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Abstract 

When a monopolistic hydro producer interacts with a competitive thermal 

fringe, the short-run revenue function of the hydro monopolist is non-concave. 

This implies that even if the demand function is stationary, equilibrium prices 

may fluctuate through the year. For given capacities, both hydro and thermal 

producers are better off under such an outcome than under the competitive 

outcome with constant prices, while consumers are worse off. Prices may 

fluctuate through the year also in the long-run equilibrium where capacities are 

endogenous. In such an equilibrium the hydropower monopoly will get a lower 

profit than it would have gotten had it been a price taker.   
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1 Introduction 

Electricity markets have been deregulated in a number of countries. This has 

led to a considerable research, both theoretical and empirical, of how electricity 

markets perform.1 However, there are relatively few studies that explicitly 

focus on markets where hydropower plays an important role. This is quite 

surprising, as 1/3 of all countries in the world depend on hydropower for over 

50% of their electricity, see Edwards (2003).  The share of hydropower is quite 

small in USA (about 6% in 2001, but considerably higher for some states2). For 

several other countries and regions the share of is considerably higher: In 2001 

the proportion of electricity produced by hydropower was 58% in Canada, 67% 

in Central and South America, and 19% in Western Europe.3  

 

Hydropower has some features making it quite different from thermal power. A 

thermal power plant will typically have a short-run capacity constraint that 

limits output at any time. Such a capacity constraint will also exist for a hydro 

plant, but will often be less important than the constraint given by the total 

amount of water reservoirs of the power plant. These reservoirs are replenished 

through a yearly cycle of precipitation, and the most important decision of the 

producer is how to allocate the water reservoirs through the year.  

 

Von der Fehr and Sandsbråten (1997) give a good discussion of some of the 

properties of electricity markets where hydropower plays an important role. 

They explicitly focus on the technological complementarities between hydro 

and thermal systems, but they do not consider market power.4 Among the 

relatively few papers that explicitly consider market power in the context of 

hydropower are Crampes and Moreaux (2001), Garcia et al. (2001, 2004), and 

                                                 
1 Important recent contributions include Amundsen and Bergman (2002), Borenstein (2002), 
Borenstein et al. (2002), Joskow (2001), Joskow and Kahn (2002), Newbery (2002), Spear (2003) and 
Wolak (2003). 
2 In the two large states California and New York the share of hydropower in total electricity in 2002 
was about 17% in each. 
3 Source: International Energy Annual 2002. 
4 The interaction between hydropower and thermal power under competitive conditions is also briefly 
discussed in Borenstein et al. (2002, Appendix C). 
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Ambec and Doucet (2003). Crampes and Moreaux consider a model of two 

power producers, one of which is hydropower. They analyse the competitive 

case, the case of a monopoly controlling both firms, and the duopoly case. 

Garcia et. al consider the case of hydro producers engaged in dynamic Bertrand 

competition. Unlike the present study and the other studies referred to above, 

Garcia et al. allow for uncertainty regarding the replenishment of the water 

reservoirs. They also briefly consider the case where there are thermal 

producers in addition to the hydro producers. Ambec et al. consider various 

market forms, but only consider a pure system of hydropower. 

 

The present paper studies the case of a monopolistic hydro producer in 

combination with a competitive thermal fringe. With this market structure, the 

short-run revenue function of the hydro monopolist is non-concave. This has 

important implications for the equilibrium. In particular, even if the demand 

function is stationary through the year, the equilibrium may have the property 

that prices fluctuate through the year. In a related paper, Førsund and Hoel 

(2004) treat the case of a pure hydro system, but with the possibility of 

electricity trade with neighbouring countries or regions. In this case the 

capacity limit of the transmission cables to neighbouring countries/regions 

plays the same role as the capacity limit of the thermal producers in the present 

case, leading to a non-concave revenue function in both cases. Unlike the 

present paper, Førsund and Hoel only consider the short-run equilibrium. 

 

The rest of the paper is organized as follows. Section 2 gives a brief description 

of the short-run properties of a simple market with both thermal and hydro 

producers when all producers are price takers. Section 3 treats the case of a 

hydro monopoly, and derives the result mentioned above about fluctuating 

prices. Section 4 extends the results to the more realistic case in which the 

demand function differs across periods within year, e.g. due to climate 

fluctuations, and in Section 5 I deshow that the results derived do not depend 

on the specific aggregate supply function that is assumed in previous sections. 
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In Sections 6 - 7 I return to the case of a stationary demand function, and 

consider long-run equilibria. The competitive long-run equilibrium is treated in 

Section 6, and in Section 7 the long-run equilibrium for our dominant firm case 

is discussed. Section 8 concludes. 

 

 

2 Perfect competition 

Consider first the simplest possible model of a pure thermal system. Short-run 

unit operating costs are c, and in the short run there is a capacity constraint K. 

The short-run supply function thus has an inverse L shape as in Figure 1, where 

x and p are the output and price of electricity, respectively. In Section 5 it is 

shown that our qualitative results do not depend on this simplification. 

