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Abstract

Daily futures returns on six important commodities are found to be well described as FIGARCH

fractionally integrated volatility processes, with small departures from the martingale in mean

property. The paper also analyzes several years of high frequency intra day commodity futures

returns and finds very similar long memory in volatility features at this higher frequency level.

Semi parametric Local Whittle estimation of the long memory parameter supports the conclusions.

 Estimating the long memory parameter across many different data sampling frequencies provides

consistent estimates of the long memory parameter, suggesting that the series are self-similar. The

results have important implications for future empirical work using commodity price and returns

data.

Keywords:  Commodity returns, Futures markets, Long Memory, FIGARCH

JEL Classification: C4, C22.
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1. Introduction

This paper is concerned with the stochastic properties of commodity futures prices and

applies some recent developments in volatility modeling, in particular the FIGARCH long

memory volatility model, to commodity futures returns. The volatilities of daily futures returns

are found to be well described by the FIGARCH model, with relatively similar estimates of the

long memory parameter across commodities. The conditional means of the daily returns are

close to being uncorrelated with small departures from martingale behavior being represented

by low order moving average models. We also estimate FIGARCH models for high frequency

commodity futures returns based on intra day tick data.  These high frequency commodity

returns are dominated by strong intra day periodicity, hypothesized to be a result of repeated

trading day cycles resulting from the institutional features of futures exchanges where trades are

taking place. The intra day periodicity is removed using a deterministic Flexible Fourier Form

(FFF) filter. The filtered high frequency futures returns are also well described by the

FIGARCH process. The results of the paper have important implications for our understanding

of the stochastic properties of commodity prices, and hence for empirical applications such as

optimal hedge ratio estimation, tests for futures market efficiency, tests for the announcement

effect of market news, option valuation, farm risk portfolio management, etc.

The FIGARCH model has already been applied gainfully to exchange rates, stock

returns, inflation rates, and a range of other economic data; for example see Baillie, Bollerslev

and Mikkelsen (1996), Bollerslev and Mikkelsen (1996), Baillie, Han and Kwon (2002), etc.

However, there have been few applications of the model to commodities. Crato and Ray (2000)

study long memory in the daily volatilities of several agricultural commodity futures returns,

along with a stock index return, currencies, metals, and heating oil.  They find strong evidence

of long memory in daily commodity futures prices, though they do not explicitly estimate

FIGARCH models. Jin and Frechette (2004) estimate FIGARCH volatility models for 14

agricultural futures series and find that FIGARCH fits the data significantly better than a

traditional GARCH volatility model.  While these studies have provided valuable information

on the long memory properties of commodity futures price volatilities, much more work

remains to be done.
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This paper adds to our understanding of long memory in commodity price volatilities in

three main ways.  First, while Jin and Frechette (2004) argue in favor of the FIGARCH model

over the GARCH model for commodity futures volatilities, they did not undertake a formal

statistical test comparing the two models.  Here we undertake a robust Wald test, which

formally compares the fit of the GARCH and FIGARCH models. Second, in addition to the

standard quasi-maximum likelihood estimator (QMLE), we also apply the semi parametric

Local Whittle estimator of the long memory parameter.  This provides additional information on

the robustness of long-memory inferences concerning daily commodity price volatilities.  Third,

in addition to daily returns we study high frequency returns on futures contracts using intra day

tick data.  This study is the first to systematically examine volatility using high frequency

commodity futures data.1 We find that estimated models at different sampling frequencies are

consistent with the theory that commodity futures returns are “self similar” processes, and

hence have long memory parameters that are invariant to the sampling frequency; see Beran

(1994). The “self-similarity” of the estimates of the long memory volatility parameter across

relatively short spans of high frequency data strongly suggests that the long memory property is

an intrinsic feature of the system rather than being due to exogenous shocks or regime shifts.

The plan of the rest of the paper is as follows. Section 2 discusses the application of the

long memory FIGARCH volatility model to daily futures returns. Similar to Jin and Frechette

(2004), we find the FIGARCH models to be econometrically superior to regular stable GARCH

models. Section 3 describes the results from the analysis of high frequency futures returns and

compares them to the daily return results. Section 4 presents an analysis of semi parametric

Local Whittle estimation of the long memory parameter as a robustness check, and also

compares estimates of the long memory parameter across a range of different sampling

frequencies.  This shows that the commodity return series display self similarity. Section 5

offers a brief conclusion.

