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1 Introduction

Identification in the context of multivariate state space modelling involves the specification

of the dimension of the state vector. [1] provided one such a method based on canonical

correlations. In the present paper we will focus on an alternative identification approach

based on the Kronecker theorem; see [2]. This method consists of estimating the rank of

the Hankel matrix. The rank of this matrix gives the minimal realisation, i.e. the minimum

number of states in a state space representation that replicates the transfer function of the

vector series under study. The most frequently used rank determination methods in the

systems literature rely on model selection criteria techniques, see [3] and [4] and references

therein.

In recent years, there has been renewed research interest in the development of tests of

the rank of a matrix. Inter alia, [5], [6], [7] and [8] consider a situation in which a root-

T consistent (RTC) estimator is available for the matrix of interest where T denotes the

sample size. The focus of this paper will be to evaluate the performance of some of these

asymptotic tests of rank determination together with their bootstrapped versions against

standard Information Criterion methods in the context of System Identification.

Section 2 describes the system identification strategy based on the rank of the Hankel

matrix. Section 3 describes the procedures of rank determination under study in the present

paper. Section 4 describes the Monte Carlo strategy undertaken. Section 5 presents the

Monte Carlo results. Finally section 6 concludes.

2 System Identification

This paper focuses on a linear state space system of the form:

yt = Cst + et

st+1 = Ast + Bet (1)

where yt is a m-vector series, A, B and C are r × r, r ×m and m× r parameter matrices

respectively, st is a r-vector of unobservable state variables, and et is an m-vector of random

variables with mean zero and positive definite covariance matrix Ω. This system can be

characterised by a system transfer function matrix G(z) =
∑∞

i=1 Giz
−1, where Gi are the

impulse response matrices. The order of the system, is defined as the order of the minimal

state-space realization, i.e. the minimal dimension of the state vector that replicates the

transfer function. Corresponding to the transfer function matrix G(z) above, the infinite
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dimensional Hankel matrix is defined as:

H = OC =




G1 G2 G3 · · ·
G2 G3 · · · · · ·
G3 · · · · · · · · ·
...

...
...

. . .


 =




CB CAB CA2B · · ·
CAB CA2B · · · · · ·
CA2B · · · · · · · · ·

...
...

...
. . .


 (2)

where the so called observability matrix is defined as O =
[
C ′,A′C ′, (A2)′C ′, · · ·]′ and the

so called controllability matrix as C =
[
B,AB, (A2)B, · · ·]. Kronecker’s theorem can be

used to show that the order of the system is equal to the rank of the Hankel matrix (see [2]).

The rank of Ĥ is the focus of the investigation. The computation of the rank of the Hankel

matrix is not an easy task, as it is unlikely that the impulse response matrices are given

exactly, and in a majority of cases they are estimated. Furthermore, searching for the rank

of the Hankel matrix is not conducted directly on (2) but rather on some pseudo-Hankel

matrices. Two alternative strategies are described in the subsections below.

2.1 Hankel Covariance Matrix Ha

An alternative characterisation of this system is in terms of a Hankel matrix of the covariances

of the output vector, yt.

Ha = OC =



∆1 ∆2 ∆3 · · ·
∆2 ∆3 · · · · · ·
∆3 · · · · · · · · ·
...

...
...

. . .


 (3)

where ∆i is the autocovariance matrix of yt for lag i, C =
[
C,AC, (A2)C, · · ·], C =

BΩ + APC ′ and P is the covariance matrix of the state vector defined as E{sts
′
t}. It

follows that the rank of Ha is equal to the rank of H , see [9]. Obviously one cannot use the

infinite dimensional matrix above, and when working with finite data a finite truncation of

the Hankel matrix will be required. Note that this Hankel Covariance matrix can be defined

as the covariance matrix between the vectors yt
+ and yt

−, and defined as follows:

Ha = E
(
yt

+yt
−

′)
= E


 yt+1

...
yt+k


(

y
′
t ... y

′
t−p+1

)
=



∆1 ∆2 ... ∆p

∆2 ∆3 ... ∆p+1

... ... ... ...
∆k ∆k+1 ... ∆k+p−1


 (4)

The truncation parameters k and p must be fixed. For T observations, an estimator for the

Hankel matrix which is computationally fast and guarantees that the upper diagonal blocks
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are identical to the corresponding lower diagonal blocks, is defined as Ĥ
a
= 1

T
Y ′

+Y− where,

Y− =




y
′
1 0 ... 0

y
′
2 y

′
1 ... 0

y
′
3 y

′
2 ... 0

... ... ... ...
y

′
T−1 y

′
T−2 ... y

′
T−p


 Y+ =




y′
2 y′

3 ... y′
k+1

... ... ... ...
y′

T−2 y′
T−1 ... 0

y′
T−1 y′

T ... 0
y′

T 0 ... 0


 (5)

As Ĥ
a

is estimated, it will always have full rank. One of the statistical procedures we

will consider uses the covariance matrix of Ĥ
a
in order to assess statistically its rank. A

consistent estimator of the covariance matrix of
√
Tvec(Ĥ

a
), and defined as V a, is given

by V̂
a
= 1

T

∑T−k
t=k (vec(yt

+yt
−

′
) − vec(Ĥ

a
))(vec(yt

+yt
−

′
) − vec(Ĥ

a
))′. While the matrix V a

is of reduced rank, the rank of V̂
a
above is only of reduced rank asymptotically. This is

problematic for one of the procedures consider below. An estimator of V a with equal rank

to V a must be constructed as follows:

V̂
a
=

1

T

T−k∑
t=k

(vec(Z t)− vec(Ĥ
a
))(vec(Z t)− vec(Ĥ

a
))′ (6)

where Z t =
(
(ytY t−1

− )′, (ytY t−2
− )′, · · · , (ytY t−k

− )′
)′

where Y t
− denotes the t-th row of Y−

and without loss of generality we are assuming that p < k. Note that by construction this

sample estimator of the asymptotic covariance matrix is singular and of equal rank to V a.

The singularity of this estimator will present a problem as a number of procedures of rank

determination require the inversion of such a matrix. This problem will be discussed in detail

in the next section.