 
Figure 1 

 

Demand varies across the year, both between different hours of the day and 

between days of the year. During any particular period, demand is a declining 

function of the electricity price. Each period thus has a particular market-

p 

DH(p) 

DL(p) 

K x 

c 

pH 
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clearing price. In Figure 1, the market-clearing price is pH when the demand 

curve is given by DH, and c when the demand curve is given by DL.5  

 

A pure thermal system can thus be expected to give price fluctuations across 

the year. This is due to the fact that electricity cannot be stored from one period 

to another. Price fluctuations would only be avoided if capacity was so large 

that even the highest demand could be satisfied at the price c. However, since 

capacity is costly, it will not be optimal for producers to invest in such large 

capacity. 

 

Let us now add a hydroelectric component to the supply side. Total production 

of electricity over the year from hydropower is determined by the available 

water reservoirs, which are given by an exogenous amount of yearly 

precipitation. I ignore the fact that in the beginning of the year this amount is 

uncertain. Moreover, I assume that there are no other constraints on the 

production of hydropower than the available water reservoirs for a year. 

Operating costs are also ignored,6 so that the surplus of the hydro producer is 

equal to its revenue.  

 

Competitive suppliers of hydropower will obviously want to use the water 

reservoirs they have to produce electricity on the days when the electricity 

prices are highest. I assume that all producers have correct predictions of what 

the future price will be. The competitive outcome of a mixed thermal and hydro 

system will therefore be characterized as follows:  There will exist a threshold 

price p0 with the property that for periods where the demand at this price does 

not exceed K (such as DL(p) in Figure 2), there will be no production of 

hydropower. For these low-demand periods the equilibrium will be determined 

                                                 
5 Since the short-run demand curve in practice is very steep, small demand variations will give large 
price effects. This would be modified if we had a more realistic supply function where the capacity 
limit was not as absolute as in Figure 1, cf. also the discussion in Section 5. 
 
6 Introducing a constant unit operating cost would not change our results, as long as this cost is below 
the unit operating cost of the thermal power producers (which typically is the case). 
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by the intersection of the inverse L supply curve for thermal energy and the 

demand curve, see Figure 2. This gives an equilibrium price somewhere in the 

range [c, p0]. For periods with D(p0)>K (such as DH(p) in Figure 2), the 

production of hydropower will be positive, and equal to K-D(p0). The 

equilibrium price will thus be equal to p0 in all such high-demand periods.  

 

 
Figure 2 

 

The threshold price p0 will be determined by the demand functions for the 

different periods of the year, the capacity limit on thermal production (K in 

Figure 1), and the amount of water reservoirs. In particular, p0 will be lower the 

higher is the size of the water reservoirs, since higher reservoirs allow higher 

electricity production during high demand periods. For any given size of water 

reservoirs, p0 will be lower the higher is the capacity limit on thermal 

production. In a long-run equilibrium, the size of this capacity will be 

determined such that p0>c, and larger the larger is the capacity cost. We shall 

return to this long-run equilibrium in Sections 5 and 6. 

 

From the discussion above it is clear that in a competitive equilibrium, price 

fluctuations through the year will be smaller under a mixed thermal and hydro 

system than under a pure thermal system. In the next Section we shall show 

p 

DH(p) 

DL(p) 

K x 

c 

p0 
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that this is not necessarily the case if producers of hydropower are not price 

takers.  

 

3 Hydropower monopoly 

Consider the case where a monopolist controls all of the production of 

hydropower. As before, the producers of thermal power are assumed to be price 

takers. 

 

It is useful first to consider the case in which the demand function is stable 

throughout the year. In the competitive equilibrium, discussed in the previous 

section, this would give a constant price equal to p0, with constant production 

of hydropower throughout the year and thermal power always produced at the 

capacity limit K. Figure 2 illustrates this case, with DH(p) as the stationary 

demand function. 

 

The demand function facing the producer of hydropower is illustrated in Figure 

3. At prices below c, this demand is D(p), while the demand is D(p)-K at prices 

above c. The corresponding revenue function is given by OABC in Figure 4 

(the location of the point A is explained below)7. Notice that this revenue 

function is not concave, which is an important feature of such a mixed thermal 

and hydro system. 

 

                                                 
7 To keep the discussion as simple as possible, I assume that the elasticity of the function D(p) is lower 
than one (measured positively) at prices below c. This means that the revenue function in Figure 3 has 
its maximum at the point C. 
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Figure 3 Figure 4 

 

As argued above, the competitive equilibrium is characterized by the 

production of hydropower being constant throughout the year. This output 

level, denoted by X, is equal to size of the water reservoirs divided by the 

number of periods in a year (e.g. 365 days). This gives the electricity producer 

a revenue equal to π0 per day. It is clear from Figure 4 that the hydropower 

monopolist can do better than having a constant production equal to X: By 

alternating between the production levels x* and D(c) in Figures 3 and 4, 

keeping average production equal to X, its average revenue per period will be 

given by π*>π0.  

