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Abstract

Identification in the context of multivariate state space modelling involves the spec-
ification of the dimension of the state vector. One identification approach requires
an estimate of the rank of a Hankel matrix. The most frequently used approaches
of rank determination rely on information criteria methods. This paper evaluates
the performance of some asymptotic tests of rank determination together with their
bootstrapped versions against standard information criteria methods. This study is
conducted through simulation experiments. Results show that the bootstrapped pro-
cedures significantly improve upon the performance of the corresponding asymptotic
tests, and are proved better than standard Information Criterion methods.
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1 Introduction

Identification in the context of multivariate state space modelling involves the specification
of the dimension of the state vector. [1] provided one such a method based on canonical
correlations. In the present paper we will focus on an alternative identification approach
based on the Kronecker theorem; see [2]. This method consists of estimating the rank of
the Hankel matrix. The rank of this matrix gives the minimal realisation, i.e. the minimum
number of states in a state space representation that replicates the transfer function of the
vector series under study. The most frequently used rank determination methods in the
systems literature rely on model selection criteria techniques, see [3] and [4] and references
therein.

In recent years, there has been renewed research interest in the development of tests of
the rank of a matrix. Inter alia, [5], [6], [7] and [8] consider a situation in which a root-
T consistent (RTC) estimator is available for the matrix of interest where T' denotes the
sample size. The focus of this paper will be to evaluate the performance of some of these
asymptotic tests of rank determination together with their bootstrapped versions against
standard Information Criterion methods in the context of System Identification.

Section 2 describes the system identification strategy based on the rank of the Hankel
matrix. Section 3 describes the procedures of rank determination under study in the present
paper. Section 4 describes the Monte Carlo strategy undertaken. Section 5 presents the

Monte Carlo results. Finally section 6 concludes.

2 System Identification
This paper focuses on a linear state space system of the form:

yt = CSt + €;
Sty1 = ASt + Bet (1)

where y, is a m-vector series, A, B and C are r X r, r x m and m X r parameter matrices
respectively, s; is a r-vector of unobservable state variables, and e; is an m-vector of random
variables with mean zero and positive definite covariance matrix 2. This system can be
characterised by a system transfer function matrix G(z) = >.;°, G;271, where G; are the
impulse response matrices. The order of the system, is defined as the order of the minimal
state-space realization, i.e. the minimal dimension of the state vector that replicates the

transfer function. Corresponding to the transfer function matrix G(z) above, the infinite



dimensional Hankel matrix is defined as:

G, Gy Gy --- CB CAB CA’B
Gy Gy - - CAB CA’B
H=0C=|gqg, ... ... ...|= | caAa*B ... (2)

where the so called observability matrix is defined as O = [C’, A'C, (A C,-- -}/ and the
so called controllability matrix as C = [B ,AB,(A*)B, - } Kronecker’s theorem can be
used to show that the order of the system is equal to the rank of the Hankel matrix (see [2]).
The rank of H is the focus of the investigation. The computation of the rank of the Hankel
matrix is not an easy task, as it is unlikely that the impulse response matrices are given
exactly, and in a majority of cases they are estimated. Furthermore, searching for the rank
of the Hankel matrix is not conducted directly on (2) but rather on some pseudo-Hankel

matrices. Two alternative strategies are described in the subsections below.

2.1 Hankel Covariance Matrix H*

An alternative characterisation of this system is in terms of a Hankel matrix of the covariances

of the output vector, y,.

Ay Ay A
i _ Ay Ay oo s
H'=0C=| A | .. .. (3)

where A; is the autocovariance matrix of gy, for lag i, C = [6, AC,(AYC, - -], C =
BQ + APC' and P is the covariance matrix of the state vector defined as E{s;s;}. It
follows that the rank of H* is equal to the rank of H, see [9]. Obviously one cannot use the
infinite dimensional matrix above, and when working with finite data a finite truncation of
the Hankel matrix will be required. Note that this Hankel Covariance matrix can be defined

as the covariance matrix between the vectors ¥, and y’ , and defined as follows:

y A]_ AZ cee Ap
. / t+1 , / A A .. A
H*=F <yf’_yt_> =F ( Y o Yt pir ) - ...2 ...3 .I.).Jrl (4)
yt+k Ak Ak—i—l Ak+p_1

The truncation parameters k and p must be fixed. For T" observations, an estimator for the

Hankel matrix which is computationally fast and guarantees that the upper diagonal blocks



are identical to the corresponding lower diagonal blocks, is defined as H = %y;y_ where,

y 0 .. 0 Yy Yy o Yo
Yo y, ... O
Yo=1| ys ¥ .. 0 YVi=|¥Yrs Yry - 0 (5)
- G Yyr4 Yr .. 0
Y71 Y72 - Y1y Y 0 0

As H' is estimated, it will always have full rank. One of the statistical procedures we
will consider uses the covariance matrix of H'  in order to assess statistically its rank. A
consistent estimator of the covariance matrix of v/Tvec(H a), and defined as V', is given
by V* = 1 tT;,f(vec(yiyt_l) — Uec(I:Ia))(vec(yiLyt_l) — vec(H"))'. While the matrix V*
is of reduced rank, the rank of V" above is only of reduced rank asymptotically. This is
problematic for one of the procedures consider below. An estimator of V* with equal rank
to V¥ must be constructed as follows:

T—k

V= % > (vec(Z") — vec(H"))(vec(Z") — vec(H"))' (6)

t=k

where Z° = ((y, Y7V, (y,Y2), -, (ytyt:k)’)/ where J* denotes the t-th row of Y_
and without loss of generality we are assuming that p < k. Note that by construction this
sample estimator of the asymptotic covariance matrix is singular and of equal rank to V“.
The singularity of this estimator will present a problem as a number of procedures of rank
determination require the inversion of such a matrix. This problem will be discussed in detail

in the next section.