2.2 Hankel Regression Matrix Hb

An alternative representation of system (1) can be accomplished by defining the vector

of stacked future outputs Y +
t =

(
y′

t,y
′
t+1, · · ·

)′
the vector of stacked past outputs Y −

t =(
y′

t−1,y
′
t−2, · · ·

)′
and the vector of stacked future noise components E+

t =
(
e′

t,e
′
t+1, · · ·

)′
; we

can then rewrite (1) as follows:

Y +
t = OCY −

t + ME+
t (7)

where the observability matrix O is defined as above; C = [B, (A − BC), (A − BC)2, · · ·];
and where

M =




I 0 0 · · · · · ·
CB I 0

. . .
...

CAB CB I
. . .

...
...

. . . . . . . . . · · ·



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The rank of Hb = OC is equivalent to the rank of H . Once more one cannot use the

infinite dimensional matrix above, and when working with finite data use is made of a finite

truncation of Hb. Using truncation parameters k and p as above, we can rewrite (7) as:

yt
+ = Hbyt

− + M k,pE
+
(k,p)t (8)

where yt
+ and yt

− are truncated versions of the quantities defined above. M k,p and E+
(k,p)t are

truncated correspondingly, see [10]. The important feature is that one can get an estimate

of Hb, denoted as Ĥ
b
, by standard regression methods, i.e. Ĥ

b
= Y ′

+Y−(Y ′
−Y−)−1 =

Ĥ
a
T (Y ′

−Y−)−1. A consistent estimator of the covariance matrix of
√
Tvec(Ĥ

b
), V b is

given by V̂
b
= DV̂

a
D′ where D = [T (Y ′

−Y−)−1 ⊗ I]. Note that the rank of V̂
b
is equal to

the rank of V b. As stated above this is a desirable property to bear in mind in the context

of one of the rank tests described below.

3 Estimating the rank of the Hankel matrix

Two types of procedures will be used to provide an estimate of the rank: Statistical tests

of rank and information criteria. In what follows whenever we refer to H and V it should

be understood that results apply directly to both pseudo-Hankel matrices Ha and Hb with

their respective covariance matrices V a and V b. When results do not direcly apply to both

matrices the particular superscript a or b is used.

3.1 Statistical Tests of Rank

The procedures which involve statistical tests consider the following null hypothesis H0 :

r(H) = r∗ against the alternative H1 : r(H) > r∗. Starting with the null hypothesis of

r∗ = 1, a sequence of tests is performed. If the null is rejected r∗ is augmented by one and

the test is repeated. When the null cannot be rejected, r∗ is adopted as the estimate of the

rank of H . Nevertheless, the rank estimate provided by this approach will not converge in

probability to the true value of the rank of the Hankel matrix, denoted by r0. The reason

is that even if the null hypothesis tested is true, the testing procedure will reject it with

probability α, where α is the significance level. The rank estimate will converge to its true

value, r0, as T goes to infinity, if α is made to depend on T and goes to zero as T goes to

infinity but not faster than a given rate. We denote this α by αT , where the subscript T now

denotes dependence of the significance level on the sample size. [11] shows that if αT goes

to zero as the sample size T goes to infinity and also limT→∞ lnαT/T = 0, then the rank

estimate provided by the sequential testing procedure will converge in probability to r0, see

also [6].
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3.1.1 Cragg and Donald (1996)

This method applies to both Ha and Hb. The procedure proposed by [5] is based on the

transformation of the matrix H using Gaussian elimination with complete pivoting1. r∗ steps

of Gaussian elimination with full pivoting on matrix H amounts to the following operations:

Qr∗Rr∗Qr∗−1Rr∗−1 . . .Q1R1HC1 . . .Cr∗−1Cr∗ =

[
H11(r

∗) H12(r
∗)

0 H22(r
∗)

]

where Ri and Ci are pivoting matrices for step i and Qi are Gauss transformation matrices.

The pivoting matrices used to perform the first r∗ steps of Gaussian eliminination are applied

to H to obtain the following relation

Rr∗Rr∗−1 . . .R1HC1...Cr∗−1Cr∗ = RHC = F =

[
F 11(r

∗) F 12(r
∗)

F 21(r
∗) F 22(r

∗)

]
(9)

where F is partitioned accordingly, i.e. F 11(r
∗) is of dimension r∗ × r∗. Note that in this

case F 11(r
∗) has full rank, under the null hypothesis that rk(H) = r∗. It then follows, (see

[5]), that F 22(r
∗) − F 21(r

∗)F−1
11 (r

∗)F 12(r
∗) = 0. The estimated counterpart of the above

relation, i.e. F̂ 22 − F̂ 21F̂
−1

11 F̂ 12 = Λ̂22(r
∗), may be used as a test statistic of the hypothesis

that the rank of H is r∗. Under regularity conditions, including the requirement that the

covariance matrix of the asymptotically normally distributed matrix
√
Tvec(Ĥ − H) has

full rank, the following result can be shown, under H0.

√
Tvec(Λ̂22(r

∗)) d→ N(0,ΓV Γ′)

where Γ = Φ2 ⊗Φ1 and Φ1 =
[−F 21F

−1
11 Imk−r∗

]
R, Φ2 =

[
−F ′

12F
−1′
11 Imp−r∗

]
C ′ and d→

denotes convergence in distribution. Then,

ξ̂ = Tvec Λ̂22(r
∗)′(Γ̂V̂ Γ̂

′
)
−1
vec Λ̂22(r

∗) d→ χ2
(mk−r∗)(mp−r∗)

where Γ̂ and V̂ are the sample estimates of Γ and V and χ2
l denotes the χ2 distribution

with l degrees of freedom.

While the matrix V is of reduced rank, the rank of V̂ above is only of reduced rank

asymptotically, where we use V̂ to refer to either V̂
a
or V̂

b
. This is problematic for the Cragg

and Donald procedure because it uses the inverse of the covariance matrix of the Hankel

matrix. [13] have shown that if additionally the rank of V is known and rk[V̂ ] = rk[V ], ∀T ,

then

ξ̂ = Tvec Λ̂22(r
∗)′(Γ̂V̂ Γ̂

′
)
+
vec Λ̂22(r

∗) d→ χ2
β (10)

where + denotes the Moore-Penrose inverse of a matrix, and the number of degrees of freedom

β is given by the minimum between the number of rows in Γ̂ and the rank of V̂ ; i.e.