 

Formally, the equilibrium above may be derived as follows. Average revenue 

per period for the monopolist is  

 

(1) ( ) (1 ) ( )xp x K cD cπ θ θ= + + −   

 

where p(x+K)=D-1(x+K) and θ is the share of periods where the thermal 

producers produce at full capacity. This revenue is maximized with respect to x 

and θ subject to the constraint 

 

(2) (1 ) ( )x D c Xθ θ+ − ≤  

 

 D(c)-K 

p 

p* 

p0 

x* X  D(c) x

c 

 D(p)-K  D(p)

 D(c)-K 

π 

π*

π0

x* X  D(c) x

A B 

C 

0
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The Lagrangian to the problem above is 

 

(3) ( ) (1 ) ( ) [ (1 ) ( )]L xp x K cD c X x D cθ θ λ θ θ= + + − + − − −  

 

and the first order conditions for an interior solution are 

 

(4) ( ) '( )p x K xp x K λ+ + + =  

 

(5) ( ) ( )
( )

cD c p x K x
D c x

λ− +
=

−
 

 

The l.h.s. of (4) is the slope of the revenue function OAB, i.e. the marginal 

revenue corresponding to the residual demand function D(p)-K (equal to total 

demand minus the supply from the producers of thermal energy). The l.h.s. of 

(5) is the slope of a line from this revenue function OAB to the point C in 

Figure 4. Together, these equations tell us that the optimal price is given at the 

point A where these two slopes are equal. From now on this price is denoted 

p*, and the corresponding output level x*. Once the optimal price for the high 

price period is found, the optimal value of θ, denoted θ*, follows from the 

constraint in (2) with an equality sign. 

 

If X is sufficiently small (smaller than x* in Figure 4), we get the corner 

solution where θ*=1, which is identical to the competitive outcome. If X is 

sufficiently large (larger than D(c) in Figure 4), we get θ*=0, and the 

monopolist supplies all of the market in all periods at the price c. In this case 

actual production of hydropower will be lower than what is possible given the 

water reservoirs (i.e. D(c)<X)8. 

 

                                                 
8 This follows from our assumption on the demand function, see footnote 7. For the borderline case of 
X=D(c) we also have θ*=1. 
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The reasoning above demonstrates that unlike for the competitive equilibrium 

for a stationary demand function, the electricity price may fluctuate over the 

year in the case of hydro monopoly. It is also clear that the average electricity 

price received by the hydro producer, given by π*/X in Figure 3, is higher than 

the competitive equilibrium price π0/X. The thermal producers will also get a 

higher surplus with price fluctuations than without. This follows from π*>π0, 

which may be written as (using (1)) 

 

(6) 0* * * (1 *)p x cD p Xθ θ+ − >  

 

where p0≡ π0/X is the competitive price. Using (2) with equality this may be 

rewritten as 

 

(7) 0*( * ) * ( )p c x p c Xθ − > −  

 

Since x*<X it follows that 

 

(8) 0*( * ) ( )p c p cθ − > −  

 

The r.h.s. of (8) is the surplus of the fringe per unit of capacity in the 

competitive case, while the l.h.s. is the same surplus under monopoly (i.e. when 

prices fluctuate). 

 

Since both the hydro producer and the thermal producers get higher surpluses 

under hydro monopoly than in the competitive equilibrium, consumers are 

worse off under hydro monopoly than they are in the competitive equilibrium.  

 

The comparisons above are only true when the capacity of the thermal 

producers and the size of the hydro reservoirs are the same in the two cases. In 

the long run both these capacities are endogenous, and will be different when 
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the hydro producer is a monopolist than when it is a price taker. The long-run 

equilibria will be treated in more detail in Sections 5-7. 

 

4 Demand fluctuations 

Before considering long-run equilibria, I briefly consider the hydro monopoly 

case when demand fluctuates during a year. Let the year by divided into n 

periods, during each of these periods j demand is stationary given by Dj(p). In 

each period we thus have an average revenue function corresponding to OAC 

in Figure 4. Denote this average revenue function by πj(xj).The monopolists 

problem is to allocate its total water reservoirs across periods so that its total 

revenue during the year is maximized. Denote the fraction of the year we are in 

period j by αj (with Σjαj=1). Total yearly revenue is given by 

 

(9) ( )j j jj
xα πΠ =∑  

 

which is maximized subject to the reservoir constraint 

 

(10) j jj
x Xα ≤∑  

 

The Lagrangian to this problem is 

 

(11) ( )( )j j j j jj j
L x X xα π γ α= + −∑ ∑  

 

The solution to this maximization problem is (remembering that πj(xj) is 

maximized for xj=Dj(c), see footnote 7) 

 

(12) 
'( )

( ) '( )
j j

j j j j

x
x D c for x

π γ
π γ
≥

= >
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To interpret this, remember that '( )j jxπ is the slope of the average revenue 

functions corresponding to OAC in Figure 4. The water reservoirs should thus 

be allocated across periods so that the slope of these OAC-curves should be 

equal across periods, or, for periods where the slope OAC is “high” for all 

values of xj, the output should be equal to Dj(c). 

 

The size of the shadow price γ depends on the size of the reservoirs. The most 

interesting case is when the slopes corresponding to AC in Figure 4 are lower 

than γ for some periods, but higher for other periods. In the Appendix, I have 

argued that it is not unreasonable to expect the slope of AC to be smaller the 

larger the demand is, although such a relationship doesn’t hold generally 

independent of the specifications of the demand functions. I shall therefore call 

periods with the slope of AC larger than γ low-demand periods, and periods 

with the slope of AC smaller than γ high-demand periods. 

