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Abstract

We consider an alternative use of simulation in the context of us-
ing the Likelihood-Ratio statistic to test non-nested models. To date
simulation has been used to estimate the Kullback-Leibler measure
of closeness between two densities, which in turn ’mean adjusts’ the
Likelihood-Ratio statistic. Given that this adjustment is still based
upon asymptotic arguments, an alternative procedure is to utilise boot-
strap procedures to construct the empirical density. To our knowledge
this study represents the first comparison of the properties of bootstrap
and simulation-based tests applied to non-nested tests. More specif-
ically, the design of experiments allows us to comment on the rela-
tive performance of these two testing frameworks across models with
varying degrees of nonlinearity. In this respect although the primary
focus of the paper is upon the relative evaluation of simulation and
bootstrap-based nonnested procedures in testing across a class of non-
linear threshold models, the inclusion of a similar analysis of the more
standard linear/log-linear models provides a point of comparison.
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1 Introduction

For two non-nested models, say f and g, twice the likelihood ratio statistic
Tf = l̄f − l̄g, where lf and lg are, respectively, the observed means of the
log-likelihood and the pseudo log-likelihood, is not asymptotically distributed
as a chi-square random variable. Following work by (Pesaran and Pesaran
1993) and (Weeks 1996), computational techniques have been used to affect
adjustments to the test statistic in order to improve the finite sample size and
power properties. However, this approach based upon the Modified Likelihood
principle and due to the seminal work of (Cox 1961), is still reliant upon
a reference distribution which is valid asymptotically. In addition, as (Orme
1994) attests, the existence of a large number of asymptotic equivalent variants
of the Cox test statistic represents a formidable menu of choices for the applied
econometrician. In the case of the numerator, various test statistics are based
upon the use of different consistent estimators of the Kullback-Leibler (KL)
measure of closeness. An additional set of variants of the Cox test statistic
depend upon a number of asymptotically equivalent ways of estimating the
variance of the test statistic.1 In this context it is important to emphasise
that simulation is used simply to provide an estimate of the test statistic.
Nonetheless, (Pesaran and Pesaran 1993) note that in principle it should be
possible to use the simulation method both for the computation of the Cox
statistic and for a derivation of a better small sample approximation to its
distribution under the null (p. 378).

An alternative approach based upon the seminal work of (Efron 1979) with
contributions by (Hall 1986), (Beran 1988), Hinkley (1988), and (Coulibaly
and Brorsen 1998), applies bootstrap-based procedures to evaluate the ade-
quacy of nonnested models. In this context the focus is upon correcting the
reference distribution rather than adjusting the test statistic and utilising lim-
iting distribution arguments. This type of adjustment can, in a number of
cases, be theoretically justified through Edgeworth expansions and under cer-
tain conditions result in improvements over classical asymptotic inference. The
existence of a large menu of broadly equivalent test statistics is also relevant
in the context of bootstrap-based inference. Surveys by (Vinod 1993), (Jeong
and Maddala 1993), and (Li and Maddala 1996), review a large number of
variants including the double, recursive and weighted bootstrap. Hall (1998)
notes that in many applications the precise nature of the bootstrap design is
not stated.

In considering a number of bootstrap and asymptotic tests, we make the
distinction between pivotal and non-pivotal test statistics. A test statistic
is pivotal if it does not depend on unknown parameters; it is asymptotically

1(Orme 1994) presents a detailed analysis of these variants.
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pivotal if this condition holds only asymptotically. A number of authors, in-
cluding (Beran 1988), have demonstrated that the bootstrap distribution of
an asymptotically pivotal test statistic provides a closer approximation to the
true unknown distribution function than first-order classical asymptotics. This
is in contrast to previous studies which have focussed on the substitution of
a crude frequency simulator for the often intractable Kullback-Leibler (KL)
measure of distance between two densities in the context of ‘mean adjusting’
the LR statistic. Again, for the purpose of our analysis, the distinction be-
tween working with a different reference distribution as opposed to alternative
methods to construct the test statistic itself, is central.

In this paper we use a combination of simulation and bootstrap proce-
dures to conduct nonnested hypothesis tests for linear and non-linear models.
First, we test the linear versus loglinear regression model. The choice be-
tween linear and log-linear regression models continues to be an important
issue for the applied econometrician. In general economic theory has little to
offer and given that the two models are non-nested, classical inference founded
upon the log-likelihood ratio statistic cannot be utilised. Following (Beaudry
and Koop 1993a) and Kapetanios (1998), we then use both simulation and
bootstrap tests to differentiate between a class of nonnested threshold mod-
els, highlighting the performance of the tests in distinguishing different non-
linear mechanisms. Threshold models, introduced and discussed extensively
by (Tong 1978), (Tong 1983), and (Tong 1995) have been widely used as a
framework for examining the presence of nonlinearity in empirical econometric
models. The wide variety of classes of nonlinear threshold models necessitates
the use of evaluation procedures to compare and discriminate between them.
To our knowledge this study represents the first comparison of the properties
of bootstrap and simulation-based tests applied to non-nested tests. More
specifically, the design of experiments allows us to comment on the relative
performance of these two testing frameworks across models with varying de-
grees of nonlinearity. In this respect although the primary focus of the paper
is upon the relative evaluation of simulation and bootstrap-based nonnested
procedures in testing across a class of nonlinear threshold models, the inclusion
of a similar analysis of the more standard linear/log-linear models provides a
point of comparison.

In the first set of experiments involving threshold models we examine
whether nonnested hypotheses tests can distinguish between a simple nonlinear
model such as that developed by Potter (1995) and more realistic multiregime
models. In particular we examine the size and power properties of a test of a
two versus three regime self exciting threshold autoregressive (SETAR) model.
In the second setup the choice is between a SETAR trend and an EDTAR trend
model where the linear parts of the models are the same.
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It is important to emphasise that in the case of two and three regime
SETAR models nonnested testing provides an alternative testing procedure
when some parameters are not identified under the null hypothesis (see (Davies
1977)). The main reason for utilising a nonnested testing framework in this
case is the difficulty of carrying out the nested test. To see this note that the
standard solution to the Davies problem requires modifications in this instance
because even the threshold parameter which is in principle identified under the
null hypothesis of a two-regime SETAR model is not known and needs to be
estimated. We also note it is possible to consider model selection procedures
to distinguish between the case of m = 2 and m = 3 or even to estimate
the number of regimes, m. However, in motivating pairwise comparisons we
argue that the distinction between m = 2 and m = 3 can be economically
important. For example, the use of a 2-regime SETAR model in the modelling
of a macroeconomic series driven by the business cycle, such as output or
unemployment, has implications which are qualitatively distinct from the use of
a 3-regime SETAR model or a SETAR models with m > 3. This is underlined
in the literature on the asymmetry of the business cycle over recessions and
expansions where a 2-regime characterisation of the business cycle, as in Potter
(1995), is juxtaposed with a multi-regime characterisation as in Sichel (1994).