1For details on Gaussian elimination with complete pivoting see [5] or [12].
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min{(mp− r∗)× (mk− r∗), (k+ p− 1) ∗m}. Note that by construction, both estimators for

the covariance matrices of the Hankel matrix presented above have the required property. We

will refer to the Cragg and Donald procedure using generalised inverses as the GE procedure

when applied to the Ĥ
a
, V̂

a
pair; and as CC procedure when applied to the Ĥ

b
, V̂

b
pair.

3.1.2 Bartlett (1947)

An alternative method to estimate the rank of the Hankel matrix is based on the computation

of canonical correlations. This method only applies directly to the Ha matrix. A well known

result in canonical correlation analysis is that given two random vector series x1 and x2,

each of dimensions k, the rank of the covariance matrix between those two random vectors

is equal to the number of nonzero cannonical correlations, see [14] for further details. The

Hankel covariance matrix Ha defined in equation (4) above is the covariance matrix between

the random vectors yt
+ and yt

−. Compute the QR decomposition of the matrices Y+ and Y−

given in (5) above, i.e. Y+ = Q+R+ and Y− = Q−R−. The canonical correlations between

the vectors yt
+ and yt

−, are the singular values of Q′
+Q−. [15] provided a LR criterion for

testing the null Hk : rr+1 = · · · = rmin(k,p)m = 0. Under the null hypothesis

BA =

[
m(k + p) + 1

2
− T

]
ln

min(k,p)m∏
i=r∗+1

(
1− r̂2

i

) d→ χ2
(mk−r∗)(mp−r∗)

3.2 Information criteria

[16] and [17] showed that the number of linearly independent components of the projections

of the previously defined y+
t onto the linear space spanned by the components of y−

t is

identical to the number of nonzero canonical correlations between y+
t and y−

t . When yt

is Gaussian, canonical correlation analysis between y+
t and y−

t is equivalent to maximum

likelihood estimation of the linear model: y+
t = Ψy−

t + εt See [14]. The number of free

parameters for this model is: F (r∗) = {[s+(s+ + 1)]/2}+{[s−(s− + 1)]/2}+r∗(s+ +s−−r∗)

where s+ denotes the dimension of the vector y+
t and s− denotes the dimension of y−

t . The

first and second term are the number of free parameters of the covariance matrices of y+
t

and y−
t respectively, and the last term gives the number of free parameters in matrix Ψ. [17]

defined a loss function for model fitting, and by extension rank determination, as:

AIC(r∗) = T ln
r∗∏

i=1

(1− ρ̂2
i ) + 2F (r∗)

where ρ̂i are the estimated canonical correlation coefficients previously defined. This criterion

penalises models with a large number of parameters, and by extension large rank, and favours

parsimonious representations. Note that, as discussed in [14, pp. 499], when ρi = 0 then
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ρ2
i = Op(T

−1) implying that ln(1− ρ2
i ) = Op(T

−1) where Op(.) denotes order in probability.

This suggests that there is a positive probability that AIC will be minimised for some r∗ > r0

since the probability that T
∑r∗

i=r0+1 ln(1− ρ̂2
i ) < 2(F (r0)−F (r∗)) may be greater than zero.

Therefore the estimated rank will not converge in probability to r0 when AIC is used.

Alternatively, one could use an estimate of the covariance matrix of the error term et for

a model specified for a certain rank r∗, and denoted as Ω̂r∗ in the expression to be minimised.

In order to compute Ω̂r∗ use is made of the regression based method for the estimation of

the system parameter matrices described in the appendix. Let’s denote this loss function to

be minimised as:

AICc(r
∗) = T ln

∣∣∣Ω̂r∗

∣∣∣ + 2F (r∗)

[18] suggested an alternative penalty on increasing the number of parameters, and in the

present paper we explore the performance of this criterion in searching for the rank. His loss

function is:

BIC(r∗) = T ln
r∗∏

i=1

(1− ρ̂2
i ) + ln(T )F (r∗)

The penalty used by BIC is much more severe than that used by AIC. In fact it is easy to see

that the rank estimate obtained by the BIC will converge in probability to r0. Nevertheless,

BIC is likely to underestimate the rank in small samples. Similar to the AIC case we could

also use as a loss function

BICc(r
∗) = T ln

∣∣∣Ω̂r∗

∣∣∣ + ln(T )F (r∗)

[19] suggested a further alternative penalty on increasing the number of parameters. The

loss function correponding to this penalty are:

HQ(r∗) = T ln
r∗∏

i=1

(1− ρ̂2
i ) + 2 ∗ ln(ln(T ))F (r∗)

HQc(r
∗) = T ln

∣∣∣Ω̂r∗

∣∣∣ + 2 ∗ ln(ln(T ))F (r∗)

3.3 Bootstrap Testing Procedures

Theoretical work on the advantages of bootstrapping pivotal statistics for time series is

limited. [20] and [21] show that, for univariate AR and MA models with independent inno-

vations, the approximation error of the bootstrap distribution of least squares estimators of

the AR and MA coefficients is op(T
−1/2) whereas it is Op(T

−1/2) for the first order limiting

distribution. One might conjecture that an extension of the results of [20] and [22] to a

multivariate framework should provide a rigorous proof for similar advantages of the boot-

strap distribution for statistics obtained from state space models, in particular for bootstrap
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versions of the above B and GE test statistics; see also [23]. Of course, given the asymptotic

nature of the above arguments, these conclusions may prove misleading for the performance

of the bootstrap in finite samples; see, for example, [24]. The bootstrap estimate of the dis-

tribution of test statistic i, i = GE, CC and BA, is given by Fi(x) = N−1
∑N

n=1 1(τ
n
i < x),

where τn
i denotes a generic bootstrap test statistic, n = 1, ..., N , 1(.) is the indicator function

and N is the number of replications. For each sequence of m− 1 tests of the null hypotheses

H0,r : rk(H) = r, r = 1, . . . ,m − 1, we need m − 1 bootstrap distributions. Let a generic

test statistic of the hypothesis H0,r be denoted as ψr(Ĥ) where Ĥ is the estimated Hankel

matrix on which the test is carried out. Also, let the general form of the test statistic, as

given in (10) for example, be denoted by ψr(Ĥ ,A,B,C) where A, B, C are the true value

of the coefficient matrices of the state space model on which the test is carried out. For

the null hypothesis H0,r∗ : rk(H) = r∗, we estimate the data using an state space model

with order fixed to r∗. A regression based approach to estimate the coefficient matrices

is reviewed in the appendix. Use of maximum likelihood estimation in connection with the

bootstrap is not feasible for the purpose of the Monte Carlo exercise due to limited computer

power. The estimates of the coefficient matrices denoted by Â, B̂ and Ĉ are then used to

generate the bootstrap samples, denoted by ybo
t , t = 1, . . . , T , bo = 1, . . . , B where B is the

number of bootstrap replications. The errors used to generate these samples are obtained

by random resampling from the residuals of the estimated state space model. Consistency

of the estimation of the state space model guarantees that these residuals will converge in

probability to the error terms of the model. The bootstrap samples are then used to generate

the test statistics for the test of H0,r∗ , ψr∗(Ĥ
bo
, Â, B̂, Ĉ), bo = 1, . . . , B. 2 The bootstrap

versions of the GE, CC and BA tests using this bootstrapping method will be referred to

as GE1, CC1 and BA1 respectively.