  

For low-demand periods (i.e. periods when the slope AC is higher than γ), the 

electricity price is c, and hydro production covers all of the demand at this 

price. For these periods thermal production is thus zero. For high-demand 

periods (i.e. periods with the slope of AC smaller than γ), the hydro producer 

charges an electricity price above c, and its output is lower than x* in Figures 3 

and 4. Thermal producers produce at full capacity all the time during these 

periods. In addition to these types of periods, there may be one (or possibly 

several) periods where the slope of AC is equal to γ. For such a period we get 

the situation as described in the previous section: some days (or hours) during 

this period we get a situation similar to what we get during low-demand 

periods, and some days (or hours) during this period we get a situation similar 

to what we get during high-demand periods. 

 

It is interesting to note the difference between the present case and the 

competitive case when demand varies through the year. In the competitive 
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case, the price was the same for all high-demand periods, while it varied across 

low-demand periods. Moreover, hydropower was only produced in the high-

demand periods. In the present case, prices vary across high-demand periods, 

but are constant (equal to c) across low-demand periods. Moreover, hydro 

production is highest in low-demand periods. 

 

5. A more general supply function for thermal producers 

The inverse L supply function for the thermal producers that we have used till 

now is obviously only a rough approximation to a real aggregate supply 

function. An inverse L supply function will be valid for each individual thermal 

producer if they have constant unit operating costs up to a capacity limit. 

However, if unit operating costs vary across producers, we will have a stepwise 

aggregate supply function instead of the inverse supply L supply function 

assumed till now. If there are many thermal producers, such a stepwise supply 

function can be approximated by a standard upward sloping continuous supply 

function. The properties of such a supply function will depend on properties of 

the distribution of unit costs and capacities across producers. For the special 

case where all producers have the same unit costs, we get an inverse L supply 

function of the type assumed till now. If instead all producers have identical 

capacity limits but unit costs differ and are uniformly distributed across 

producers, the supply function will be linear and upward sloping up to the 

production level corresponding to full capacity utilization for all producers, 

when it becomes vertical. Most electricity markets (and many other markets) 

seem to be characterized by a large fraction of the producers having relatively 

similar unit costs, with more cost dispersion for the remaining producers. If this 

is the case, the supply function will be upward sloping and relatively flat up to 

a point not very much below the total capacity limit. Then the steepness of the 

supply curve will increase rapidly, and become vertical when we have full 

capacity utilization for all producers. More precisely, denote the aggregate 

supply function S(p), and let pK be the unit cost of the producer with the highest 

unit cost. We thus have S(p)=K for Kp p≥  and S(p)<K for Kp p< . Moreover, 
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for some range of prices below but close to pK we have ''S  negative and and 

“large” in absolute value.  

 

The residual demand facing the hydro producer for this general case is 

( ) ( ) ( )E p D p S p= − , which is a declining function. The revenue of the hydro 

producer is 1( )xE x− . It is straightforward to verify that the marginal revenue 

will be increasing in x if the second derivative of 1( )E x−  is positive and 

sufficiently large. This in turn will be the case if ''( ) ''( )D p S p−  is positive and 

sufficiently large, which will occur whenever ''( )S p−  is positive and 

sufficiently large and the demand function is linear or convex (i.e. ''( ) 0D p ≥ ). 

As argued above, we expect ''( )S p−  to be positive and “large” for some range 

of prices below but close to pK. In other words, it is not unreasonable to expect 

the marginal revenue of the hydro producer to be increasing over some range of 

its output. But whenever this is the case, we get a situation similar to the one 

described in Figure 4 and discussed in Section 3: The revenue function for the 

production per day will be non-concave, and there will be a range of levels for 

average production per day such that it is optimal for the hydro producer to 

alternate between high production days and low production days. The results 

for the previous sections will thus be valid also for a general supply function 

for the fringe producers, provided the steepness of this function rises rapidly as 

we approach the aggregate capacity limit for the thermal producers.  

 

6 The long-run competitive equilibrium 

We again turn to the case of a stationary demand function. Assume that the cost 

of thermal capacity is given by the constant unit capacity cost b. In a long-run 

equilibrium, there must be zero profit in the thermal sector. The short-run 

surplus (p-c)K must therefore be equal to the capacity cost bK, the competitive 

equilibrium price p0 is therefore given by 

 

(13) 0p c b= +  
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For the hydro sector, an assumption of constant unit costs of capacity (i.e. of 

water reservoirs) is not particularly reasonable. Potential sites for hydropower 

will have different natural characteristics, with corresponding cost differences. 

Also, for any particular site, investments in dams beyond some limit will 

increase costs more than proportionally to the increased reservoirs. Ignoring 

possible increasing returns at the site level for small capacities, it is therefore 

reasonable to assume that the cost function for reservoirs is increasing and 

strictly convex. We denote this cost function by B(X), and assume B’>0 and 

B’’>0. 

 

The reservoir capacity is in the competitive case determined by the 

maximization of 0 ( )p X B X− . Denoting the optimal reservoir capacity by X0, 

this gives (since p0=c+b) 

 

(14) 0'( )B X c b= +  

 

 

7 The long-run equilibrium with hydro monopoly 

I shall only consider long-run equilibria where there are price fluctuations 

through each year even when the demand function is stationary. In other words, 

I am assuming that cost and demand functions are such that none of the 

following three situations occur in the long-run equilibrium: (i) zero thermal 

capacity, (ii) zero hydro capacity, (ii) such a low hydro capacity that X≤x* 

where x* as before is given by (4) and (5). Appendix II gives a discussion of 

the properties cost and demand functions must have for prices to be fluctuating 

through the year in the long-run equilibrium. 

