX
i=1

X
0

(ip)

�1
(ip)
y(ip)

35 ; p = q; : : : ; P:

This coincides with the strict GLS estimator for group p, b�GLS(p) , given in (20) as the

solution to the ML problem for group p conditional on �u and ��. From (38) it follows,

since all e�(ip)'s are uncorrelated, that

V(��

(p)) =

24NpX
i=1

X
0

(ip)

�1
(ip)
X(ip)

35�1 :(44)

Since ��

(p) is the strict GLS estimator for group p, we know that it is more e�cient thane�(p) because V(
e�(p))�V(�

�

(p)) is positive de�nit. The corresponding estimator of � based

on observations of all groups of individuals observed at least q times is

�
� =

24 PX
p=q

NpX
i=1

V(e�(ip))
�1

35�1 24 PX
p=q

NpX
i=1

V(e�(ip))
�1e�(ip)

35(45)

=

24 PX
p=q

NpX
i=1

X
0

(ip)

�1
(ip)X(ip)

35�1 24 PX
p=q

NpX
i=1

X
0

(ip)

�1
(ip)y(ip)

35 ;
which coincides with b�GLS , given in (23) as the solution to the ML problem for all indi-

viduals conditional on �u and ��. From (38) it follows, since all e�(ip)'s are uncorrelated,

that

V(��) =

24 PX
p=q

NpX
i=1

X
0

(ip)

�1
(ip)
X(ip)

35�1 :(46)

Since �� is the strict GLS estimator, it is more e�cient than e� because we know that

V(e�)� V(��) is positive de�nit.

Second step estimation of �u and ��

The second step estimators of the coe�cient vector can be used to revise the estimators

of the disturbance covariance matrices and the covariance matrices of the random coe�-

cients obtained in the �rst step. We construct the (Gp�1) residual vector corresponding

12



to u(ip) from

eu(ip) =

26664
eu1(ip)

...euG(ip)

37775 = y(ip) �X(ip)
e�(ip)

and rearrange it into the (G� p) matrix

fU (ip) =

26664
eu 0

1(ip)

...eu 0

G(ip)

37775 :
The second step estimator of �u for group p is

e�u

(p) =
1

N
p
p

NpX
i=1

fU (ip)
fU 0

(ip); p = q; : : : ; P;(47)

and the corresponding estimator of ��, when we use ��

(p) as the group speci�c estimator

of �13 is

e��

(p) =
1

Np

NpX
i=1

(e�(ip) � �
�

(p))(
e�(ip) � �

�

(p))
0; p = q; : : : ; P:(48)

Recompute the estimator of 
(ip) based on the subpanel for group p by [cf. (32)]

e
(ip)p = X(ip)
e� �

(p)X
0

(ip) + I
p

 e�u

(p); i = 1; : : : ; Np; p = q; : : : ; P:(49)

The second step estimator of �u based on the complete data set is

e�u

=
1

n0

PX
p=q

NpX
i=1

fU (ip)
fU 0

(ip);(50)

and the corresponding estimator of ��, when we use �� as the overall estimator of �14 is

e��

=
1

N 0

PX
p=q

NpX
i=1

(e�(ip) � �
�)(e�(ip) � �

�) 0:(51)

Recompute the overall estimator of 
(ip) by [cf. (35)]

e
(ip) = X(ip)
e� �

X
0

(ip) + I
p

 e�u

; i = 1; : : : ; Np; p = 1; : : : ; P:(52)

An iterative application of this four-step sequence of conditional estimation problems

will be presented in the �nal section, as a summing-up of the paper.

13Alternatively, the less e�cient estimator e�(p) may be used.
14Alternatively, the less e�cient estimator e� may be used.
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5 Summing up: A stepwise, modi�ed ML algorithm

Modi�ed, stepwise ML estimation algorithms for �, �u, and �� can be constructed from

the procedures described in Section 4. In this �nal section, we present one such algorithm.

The procedure can be considered a modi�ed ML algorithm, provided it converges towards

a unique solution and is iterated until convergence.

We give the algorithm for both group speci�c estimation and estimation from the

complete data set. Each algorithm has eight steps and can be iterated until convergence.

Estimation algorithm for group p

1(p): Estimate � from the p observations from individual (ip) for i = 1; : : : ; Np (p � q),

by using (24). Compute the corresponding OLS residuals.

2(p): Compute an estimator of � for group p from (26).

3(p): Compute group speci�c estimators of �u and �� from (30) { (31).

4(p): Compute b
(ip)p from (32) for i = 1; : : : ; Np (p � q).

5(p): Insert 
(ip) = b
(ip)p into (37) and (43) to compute the individual speci�c and

group speci�c estimators e�(ip) and �
�

(p).

6(p): Recompute group speci�c estimators of �u and �� from (47) { (48).

7(p): Compute e
(ip)p from (49) for i = 1; : : : ; Np (p � q).

8(p): Insert 
(ip) = e
(ip)p into (37) and (43) to recompute e�(ip) and �
�

(p).

Steps 6(p) { 8(p) can be repeated until convergence, according to some criterion.

Estimation algorithm for all groups

1: Estimate � from the observations from individual (ip) for i = 1; : : : ; Np; p =

q; : : : ; P , by using (24). Compute the corresponding OLS residuals.

2: Compute an estimator of � from the complete panel data set from (28).

3: Compute overall estimators of �u and �� from (33) { (34).

4: Compute b
(ip) from (35) for i = 1; : : : ; Np; p = 1; : : : ; P .

5: Insert 
(ip) =
b
(ip) into (45) to compute ��.

6: Recompute overall estimators of �u and �� from (50) { (51).
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7: Compute e
(ip) from (52) for i = 1; : : : ; Np; p = 1; : : : ; P .

8: Insert 
(ip) = e
(ip) into (41) to recompute ��.

Steps 6 { 8 can be repeated until convergence, according to some criterion. If this

algorithm converges towards a unique solution, it leads to our modi�ed ML estimator. It

is substantially easier to implement in numerical calculations than the full ML procedure

described in Section 3.
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