In utilising bootstrap tests our principal objective is to determine the ex-
tent to which the construction of the empirical distribution function of the
test statistic represents an improvement over first-order asymptotic approxima-
tions. The extent to which the use of bootstrap procedures to approximate the
sampling distribution of the likelihood ratio (LR) statistic enables a Bartlett-
type adjustment to the asymptotics is central. In each case we utilise resam-
pling to construct the empirical density of the likelihood ratio statistic, and
consider a number of variants of bootstrap statistics. The first, a non-pivotal
test statistic is the analog of the percentile method for the construction of
confidence intervals. The other methods employ some form of standardisation
to reduce the dependence of the empirical distribution function on unknown
parameters..An alternative testing framework employ simulation-based meth-
ods to provide consistent location and scale adjustments to the LR statistic.
In this instance we utilise simulation in the constriction of a number of alter-
native test statistics, whilst relying upon asymptotic arguments as a basis for
inference.

The outline of the paper is as follows. In Section 2 we motivate the analysis
by providing a brief overview of some key issues in the construction of bootstrap
test statistics. In particular we examine the distinction between simulation and
bootstrap error. In Section 3 we present the structure of the Cox test statistic
and in doing so highlight the computational difficulties involved in the use of
Cox’s non-nested test. Section 4 presents results for testing linear and log-
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linear regression model utilising a number of asymptotic and bootstrap test
statistics. In Section 5 we introduce a number of nonlinear threshold models
and examine the finite sample performance of the same set of test statistics.

2 Bootstrap Statistics

The bootstrap distribution of a statistic can be defined as the exact finite sam-
ple distribution function evaluated at an estimate of the unknown parameters.
As discussed by (Singh 1981), (Hall 1986), (Hall 1992) and (Brown 2000), boot-
strapping a studentized statistic that is asymptotically pivotal will provide a
closer approximation to the true distribution than the standard limiting distri-
bution, with coverage differing from the nominal level by only Op(n

−1) instead
of Op(n

−1/2), for independent observations. (Hartigan 1986), (Hall 1988) and
(Beran 1988) advocate the use of pivoting2 as a device to reduce the error in
rejection probability. Although much of the asymptotic theory for the boot-
strap has been developed for the construction of confidence intervals, the well
known duality between hypothesis testing and confidence intervals guarantees
that any ranking of bootstrap variants for confidence intervals will hold in the
case of hypothesis testing.

The drawback of this method has been noted by a number of authors
including (Tibshirani 1988) and more recently (Horowitz 1995). The prin-
cipal disadvantage is that studentizing requires an estimate of the standard
deviation of the test statistic which in some cases can represent a poor ap-
proximation to the true value. Further, a pivoting procedure advocated by
(Beran 1988) requires the use of an inner bootstrap loop and as such there is
an obvious trade-off between reduction in approximation error and the atten-
dant computational burden. In addition, we note that the asymptotic theory
is not informative in the absence of pivotalness. Since in most cases statistics
are only asymptotically pivotal, then faced with a finite sample there is no
theory-based ranking for pivotal versus non-pivotal bootstrap statistics.

In a recent paper (Kilian 1998) highlights the perception that following the
seminal work of (Singh 1981) and a comprehensive summary by (Hall 1992)
reviewing the asymptotic theory for bootstrap tests, the use of pivotal statistics
can only reduce approximation error. (Hall and Wilson 1991), Giersbergen and
Kivet (1993), and (Li and Maddala 1996), note that the menu of bootstrap-
based test statistics extends beyond the simple pivotal/non-pivotal dichotomy.

2Note the difference between pivoting which refers to appropriately standardising a statis-
tic to render it pivotal (or asymptotically pivotal) and prepivoting. Prepivoting has been
suggested by Beran (1988) and involves bootstrapping the cumulative distribution function
of a statistic rather than the statistic itself. Prepivoting has been shown to improve the
asymptotic performance of the bootstrap on asymptotically pivotal statistics.
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In this context we believe that is instructive to examine these issues in the
design of bootstrap-based hypothesis tests.

2.1 Bootstrap Design

For the purposes of discussion we first introduce some additional notation. Let
χ = (x1, ..., xn) denote a random sample of size n drawn from F (x; θ) where
F represents the population distribution function. For simplicity we assume
that F (x; θ) = N(µ, σ2) with θ = {µ, σ2}. Using this data we want to find an
estimate of the sample mean, µ̂, and evaluate its accuracy as an estimate of
µ. If we wish to conduct hypothesis tests of the form H0 : µ = µ0 then a test
statistic such as

Q = Q(χ) = n
1
2 (µ̂− µ0)/σ, (1)

whose distribution under H0 is (asymptotically) independent of θ, will prove
useful. If we use bootstrap procedures then for χ∗

r = (x∗1, ..., x
∗
n)

′ equal to the
rth artificial sample of size n (conditional on the fitted null model) from F (x; θ̂),
the sample distribution function of the test statistic, then Q∗ = Q(χ∗) is the
bootstrap analog of Q, with Q∗

r = Q(χ∗
r) denoting the associated test statistic

for the rth replication. The distribution function of Q∗, denoted H(., θ̂), is the
bootstrap estimator for the null distribution3 of Q, H(., θ). An estimate of

H(., θ̂) is based upon R independent realisations Q∗
1, ..., Q

∗
R..

The importance of bootstrap design has been discussed by (Hall and Wilson
1991). For example, in testing H0 against H1 : µ �= µ0, the authors note that
the bootstrap distribution of Q∗ =

√
n(µ̂∗ − µ̂)/σ̂∗ is a better approximation

to the distribution of Q =
√
n(µ̂− µ0)/σ̂ under H0 than S∗ = µ̂∗ − µ̂ is to the

distribution of S = µ̂ − µ0. This follows since the asymptotic distribution of
both S and S∗ are scale dependent where the magnitude of the scale is likely
to be different. The greater this difference the higher the error in rejection
probability since S∗ fails to approximate S. Similarly it is recommended that
studentizing be achieved using

√
n(µ̂∗−µ̂)/σ̂∗ rather than

√
n(µ̂∗−µ̂)/σ̂. This is

based upon a recognition that in the former test statistic σ̂∗ is a better estimate
of the standard deviation of µ̂∗. Additionally, as Hall (1992) notes, the design
of the bootstrap affects the rejection probability of the test under H1 as well
as under H0. When µ̂ is used to construct the bootstrap samples then the
bootstrap test statistic should be

√
n(µ̂∗ − µ̂)/σ̂∗ rather than

√
n(µ̂∗ − µ0)/σ̂

∗

since the latter statistic leads to a procedure with zero local asymptotic power.