 

Once both capacities are given, we have the situation discussed in Section 3 

and illustrated by Figure 4. In this equilibrium, the electricity price is p* (>c) 

during a fraction θ* of the year, and c the rest of the year. Total surplus over 
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the year for the thermal sector is thus θ*(p*-c)K, and in the long-run 

equilibrium this surplus must be equal to the capacity cost bK, giving 

 

(15) *
*

bp c
θ

= +  

 

The average price over the year is θ*p*+(1-θ*)c, and it is straightforward to 

see from (15) that this average price must be equal to c+b. The average price 

over the year is thus the same as in the competitive equilibrium (cf. (13)). This 

is as expected, since the competitive thermal producers have a horizontal long-

run supply curve. Although the focus of this paper is not on consumers, one 

observation is worth mentioning. Provided consumers face a perfect credit 

market through the year, consumers are better off with a fluctuating electricity 

price through the year than a constant price, provided the average price is the 

same in both cases (and ignoring differences between the two cases in income 

from the electricity sector to the consumers). To see this, denote utility 

maximizing electricity consumption per period by y0 for the case when the 

price is p0 in each period. If the price fluctuates, the consumers still have the 

possibility of buying y0 in each period provided the average price is p0. 

However, consumers can do better by consuming less when the price exceeds 

p0 and more when the price is lower than p0. 

 

We saw above that the average price over the year to consumers was the same 

for the monopoly case as for the competitive case. However, the average price 

for the hydro producer on its output is lower under monopoly than in the 

competitive equilibrium: This average price, denoted p̂ , follows from (1), (2) 

and (15) 

 

(16) 0* * * (1 *) ( ) *ˆ p x cD c xp c b c b p
X X X
π θ θ+ −

= = = + < + =  
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Notice that this inequality holds for any pair (K, X) that satisfies the 

equilibrium condition (15). The profit of the monopolist must therefore satisfy 

 

(17) 0ˆ( ) ( ) max [ ( )]XB X pX B X p X B Xπ − = − < −  

 

Since p0 is the constant electricity price in the competitive equilibrium, this 

implies that the profit of the hydro producer is lower under monopoly than 

under the competitive equilibrium. Although this might seem surprising at first, 

it follows directly from the fact that consumers are better off under monopoly 

than under competition, provided their income is the same. If profits were 

higher under monopoly the first fundamental theorem in welfare economics 

would be violated. 

 

An obvious question is why cannot the monopolist simply mimic competitive 

producers, and thereby get the same profit as under competition? The answer is 

that the monopolist cannot commit itself to behave as competitive producers 

once capacities are given. As shown in Sections 2 and 3, once capacities are 

given, competitive producers will have a constant output through the year, 

while a monopolist will let its output fluctuate, thereby increasing its profit 

compared with the competitive case given both capacities K and X. 

Competitive thermal producers foresee this behaviour when they make their 

price predictions in order to make a best possible capacity decision. The 

capacity K chosen by these producers is therefore different under hydropower 

monopoly than under competition in both electricity-producing sectors. 9 

  

The maximized average revenue per year of the hydro producer depends on X 

as well as K, cf. (1) and (2). We thus denote this maximized revenue by 

( , )X Kπ . Applying the envelope theorem to (1) - (3) gives10 

                                                 
9 It is well known that there are many cases in which the inability to make future commitments can 
make an increase in market power disadvantageous, see e.g. Karp (1996), Maskin and Newbery (1990), 
Ulph and Ulph (1989) and Salant et al. (1983). 
10 From (4) and (5) it is clear that x* and λ depend only on K, and not on X. 
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(18) ( , ) ( ) 0X X K Kπ λ= >  

 
Moreover, when (2) holds with equality it follows from (1) - (5) that 

 

(19) ( , ) ( ) ( )( ( ) )X K cD c K D c Xπ λ= − −  

 
implying 
 
(20) ( , ) ( ( )) '( )K X K X D c Kπ λ= −  

 
Applying the envelope theorem to (1) gives 
 
(21) ( , ) * * '( * ) 0K X K x p x Kπ θ= + <  

 
Combining  (20) and (21) gives 
 

(22) * * '( * )'( ) 0
( )

x p x KK
D c X

θλ − +
= >

−
 

 

While the monopolist’s revenue thus is lower the higher is K, its marginal 

revenue is higher the higher is K. This last feature can also easily be derived by 

examining Figures 3 and 4: From these figures it is clear that the larger K is, 

the lower lies the curve OAB in Figure 4 (and the further to the left is the point 

B). The point C in Figure 4 is however independent of K. A higher value of K 

must therefore make the slope of AC higher. But the slope of AC (equal to λ) is 

the marginal revenue of the monopolist, which therefore must be higher the 

higher is K.11  

 

In the rest of this section I shall distinguish between two cases. First I consider 

the case in which the competitive thermal producers choose their total capacity 

                                                 
11 The relationship between K and the marginal revenue of the monopolist is reversed when X is 
sufficiently small: For X smaller than x* in Figure 4, marginal revenue is simply p(X+K)+Xp’(X+K), 
which is declining in K for p’+Xp’’<0. This inequality must always hold for sufficiently small values 
of X. 