2.2 Hankel Regression Matrix H°

An alternative representation of system (1) can be accomplished by defining the vector
of stacked future outputs Y, = (yg,yg IRPRR -)/ the vector of stacked past outputs Y, =
(yg_l, Yy o, -)/ and the vector of stacked future noise components E;” = (e;, €1, -)/; we

can then rewrite (1) as follows:
Y} =OCY; + ME/ (7)

where the observability matrix O is defined as above; € = [B,(A— BC),(A—BC)?,--;

and where

1 0O O
CB I 0

CAB CB 1



The rank of H® = OC is equivalent to the rank of H. Once more one cannot use the
infinite dimensional matrix above, and when working with finite data use is made of a finite

truncation of H’. Using truncation parameters k and p as above, we can rewrite (7) as:
Y, = H'Y' + M, E, (8)

where ¢, and y' are truncated versions of the quantities defined above. M, and E??f,p) , are
truncated correspondingly, see [10]. The important feature is that one can get an estimate
of H®, denoted as I:Ib, by standard regression methods, i.e. I:Ib = y;y_(y’_y_)—l =
ﬁI“T(y/_y_)—l. A consistent estimator of the covariance matrix of \/Tvec(I:Ib), VP is
given by V' = DV'D’ where D — [T(Y_Y_)"'®I]. Note that the rank of V' is equal to
the rank of V. As stated above this is a desirable property to bear in mind in the context

of one of the rank tests described below.

3 Estimating the rank of the Hankel matrix

Two types of procedures will be used to provide an estimate of the rank: Statistical tests
of rank and information criteria. In what follows whenever we refer to H and V it should
be understood that results apply directly to both pseudo-Hankel matrices H* and H® with
their respective covariance matrices V¢ and V. When results do not direcly apply to both

b

matrices the particular superscript ¢ or ” is used.

3.1 Statistical Tests of Rank

The procedures which involve statistical tests consider the following null hypothesis Hj :
r(H) = r* against the alternative Hy : r(H) > r*. Starting with the null hypothesis of
r* =1, a sequence of tests is performed. If the null is rejected r* is augmented by one and
the test is repeated. When the null cannot be rejected, r* is adopted as the estimate of the
rank of H. Nevertheless, the rank estimate provided by this approach will not converge in
probability to the true value of the rank of the Hankel matrix, denoted by 7°. The reason
is that even if the null hypothesis tested is true, the testing procedure will reject it with
probability a, where « is the significance level. The rank estimate will converge to its true

0 as T goes to infinity, if o is made to depend on T and goes to zero as T goes to

value, r
infinity but not faster than a given rate. We denote this a by ar, where the subscript 7" now
denotes dependence of the significance level on the sample size. [11] shows that if ar goes
to zero as the sample size T goes to infinity and also limy_ . Inar/T = 0, then the rank
estimate provided by the sequential testing procedure will converge in probability to 7°, see

also [6].



3.1.1 Cragg and Donald (1996)

This method applies to both H® and H®. The procedure proposed by [5] is based on the
transformation of the matrix H using Gaussian elimination with complete pivoting®. 7* steps
of Gaussian elimination with full pivoting on matrix H amounts to the following operations:

Hyy(r) Hyp(r7) 1

QT*RT*Qr*—IRT**l c. QlRl-HCl e Cr*flcr* = |: 0 HQQ(T*)

where R; and C; are pivoting matrices for step 7 and Q; are Gauss transformation matrices.
The pivoting matrices used to perform the first r* steps of Gaussian eliminination are applied

to H to obtain the following relation

R.-R.._,... R HC,..C,-_,C,. = RHC = F = [ Fu(r) Fi() } (9)

Fy (r*) Fao(r)
where F' is partitioned accordingly, i.e. F'j1(r*) is of dimension 7* x r*. Note that in this
case F'11(r*) has full rank, under the null hypothesis that rk(H) = r*. It then follows, (see
[5]), that Fao(r*) — Fo (r*)F 1 (r*)F1a(r*) = 0. The estimated counterpart of the above
relation, i.e. 1:"22 — 13"2113‘1_1113‘12 = Azg(r*), may be used as a test statistic of the hypothesis
that the rank of H is r*. Under regularity conditions, including the requirement that the
covariance matrix of the asymptotically normally distributed matrix v/Tvec(H — H) has

full rank, the following result can be shown, under Hj.
VTvec(Ag(r*)) % N(O,TVT)

where T = &, ® ®; and ®; = [~ Fy, Fy' L] R, ®, = [—F’uFl‘f' Imp,,n*] C' and %

denotes convergence in distribution. Then,

£ = Tvec Azg(r*)’(f‘f/f‘/)_lvec Ass(r*) X%mk—r*)(mp—r*)
where T and V are the sample estimates of T’ and V and x? denotes the x? distribution
with [ degrees of freedom.

While the matrix V is of reduced rank, the rank of V above is only of reduced rank
asymptotically, where we use V to refer to either V" or Vb. This is problematic for the Cragg
and Donald procedure because it uses the inverse of the covariance matrix of the Hankel
matrix. [13] have shown that if additionally the rank of V' is known and rk[V] = rk[V], VT,
then

¢ = Tvec Agg(r*)’(f‘Vf‘/)+vec Agy(r*) <, X5 (10)
where T denotes the Moore-Penrose inverse of a matrix, and the number of degrees of freedom

[ is given by the minimum between the number of rows in I' and the rank of V; ie.