3We suppress the dependence of the distributions on n in order to minimise notational
burden.
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We also emphasise that pivoting can be accomplished exactly only in simple
cases (i.e. as above). In all other cases, the pivoting is asymptotic and in this
sense we refer to asymptotically pivotal tests.

2.2 Simulation version Bootstrap Error

(Brown 2000), in noting the limitations of bootstrap procedures, draws an
important distinction between simulation and bootstrap approximation er-
ror. The distinction between these two types of error has also been made by
(Davison and Hinkley 1997). The two types of error represent the total error
in constructing the exact finite sample distribution of the statistic of interest.

Bootstrap or statistical error derives from resampling from the distribution
function F (x; θ̂), rather than the population distribution function F (x; θ). For

large n, F (x; θ̂) ∝ F (x; θ), thereby guaranteeing that the distribution of Q(χ∗)
is close to that of Q(χ). Simulation error will be introduced since the estimate
of the bootstrap distribution of Q(χ∗) will be obtained from a finite number
of replications. For example, with the true distribution of the test statistic
denoted by H(x; θ), and the bootstrap distribution by H(x; θ̂), the difference
between the two is the bootstrap error. An estimate of the bootstrap distribu-

tion of H(x; θ̂) is provided by 1
R

R∑
r=1

1(Q(χ∗
r) < x)

4 and the difference between

these two distributions is the simulation error which tends to zero as R tends
to infinity. (Brown 2000) notes that in many applications simulation approx-
imation error can be significant and may dominate bootstrap error. Though
the relative importance of simulation error is likely to vary across applica-
tions, a number of general comments can be made. First, it is likely that if
the estimated model depends upon a large number of covariance parameters,
then simulation error will be large. Second, the construction of a pivotal test
statistic based upon a double bootstrap along the lines of (Beran 1988) and
(Coulibaly and Brorsen 1998), will introduce compounded simulation error.
(Brown 2000) shows that for pivotal statistics generated by a nested boot-
strap, it is necessary that R � n2 (n3) for the inner (outer) loop, giving a total
number of simulations equal to n5.

3 The Structure of the Cox Test Statistic

The essence of the Cox non-nested test is that the mean adjusted ratio of
the maximised log-likelihoods of two non-nested models has a well defined
limiting distribution under the null hypothesis. Below we introduce notation

41(.) denotes the indicator function.
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and present the form of the Cox test statistic. We do not derive the limit-
ing distribution of the test statistic since this has been done elsewhere (see
(Pesaran 1987)).5

3.1 Preliminaries

First, we denote two rival (conditional) nonnested models by

Hf : Fθ = {f(yi|xi, θ), θ ∈ Θ}, i = 1, . . . , T (2)

Hg : Fλ = {g(yi|zi, λ), λ ∈ Λ}, (3)

where θ and λ are respectively kf and kg vectors of unknown parameters be-
longing to the non-empty compact sets Θ and Λ, and where x and z represent
the conditioning variables. For the sake of notational simplicity we shall also
use fi(θ) and gi(λ) in place of f(yi|xi, θ) and g(yi|zi, λ), respectively.

Both f(.) and g(.) define a family of distributions over the respective pa-
rameter spaces, Θ and Λ. Specifying Hf to be the null hypothesis, f(y|θ0)
and g(y|λ(θ0)) denote the respective true and pseudo-true models. Assuming
an independent and identically distributed sample of n observations, the log-
likelihood for the respective samples may be written lf (θ) =

1
n

∑n
i=1 log fi(θ)

and lg(λ) =
1
n

∑n
i=1 log gi(λ).

If f(.) and g(.) are non-nested densities then the expectation

Ef [lf (θ)− lg(λ)], (4)

does not evaluate to zero. Cox (1961,1962) proposed a procedure such that
a modified log-likelihood ratio has a well-defined limiting distribution. The
use of this statistic in applied work has been limited to a restricted number of
applications due to two principal problems. First, in order to estimate (4) we
require a consistent estimate of the pseudo true value, λ(θ0). Second, in most
cases even given such an estimate, the expectation will still be intractable6.

Using the notation set out above we may write the numerator of the Cox
test statistic as

Tf = lf (θ̂)− lg(λ̂)− Cfg(θ̂, λ̃), (5)

The last term on the right-hand side of (5), Cfg(θ̂, λ̃), represents a consistent
estimator of Cfg(θ0, λ(θ0)), the KL measure of closeness of f(.) and g(.) under

5For further discussion on non-nested tests and in particular the Cox test statistic, see
(Pesaran and Weeks 2000).

6An exception is the application of the Cox test to both binary and multinomial probit
and logit models. Independent of the dimension of the choice set, the expected difference
between the two log-likelihoods under the null has a relatively simple, closed form expression.
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f which is equal to the expectation in (4). This may be written as Cfg(θ̂, λ̃) =

Ef [lf (θ̂) − lg(λ̃)], and is an estimator of the difference between the expected
value of the two maximised log-likelihoods under the distribution given by
f(.); λ̃ is any consistent estimator for λ(θ0). Weeks (1998) in testing probit

and logit models of discrete choice, distinguished between three variants, λ̃ =
{λ̂, λR(θ̂), λ}: λ̂ is the observed pseudo maximum likelihood estimator (MLE),

λR(θ̂) = 1/R
∑R

r=1 λ̂
r(θ̂) is a simulation-based estimator where λ̂r(θ̂) represents

the solution to Argmaxλ{Lr
g(λ)} where Lr

g(λ) =
∑n

i=1 ln g(y
r
i (θ̂)|zi, λ), y

r
i (θ̂)

is the rth draw of yi under Hf using θ̂, and R is the number of simulations.

Note that for both n → ∞ and T → ∞ then plimλR(θ̂) = λ(θ0). λ is due
to (Kent 1986) and is an estimator derived from maximising the fitted log-
likelihood.

In this study we utilise bootstrap procedures to construct the empirical
distribution function of the Cox test statistic, and simulation methods to eval-
uate the expectation in (4) applying these methods to testing linear versus
loglinear models, two versus three regime SETAR models, and SETAR trend
versus EDTAR trend models. For all cases, the Kullback-Leibler measure of
closeness cannot be derived analytically.

A simulation-based estimator of Cfg(θ̂, λ̃) has been suggested by (Pesaran
and Pesaran 1993) and is given by

Cfg,R(θ̂, λ
R(θ̂)) =

1

R

R∑
r=1

(lf (θ̂)− lg(λR(θ̂)). (6)

Obviously the use of bootstrap testing procedures using a non-pivotal statistic
does not require the mean adjustment facilitated by (6). However, pivotal (or
bootstrap-t) procedures require both mean and variance adjustments in order
to effect asymptotic pivotalness. In this context (6) represents one approach

to centring the log-likelihood ratio statistic, whereby both θ̂ and λR(θ̂) are
treated as fixed parameters. An alternative method of mean adjustment is
given by the following estimator of KLIC

Cfg,R(θ̂
1, . . . , θ̂R, λ̂1(θ̂), . . . , λ̂R(θ̂)) =

1

R

R∑
r=1

(lf (θ̂
r)− lg(λ̂r(θ̂)), (7)

where the parameter arguments to both lf (.) and lg(.) are allowed to vary
across each rth replication.7 We examine the small sample properties of the
Cox test statistic using both (6) and (7).