4 Monte Carlo Design

All the procedures discussed above will be considered. Firstly the statistical tests of rank,

i.e. GE, GE1, CC, CC1, BA and BA1, and secondly the information criteria, i.e. AIC,

AICc, BIC, BICc, HQ and HQc.

We concentrate on a state space model like that in equation (1). The dimension of the

vector series yt is fixed to three. The rank of the Hankel matrix is equal to the dimension

of the state vector st which is fixed to three as well. Matrices A, B, C and Ω are built as

follows. B and C are (3× 3) matrices of values drawn from a standard normal distribution;

Ω is fixed to an identity matrix of dimension (3×3). Note that A is a key matrix to explain

2We have also studied the use of nonparametric bootstrap methods, but for the sample sizes under study
in this paper, results were not satisfactory and therefore are not reported.
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the dynamics of the series; the degree of persistence of shocks will depend on the eigenvalues

of A. To control the experiment for this, we have chosen to build A = ẼΛẼ
′
. Λ is a 3× 3

quasi upper triangular matrix; the last element of the diagonal corresponds to the modulus

assigned to that experiment, and the 2×2 block matrix in the left upper corner is computed

in such a way that the modulus of the complex pair of eigenvalues of this 2× 2 block is also

equal to the modulus assigned to the eigenvalues of that experiment; the remaining values

are fixed to a value of one. Ẽ is an orthonormal matrix generated from a standard normal

matrix using Gram-Schmidt orthogonalisation. For the Monte Carlo experiments presented

below, 3 different moduli making 3 alternative experiments will be used, namely experiment

a, large eigenvalues, with moduli given by (0.8,0.8,0.8); experiment b, small eigenvalues,

(0.4,0.4,0.4) and experiment c, uneven eigenvalues, (0.8,0.8,0.2), which allows to check for

the robustness of the procedures when one of the eigenvalues is very small.

Using these matrices and random normal disturbances generated by the GAUSS random

number generator with an identity covariance matrix a sample from a process following (1)

is obtained. The sample sizes considered are: 200, 400 and 600. For each simulated sample,

200 initial observations have been discarded, to minimise the effect of starting values which

are set to zero. 100 replications for 10 different random sets of matrices A, B and C are

carried out, making a total of 1000 replications. The reason for this design is to reduce the

dependence of the results on arbitrary parameter values. In each bootstrap application, for

reasons of computational feasibility, only 99 replications were carried out. The experiments

have been carried out for equal values for the truncation parameters k and p, i.e. k = p, and

for values k = 2 and k = 3. The notation for the different experiments in the tables will also

indicate the dimension of k = p, i.e. a2 refers to an experiment with moduli of eigenvalues a

and k = p = 2. All computations were carried out using the GAUSS programming language.

5 Monte Carlo Results

For each of the experiments, tables 1 and 2 present the probability of rejection of the null

hypothesis H0,r : rk(H) = r, r = 1, . . . , r∗ where r∗ is the true rank, using critical values

associated with a nominal 0.05 significance level with ∗ and ∗∗ indicating a significant dif-

ference between estimated actual and nominal size at the 0.05 and 0.01 levels respectively.

As expected, performance worsens with respect to the size of the Hankel matrix, for experi-

ments with smaller moduli of the eigenvalues, and when the sample size is small. But there

are some interesting disparities in the relative performance of the alternative methods under

study.

The size properties of GE and CC are not very good particularly for three blocks in
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the Hankel matrix, k = 3. The size of their bootstrapped versions, GE1 and CC1 is clearly

superior. The price to pay for this improvement comes in terms of less power; this is of

serious concern for the CC1 test, but less so for the GE1 test. The BA method appears to

be less sensitive than the others to all dimensions explored in the Monte Carlo exercise. In

particular BA is much more robust than the others to large number of blocks in the Hankel

matrix, k = 3. The bootstrapped version of the Barlett test, BA1, helps significantly to

improve the size properties of its asymptotic counterpart when the number of blocks in the

Hankel matrix is large, i.e. experiments a3, b3 and c3. Furthermore, the loss in power of BA1

is small for all experiments compared to the asymptotic test. Another interesting feature of

the results is the nonmonotonicity of the power function with respet to sample size. This is

likely to be the result of varying randomly the coefficient matrices.

Table 3 presents results for the mean, standard deviation and root mean square error

(RMSE) of the rank estimates over the Monte Carlo exercises for the Statistical tests. Similar

results for the Information Criterion Methods are given in table 4. As for the statistical tests,

the performance of CC1 is clearly worse than the asymptotic version of this test, particularly

when the number of blocks is k = 3 and for experiments of type b and c. The performance

of GE1 is in line with its asymptotic equivalent GE. Generally speaking the performance of

BA and BA1 is good for all experiments, coming almost always as best.

Results presented in table 4 show that information criteria of the type AICc, BICc

and HQc display similar results to their equivalent counterparts AIC, BIC and HQ. The

performance of information criteria methods don’t deteriorate very much when the number

of blocks in the Hankel increases. But information criteria methods appear more sensitive

than statistical tests to sample size. This is particularly the case for the BIC method

which displays a poor performance for a sample size of 200. Among the information criteria

methods BIC and HQ display the best results for sample sizes of 400 and 600. Generally

speaking, and ignoring the CC1 results, the performance of statistical tests is best compared

to information criteria methods for most experiments. Statistical tests such as GE1, BA

and BA1 provide very good results, and are shown to be less sensitive to all the dimensions

explored in the Monte Carlo exercies. The GE tests should only be used for small values for

k. Tables 5 and 6 present the distribution of the estimated rank for the statistical tests and

the information criteria. Results highlight the same conclusions.