2. Analysis of Daily Commodity Returns

This section is concerned with the analysis of daily futures returns for different

1 Cai,Cheung and Wong (2001) have analyzed high frequency gold futures.  However, their approach is somewhat
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commodities. We examine six commodities; corn, soybeans, cattle, hogs, gasoline, and gold.  Corn

and soybeans are major annual crops that are of critical importance to U.S. agriculture.  These crops

are related in the sense they can be substitutes in production and both are used heavily as animal

feed.  They are different, however, in that most corn is produced in the northern hemisphere while

soybeans have a significant southern hemisphere harvest in Brazil and Argentina. This southern

hemisphere harvest may influence seasonal price and volatility patterns. Cattle and hogs are both

important livestock commodities in U.S. agriculture but their different life cycles mean different

inherent price dynamics, even though we would expect a lot of similarity in the stochastic

properties of prices for these two livestock commodities. Gasoline is included to see if results are

markedly different for a natural resource based commodity, and gold is included as a commodity

that has a central role as a store of wealth.

Data were obtained from the Futures Industry Institute data center.2  The daily data are

daily closing futures prices on major U.S. futures markets for the relevant commodity; in particular,

the Chicago Board of Trade for corn and soybeans, the Chicago Mercantile Exchange for live cattle

and hogs, and the New York Mercantile Exchange for unleaded gasoline and gold. Returns are

defined in the conventional manner as continuously compounded rates of return and calculated as

the first difference of the natural logarithm of prices.  To compute the futures returns, nearby

contracts were used and then the data switched to the next available contract nearby on the first day

of the month in which the current nearby contract expires.  For consistency, returns are always

defined using the same futures contract.3  The use of nearby futures contracts to define our futures

return series, has the advantage that we are using the most actively traded contracts to generate our

return data.  However, if volatility depends on time to maturity, as might be expected in at least

some instances, then switching from an expiring futures contract to the next nearby maturity may

introduce jumps into the volatility process (because of jumps in time to maturity at the switch

informal and does not include either FIGARCH or Local Whittle estimation of the long memory parameter.
2 The Futures Industry Institute is now called the Institute for Financial Markets.  For more information and data
availability see http://www.theifm.org.

3  That is, at each point when the data switch to the next nearby maturing contract the futures return is defined as
the difference between the natural logarithm of today’s futures price for a contract maturing at the next nearby and
yesterday’s futures price for a contract with exactly the same maturity date.  In this way, daily returns are never
defined using prices from two different contracts with different maturity dates.
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points).  We will discuss how we allowed for the effects of these jumps in time to maturity when

we outline the econometric model further below.

The details of the sample periods used for each commodity are provided in Table 1, along

with some summary statistics for daily returns over these periods. All the daily data begin at the

first trading day of January 1980, except for gasoline.  For gasoline, we exclude data from January

1980 through December 1990 and begin the sample period the first trading day of January 1991.

This is to avoid two periods of exceptional volatility in gasoline prices that we argue are a result

of structural shifts in the volatility process for this commodity. The first period is 1986-87, a period

in which Saudi Arabia expanded its oil production significantly to discipline other OPEC countries.

 The second period extends from August 1990 to December 1990 and is due to the Iraqi invasion

of Kuwait and the subsequent Gulf War.  By starting the gasoline price series in January of 1991

we avoid having to model these structural breaks in the volatility process.  All of the daily data end

at the last trading day of December 2000, except for corn which ends the last trading day in March

of 2001.  In all cases we used the most recent data that was provided in the data set obtained from

the Futures Industry Institute.

Previous studies by Cecchetti, Cumby and Figlewski (1988), Baillie and Myers (1991), and

Yang and Brorsen (1992) have argued that most daily cash and futures commodity returns are well

described as martingales with GARCH effects.  The possibility of mixed diffusion-jump processes

has also been suggested as a way to characterize volatility in commodity prices. Yang and Brorsen

(1992) compared GARCH, mixed diffusion-jump, and deterministic chaos models of cash

commodity prices and concluded that the GARCH volatility process provided the best fit.  It is only

more recently that studies such as Crato and Ray (2000) and Jin and Frechette (2004) have begun

to investigate the long memory properties of commodity volatilities.