!For details on Gaussian elimination with complete pivoting see [5] or [12].
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min{(mp —r*) x (mk —r*), (k+p—1) *m}. Note that by construction, both estimators for
the covariance matrices of the Hankel matrix presented above have the required property. We
will refer to the Cragg and Donald procedure using generalised inverses as the GE procedure

a4 ~a ~b b
when applied to the H , V' pair; and as C'C' procedure when applied to the H , V' pair.

3.1.2 Bartlett (1947)

An alternative method to estimate the rank of the Hankel matrix is based on the computation
of canonical correlations. This method only applies directly to the H* matrix. A well known
result in canonical correlation analysis is that given two random vector series ®; and x,,
each of dimensions k, the rank of the covariance matrix between those two random vectors
is equal to the number of nonzero cannonical correlations, see [14] for further details. The
Hankel covariance matrix H® defined in equation (4) above is the covariance matrix between
the random vectors y, and y* . Compute the QR decomposition of the matrices Y4 and Y_
given in (5) above, i.e. Y. = Q,R; and Y_ = Q_R_. The canonical correlations between

the vectors ¢, and y’, are the singular values of Q" Q_. [15] provided a LR criterion for

testing the null Hy, : rpyqy = -+ = "min(k,p)m = 0. Under the null hypothesis
min(k,p)m
m(k+p) +1 22\ d 2
BA == f — T‘| ln H (1 — T'Z-) — X(mkz—r*)(mp—?”*)
i=r*+1

3.2 Information criteria

[16] and [17] showed that the number of linearly independent components of the projections
of the previously defined y,” onto the linear space spanned by the components of y; is
identical to the number of nonzero canonical correlations between y;” and y,. When y,
is Gaussian, canonical correlation analysis between y;” and gy, is equivalent to maximum
likelihood estimation of the linear model: y = Wy, + &; See [14]. The number of free
parameters for this model is: F(r*) = {[sT(sT + D)]/2} +{[s" (s~ + 1)]/2} +r*(sT + s~ —1*)
where s denotes the dimension of the vector y; and s~ denotes the dimension of y;". The
first and second term are the number of free parameters of the covariance matrices of y;
and y, respectively, and the last term gives the number of free parameters in matrix ¥. [17]

defined a loss function for model fitting, and by extension rank determination, as:
AIC(r*) =TI [ J(1 = 4}) + 2F (r)
i=1

where p; are the estimated canonical correlation coefficients previously defined. This criterion
penalises models with a large number of parameters, and by extension large rank, and favours

parsimonious representations. Note that, as discussed in [14, pp. 499], when p; = 0 then
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p? = O,(T71) implying that In(1 — p?) = O,(T~') where O,(.) denotes order in probability.
This suggests that there is a positive probability that AIC will be minimised for some 7* > 7°
since the probability that 7" In(1—p2) < 2(F(r°) — F(r*)) may be greater than zero.

:;r0+1
Therefore the estimated rank will not converge in probability to r® when AIC is used.
Alternatively, one could use an estimate of the covariance matrix of the error term e; for
a model specified for a certain rank r*, and denoted as Qr* in the expression to be minimised.
In order to compute Q.. use is made of the regression based method for the estimation of

the system parameter matrices described in the appendix. Let’s denote this loss function to

be minimised as:

AICL(r*) = Tln ’Q

+ 2F(r")

[18] suggested an alternative penalty on increasing the number of parameters, and in the
present paper we explore the performance of this criterion in searching for the rank. His loss

function is:

BIC(r*) = T [ [(1 = 47) + In(T) F (")
i=1
The penalty used by BIC is much more severe than that used by AIC. In fact it is easy to see
that the rank estimate obtained by the BIC will converge in probability to 7°. Nevertheless,

BIC is likely to underestimate the rank in small samples. Similar to the AIC case we could

also use as a loss function

BIC,(+*) = T'ln ‘Q

+ In(T)F(r")

[19] suggested a further alternative penalty on increasing the number of parameters. The

loss function correponding to this penalty are:
HQ(r*) =TI J(1 = p) + 2% In(In(T)) F (r)
i=1

HQ.(r*) = T'ln ‘n + 2% In(In(T)) F ()

3.3 Bootstrap Testing Procedures

Theoretical work on the advantages of bootstrapping pivotal statistics for time series is
limited. [20] and [21] show that, for univariate AR and MA models with independent inno-
vations, the approximation error of the bootstrap distribution of least squares estimators of
the AR and MA coefficients is 0,(T~'/2) whereas it is O,(T~'/?) for the first order limiting
distribution. One might conjecture that an extension of the results of [20] and [22] to a
multivariate framework should provide a rigorous proof for similar advantages of the boot-

strap distribution for statistics obtained from state space models, in particular for bootstrap
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versions of the above B and G FE test statistics; see also [23]. Of course, given the asymptotic
nature of the above arguments, these conclusions may prove misleading for the performance
of the bootstrap in finite samples; see, for example, [24]. The bootstrap estimate of the dis-
tribution of test statistic i, i = GE, CC and BA, is given by Fj(x) = N~! Zﬁ;l 1(1] < x),
where 77" denotes a generic bootstrap test statistic, n = 1,..., N, 1(.) is the indicator function
and N is the number of replications. For each sequence of m — 1 tests of the null hypotheses
Ho, :rk(H) =r,r=1,...,m — 1, we need m — 1 bootstrap distributions. Let a generic
test statistic of the hypothesis Hj, be denoted as wT(I:I ) where H is the estimated Hankel
matrix on which the test is carried out. Also, let the general form of the test statistic, as
given in (10) for example, be denoted by wr(I:I ,A, B, C) where A, B, C are the true value
of the coefficient matrices of the state space model on which the test is carried out. For
the null hypothesis Hy,+ : rk(H) = r*, we estimate the data using an state space model
with order fixed to r*. A regression based approach to estimate the coefficient matrices
is reviewed in the appendix. Use of maximum likelihood estimation in connection with the
bootstrap is not feasible for the purpose of the Monte Carlo exercise due to limited computer
power. The estimates of the coefficient matrices denoted by A, B and C are then used to
generate the bootstrap samples, denoted by y%, t =1,...,T, bo = 1,..., B where B is the
number of bootstrap replications. The errors used to generate these samples are obtained
by random resampling from the residuals of the estimated state space model. Consistency
of the estimation of the state space model guarantees that these residuals will converge in
probability to the error terms of the model. The bootstrap samples are then used to generate
the test statistics for the test of Hy -, wT*(I:IbO, A, B, C’), bo=1,...,B. 2 The bootstrap
versions of the GE, C'C' and BA tests using this bootstrapping method will be referred to
as GEq, CCy and BA; respectively.