In examining the variance of the limiting distribution of
√
nTf under Hf ,

denoted vf (θ0, λ0), we utilise a decomposition employed by (Orme 1994)

7See (Coulibaly and Brorsen 1998).
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vf = var(M)− cov(D,U)(var(U))−1cov(D,U)′, (8)

where var(M) represents the variance of the observed log-likelihood ratio and
D and U are given by

D = lf (θ0)− lg(λ(θ0)) (9)

U =
∂

∂θ
lf (θ)

∣∣∣∣
θ0

.

As (Pesaran and Pesaran 1995) note, the second term on the right hand
side of (8) represents the sampling uncertainty associated with the parameters
estimated under the null. In an application of the Cox test procedure to a
test linear and log-linear models, the authors consider three AE versions of
vf . Two of these exploit the information equality: an outer-product estimator
calculating the variance of U using

Ef [{ ∂
∂θ

log f(y|θ0) ∂
∂θ

log f(y|θ0)′}]; (10)

and an estimator using

−Ef{∂
2 log f(y|θ)
∂θ∂θ′

}. (11)

The advantage of (10) is that it only requires evaluation of the vector of scores
(for each sample point). This is particularly important in the case of highly
non-linear models where the evaluation of the matrix of second derivatives of
the log-likelihood is especially burdensome.8 The disadvantage of this method
is the well known poor finite sample properties of variance estimators based
upon the outer-product of the gradient (see (Davidson and MacKinnon 1981)).
We also note that the estimate of the variance based on (11) may be negative
in small samples.

A third AE of the variance of the Cox test statistic utilises only the first
term in (8), and thus ignores the variance component due to the sampling un-
certainty of the estimated parameters under the null model. In a comparison
of the performance of the Cox test using these three different estimators for the
variance, Pesaran and Pesaran find that this particular version exhibits supe-
rior performance relative to estimators based upon an OPG and an observed
Hessian estimator.

8In addition, many optimisation routines that are commonly used in these models (i.e.
(Berndt, Hall, and Hausman 1974)) rely solely upon the gradient of the log-likelihood.
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We also consider a simulation-based estimator of the variance which utilises
the information contained in the R replications used to mean adjust the Cox
test statistic as in (6) and (7). Note that by using the R components lf (θ̂

r)−
lg(λ̂

r(θ̂)) we can construct a variance estimator using

V̂ 2
sim =

R∑
i=1

{
(lf (θ̂

r − lg(λ̂r(θ̂)))− 1

R

R∑
r=1

lrf (λ̂
r(θ̂))− lrg(λ̂r(θ̂)))

}2

/R−1. (12)

(12) represents a numerical estimator of the variance using the set of simulated
log-likelihood ratios which were used to construct the numerator of the Cox
test statistic using either (6) or (7).

3.2 Resampling the Likelihood Ratio Statistic

Utilising a parametric bootstrap we present below a simple algorithm for re-
sampling the likelihood ratio statistic which we use to construct the empirical
distribution function of the test statistic. For the purpose of exposition the
algorithm is presented for the non-pivotal bootstrap.

1. Generate R samples of size n by sampling from the fitted null model
f(θ̂). yr

i denotes the ith observation for the rth bootstrap-sample.

2. For each rth sample the pair (θ̂r, λ̂r) represent the parameter estimates
obtained by maximising the log likelihoods.

lrf (θ) =
1

n

n∑
i=1

log f(yr
i (θ̂)|θ), lg(λ) =

1

n

n∑
i=1

log g(yr
i (θ̂)|λ). (13)

The simulated log likelihood ratio statistic is then

T r
f = lrf (θ̂

r)− lrg(λ̂r).

3. By constructing the empirical cdf we can compare the observed test
statistic, Tf = lf (θ̂) − lg(λ̂), with critical values obtained from the R
independent (conditional) realisations of T r

f . The p-value obtained from
the bootstrap procedure is then given by9

p =

1 +
R∑

r=1

1(T r
f ≥ Tf )

R + 1
. (14)

9If T is discrete then repeat values of T can occur requiring that we make an adjustment
to (14).
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The bootstrap procedure outlined above simply resamples the likelihood
ratio statistic without pivoting. As discussed in Section 2 there are a number
of alternative test statistics which are conjectured to represent an improvement
over classical first order methods. Table 1 summarises the set of test statistics
used in both empirical applications. We note that Table 1 includes two pivotal
bootstrap test statistics P and D. P (D) is based upon a single (double)
bootstrap design. To highlight the distinction between these two designs we
consider the following algorithm.

Outer loop

Let y1, ...,yR denote R bootstrap samples of size n, each conditional upon the
fitted null model f(θ̂). P r denotes an estimate of the modified likelihood
ratio statistic using the rth bootstrap sample. Note that for each rth
replication the mean adjustment in P is the same as P r. Therefore
although the scalar mean adjustment τ = 1

R

∑
[lrf − lrg] represents an

unbiased estimate of Ef [lf − lg] conditional upon θ̂, it is not unbiased
for Er

f [l
r
f − lrg]. This is because the observed component of the bootstrap

test statistic P r is constructed using parameters θ̂r and λ̂r such that a
consistent estimate of the KL measure is αr = 1

L
Σ[llf − llg] where l indexes

a second round of L replications. Unlike τ , αr varies across replications.

Inner loop

For each rth bootstrap sample, let yr1 , ...yrL represent L additional bootstrap
samples, conditional upon the simulated fitted null model (i.e. using

f(θ̂r)). lrl
f (lrl

g ) in Dr are, respectively, the mean log-likelihood (pseudo

log-likelihood) for the lth inner-loop conditional upon θ̂r.

The principal distinction between the test statistics P and D is that for the
latter the construction of the bootstrap statistic Dr replicates the construction
of the test statistic exactly. In fact, the distinction between them is similar to
the distinction between the T and T ∗ test statistics presented in Section 2.1.
Given the theoretical arguments presented, D should be preferred over P .
However, there is an obvious trade-off between any benefits accruing to the
size and power properties and the computational cost of a double bootstrap.