6 Conclusion

This paper has studied the performance of statistical tests of rank and their bootstrap ver-

sions against information criteria methods in determining the rank of the Hankel matrix.
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This study has been conducted through Monte Carlo simulations. The results presented

show that the bootstrap served to improve the size properties of the tests. Further, statisti-

cal tests, in particular GE1, BA and BA1 were shown to be superior to information criteria

methods.
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Appendix: Estimation of System Matrices

The regression approach described in this appendix is that proposed by [10]. This method

relies on a rank approximation of the Hankel matrix and a decomposition of this approxi-

mation into an observability and controllability matrix. The rank approximation is achieved

by means of its singular value decomposition, i.e. Ĥ = ÛΣ̂V̂ where Û and V̂ are or-

thonormal matrices, and Σ̂ is a rectangular matrix of zero nondiagonal elements and with

values σ̂1 ≥ σ̂2 ≥ . . . ≥ σ̂min(k,p)m. Once the rank has been estimated, say r, a r rank

approximation to the Hankel matrix H is given by Ĥr = Û rΣ̂rV̂ r where only the largest r

singular values and singular vectors are included.

A Decomposition of the Hankel covariance matrix into an observability matrix O and a

controllability matrix K is defined as: Ĥr = ÔrK̂r and it follows that K̂
+

r = V̂ rΣ̂
− 1

2

r and

Ô
+

r = Σ̂
− 1

2

r Û
′
r where + denotes generalised inverses.

Given a r rank approximation to Ĥ
b
, and estimate of the state vector is given by ŝt =

K̂
b

ry
t
−. This allows to estimate C from the regression:

yt = Cŝt + et

then Ĉ = (
∑T

t=1 ytŝ
′
t)(

∑T
t=1 ŝtŝ

′
t)

−1, this regression will also provide Ω̂ = T−1(
∑T

t=1 êtê
′
t),

where êt are the estimated residuals. Finally, matrices A and B can be estimated from the

regression:

ŝt+1 = Aŝt + Bêt + εt
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Table 1: Size and Power of Rank Tests. (I).

Exp H0 Tests Sample Size Exp H0 Tests Sample Size
200 400 600 200 400 600

GE 1.000 1.000 1.000 GE 1.000 1.000 1.000 =
GE1 0.999 1.000 1.000 GE1 0.993 0.994 0.999
CC 1.000 1.000 1.000 CC 1.000 1.000 1.000

r = 1 CC1 0.878 0.964 0.998 r = 1 CC1 0.327 0.184 0.383
BA 1.000 1.000 1.000 BA 1.000 1.000 1.000
BA1 1.000 1.000 1.000 BA1 1.000 1.000 1.000
GE 0.866 0.794 0.997 GE 1.000 1.000 1.000
GE1 0.881 0.797 1.000 GE1 0.555 0.525 0.664
CC 0.954 0.795 0.995 CC 1.000 1.000 1.000

a2 r = 2 CC1 0.845 0.804 0.997 a3 r = 2 CC1 0.026 0.052 0.022
BA 0.999 0.833 0.999 BA 1.000 1.000 1.000
BA1 0.999 0.827 0.998 BA1 0.999 1.000 1.000
GE 0.010∗∗ 0.005∗∗ 0.017∗∗ GE 0.192∗∗ 0.094∗∗ 0.135∗∗

GE1 0.066∗ 0.053 0.048 GE1 0.093∗∗ 0.032∗∗ 0.045
CC 0.018∗∗ 0.015∗∗ 0.019∗∗ CC 0.672∗∗ 0.473∗∗ 0.556∗∗

r = 3 CC1 0.064 0.046 0.046 r = 3 CC1 0.080∗∗ 0.068∗ 0.058
BA 0.071∗∗ 0.064 0.065 BA 0.116∗∗ 0.121∗∗ 0.110∗∗

BA1 0.073∗∗ 0.063 0.060 BA1 0.077∗∗ 0.063 0.056
GE 1.000 1.000 1.000 GE 1.000 1.000 1.000
GE1 0.972 0.999 0.999 GE1 0.909 1.000 1.000
CC 1.000 1.000 1.000 CC 1.000 1.000 1.000

r = 1 CC1 0.896 0.983 0.999 r = 1 CC1 0.332 0.262 0.280
BA 0.998 1.000 1.000 BA 1.000 1.000 1.000
BA1 0.996 1.000 1.000 BA1 0.999 1.000 1.000
GE 0.773 0.794 0.848 GE 0.963 0.999 0.954
GE1 0.628 0.716 0.793 GE1 0.333 0.630 0.419
CC 0.694 0.701 0.889 CC 0.999 1.000 1.000

b2 r = 2 CC1 0.538 0.708 0.809 b3 r = 2 CC1 0.053 0.032 0.050
BA 0.710 0.897 0.890 BA 0.808 0.975 0.846
BA1 0.686 0.880 0.885 BA1 0.746 0.959 0.799
GE 0.083∗∗ 0.155∗∗ 0.056 GE 0.473∗∗ 0.626∗∗ 0.493∗∗

GE1 0.085∗∗ 0.084∗∗ 0.067∗ GE1 0.141∗∗ 0.175∗∗ 0.133∗∗

CC 0.086∗∗ 0.052 0.044 CC 0.690∗∗ 0.741∗∗ 0.544∗∗

r = 3 CC1 0.123∗∗ 0.089∗∗ 0.066∗ r = 3 CC1 0.054 0.077∗∗ 0.058
BA 0.042 0.055 0.050 BA 0.104∗∗ 0.104∗∗ 0.088∗∗

BA1 0.080∗∗ 0.062 0.053 BA1 0.107∗∗ 0.083∗∗ 0.078∗∗
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Table 2: Size and Power of Rank Tests. (II).