4 Monte Carlo Design

All the procedures discussed above will be considered. Firstly the statistical tests of rank,
ie. GE, GE,, CC, CC;, BA and BA;, and secondly the information criteria, i.e. AIC,
AIC., BIC, BIC., HQ and HQ..

We concentrate on a state space model like that in equation (1). The dimension of the
vector series y, is fixed to three. The rank of the Hankel matrix is equal to the dimension
of the state vector s; which is fixed to three as well. Matrices A, B, C and {2 are built as
follows. B and C are (3 x 3) matrices of values drawn from a standard normal distribution;

Q is fixed to an identity matrix of dimension (3 x 3). Note that A is a key matrix to explain

2We have also studied the use of nonparametric bootstrap methods, but for the sample sizes under study
in this paper, results were not satisfactory and therefore are not reported.



the dynamics of the series; the degree of persistence of shocks will depend on the eigenvalues
of A. To control the experiment for this, we have chosen to build A = EAE . Aisa3x3
quasi upper triangular matrix; the last element of the diagonal corresponds to the modulus
assigned to that experiment, and the 2 x 2 block matrix in the left upper corner is computed
in such a way that the modulus of the complex pair of eigenvalues of this 2 x 2 block is also
equal to the modulus assigned to the eigenvalues of that experiment; the remaining values
are fixed to a value of one. E is an orthonormal matrix generated from a standard normal
matrix using Gram-Schmidt orthogonalisation. For the Monte Carlo experiments presented
below, 3 different moduli making 3 alternative experiments will be used, namely experiment
a, large eigenvalues, with moduli given by (0.8,0.8,0.8); experiment b, small eigenvalues,
(0.4,0.4,0.4) and experiment ¢, uneven eigenvalues, (0.8,0.8,0.2), which allows to check for
the robustness of the procedures when one of the eigenvalues is very small.

Using these matrices and random normal disturbances generated by the GAUSS random
number generator with an identity covariance matrix a sample from a process following (1)
is obtained. The sample sizes considered are: 200, 400 and 600. For each simulated sample,
200 initial observations have been discarded, to minimise the effect of starting values which
are set to zero. 100 replications for 10 different random sets of matrices A, B and C are
carried out, making a total of 1000 replications. The reason for this design is to reduce the
dependence of the results on arbitrary parameter values. In each bootstrap application, for
reasons of computational feasibility, only 99 replications were carried out. The experiments
have been carried out for equal values for the truncation parameters k and p, i.e. k= p, and
for values kK = 2 and k = 3. The notation for the different experiments in the tables will also
indicate the dimension of k = p, i.e. a2 refers to an experiment with moduli of eigenvalues a

and k = p = 2. All computations were carried out using the GAUSS programming language.

5 Monte Carlo Results

For each of the experiments, tables 1 and 2 present the probability of rejection of the null
hypothesis Hy, : rk(H) = r, r = 1,...,r* where r* is the true rank, using critical values
associated with a nominal 0.05 significance level with * and ** indicating a significant dif-
ference between estimated actual and nominal size at the 0.05 and 0.01 levels respectively.
As expected, performance worsens with respect to the size of the Hankel matrix, for experi-
ments with smaller moduli of the eigenvalues, and when the sample size is small. But there
are some interesting disparities in the relative performance of the alternative methods under
study.

The size properties of GE and C'C are not very good particularly for three blocks in
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the Hankel matrix, £ = 3. The size of their bootstrapped versions, GFE; and C'C] is clearly
superior. The price to pay for this improvement comes in terms of less power; this is of
serious concern for the C'CYy test, but less so for the GFE; test. The BA method appears to
be less sensitive than the others to all dimensions explored in the Monte Carlo exercise. In
particular BA is much more robust than the others to large number of blocks in the Hankel
matrix, £ = 3. The bootstrapped version of the Barlett test, BA;, helps significantly to
improve the size properties of its asymptotic counterpart when the number of blocks in the
Hankel matrix is large, i.e. experiments a3, b3 and ¢3. Furthermore, the loss in power of BA;
is small for all experiments compared to the asymptotic test. Another interesting feature of
the results is the nonmonotonicity of the power function with respet to sample size. This is
likely to be the result of varying randomly the coefficient matrices.

Table 3 presents results for the mean, standard deviation and root mean square error
(RMSE) of the rank estimates over the Monte Carlo exercises for the Statistical tests. Similar
results for the Information Criterion Methods are given in table 4. As for the statistical tests,
the performance of C'C; is clearly worse than the asymptotic version of this test, particularly
when the number of blocks is k = 3 and for experiments of type b and ¢. The performance
of GEj is in line with its asymptotic equivalent GE. Generally speaking the performance of
BA and BA; is good for all experiments, coming almost always as best.