Following the discussion in Section 3.1 we also consider a number of alter-
nate estimators for the variance of the Cox test statistic for the asymptotic
tests. In the tables that follow V̂op denotes an OPG estimator for the variance,

V̂s denotes a naive estimator which ignores parameter uncertainty under the
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Table 1: Likelihood Ratio Tests: Bootstrap and Asymptotic

Bootstrap Tests

Observed Test Statistic Bootstrap Test Statistic

Non-Pivotal T = lf − lg T r = lrf − lrg

Pivotal (single) P =
√

n{lf−lg− 1
R

∑
[lrf−lrg ]}√

V̂s

P r =
√

n{(lrf−lrg)− 1
R

∑
[lrf−lrg ]}√

V̂ r
s

Pivotal (double) D =
√

n{lf−lg− 1
R

∑
[lrf−lrg]}√

V̂s

Dr =
√

n{(lrf−lrg)− 1
L

∑
[lrl

f −lrl
g ]}√

V̂ r
s

Studentised S =
√

n{lf−lg}√
V̂s

Sr =
√

n{lrf−lrg}√
V̂ r

s

Asymptotic Tests

Ã =
√

n{lf−lg− 1
R

∑
[l̃rf−l̃rg]}√

V̂j

A =
√

n{lf−lg− 1
R

∑
[lrf−lrg]}√

V̂j

j = op, s, sim

lf = 1
n

∑
ln fi(yi|xi, θ̂); lg = 1

n

∑
ln gi(yi|zi, λ̂)

lrf = 1
n

∑
ln fi(y

r
i (θ̂)|xi, θ̂

r)); lrg = 1
n

∑
ln gi(y

r
i (θ̂)|zi, λ̂

r(θ̂)))

l̃rf = 1
n

∑
ln fi(y

r
i (θ̂)|xi, θ̂)); l̃

r
g = 1

n

∑
ln gi(y

r
i (θ̂)|zi, λ

R(θ̂)))

lrl
f = 1

n

∑
ln fi(y

rl
i (θ̂

r)|xi, θ̂
rl)); lrl

g = 1
n

∑
ln gi(y

rl
i (θ̂

r)|zi, λ̂
rl(θ̂r)))
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null and V̂sim is the simulation estimator given in (12). Further, the asymp-

totic tests A and Ã refer, respectively, to equations (6) and (7). In test A
the parameter arguments to the estimate of KLIC are constant over the R
simulations where in Ã the parameters are specific to each rth replication.

4 A Test of the Linear versus Log-Linear Re-

gression Model

In this section we evaluate the relative performance of a number of bootstrap
tests, specifically T, P, and S, against two asymptotic tests: As and Asim The
experimental design used has been used previously by (Godfrey, McAleer, and
McKenzie 1988) and (Pesaran and Pesaran 1995).10 Using the notation defined
above, we let Hf (Hg) denote the linear (logarithmic) regression model. When
the linear model is true observations on the n pairs {yt, xt} are generated
according to

yt = 500 + 5xt + utf ,

where utf ∼ N(0, σ2) and the autoregressive process xt is defined by

xt − 100 = 0.9(xt−1 − 100) + etf ,

with etf ∼ N(0, σ2
f ). Under the log-linear specification we have

log yt = 4.6 + 0.5 log xt + utg,

where utg ∼ N(0, η2). The autoregressive process xt is defined by

log(xt/100) = 0.9 log(xt−1/100) + etg,

with etg ∼ N(0, η2
g). We vary sample size (n) using n = (20, 40, 100), with the

number of dgp replications set at 500, and the number of bootstrap replications
(B) fixed at 200.

Across both sets of experiments, with either the linear or log-linear model
serving as the null model, a number of general observations can be made.
First, in all cases we observe the expected convergence of power for sample
size of 100. Second, across both asymptotic and bootstrap tests, deviations
of empirical from nominal size was less and power greater for experiments

10The experiments used in these two studies are extensions of those used by
(Aneuryn Evans and Deaton 1980).
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with lower values of σ2
f and σ2

g . In general we observe reasonable performance
for all bootstrap tests T (non-pivotal), P (pivotal) and S (studentised). Out
of a total of 48 experiments (across different null models, sample sizes and
σ2

f(g) = 8, 16), only in three instances do we observe a significant departure
from nominal size. In terms of the asymptotic tests, the performance of the test
statistic Asim, with the variance calculated using a simulation estimator based
upon (12)), is particularly noteworthy. With only one significant difference
between nominal and empirical size, relative to all other test statistics which
were correctly sized, Asim consistently demonstrates higher power for small (
n < 80) sample size.11

5 Non-Linear Threshold Models

In this section we present and briefly discuss alternative threshold models
which will be used in the Monte Carlo experiments investigating the perfor-
mance of asymptotic and bootstrap tests of nonnested hypotheses in a non-
linear framework. Two testing situations will be considered. The first will
concentrate on self-exciting threshold autoregressive (SETAR) and the second
on endogenous delay threshold autoregressive (EDTAR) models.

5.1 Self-exciting threshold autoregressive models

The canonical form of a SETAR model withm regimes belonging to the class of
threshold autoregressive (TAR) models, introduced and analysed extensively
by Tong (1978, 1983, 1995), for a stochastic process {xt} is

xt = φJt,0 + ΦJt(L)xt−1 + σJtεt, t = p, . . . , T, (15)

where ΦJt(L) =
∑p

k=1 φJt,kL
k−1, Jt = a′It, a = (1, 2, . . . .m)′, It = (1(xt−d ∈

A1),1(xt−d ∈ A2), . . . ,1(xt−d ∈ Am))
′, Ai = [ri−1, ri), i = 1, . . . ,m where

{r1, . . . , rm−1} is a strictly increasing sequence of threshold parameters; r0 =
−∞ and rm = ∞ and 1(.) denotes the indicator function. The sets, Ai,
i = 1, . . . ,m, define a partition of the real line, and d is referred to as the delay
parameter. The basic idea is that the state of the system, at a specific point
in the past, influences the current state of the system by regulating a switch
between different linear laws of motion governing the system; these are referred
to as regimes. SETAR models have been used to model macroeconomic series
related to the business cycle (see, for example, (Potter 1995)). Note that the
representation in (15) treats all regimes of the SETAR model similarly. In some

11For example, compare 0.328 with comparable boostrap power values of T = 0.264,
S = 0.234, and P = 0.226.
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cases it is more intuitive to specify a base regime, say regime s, 0 < s ≤ m,
and express the linear laws of motion of the other regimes as deviations from
the base regime. Such a representation may be given by

xt = φs,0+Φs(L)xt−1+Σm
i=1,i�=s1(ri−1 ≤ xt−d < ri)(ψi,0+ψi(L)xt−1)+ctεt, (16)

where ψi = φi,0 − φs,0, Ψi(L) = Φi(L) − Φs(L), i = 1, . . . ,m, i �= s and
ct = Σm

i=11(ri−1 ≤ xt−d < ri)σi. See also (18) below.
The first set of Monte Carlo experiments will compare a 2-regime and a 3-

regime SETAR model12. Nonnested hypothesis testing is not the only alterna-
tive for evaluating the two models, as noted earlier. The intuitive definition of
nonnested hypothesis indicates that if r2 → r1 then a 3-regime SETAR model
nests a 2-regime SETAR model. In our setup this is not allowed since r2 > r1.
Additionally, the two models are nested if the autoregressive coefficients of two
regimes of the 3-regime SETAR model are equal. However, this would imply
that one of the threshold parameters is not identified under a 3-regime model.
Since the densities of the two models in a nonnested testing setting must be
well defined (see, for example, (Pesaran 1987) or (White 1982)) we choose
to impose the restriction of different autoregressive coefficients for different
regimes. Essentially, this is similar to the Davies problem (see (Davies 1977))
arising in a number of linearity tests.