 19

K simultaneously with the hydro monopoly’s decision of reservoir capacity X. 

In the second case considered the hydropower capacity is determined before 

the thermal power capacity. 

 

Simultaneous capacity decisions. 

When K and X are determined simultaneously, K is regarded as given when the 

hydro monopolist chooses X.  The monopolist chooses X to maximize 

( , ) ( )X K B Xπ − , taking K as given, which gives 

 

(23) ( , ) '( )X X K B XΠ =  

 

Using (18), we can rewrite this as 

 

(24) '( ) ( )B X Kλ=  

 

This equation gives the optimal value of X whatever K is. Since ''B  and 'λ  are 

both positive, it follows from (24) that X must be higher the higher is K.  

 

The equilibrium combination of (K, X) must in addition to (24) satisfy the 

equilibrium condition (15). We shall denote this equilibrium pair by (K*, X*). 

 

Since λ(K) is equal to the slope of AC in Figure 4, it follows from Figure 4 that 

λ(K)<c. Comparing (24) with (14), it is therefore clear that investments in 

reservoir capacity are lower in the present monopoly case than in the 

competitive equilibrium. 

 

Capacity of hydro producer determined prior to thermal capacity 

An increase of hydropower capacity can be of two types. The simplest is an 

upgrading of existing power plants through the installation of new and more 

efficient turbines, making it possible to get more electricity out of a given water 
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reservoir. For larger capacity expansions, such investments will not suffice, and 

one must instead rely on the second type of investments, namely building new 

reservoir capacity through new dams or expanding existing dams. This type of 

investment typically takes quite a long time from the construction starts until 

the capacity can be used. If such investments take a considerably longer time to 

complete than expansion of thermal power capacity, a static modelling of these 

investments ought to let the hydropower capacity be determined before the 

thermal power capacity. I therefore consider this case in the present section. 

 

The monopolist’s profit must be at least as large in the present case as in the 

case where both capacities where determined simultaneously. The reason for 

this is that the monopolist has the option of setting its capacity exactly equal to 

what it would have in the case of simultaneous capacity determination. In this 

case the thermal capacity will also be equal to what it was with simultaneous 

capacity determination, and the monopolist’s profit will therefore also be the 

same. However, the monopolist can usually do better by choosing a different 

capacity, thereby inducing thermal producers also to choose a different 

capacity than the capacity they would have chosen if capacity determinations 

were simultaneous. 

 

Formally, the optimal hydro capacity in the present case is found by 

maximizing ( , ( )) ( )X K X B XΠ − , where the function K(X) is defined as the K-

value making the equilibrium condition  (15) hold (in particular it must thus be 

true that K(X*)=K*). The difference between the present case and the case with 

simultaneous capacity decisions is illustrated in Figure 5. In this Figure, the 

curved lines are iso-profit lines for the hydro monopolist. It follows from (21) 

that the profit ( , ) ( )X K B Xπ −  is lower the higher is K, so that the iso-profit 

lines have lower values the further to the right in the diagram we are. The line 

X(K) between the vertical tangents of the iso-profit curves is increasing for 

(X,K) pairs implying that we have fluctuating prices, cf. the discussion after 

(24). The line K(X) in Figure 5 is defined by the equilibrium condition (15), 
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where it follows from the discussion in Section 3 that p* depends on K, and 

that θ* depends on X and K.  The equilibrium pair (X*,K*) derived in the 

previous section is given by the intersection between the lines X(K) and K(X). 

However, if the hydro monopolist can determine its capacity before the 

capacity decision of the thermal fringe, it will choose a capacity level making 

the fringe capacity smaller than K*. If K(X) is a declining function, as in Figure 

5, this gives an optimal capacity X** that is larger than X*. 

 

 
 

Figure 5 

 

8 Concluding remarks 

The paper has demonstrated that even in the hypothetical case of the electricity 

demand function being stationary, electricity prices may fluctuate through the 

year if a producer of hydro electricity has market power. In the simple model 

used in this paper the electricity price would be constant through the year in a 

competitive equilibrium even if demand fluctuated, provided the demand 

fluctuations were so small that there was positive production of hydropower 

throughout the year. In a more realistic model of the electricity market, 

electricity prices would fluctuate also in a competitive equilibrium. One reason 

K
*K( )**K X

( )X K

( )K X

X

*X

**X
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for this is that there in reality will be other constraints on hydropower 

production in addition to the constraint given by the total reservoir capacity 

(see e.g. von der Fehr and Sandsbråten, and Ambec and Doucet). A second 

important reason for price fluctuations is that the total amount of precipitation 

through a year in reality is uncertain in the beginning of the year. In the model 

used here this variable (denoted X) was important for the equilibrium price both 

under competition and monopoly. When this variable is uncertain at the 

beginning of the year, the hydro producer(s) will continuously be getting more 

information about its true value as time passes. We would thus expect prices to 

be continuously changing over time. Finally, even if the profit function facing a 

hydro monopoly is concave, the optimal monopoly price will usually fluctuate 

over time as the demand function fluctuates.12 

 

It is clear from the discussion above that we typically will observe fluctuating 

electricity prices also when hydropower is an important component of the total 

electricity supply, even if each producer is a price taker. An interesting and 

challenging topic for future work would be investigate to what extent observed 

price fluctuations are caused by a large hydro producer behaving as explained 

in Section 3, and illustrated by Figure 4. 