Results presented in table 4 show that information criteria of the type AIC., BIC.
and H(Q),. display similar results to their equivalent counterparts AIC, BIC and H(). The
performance of information criteria methods don’t deteriorate very much when the number
of blocks in the Hankel increases. But information criteria methods appear more sensitive
than statistical tests to sample size. This is particularly the case for the BIC' method
which displays a poor performance for a sample size of 200. Among the information criteria
methods BIC and H() display the best results for sample sizes of 400 and 600. Generally
speaking, and ignoring the C'C] results, the performance of statistical tests is best compared
to information criteria methods for most experiments. Statistical tests such as GE,, BA
and BA; provide very good results, and are shown to be less sensitive to all the dimensions
explored in the Monte Carlo exercies. The GFE tests should only be used for small values for
k. Tables 5 and 6 present the distribution of the estimated rank for the statistical tests and

the information criteria. Results highlight the same conclusions.

6 Conclusion

This paper has studied the performance of statistical tests of rank and their bootstrap ver-

sions against information criteria methods in determining the rank of the Hankel matrix.
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This study has been conducted through Monte Carlo simulations. The results presented
show that the bootstrap served to improve the size properties of the tests. Further, statisti-
cal tests, in particular GE,, BA and BA; were shown to be superior to information criteria

methods.
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Appendix: Estimation of System Matrices

The regression approach described in this appendix is that proposed by [10]. This method
relies on a rank approximation of the Hankel matrix and a decomposition of this approxi-
mation into an observability and controllability matrix. The rank approximation is achieved
by means of its singular value decomposition, i.e. H = UXV where U and V are or-
thonormal matrices, and Sisa rectangular matrix of zero nondiagonal elements and with

values 61 > 69 > ... > & Once the rank has been estimated, say r, a r rank

= “min(k,p)m- A o

approximation to the Hankel matrix H is given by H, = U, X,V where only the largest r
singular values and singular vectors are included.

A Decomposition of the Hankel covariance matrix into an observability matrix O and a

controllability matrix K is defined as: H ;= OTK » and it follows that K :r = VTZA]; : and

A+ ~ L .y . .
O, =3, ?U, where T denotes generalised inverses.
. . . o b . . N
Given a r rank approximation to H , and estimate of the state vector is given by &, =

- b
K, y' . This allows to estimate C' from the regression:
y, =Cs;,+ ¢

then C = (3.}, 9,8))(3.1_, 8,8,)7", this regression will also provide Q = T~ (31, &€}),
where €; are the estimated residuals. Finally, matrices A and B can be estimated from the
regression:

§t+1 = Agt + Bét + &
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Table 1: Size and Power of Rank Tests. (I).

Exp | Hg  Tests Sample Size Exp | Hg  Tests Sample Size
200 400 600 200 400 600
GE 1.000 1.000 1.000 GE 1.000 1.000  1.000 =
GE, 0.999 1.000 1.000 GE, 0.993 0.994 0.999
ccC 1.000 1.000 1.000 cc 1.000 1.000 1.000
r=1 CCy 0.878 0.964 0.998 r=1 CC; 0.327 0.184 0.383
BA 1.000 1.000 1.000 BA 1.000 1.000 1.000
BA;  1.000 1.000 1.000 BA;  1.000 1.000 1.000
GE 0.866 0.794 0.997 GFE 1.000 1.000 1.000
GE, 0.881 0.797 1.000 GE, 0.555 0.525 0.664
ccC 0.954 0.795 0.995 ccC 1.000 1.000 1.000
a2 |r=2 CC; 0.845 0.804 0.997 a3 |r=2 CC; 0.026 0.052 0.022
BA 0.999 0.833 0.999 BA 1.000 1.000 1.000
BA;  0.999 0.827 0.998 BA;  0.999 1.000 1.000
GE 0.010% 0.005** 0.017** GE 0.192** 0.094** 0.135**
GE, 0.066* 0.053 0.048 GE, 0.093** 0.032**  0.045
cCc  0.018% 0.015** 0.019** cC  0.672*F 0.473*  0.556**
r=3 CC; 0.064 0.046 0.046 r=3 CCp; 0.080** 0.068* 0.058
BA 0.071**  0.064 0.065 BA 0.116* 0.121™ 0.110**
BA; 0.073**  0.063 0.060 BA; 0.077*  0.063 0.056
GE 1.000 1.000 1.000 GE 1.000 1.000 1.000
GE, 0972 0.999 0.999 GFE,  0.909 1.000 1.000
ccC 1.000 1.000 1.000 ccC 1.000 1.000 1.000
r=1 CC; 0.896 0.983 0.999 r=1 CC; 0.332 0.262 0.280
BA 0.998 1.000 1.000 BA 1.000 1.000 1.000
BA;  0.996 1.000 1.000 BA;  0.999 1.000 1.000
GE 0.773 0.794 0.848 GE 0.963 0.999 0.954
GE, 0.628 0.716 0.793 GE, 0.333 0.630 0.419
cc 0.694 0.701 0.889 cc 0.999 1.000 1.000
b2 |r=2 CCp 0.538 0.708 0.809 b3 |r=2 CCp 0.053 0.032 0.050
BA 0.710 0.897 0.890 BA 0.808 0.975 0.846
BA; 0.686 0.880 0.885 BA;  0.746 0.959 0.799
GE 0.083* 0.155"*  0.056 GE 0473 0.626™ 0.493**
GE; 0.085** 0.084** 0.067* GE, 0.141* 0.175** 0.133**
CcC  0.086"  0.052 0.044 CcC  0.690* 0.741**  0.544**
r=3 CCp; 0.123** 0.089** 0.066* r=3 CCp; 0.054 0.077** 0.058
BA 0.042 0.055 0.050 BA  0.104** 0.104**  0.088**
BA; 0.080**  0.062 0.053 BA; 0.107** 0.083** 0.078**
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Table 2: Size and Power of Rank Tests. (II).