5.2 Endogenous delay threshold autoregressive models

The second set of Monte Carlo experiments will concentrate on the models
developed in (Kapetanios 1998) following the work by (Beaudry and Koop
1993b) and (Pesaran and Potter 1997). These models are based on ideas from
theoretical nonlinear economic models of the business cycle and especially the
floor and ceiling model of output by Hicks (1949, 1950). The basic premise of
the Hicks model is that when output deviates from its long run trend value,

12The main problem which is specific to the application of nonnested hypothesis testing
to threshold models is the discontinuity and/or non-differentiability associated with thresh-
old parameters. The problem is not so serious since the higher rate of convergence of the
estimated threshold parameters to their true values, implies that the analysis may assume
that these parameters are known (see Chan (1993)). Note that the higher rate of conver-
gence for the threshold parameter occurs in models with discontinuous conditional means.
When the conditional mean is continuous but not differentiable everywhere, the threshold
parameter is

√
T -consistent, at least for simple continuous threshold autoregressive mod-

els. However, in this case the parameter estimates including the threshold parameters are
asymptotically normal (See Chan and Tsay (1998)). Then, it can be conjectured that the
asymptotic results which form the basis of the Cox test procedure hold. However, the fact
remains that, currently, rigorous proofs are available only under the assumption of known
threshold parameters.
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dampening nonlinear forces come into effect and push output towards its trend
value. The model was originally proposed to model output, but any series
driven by the business cycle such as industrial production or imports may be
modelled similarly. We will denote such a series by {yt} with the trend value13

denoted by {yτ
t }. The models distinguish between three regimes. One regime

holds when the series evolves near its trend value, this is referred to as the
corridor regime. The other two regimes are activated when the series deviates
from its trend value either downwards or upwards and are referred to as the
floor and ceiling regimes. The following indicator functions are used to define
the regimes

Floor Regime If t = 1(yt < y
τ
t − rf ), rf > 0

Corridor Regime Icor t = 1(If t + Ic t = 0),

Ceiling Regime Ic t = 1(yt > y
τ
t + rc), rc > 0.

(17)

The parameters rf and rc are threshold parameters. We can model a stationary
transformation of the series, a natural choice in this framework being yt − yτ

t

although ∆yt may be used to provide a link with the existing literature on
threshold models. Both transformations are considered in Kapetanios (1998).
For the Monte Carlo experiments in this paper ∆yt is used.

The first model we consider is a variant of a 3-regime SETAR model14 given
by

∆yt = φcor,0+Φcor(L)∆yt+If t−1(φf,0+Φf (L)∆yt)+Ic t−1(φc,0+Φc(L)∆yt)+htεt,
(18)

where ht = σcorIcor t−1 + σfIf t−1 + σcIc t−1. σcor, σf , σc are parameters to be
estimated. {εt} is assumed to be an independent and identically distributed
(i.i.d.) sequence of disturbances with zero mean and unit variance; Φcor(L),
Φf (L) and Φc(L) are polynomials in the lag operator L with orders pcor, pf

and pc respectively. Note that the above specification allows for regime specific
heteroscedasticity to account for possible changes in the variance of the series in
different regimes15. However, the specifications for the floor and ceiling regimes
in this model do not provide a natural representation for the dampening effects

13For a discussion on the specification of the trend series see Chapter 1 in Kapetanios
(1998). For the purposes of this paper the trend will be estimated using a recursive Hodrick-
Prescott filter.

14Note that if we specify yτ
t = yt−1, then the model in (18) is a standard 3-regime SETAR

model whose canonical form is given in (15).
15This pattern of conditional heteroscedasticity is referred to as Qualitative Threshold

Autoregressive Conditional Heteroscedasticity (QTARCH) (see also, (Altissimo and Violante
1996)).
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in the Hicks model given that such effects will only be present if the coefficients
in Φf (L) and Φc(L) have the appropriate signs. A more suitable specification
is provided by the class of EDTAR models which is discussed in Kapetanios
(1998), Pesaran and Potter (1997) and Altissimo and Violante (1996). This
class makes use of the following feedback variables to model the dampening
effects

Ft =

pr∑
i=0

[
(yτ

t−i − rf − yt−i)
i∏

j=0

If t−j

]
(19)

Ct =

pe∑
i=0

[
(yt−i − yτ

t−i − rc)
i∏

j=0

Ic t−j

]
. (20)

Then, ∆yt is given by

∆yt = φ0 + Φ(L)∆yt + θfFt−1 + θcCt−1 + htεt. (21)

Both the feedback variables are constructed to be either positive or zero. Each
extra time period spent in the ‘floor’ or ‘ceiling’ regime leads to a rise in the
value of Ft and Ct respectively. Therefore, the role of the feedback variables
is to measure the dampening effects on the economy during contractions and
expansions.

5.3 Test Results

The parameter values for the DGPs used in the construction of the Monte
Carlo samples are presented in Tables 4 and 5. In both cases the autoregressive
coefficients are chosen to lie in the stable region and take small absolute values
so as to reduce estimate biases in small samples. In table 4 the parameter values
are self-explanatory with the parameterisation of the variance consistent with
homoscedasticity across regimes. In table 5, pf , pc and pcor, together with pr,
pe and p denote, respectively, the order of the polynomials for both the linear
and non-linear components of the models. Note also that the parameterisation
of the SETAR trend and EDTAR trend model allows for both a common linear
and variance component, with respective parameters φi i = 1, . . . ,m and φcor,i

φi i = 0, ...,m. Results are presented for a nominal size of 5% (0.05). The
results of the experiments are presented in Tables 6 to 9.

The results are encouraging for the simple bootstrap procedures. In the
first set of experiments under the null of a 2 regime SETAR model, all but
two experiments indicate that the actual size is not significantly different from
the nominal size, as can be seen from the results in Table 6. The D procedure
performs satisfactorily as well. Although Asim has lower power than size at
a sample size of 100 its performance improves for a sample size of 150. The
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remaining asymptotic tests Aop, As, Ãop, Ãs and Ãsim perform badly by either
under-rejecting or over-rejecting the null. It is interesting to note that the
non-pivotal bootstrap test T procedure has very low power in smaller samples.