                                                 
12 The optimal policy for the hydro monopolist in this case will be to equalize its marginal profit across 
periods, which in the absence of short-run production costs will give a constant price only if the 
difference in demand functions across periods is multiplicative. 
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Appendix I: The relationship between the demand function and the slope 

of AC in Figure 4 

It is not unreasonable for the difference in demand functions across periods to 

be such that the relative difference in demand (the highest demand relative to 

the lowest demand) is non-declining in price. Notice that both a multiplicative 

difference in demand and a constant positive difference in demand have this 

property. To see what happens when demand differs in this way, consider first 

the hypothetical case of a multiplicative increase both in demand and in 

thermal capacity K. Clearly, this would simply blow up all curves in Figure 4 

proportionally, leaving all slopes unchanged. In particular, the slope AC would 

remain unchanged. The actual demand difference we are considering differs 

from this hypothetical change in two ways. First, K remains unchanged. But 

this means that AC must be flatter than it was for the hypothetical change. 

Second, if demand increases relatively more for high than for low prices (i.e. 

more the further to the left in Figure 4 we are), the derivative of the revenue 

function OAB must be smaller at any given value of x than if the demand 

change was proportional. This will make the line AC even flatter. It is thus 

clear that a demand difference of the type assumed must make the line AC in 

Figure 4 flatter the larger the demand is.  

 

Appendix II: Properties of cost and demand functions for the long-run 

equilibrium to have fluctuating prices 

Consider equations (4) and (5), which hold in an equilibrium with fluctuating prices. 

These give the short-run equilibrium values p*, x* and λ as functions of K, we thus 

denote these values as p*(K), x*(K) and λ(K). To have fluctuating prices we must 

have 0<θ*<1. Together with the long-run equilibrium condition (15) this implies 

 

(25) *( )p K c b> +  

 

In order for a long-run equilibrium with fluctuating prices to exist, there must exist 

values of K satisfying (25). For any given value of K, the value of p*(K) is determined 
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by the unit operating cost c and the demand function D. Given c and D, there will 

exist values of K satisfying (25) provided capital costs b are sufficiently low. 

 

Denote the set of K-values satisfying (25) by Ω. For any K∈Ω, it follows from the 

long-run equilibrium condition (15) that 

 

(26) *
*( )

b
p K c

θ =
−

 

 

In a long-run equilibrium (2) must hold with an equality sign, from (26) it therefore 

follows that 

 

(27) * 1 ( )
*( ) *( )

b bX x D c
p K c p K c

⎛ ⎞
= + −⎜ ⎟− −⎝ ⎠

 

 

It therefore follows from (24) that we will have a long-run equilibrium with 

fluctuating prices if 

 

(28) ' *( ) 1 ( ) ( )
*( ) *( )

b bB x K D c K for some K
p K c p K c

λ
⎛ ⎞⎛ ⎞

+ − = ∈Ω⎜ ⎟⎜ ⎟− −⎝ ⎠⎝ ⎠
. 

 

 

It is useful to consider a simple numerical example. Without loss of generality we 

normalize units so that c=D(c)=1. Let the demand function be D(p)=p-1, i.e.  

 

(29) 1( )p x K
x K

+ =
+

 

 

From  (4) and (5) straightforward calculations reveal that 

 

(30) 1*( )
2
Kx K −

=  
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(31) 2*( )
1

p K
K

=
+

 

 

 

(32) 2

4( )
(1 )

KK
K

λ =
+

 

 

so that the condition (25) is 

 

(33) 2
1

c b
K
> +

+
 

 

which may be rewritten as 

 

(34) 1
1

bK
b

−
<

+
 

 

From (34) it is clear that b<1 is necessary in order to have an equilibrium with 

fluctuating prices. For any given value of b<1, the set Ω is simply 10,
1

b
b

−⎛ ⎞
⎜ ⎟+⎝ ⎠

. 

 

For a positive K satisfying (34), equations (26) and (27) in the present case are 

 

(35) 1*
1

Kb
K

θ +
=

−
 

 

(36) 
2(1 )1

2 1
b KX

K
+

= −
−

 

 

so that the condition (28) becomes 

 

(37) 
2

2

(1 ) 4 1' 1 0,
2 1 (1 ) 1
b K K bB for some K

K K b
⎛ ⎞+ −⎛ ⎞− = ∈⎜ ⎟ ⎜ ⎟− + +⎝ ⎠⎝ ⎠
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Whether or not (37) will hold will of course depend on the function hydro 

capacity cost function B(X). Consider e.g. the case of 

 

(38) ( )
1

XB X h
X

=
−

 

 

implying  

 

(39) 2'( )
(1 )

hB X
X

=
−

 

 

Moreover, let b=h=1/3. In this case the competitive equilibrium (given by (14)) is 

X=0.5. The corresponding value of K (from (13), i.e. p(X+K)=b+c) is 0.25. From (2), 

(4) and (5) it follows that for these capacities, the monopolist would like to x=0.375 

and p=1.6 for 55.6% of the year, and x=p=1 for the rest of the year. In table 1, the 

variables in parentheses in the column competitive equilibrium represent short-run 

equilibrium values for the monopoly case when capacities are given at the competitive 

equilibrium levels.  