Exp H0 Tests Sample Size Exp H0 Tests Sample Size
200 400 600 200 400 600

GE 1.000 1.000 1.000 GE 1.000 0.996 1.000
GE1 1.000 1.000 1.000 GE1 0.975 0.977 1.000
CC 1.000 1.000 1.000 CC 1.000 1.000 1.000

r = 1 CC1 0.984 0.997 1.000 r = 1 CC1 0.455 0.461 0.000
BA 1.000 1.000 1.000 BA 1.000 1.000 1.000
BA1 1.000 1.000 1.000 BA1 1.000 1.000 1.000
GE 0.697 0.819 0.821 GE 0.922 0.961 1.000
GE1 0.713 0.843 0.854 GE1 0.293 0.599 0.825
CC 0.638 0.860 0.831 CC 1.000 1.000 1.000

c2 r = 2 CC1 0.620 0.858 0.826 c3 r = 2 CC1 0.040 0.044 0.011
BA 0.696 0.839 0.930 BA 0.919 0.922 1.000
BA1 0.673 0.814 0.911 BA1 0.887 0.910 1.000
GE 0.030∗∗ 0.055 0.028∗∗ GE 0.322∗∗ 0.372∗∗ 0.883∗∗

GE1 0.054 0.070∗ 0.083∗∗ GE1 0.089∗∗ 0.149∗∗ 0.079∗∗

CC 0.014∗∗ 0.021∗∗ 0.066∗ CC 0.499∗∗ 0.651∗∗ 0.819∗∗

r = 3 CC1 0.070∗ 0.050 0.093∗∗ r = 3 CC1 0.064 0.086∗∗ 0.048
BA 0.050 0.064 0.070∗ BA 0.110∗∗ 0.125∗∗ 0.090∗∗

BA1 0.070∗ 0.059 0.076∗∗ BA1 0.081∗∗ 0.075∗∗ 0.049

17



Table 3: Mean, St. Deviation and RMSE of Estimated Rank. Statistical Methods.

Sample Size
200 400 600

Exp. Tests xa σ 
 x σ 
 x σ 

GE 2.88 0.36 0.38 2.80 0.41 0.46 3.02 0.16 0.16
GE1 2.95 0.46 0.46 2.86 0.53 0.55 3.06 0.29 0.29
CC 2.97 0.25 0.25 2.81 0.43 0.47 3.01 0.15 0.15

a2 CC1 2.69 0.79 0.85 2.78 0.58 0.62 3.04 0.26 0.26
BA 3.08 0.30 0.31 2.90 0.49 0.50 3.07 0.26 0.27
BA1 3.10 0.40 0.41 2.91 0.56 0.57 3.08 0.34 0.35
GE 3.20 0.41 0.46 3.10 0.30 0.31 3.14 0.35 0.38
GE1 2.60 0.60 0.72 2.55 0.58 0.73 2.68 0.51 0.60
CC 3.76 0.60 0.96 3.48 0.51 0.70 3.58 0.54 0.79

a3 CC1 1.33 0.48 1.74 1.19 0.41 1.86 1.40 0.53 1.69
BA 3.13 0.39 0.41 3.15 0.43 0.45 3.12 0.38 0.39
BA1 3.13 0.55 0.56 3.13 0.58 0.59 3.11 0.56 0.57
GE 2.86 0.54 0.56 2.96 0.62 0.62 2.91 0.45 0.46
GE1 2.68 0.67 0.74 2.79 0.58 0.62 2.85 0.51 0.53
CC 2.78 0.60 0.63 2.75 0.54 0.60 2.94 0.41 0.41

b2 CC1 2.51 0.83 0.96 2.77 0.63 0.67 2.88 0.52 0.54
BA 2.75 0.53 0.59 2.96 0.41 0.41 2.94 0.40 0.41
BA1 2.78 0.66 0.69 2.96 0.49 0.50 2.96 0.48 0.48
GE 3.46 0.62 0.78 3.70 0.60 0.92 3.49 0.65 0.81
GE1 2.31 0.74 1.01 2.74 0.67 0.72 2.50 0.67 0.84
CC 3.71 0.51 0.88 3.89 0.67 1.11 3.56 0.53 0.77

b3 CC1 1.36 0.53 1.73 1.27 0.46 1.79 1.29 0.47 1.78
BA 2.93 0.59 0.59 3.09 0.40 0.41 2.94 0.52 0.52
BA1 2.92 0.81 0.82 3.10 0.58 0.59 2.91 0.67 0.67
GE 2.73 0.51 0.58 2.88 0.47 0.49 2.85 0.43 0.46
GE1 2.77 0.54 0.59 2.92 0.49 0.49 2.95 0.51 0.52
CC 2.65 0.51 0.61 2.88 0.38 0.40 2.90 0.48 0.49

c2 CC1 2.66 0.63 0.72 2.91 0.48 0.49 2.92 0.54 0.54
BA 2.75 0.55 0.61 2.91 0.47 0.48 3.00 0.39 0.39
BA1 2.76 0.64 0.68 2.89 0.54 0.55 3.01 0.48 0.48
GE 3.26 0.62 0.68 3.34 0.60 0.69 3.95 0.43 1.05
GE1 2.29 0.57 0.90 2.66 0.68 0.76 2.90 0.50 0.51
CC 3.51 0.53 0.74 3.66 0.49 0.82 3.84 0.43 0.94

c3 CC1 1.48 0.54 1.62 1.49 0.56 1.61 1.00 0.00 2.00
BA 3.05 0.51 0.51 3.06 0.50 0.50 3.10 0.35 0.37
BA1 3.04 0.71 0.71 3.04 0.63 0.63 3.08 0.43 0.43

ax, σ and 
 denote respectively the mean standard error and RMSE of the estimated rank over the Monte
Carlo samples.
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Table 4: Mean, St. Deviation and RMSE of Estimated Rank. Information Criteria Methods

Sample Size
200 400 600

Exp. Tests xa σ 
 x σ 
 x σ 

AIC 3.16 0.58 0.60 3.21 0.47 0.51 3.17 0.42 0.45
AICc 3.01 0.43 0.43 3.08 0.28 0.29 3.26 0.46 0.53

a2 BIC 2.90 0.31 0.32 3.00 0.00 0.00 2.99 0.08 0.08
BICc 2.90 0.34 0.35 3.01 0.08 0.08 3.08 0.31 0.32
HQ 2.93 0.34 0.35 3.01 0.09 0.09 3.01 0.08 0.08
HQc 2.95 0.37 0.37 3.02 0.14 0.14 3.16 0.38 0.41
AIC 3.24 0.53 0.58 3.21 0.61 0.65 3.23 0.50 0.55
AICc 3.05 0.62 0.63 3.19 0.73 0.76 3.46 0.71 0.85