When the null is a 3-regime SETAR model, the results in Table 7 indicate
that the performance of the tests deteriorates. All asymptotic tests have very
large actual sizes. For two asymptotic tests (Ãop and Ãs), actual size exceeds
power. In addition we note that the test statistic does not seem to exhibit
the assumed convergence properties, at least for sample sizes between 50 and
200. We can provide some intuition for this result based upon the following
argument. Given that the true model is a 3-regime SETAR and Hf (Hg) are
3 (2) regimes SETAR models, the variance of the log-likelihood ratio will be
inflated. This follows from the results of (Bai and Perron 1998) on estimating
and testing linear models with structural breaks. Given that it is possible to
think of thresholds and breaks as similar non-linearities depending upon how
observations are ordered, we know that if we underestimate the number of
true thresholds, we will obtain a consistent estimate, say r̂∗, of one of the two
thresholds.16 However, across samples the limit of r̂∗ will oscillate between the
two true population threshold values, and as a result so will the variance of
the mean parameters and the variance of log Lg. Further, this problem will
persist in large samples, given that the threshold estimate will not converge
to a single value. To examine this phenomenon a little closer we increased
the sample size substantially, examining size for Aop and As with the sample
set at 1500. The respective sizes of 0.977 and 0.969 indicates a worsening of
the situation. Following this, and based on the conjecture that the estimation
of nuisance (threshold) parameters may be a partial explanation, we repeated
the same set of experiments, but fixing the threshold parameters at the known
truth. Significance levels of Aop = 0.824 and As = 0.777 revealed that the
estimation precision of threshold parameters was not the problem. Finally, we
examined the size properties of a variant of Aop and As, by replacing λ̂ in the

analytical estimator of the variance by λR(θ̂), denoting the new test statistic
Aop,s and As,s. The results (Aop,s = 0.102, As,s = 0.007) indicate that these test
statistics appear to converge but there is still a significant difference between
nominal and empirical size.17

The simple bootstrap tests (namely T, S, and P ) perform well having
actual sizes less than 10 % for all experiments. Experiments using the D, Asim

and Ãsim procedures indicate that these tests perform very badly and have
extremely large actual sizes. Additionally, the simulated samples used for the

16This will depend upon which threshold parameter dominates in terms of maximising
the log-likelihood.

17Note that there was no significant difference between nominal and empirical size for the
test Aop,s with the threshold parameters fixed at truth.
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construction of the bootstrap statistics and the variance estimator V̂sim, behave
erratically and cannot be estimated as they have too few observations in one
of the three regimes. It seems likely that the simulation error introduced by
two sets of simulations is large. For these reasons we do not report results
for these tests and conclude that they may not be suitable for the class of
nonlinear models we consider.

In the second set of experiments presented in Tables 8 and 9, bootstrap
tests perform satisfactorily with actual sizes of around 10%. Although the
asymptotic tests As and Ãs perform relatively well under the SETAR trend
this is not so under the EDTAR trend null. Power under the null of an EDTAR
model is quite low, especially for the T procedure. Overall, simple bootstrap
tests perform consistently better than asymptotic tests. P and S perform
comparably, possibly because of the effects of the simulation error discussed
earlier.

6 Conclusion

In this paper we have considered a variety of simulation-based testing pro-
cedures for nonnested models including bootstrap procedures. We have seen
that the framework of nonnested hypotheses can be extended to include sit-
uations where the models under consideration may be thought of as nested
but cannot be straightforwardly handled as such. The test of a SETAR model
with 2 regimes against a SETAR model with 3 regimes is an example of such a
phenomenon. We have carried out an extensive Monte Carlo investigation of
the small sample properties of the bootstrap procedures and compared them
to procedures which although using simulation methods to evaluate the test
statistic still rely on asymptotic approximations. We conclude that simple
bootstrap procedures can provide significant improvements compared to both
asymptotic procedures and more complicated bootstrap procedures which aim
to incorporate second order corrections. It is clear that the simulation error
involved in those procedures is larger than the gain from any possible reduc-
tion in the statistical error. By conducting experiments over types of models
with different degrees of nonlinearity we determined that it is important to
distinguish between testing over linear and log-linear models where the gain
of using the bootstrap is moderate and highly nonlinear models where the
asymptotic approximations are in general very poor. In such cases bootstrap
based procedures provide more significant improvements.
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Table 2: Bootstrap-Based Likelihood Ratio Tests

Linear Model (Hf ) is the Data Generating Process

σf = 8 σf = 16
Sample
Sizea Test Linear Log-Linear Linear Log-Linear
20 T 0.040 0.054 0.066 0.100

S 0.058 0.060 0.062 0.098
P 0.054 0.060 0.076∗ 0.094
As 0.134∗ 0.154 0.144∗ 0.274
Asim 0.042 0.068 0.052 0.078

40 T 0.052 0.264 0.042 0.580
S 0.038 0.234 0.042 0.584
P 0.064 0.226 0.076∗ 0.508
As 0.126∗ 0.294 0.058∗ 0.626
Asim 0.036 0.328 0.044 0.624

80 T 0.052 0.376 0.052 1.000
S 0.060 0.360 0.062 1.000
P 0.056 0.314 0.046 0.994
As 0.080∗ 0.428 0.056 0.996
Asim 0.056 0.420 0.044 1.000

100 T 0.048 0.548 0.046 1.000
S 0.070 0.544 0.038 1.000
P 0.056 0.502 0.046 1.000
As 0.080∗ 0.560 0.062 1.000
Asim 0.046 0.582 0.042 1.000

aStarred entries indicate that the estimated size is significantly different from 0.05 at the
5% significance level. The variance of the estimated size is obtained using the normal
approximation to the binomial distribution and is given by N−1â(1 − â) where N is the
number of Monte Carlo replications and â is the estimated size.
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Table 3: Bootstrap-Based Likelihood Ratio Tests

Log-Linear Model (Hg) is the Data Generating Process

σg = 8 σg = 16
Sample
Sizeb Test Linear Log-Linear Linear Log-Linear
20 T 0.034 0.046 0.200 0.044