 

The long-run competitive equilibrium capacities (X=0.5 and K=0.25) are not the 

equilibrium outcome in the monopoly case. The equilibrium capacities in the 

monopoly case follow from inserting (32), (36) and (39) into (24). This gives 

X=0.375 and K=0.444. All other variables follow from our equations (30)-(35), see 

the column denoted monopoly I in table 1. Notice in particular that the total capacity 

X+K is larger in the monopoly case than in the competitive case, although the hydro 

producer’s capacity is smaller.  

 

In table 1 the column denoted monopoly II is the case when the hydro monopolist 

chooses its capacity before the competitive fringe determines the thermal capacity. To 

find the values of X and K in this case we combine (19) and (32), which together with 

(38) gives 
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(40) 2

4( , ) ( ) 1 (1 )
(1 ) 1

K XX K B X X h
K X

π − = − − −
+ −

 

    

When the hydro monopolist chooses X before K is chosen, it chooses X so that (40) is 

maximized subject to the constraint (36). Solving numerically, we find X=0.449 and 

K=0.404. All other variables follow from our equations (30)-(35), see the column 

denoted monopoly II in table 1. 

 
 

Table 1: Lon-run equilibrium values of quantities, prices and profits 

 Competitive 
equilibrium 

Monopoly I Monopoly II 

X 0.500 0.375 0.449 
K 0.250 0.444 0.404 
X+K 0.750 0.819 0.853 
p0=c+b 1.333   
λ (0.640) 0.852 0.820 
x* (0.375) 0.278 0.298 
p* (1.600) 1.385 1.425 
θ* (0.556) 0.866 0.785 
π0 0.667   
π(X,K) (0.680) 0.468 0.548 
B(X) 0.333 0.200 0.271 
π0- B(X) 0.333   
π(X,K)- B(X) (0.347) 0.268 0.277 

 
 



 28

References 

Ambec, S. and J.A. Doucet (2003): “Decentralizing hydro power production”, 
Canadian Journal of Economics 36, 587-607. 
 
Amundsen, E.S. and L. Bergman (2002), “Will cross-ownership re-establish 
market power in the Nordic power market?”, Energy Journal 23, 73-95. 
 
Borenstein, S. (2002), “The trouble with electricity markets: understanding 
California’s restructuring disaster”, Journal of Economic Perspectives 16, 191-
211. 
 
Borenstein, S., Bushnell, J. B. and Wolak, F. A. (2002): “Measuring market 
inefficiencies in California’s restructured wholesale electricity market,” 
American Economic Review 92(5), 1376-1405.  
 
Crampes, C. and M. Moreaux (2001): “Water resource and power generation,” 
International Journal of Industrial Organization 19, 975-997. 
 
Edwards, B. K. (2003): The economics of hydroelectric power, Cheltenham, 
UK / Northampton, MA, USA: Edward Elgar. 
 
Førsund, F.R. and M. Hoel (2004), “Properties of a non-competitive electricity 

market dominated by hydroelectric power”, Fondazione Eni Enrico Mattei 

Working Paper 86.2004. 

 
Garcia, A., J.D. Reitzes and E. Stacchetti (2001): “Strategic pricing when 
electricity is storable”, Journal of Regulatory Economics 20, 223-247. 
 
Garcia, A., E. Campos and J.D. Reitzes (2004): “Dynamic pricing & learning 
in electricity markets”, Operations Research, forthcoming. 
 
Joskow, P.L. (2001), “California’s electricity crises”, Oxford Review of 
Economic Policy 17, 365-368. 
 
Joskow, P.L. and E. Kahn (2002), “A quantitative analysis of pricing behaviour 
in California’s wholesale electricity market during summer”, Energy Journal 
23, 1-35. 
 
Karp. L. (1996), “Monopoly power can be disadvantageous in the extraction of 
a durable non-renewable resource”, International Economic Review 37, 825-
849. 
 



 29

Maskin, E. and D. Newbery (1990), “Disadvantageous oil tariffs and dynamic 
consistency: the paradox of the disadvantageous monopolist”, American 
Economic Review 80, 143-156. 
 
Newbery, D.M., (2002) “The problems of liberalising the electricity industry”, 
European Economic Review 46, 919-927. 
 
Salant, S., S. Switzer and R. Reynolds (1983), “Losses due to merger: the 
effects of an exogenous change in industry structure on Cournot-Nash 
equilibrium”, Quarterly Journal of Economics 48, 185-200. 
 
Spear, S.E. (2003), “The electricity market game”, Journal of Economic 
Theory 109, 300-323. 
 
Ulph, A. and D. Ulph (1989), “Gains and losses from cartelization in markets 
for exhaustible resources in the absence of binding future contracts”, in F. van 
der Pleog and A.J. de Zeeuw (eds.): Dynamic Policy Games in Economics, 
Elsevier Science, North-Holland. 
 
von der Fehr, N.-H. M. and L. Sandsbråten (1997): ”Water on fire: gains from 
electricity trade”, Scandinavian Journal of Economics 99, 281-297. 
 
Wolak, F.A. (2003), “Measuring unilateral market power in wholesale 
electricity markets: the California market, 1988-2000”, American Economic 
Review 93, 425-430. 
 