Exp | Hg  Tests Sample Size Exp | Hg  Tests Sample Size
200 400 600 200 400 600

GE 1.000 1.000 1.000 GFE 1.000 0.996 1.000

GE, 1.000 1.000 1.000 GE, 0.975 0.977 1.000

cc 1.000 1.000 1.000 cc 1.000 1.000 1.000

r=1 CC; 0984 0.997 1.000 r=1 CCy 0455 0.461 0.000

BA 1.000 1.000 1.000 BA 1.000 1.000 1.000

BA;  1.000 1.000 1.000 BA;  1.000 1.000 1.000

GFE 0.697 0.819 0.821 GFE 0.922 0.961 1.000

GE, 0.713 0.843 0.854 GE; 0.293 0.599 0.825

ccC 0.638 0.860 0.831 cc 1.000 1.000 1.000

2 |r=2 CC; 0.620 0.858 0.826 3 |r=2 CC; 0.040 0.044 0.011
BA 0.696 0.839 0.930 BA 0.919 0.922 1.000

BA; 0.673 0.814 0.911 BA; 0.887 0.910 1.000

GE 0.030* 0.055 0.028** GE 0.322*F 0.372** 0.883**

GE,; 0.054 0.070* 0.083** GFEy 0.089** 0.149** 0.079**

cc  0.014* 0.021**  0.066* cC  0.499*  0.651** 0.819**

r=3 CC; 0.070° 0.050 0.093** r=3 CC; 0.064 0.086" 0.048
BA 0.050 0.064  0.070* BA 0.110* 0.125** 0.090**

BA; 0.070*  0.059 0.076** BA; 0.081"* 0.075"*  0.049
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Table 3: Mean, St. Deviation and RMSE of Estimated Rank. Statistical Methods.
Sample Size
200 400 600
Exp. Tests | z° o R ‘ T o R ‘ T o R
GE |2838 036 038]280 041 046 ]| 3.02 0.16 0.16
GE{ | 295 046 046|286 053 0.55|3.06 0.29 0.29
cC 1297 025 0.25]281 043 047 3.01 0.15 0.15
a2 CCy 1269 079 085]278 058 062|304 026 0.26
BA |3.08 0.30 0.31]290 0.49 0.50 | 3.07 0.26 0.27
BA; | 3.10 0.40 0.41 | 291 0.56 0.57 |3.08 0.34 0.35
GE |320 041 046|310 030 031|314 0.35 0.38
GE; | 260 0.60 0.72|255 0.58 0.73]2.68 0.51 0.60
CC 1376 060 096|348 051 0.70| 3.58 0.54 0.79
a3 CcC; 1133 048 1.74]11.19 041 186|140 0.53 1.69
BA | 313 039 041|315 043 045 3.12 0.38 0.39
BA; | 3.13 0.55 0.56 | 3.13 0.58 0.59 | 3.11 0.56 0.57

GE |286 054 056|296 0.62 0.62 291 045 0.46
GE; | 268 0.67 074|279 0.58 0.62|2.85 0.51 0.53
cC 278 060 0.63|27 054 0.60 294 041 041
b2 CCp | 251 0.83 096|277 063 0.67 288 0.52 0.54
BA | 275 053 059296 041 0.41 294 040 0.41
BA; | 278 0.66 0.69 296 0.49 0.50 296 048 0.48
GE |346 062 0.78|3.70 0.60 0.92 | 3.49 0.65 0.81
GEy | 231 0.74 101|274 0.67 0.72 ] 250 0.67 0.84
cC 371 051 0881389 0.67 1.11|3.56 0.53 0.77
b3 CcCy | 136 053 1.73 127 046 1.79 | 129 047 1.78
BA 293 059 0.59]3.09 040 041|294 0.52 0.52
BA; | 292 081 0.82]3.10 0.58 0.59 291 0.67 0.67

GE | 273 051 058|288 047 0.49 285 043 0.46
GE; | 277 054 0591292 049 049|295 0.51 0.52
CC 265 051 061|288 038 0.40 290 0.48 0.49
c2 CC; | 266 0.63 0.72 291 048 049|292 0.54 0.54
BA | 275 0.55 0.61]291 047 0.48|3.00 039 0.39
BA; | 276 064 0.68 289 0.54 0.55]3.01 048 048
GE |326 0.62 0.68 ]334 060 0.69 395 043 1.05
GE; | 229 057 090|266 0.68 0.76 | 2.90 0.50 0.51
CC 351 053 074|366 049 0.82|3.84 043 094
c3 CCy | 148 054 162|149 056 1.61|1.00 0.00 2.00
BA |3.05 051 051306 050 0.50]|310 0.35 0.37
BA; | 3.04 071 0.71|3.04 0.63 0.63|3.08 043 0.43

°T, o and R denote respectively the mean standard error and RMSE of the estimated rank over the Monte
Carlo samples.
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Table 4: Mean, St. Deviation and RMSE of Estimated Rank. Information Criteria Methods

200

Sample Size

400

600

Exp.

Tests

f(l

g

R | T

g

R | =

g

R

a2

AIC
AIC,
BIC
BIC.
HQ
HQ.

3.16
3.01
2.90
2.90
2.93
2.95

0.58
0.43
0.31
0.34
0.34
0.37

0.60
0.43
0.32
0.35
0.35
0.37

3.21
3.08
3.00
3.01
3.01
3.02

0.47
0.28
0.00
0.08
0.09
0.14

0.51
0.29
0.00
0.08
0.09
0.14

3.17
3.26
2.99
3.08
3.01
3.16

0.42
0.46
0.08
0.31
0.08
0.38

0.45
0.53
0.08
0.32
0.08
0.41

ad

AIC
AIC,
BIC
BIC,
HQ
HQ.