S 0.064 0.056 0.196 0.058
P 0.058 0.052 0.186 0.068
As 0.154 0.112∗ 0.350 0.182∗

Asim 0.038 0.044 0.260 0.036

40 T 0.246 0.040 0.304 0.046
S 0.246 0.050 0.304 0.094∗

P 0.236 0.044 0.288 0.042
As 0.400 0.068 0.426 0.086∗

Asim 0.256 0.034∗ 0.340 0.036

80 T 0.404 0.058 0.872 0.058
S 0.376 0.048 0.914 0.054
P 0.326 0.062 0.840 0.062
As 0.454 0.088∗ 0.900 0.082∗

Asim 0.418 0.056 0.882 0.066

100 T 0.424 0.068 1.000 0.038
S 0.438 0.054 0.988 0.042
P 0.390 0.078 0.990 0.042
As 0.508 0.076∗ 1.000 0.046
Asim 0.456 0.056 1.000 0.034∗

bSee footnote (a) Table 2.
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Table 4: DGPs for first set
of Monte Carlo experiments

DGP 1a DGP 2b

p 2 2
r1 0 -0.3
r2 0.3
d 1 1
φ1,0 0.1 0.2
φ1,1 0.2 0.1
φ1,2 -0.1 -0.1
φ2,0 0.2 0.1
φ2,1 0.1 0.2
φ2,2 -0.2 0.2
φ3,0 0.2
φ3,1 0.2
φ3,2 -0.2
σ2

1 1 2.25
σ2

2 1 2.25
σ2

3 2.25

a2-regime SETAR model
b3-regime SETAR model

Table 5: DGPs for second
set of Monte Carlo experi-
ments

DGP 3a DGP 4b

rf 1 1
rc 1 1
pf 2
pc 2
pCOR 2
pr 1
pe 1
p 2

φCOR,0 0.1
φCOR,1 0.2
φCOR,2 -0.2
φf,0 0
φf,1 -0.1
φf,2 -0.15
φc,0 0.05
φc,1 -0.05
φc,2 -0.1
φ0 0.1
φ1 0.2
φ2 -0.2
θf 0.5
θc -0.5
σ2

f 1 1
σ2

c 1 1
σ2

COR 1 1

aSETAR trend model
bEDTAR model
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Table 6: Test size and power under Hf : 2-regime SETAR model against Hg:
3-regime SETAR model. True DGP for size: 2 regime SETAR, True DGP for
power: 3 regime SETAR

Sizea Power
Testing Sample Size Sample Size

Procedures 50 100 150 200 50 100 150 200

Aop 0.709∗∗ 0.031∗∗ 0.013∗∗ 0.010∗∗ 0.770 0.925 1.000 1.000
Asymptotic As 0.639∗∗ 0.018∗∗ 0.005∗∗ 0.004∗∗ 0.739 0.918 1.000 1.000

Testing Ãop 0.998∗∗ 0.806∗∗ 0.541∗∗ 0.381∗∗ 0.997 0.995 1.000 1.000

Proceduresb Ãs 0.979∗∗ 0.580∗∗ 0.372∗∗ 0.258∗∗ 0.997 0.992 1.000 1.000
Asim 0.040 0.045 0.048 0.042 0.017 0.274 0.966 1.000

Bootstrap T 0.040 0.039 0.054 0.045 0.075 0.268 0.976 1.000
Testing S 0.058 0.041 0.062 0.038∗ 0.772 0.988 1.000 1.000

Proceduresc P 0.070∗ 0.040 0.059 0.044 0.376 0.958 1.000 1.000
D N/A 0.045 0.030 N/A N/A 0.860 0.995 N/A

aStarred entries indicate that the estimated size is significantly different from 0.05
at the 5% significance level. Double stars indicate difference at the 1% significance
level. The variance of the estimated size is obtained using the normal approximation
to the binomial distribution and is given by N−1α̂(1 − α̂) where N is the number
of Monte Carlo replications and α̂ is the estimated size.

bThe test statistics for the asymptotic testing procedures are given in Table 3.1.
cThe test statistics and bootstrap test statistics for the bootstrap testing proce-

dures are given in Table 3.1.
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Table 7: Test size and power under Hf : 3-regime SETAR model against Hg:
2-regime SETAR model. True DGP for size: 3 regime SETAR, True DGP for
power: 2 regime SETAR

Size Power
Testing Sample Size Sample Size

Proceduresa 50 100 150 200 50 100 150 200

Asymptotic Aop 0.858∗∗ 0.797∗∗ 0.802∗∗ 0.835∗∗ 0.892 0.956 0.997 0.997
Testing As 0.807∗∗ 0.711∗∗ 0.733∗∗ 0.772∗∗ 0.917 0.968 0.989 0.996

Procedures Ãop 0.909∗∗ 0.938∗∗ 0.962∗∗ 0.961∗∗ 0.735 0.804 0.783 0.836

Ãs 0.890∗∗ 0.919∗∗ 0.948∗∗ 0.951∗∗ 0.601 0.659 0.543 0.609
Asim 0.115∗∗ 0.683∗∗ 0.694∗∗ 0.735∗∗ 0.253 0.849 0.963 0.984

Bootstrap T 0.095∗∗ 0.063 0.073∗∗ 0.077∗∗ 0.737 0.928 0.985 0.996
Testing S 0.042 0.039 0.029∗∗ 0.024∗∗ 0.498 0.873 0.973 0.987

Procedures P 0.288∗∗ 0.087∗∗ 0.087∗∗ 0.095∗∗ 0.750 0.903 0.986 0.994

aSee notes in Table 6

Table 8: Test size and power under Hf : SETAR trend model against Hg:
EDTAR trend model. True DGP for size: SETAR trend, True DGP for power:
EDTAR trend

Size Power
Testing Sample Size Sample Size

Proceduresa 100 150 100 150

Asymptotic Aop 0.435∗∗ 0.505∗∗ 0.805 0.910
Testing As 0.130∗∗ 0.080 0.500 0.600

Procedures Ãop 0.190∗∗ 0.140∗∗ 0.685 0.790

Ãs 0.065 0.020∗∗ 0.410 0.470
Asim 0.030 0.090∗ 0.270 0.470

Bootstrap T 0.100∗ 0.105∗ 0.470 0.640
Testing S 0.100∗ 0.115∗∗ 0.455 0.640

Procedures P 0.110∗∗ 0.135∗∗ 0.470 0.670

aSee notes in Table 6
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Table 9: Test size and power under Hf : EDTAR trend model against Hg:
SETAR trend model. True DGP for size: EDTAR trend, True DGP for power:
SETAR trend

Size Power
Testing Sample Size Sample Size

Proceduresa 100 150 100 150
Asymptotic Aop 0.075 0.070 0.180 0.275
Testing As 0.055 0.035 0.075 0.150

Procedures Ãop 0.505∗∗ 0.370∗∗ 0.690 0.730

Ãs 0.315∗∗ 0.230∗∗ 0.450 0.545
Asim 0.03 0.035 0.065 0.075

Bootstrap T 0.055 0.045 0.065 0.100
Testing S 0.160∗∗ 0.100∗ 0.335 0.610

Procedures P 0.115∗∗ 0.095∗ 0.215 0.370

aSee notes in Table 6
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