a3 BIC 2.86 0.34 0.37 2.84 0.37 0.40 3.00 0.04 0.04
BICc 2.68 0.59 0.67 2.89 0.52 0.54 3.12 0.58 0.59
HQ 2.97 0.19 0.19 2.90 0.31 0.33 3.00 0.04 0.04
HQc 2.84 0.57 0.59 2.97 0.62 0.62 3.29 0.61 0.67
AIC 2.96 0.58 0.58 3.08 0.53 0.54 3.15 0.52 0.54
AICc 2.80 0.69 0.72 3.17 0.58 0.61 2.99 0.51 0.51

b2 BIC 2.41 0.64 0.87 2.79 0.41 0.46 2.72 0.45 0.53
BICc 2.40 0.75 0.96 2.96 0.49 0.49 2.74 0.50 0.56
HQ 2.64 0.52 0.63 2.90 0.33 0.34 2.90 0.33 0.34
HQc 2.59 0.66 0.78 3.03 0.53 0.53 2.83 0.50 0.53
AIC 3.03 0.58 0.58 3.08 0.54 0.55 3.07 0.58 0.58
AICc 2.69 0.96 1.01 3.27 0.83 0.87 3.10 0.63 0.63

b3 BIC 2.08 0.71 1.16 2.54 0.50 0.68 2.70 0.46 0.55
BICc 2.15 0.85 1.20 2.42 0.76 0.96 2.69 0.51 0.60
HQ 2.53 0.59 0.75 2.78 0.43 0.48 2.78 0.42 0.47
HQc 2.41 0.90 1.08 2.94 0.76 0.77 2.88 0.51 0.52
AIC 3.15 0.53 0.55 3.17 0.48 0.51 3.20 0.48 0.52
AICc 3.08 0.50 0.50 3.05 0.53 0.53 3.15 0.57 0.59

c2 BIC 2.80 0.41 0.45 2.77 0.42 0.48 2.88 0.32 0.34
BICc 2.82 0.46 0.49 2.70 0.50 0.58 2.78 0.57 0.61
HQ 2.91 0.36 0.37 2.91 0.31 0.33 2.97 0.21 0.21
HQc 2.93 0.47 0.47 2.87 0.49 0.51 2.94 0.55 0.55
AIC 3.23 0.53 0.58 3.21 0.53 0.57 3.23 0.51 0.56
AICc 3.32 0.67 0.75 3.51 0.87 1.01 3.28 0.55 0.62

c3 BIC 2.68 0.47 0.57 2.60 0.49 0.63 2.85 0.35 0.38
BICc 2.89 0.51 0.52 2.92 0.74 0.74 3.06 0.48 0.48
HQ 2.92 0.28 0.29 2.81 0.40 0.44 2.98 0.16 0.16
HQc 3.12 0.54 0.56 3.21 0.78 0.80 3.16 0.48 0.50

ax, σ and 
 denote respectively the mean standard error and RMSE of the estimated rank over the Monte
Carlo samples.
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Table 5: Distribution of Estimated Rank (%). Statistical Testsa

Exp. Tests Sample Size
200 400 600

1 2 3 4 1 2 3 4 1 2 3 4
GE 0.0 13.4 85.7 0.9 0.0 20.6 79.2 0.2 0.0 0.3 98.0 1.5
GE1 0.1 11.9 82.0 4.9 0.0 20.3 75.2 3.2 0.0 0.0 95.2 3.7
CC 0.0 4.6 93.6 1.8 0.0 20.5 78.1 1.4 0.0 0.5 97.6 1.9

a2 CC1 12.2 13.3 69.6 3.7 3.6 19.1 73.2 3.7 0.2 0.3 94.9 4.2
BA 0.0 0.1 92.8 6.6 0.0 16.7 76.9 5.8 0.0 0.1 93.4 6.4
BA1 0.0 0.1 92.6 5.4 0.0 17.3 76.7 3.9 0.0 0.2 93.8 4.1
GE 0.0 0.0 80.8 18.6 0.0 0.0 90.6 9.3 0.0 0.0 86.5 13.3
GE1 0.7 43.8 51.0 4.1 0.6 46.9 50.1 1.8 0.1 33.5 64.5 1.7
CC 0.0 0.0 32.8 58.9 0.0 0.0 52.7 46.8 0.0 0.0 44.4 53.3

a3 CC1 67.3 32.3 0.4 0.0 81.6 17.8 0.6 0.0 61.7 36.8 1.3 0.1
BA 0.0 0.0 88.4 9.9 0.0 0.0 87.9 9.9 0.0 0.0 89.0 9.8
BA1 0.0 0.1 92.2 5.2 0.0 0.0 93.7 3.1 0.0 0.0 94.4 2.9
GE 0.0 22.7 69.1 8.0 0.0 20.6 64.1 14.5 0.0 15.2 79.2 5.4
GE1 2.8 34.5 55.8 6.1 0.1 28.3 64.5 6.4 0.1 20.6 74.2 4.5
CC 0.0 30.6 60.8 8.3 0.0 29.9 65.0 4.9 0.0 11.1 84.5 3.9

b2 CC1 10.4 38.5 42.0 8.0 1.7 28.1 62.6 6.8 0.1 19.0 75.5 4.1
BA 0.2 28.8 66.8 4.0 0.0 10.3 84.2 5.1 0.0 11.0 84.0 4.8
BA1 0.4 31.0 60.9 5.9 0.0 12.0 81.8 4.9 0.0 11.5 83.2 3.6
GE 0.0 3.7 49.4 43.7 0.0 0.1 37.3 55.6 0.0 4.6 46.1 45.3
GE1 9.1 57.6 26.3 6.8 0.0 37.0 53.3 8.7 0.0 58.1 35.4 5.0
CC 0.0 0.1 30.9 66.4 0.0 0.0 25.9 61.5 0.0 0.0 45.6 52.6

b3 CC1 66.8 31.0 2.1 0.1 73.8 25.5 0.7 0.0 72.0 27.4 0.6 0.0
BA 0.0 19.2 70.4 8.7 0.0 2.5 87.1 9.2 0.0 15.4 75.8 8.0
BA1 0.1 25.3 63.9 7.2 0.0 4.1 87.6 5.2 0.0 20.1 72.6 5.0
GE 0.0 30.3 66.8 2.9 0.0 18.1 76.4 5.4 0.0 17.9 79.3 2.7
GE1 0.0 28.7 66.6 4.2 0.0 15.7 77.7 5.9 0.0 14.6 77.2 7.1
CC 0.0 36.2 62.4 1.4 0.0 14.0 83.9 2.1 0.0 16.9 76.5 6.5