3.24
3.05
2.86
2.68
2.97
2.84

0.53
0.62
0.34
0.59
0.19
0.57

0.58
0.63
0.37
0.67
0.19
0.59

3.21
3.19
2.84
2.89
2.90
2.97

0.61
0.73
0.37
0.52
0.31
0.62

0.65
0.76
0.40
0.54
0.33
0.62

3.23
3.46
3.00
3.12
3.00
3.29

0.50
0.71
0.04
0.58
0.04
0.61

0.55
0.85
0.04
0.59
0.04
0.67

b2

AIC
AIC,
BIC
BIC.,
HQ
HQ.

2.96
2.80
241
2.40
2.64
2.59

0.58
0.69
0.64
0.75
0.52
0.66

0.58
0.72
0.87
0.96
0.63
0.78

3.08
3.17
2.79
2.96
2.90
3.03

0.53
0.58
0.41
0.49
0.33
0.53

0.54
0.61
0.46
0.49
0.34
0.53

3.15
2.99
2.72
2.74
2.90
2.83

0.52
0.51
0.45
0.50
0.33
0.50

0.54
0.51
0.53
0.56
0.34
0.53

b3

AIC
AIC,
BIC
BIC,
HQ
HQ.

3.03
2.69
2.08
2.15
2.53
241

0.58
0.96
0.71
0.85
0.59
0.90

0.58
1.01
1.16
1.20
0.75
1.08

3.08
3.27
2.54
2.42
2.78
2.94

0.54
0.83
0.50
0.76
0.43
0.76

0.55
0.87
0.68
0.96
0.48
0.77

3.07
3.10
2.70
2.69
2.78
2.88

0.58
0.63
0.46
0.51
0.42
0.51

0.58
0.63
0.55
0.60
0.47
0.52

c2

AIC
AIC,
BIC
BIC,
HQ
HQ.

3.15
3.08
2.80
2.82
291
2.93

0.53
0.50
0.41
0.46
0.36
0.47

0.55
0.50
0.45
0.49
0.37
0.47

3.17
3.05
2.77
2.70
291
2.87

0.48
0.53
0.42
0.50
0.31
0.49

0.51
0.53
0.48
0.58
0.33
0.51

3.20
3.15
2.88
2.78
2.97
2.94

0.48
0.57
0.32
0.57
0.21
0.55

0.52
0.59
0.34
0.61
0.21
0.55

c3

AIC
AIC,
BIC
BIC,
HQ
HQ.

3.23
3.32
2.68
2.89
2.92
3.12

0.53
0.67
0.47
0.51
0.28
0.54

0.58
0.75
0.57
0.52
0.29
0.56

3.21
3.51
2.60
2.92
2.81
3.21

0.53
0.87
0.49
0.74
0.40
0.78

0.57
1.01
0.63
0.74
0.44
0.80

3.23
3.28
2.85
3.06
2.98
3.16

0.51
0.55
0.35
0.48
0.16
0.48

0.56
0.62
0.38
0.48
0.16
0.50

°T, o and R denote respectively the mean standard error and RMSE of the estimated rank over the Monte

Carlo samples.
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Table 5: Distribution of Estimated Rank (%). Statistical Tests®
Exp. Tests Sample Size
200 400 600
1 2 3 4 1 2 3 4 1 2 3 4
GE | 00 134 857 09 | 0.0 206 79.2 0.2 0.0 0.3 98.0 1.5
GE; | 0.1 119 820 49 | 0.0 203 752 3.2 0.0 0.0 952 3.7
cc | 00 46 936 1.8 | 00 205 781 1.4 0.0 0.5 976 1.9
a2 ccy | 122 133 696 3.7 | 3.6 191 732 3.7 0.2 0.3 949 42
BA | 00 01 928 6.6 | 0.0 16.7 76.9 5.8 0.0 0.1 934 64
BA; | 0.0 0.1 926 54 | 00 173 76.7 3.9 0.0 0.2 938 41
GE | 00 00 808 186| 0.0 0.0 906 9.3 0.0 0.0 86.5 13.3
GFE; | 0.7 438 510 4.1 | 06 46.9 50.1 1.8 0.1 335 645 1.7
cc | 00 00 328 589| 00 0.0 527 46.8| 0.0 0.0 444 533
a3 ccy | 673 323 04 00 |816 178 0.6 0.0 | 61.7 368 13 0.1
BA | 00 00 884 99|00 00 879 99 0.0 0.0 89.0 938
BA; | 0.0 0.1 922 52 |00 00 937 3.1 0.0 0.0 944 29
GE | 0.0 227 69.1 80 | 0.0 206 64.1 145| 0.0 152 792 54
GEy | 28 345 558 6.1 | 0.1 283 645 64 0.1 206 742 4.5
cc | 00 30.6 60.8 83 | 00 299 650 4.9 0.0 111 845 39
b2 CcCy | 104 385 420 80 | 1.7 28.1 626 6.8 0.1 19.0 755 4.1
BA 0.2 28.8 66.8 4.0 | 0.0 103 84.2 5.1 0.0 11.0 84.0 4.8
BA; | 04 310 609 59 | 00 120 81.8 4.9 0.0 115 832 3.6
GE | 00 37 494 43.7| 00 0.1 373 556 | 0.0 4.6 46.1 453
GFE; | 91 576 263 6.8 | 0.0 37.0 533 87 0.0 581 354 5.0
cc | 00 01 309 664| 00 0.0 259 61.5| 0.0 0.0 45.6 52.6
b3 ccy | 668 31.0 21 01 |738 255 0.7 00| 720 274 0.6 0.0
BA | 00 192 704 87 | 0.0 25 87.1 9.2 0.0 154 758 8.0
BA; | 0.1 253 639 72 | 0.0 41 876 5.2 0.0 20.1 726 5.0
GE | 0.0 303 668 29 | 00 181 764 5.4 0.0 179 793 2.7
GE; | 00 28.7 66.6 4.2 | 0.0 157 777 59 0.0 146 772 7.1
cC | 00 362 624 14 | 00 14.0 839 2.1 0.0 16.9 76.5 6.5
c2 ccy | 1.6 373 559 43 | 03 142 80.8 4.0 0.0 174 740 74
BA | 00 304 646 4.7 | 0.0 16.1 775 6.1 0.0 7.0 86.0 6.5
BA; | 0.0 327 60.6 5.1 | 00 186 755 4.6 0.0 89 &83.6 5.5
GE | 00 78 601 303| 04 39 589 353]| 0.0 0.0 11.7 81.3
GFE, | 25 682 270 19 | 23 382 51.7 7.0 0.0 175 76.2 5.5
cc | 00 00 501 485| 00 0.0 349 64.5| 0.0 0.0 18.1 79.7
c3 CCy | 545 433 22 00 |539 439 1.7 05 |1000 0.0 0.0 0.0
BA | 00 81 809 90| 00 78 797 108 0.0 0.0 91.0 7.8
BA; | 0.0 11.3 80.8 43 | 0.0 9.0 835 4.7 0.0 0.0 951 34

*Values are in (%). Exp denotes experiment according to what is explained in the text.
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Table 6: Distribution of Estimated Rank (%). Information Criteria Methods.*

Exp. Tests Sample Size
200 400 600
1 2 3 4 1 2 3 4 1 2 3 4
AIC | 00 6.3 744 169 | 00 0.0 821 155|0.0 0.0 845 13.9
AIC. | 0.0 86 8.0 93 |00 00 919 79 |00 03 741 248
a2 BIC | 00 103 896 01 | 0.0 0.0 1000 0.0 |00 0.6 994 0.0
BIC. | 0.0 11.1 875 14 | 0.0 00 993 0.7 |00 1.0 89.7 93
HQ | 00 98 876 26 | 00 00 991 09 |00 0.0 994 0.6
HQ. | 00 96 8.3 40 | 00 0.0 983 16 |00 0.6 829 16.5
AIC | 00 04 796 158 | 0.0 49 739 172(0.0 0.0 80.8 16.1
AIC. | 0.0 16.3 63.7 19.2| 0.0 148 558 256 |00 00 66.6 21.6
a3 BIC | 00 136 8.4 00 | 0.0 164 836 0.0 |{0.0 0.2 99.8 0.0
BIC. | 1.1 346 593 49 | 0.0 200 715 84 |00 75 77.6 10.6
HQ | 00 31 964 05| 00 105 893 0.2 0.0 0.0 998 0.2
HQ. | 0.0 255 653 9.0 | 0.0 194 653 14100 1.2 752 17.0
AIC | 00 172 714 102] 00 7.8 784 121]0.0 4.8 772 16.3
AIC. | 04 350 49.0 156 | 00 6.6 73.0 17.3|0.0 13.0 76.0 10.2
b2 BIC | 83 423 494 00 | 0.0 21.0 790 0.0 |0.0 284 716 0.0
BIC. | 135 36.2 474 29 | 0.0 132 781 79 |00 28.8 685 2.7
H@ | 1.1 348 635 06 | 0.0 109 884 0.7 |0.0 107 883 1.0
HQ. | 36 400 500 64 | 0.0 11.1 759 116 |00 222 726 5.0
AIC | 0.1 129 723 131 | 00 89 7.4 12700 99 761 114
AIC. | 11,9 29.0 39.0 182 | 0.0 157 495 277]0.0 128 67.0 17.8
b3 BIC |21.6 486 298 0.0 | 0.1 459 540 0.0 |0.0 30.2 698 0.0
BIC. | 255 376 329 4.0 |10.8 424 407 6.1 |00 338 639 23
HQ | 48 374 574 04 | 00 227 769 04 |00 220 778 0.2
HQ. | 17.7 340 381 10.0| 06 28.0 51.2 175|100 19.6 73.2 7.0
AIC | 00 39 80.1 136 0.0 1.6 819 143/|0.0 03 823 15.0
AIC. | 0.0 87 753 158 | 0.0 10.7 741 14500 6.5 755 14.6
c2 BIC | 0.0 205 794 0.1 | 0.0 230 770 0.0 |00 11.6 884 0.0
BIC.| 0.0 214 756 30 | 00 319 664 1.7 |00 29.1 64.6 5.7
H@ | 00 113 8.5 22 | 00 99 894 07 |00 37 954 09
HQ. | 00 148 776 76 | 0.0 192 751 54 |0.0 16.7 740 7.7
AIC | 00 04 800 159| 00 21 786 16400 0.0 &80.1 17.1
AIC. | 0.0 41 670 21.7| 00 95 446 323|00 1.1 741 208
c3 BIC | 0.0 323 677 00 | 00 40.1 599 0.0 |0.0 146 854 0.0
BIC.| 0.0 186 739 7.1 | 0.0 293 521 16200 80 788 126
HQ | 00 81 916 03 | 00 191 803 06 |00 25 975 0.0
HQ. | 00 7.0 760 14.7] 0.0 159 53.6 24.7]0.0 33 79.0 16.3

*Values are in (%). Exp denotes experiment according to what is explained in the text. The numbers
p P

200, 400 and 600 refer to the different sample sizes
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