c2 CC1 1.6 37.3 55.9 4.3 0.3 14.2 80.8 4.0 0.0 17.4 74.0 7.4
BA 0.0 30.4 64.6 4.7 0.0 16.1 77.5 6.1 0.0 7.0 86.0 6.5
BA1 0.0 32.7 60.6 5.1 0.0 18.6 75.5 4.6 0.0 8.9 83.6 5.5
GE 0.0 7.8 60.1 30.3 0.4 3.9 58.9 35.3 0.0 0.0 11.7 81.3
GE1 2.5 68.2 27.0 1.9 2.3 38.2 51.7 7.0 0.0 17.5 76.2 5.5
CC 0.0 0.0 50.1 48.5 0.0 0.0 34.9 64.5 0.0 0.0 18.1 79.7

c3 CC1 54.5 43.3 2.2 0.0 53.9 43.9 1.7 0.5 100.0 0.0 0.0 0.0
BA 0.0 8.1 80.9 9.0 0.0 7.8 79.7 10.8 0.0 0.0 91.0 7.8
BA1 0.0 11.3 80.8 4.3 0.0 9.0 83.5 4.7 0.0 0.0 95.1 3.4

aValues are in (%). Exp denotes experiment according to what is explained in the text.
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Table 6: Distribution of Estimated Rank (%). Information Criteria Methods.a

Exp. Tests Sample Size
200 400 600

1 2 3 4 1 2 3 4 1 2 3 4
AIC 0.0 6.3 74.4 16.9 0.0 0.0 82.1 15.5 0.0 0.0 84.5 13.9
AICc 0.0 8.6 82.0 9.3 0.0 0.0 91.9 7.9 0.0 0.3 74.1 24.8

a2 BIC 0.0 10.3 89.6 0.1 0.0 0.0 100.0 0.0 0.0 0.6 99.4 0.0
BICc 0.0 11.1 87.5 1.4 0.0 0.0 99.3 0.7 0.0 1.0 89.7 9.3
HQ 0.0 9.8 87.6 2.6 0.0 0.0 99.1 0.9 0.0 0.0 99.4 0.6
HQc 0.0 9.6 86.3 4.0 0.0 0.0 98.3 1.6 0.0 0.6 82.9 16.5
AIC 0.0 0.4 79.6 15.8 0.0 4.9 73.9 17.2 0.0 0.0 80.8 16.1
AICc 0.0 16.3 63.7 19.2 0.0 14.8 55.8 25.6 0.0 0.0 66.6 21.6

a3 BIC 0.0 13.6 86.4 0.0 0.0 16.4 83.6 0.0 0.0 0.2 99.8 0.0
BICc 1.1 34.6 59.3 4.9 0.0 20.0 71.5 8.4 0.0 7.5 77.6 10.6
HQ 0.0 3.1 96.4 0.5 0.0 10.5 89.3 0.2 0.0 0.0 99.8 0.2
HQc 0.0 25.5 65.3 9.0 0.0 19.4 65.3 14.1 0.0 1.2 75.2 17.0
AIC 0.0 17.2 71.4 10.2 0.0 7.8 78.4 12.1 0.0 4.8 77.2 16.3
AICc 0.4 35.0 49.0 15.6 0.0 6.6 73.0 17.3 0.0 13.0 76.0 10.2

b2 BIC 8.3 42.3 49.4 0.0 0.0 21.0 79.0 0.0 0.0 28.4 71.6 0.0
BICc 13.5 36.2 47.4 2.9 0.0 13.2 78.1 7.9 0.0 28.8 68.5 2.7
HQ 1.1 34.8 63.5 0.6 0.0 10.9 88.4 0.7 0.0 10.7 88.3 1.0
HQc 3.6 40.0 50.0 6.4 0.0 11.1 75.9 11.6 0.0 22.2 72.6 5.0
AIC 0.1 12.9 72.3 13.1 0.0 8.9 76.4 12.7 0.0 9.9 76.1 11.4
AICc 11.9 29.0 39.0 18.2 0.0 15.7 49.5 27.7 0.0 12.8 67.0 17.8

b3 BIC 21.6 48.6 29.8 0.0 0.1 45.9 54.0 0.0 0.0 30.2 69.8 0.0
BICc 25.5 37.6 32.9 4.0 10.8 42.4 40.7 6.1 0.0 33.8 63.9 2.3
HQ 4.8 37.4 57.4 0.4 0.0 22.7 76.9 0.4 0.0 22.0 77.8 0.2
HQc 17.7 34.0 38.1 10.0 0.6 28.0 51.2 17.5 0.0 19.6 73.2 7.0
AIC 0.0 3.9 80.1 13.6 0.0 1.6 81.9 14.3 0.0 0.3 82.3 15.0
AICc 0.0 8.7 75.3 15.8 0.0 10.7 74.1 14.5 0.0 6.5 75.5 14.6

c2 BIC 0.0 20.5 79.4 0.1 0.0 23.0 77.0 0.0 0.0 11.6 88.4 0.0
BICc 0.0 21.4 75.6 3.0 0.0 31.9 66.4 1.7 0.0 29.1 64.6 5.7
HQ 0.0 11.3 86.5 2.2 0.0 9.9 89.4 0.7 0.0 3.7 95.4 0.9
HQc 0.0 14.8 77.6 7.6 0.0 19.2 75.1 5.4 0.0 16.7 74.0 7.7
AIC 0.0 0.4 80.0 15.9 0.0 2.1 78.6 16.4 0.0 0.0 80.1 17.1
AICc 0.0 4.1 67.0 21.7 0.0 9.5 44.6 32.3 0.0 1.1 74.1 20.8

c3 BIC 0.0 32.3 67.7 0.0 0.0 40.1 59.9 0.0 0.0 14.6 85.4 0.0
BICc 0.0 18.6 73.9 7.1 0.0 29.3 52.1 16.2 0.0 8.0 78.8 12.6
HQ 0.0 8.1 91.6 0.3 0.0 19.1 80.3 0.6 0.0 2.5 97.5 0.0
HQc 0.0 7.0 76.0 14.7 0.0 15.9 53.6 24.7 0.0 3.3 79.0 16.3

aValues are in (%). Exp denotes experiment according to what is explained in the text. The numbers
200, 400 and 600 refer to the different sample sizes
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