Figures 1 and 2 plot the sample autocorrelations for the returns, squared returns and absolute

returns in daily futures prices for two representative commodities; namely live cattle and corn.

There is one noticeable difference between the crop commodity and the livestock commodity,

namely that both squared and absolute daily returns for corn exhibit strong yearly seasonality in

their sample autocorrelations while this does not occur for live cattle.  To conserve space the

corresponding graphs for the other commodities are not shown.  However, it was observed that
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soybeans also display seasonality in volatility (though not as pronounced as in the case of corn,

perhaps because of the influence of a southern hemisphere harvest for soybeans) while live hogs,

gasoline and gold display no seasonality in volatility (similar to live cattle).  In order to analyze the

intrinsic stochastic properties of the daily corn and soybean return volatilities we filter out the

seasonality by using a FFF filter.4    The sample autocorrelations for the returns, squared returns

and absolute returns for the filtered daily corn futures price series is provided in Figure 3.  Notice

that the FFF filter has been quite effective in removing the seasonality in the squared and absolute

corn futures returns. In all subsequent analysis of the corn and soybean return volatilities we use

the filtered volatility models.

Plots of the live cattle sample autocorrelations (Figure 1), the FFF filtered corn sample

autocorrelations (Figure 3), and other commodity return sample autocorrelations (not shown) reveal

a familiar lack of autocorrelation in returns and the marked persistence in autocorrelations of

squared and absolute returns that was first noticed by Ding, Granger and Engle (1993) for the case

of stock market returns. In particular, the autocorrelation functions for the squared and absolute

returns do not display the usual exponential decay associated with the stationary and invertible class

of ARMA models, but rather appear to be generated by a long memory process with hyperbolic

decay.

More formally, the autocorrelation at lag k, k , tends to satisfy 2 1d
k ck  as k gets large,

where c is a constant and d is the long memory parameter. This type of persistence is consistent

with the notion of hyperbolic decay and is sometimes called the “Hurst phenomenon.” The Hurst

coefficient is defined as H = d +0.5. If d = 1, so that H = 1.5, then the autocorrelation function does

not decay and the series has a unit root. If d = 0, so that H = 0.5, then the autocorrelation function

decays exponentially and the series is stationary. But for 0 < d < 1, i.e. 0 < H < 1.5, the series is

sufficiently flexible to allow for slower hyperbolic rates of decay in the autocorrelations.

While many stochastic processes could potentially exhibit the long memory property, the

most widely used process is the ARFIMA(p, d, q) process of Granger and Joyeux (1980), Granger

(1980), and Hosking (1981). In the ARFIMA process a time series xt is modeled as

4   See the appendix for details of the FFF filter.
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(L)(1 L) (L)d
t ta x b with (L)a and (L)b being p’th and q’th order polynomials in the lag

operator L, with all their roots lying outside the unit circle, while t is a white noise process. The

ARFIMA process is stationary and invertible in the region of 0.5 0.5d . At high lags the

ARFIMA(p, d, q) process is known to have an autocorrelation function that satisfies 2 1d
k ck ,

so that the autocorrelations may decay at a slow hyperbolic rate, as opposed to the required

exponential rate associated with the stationary and invertible class of ARMA models. The sample

autocorrelation function of the squared and absolute daily filtered futures corn returns appears to

be very consistent with the above properties and analogous plots for the other commodity returns

were found to be extremely similar.

Virtually all studies of daily asset returns, including commodity assets, have found returns,

yt, to be stationary with small autocorrelations at the first few lags, which can be attributed to a

combination of a small time-varying risk premium, bid-ask bounce, and/or non-synchronous trading

phenomena; see Goodhart and O’Hara (1997) for a description of this issue in high frequency

currency markets. On the other hand, volatility has been found to be very persistently

autocorrelated with long memory hyperbolic decay. A model that is consistent with these stylized

facts is the MA(n)-FIGARCH(p, d, q) process,

100 ln( ) ( ) ,t t ty P b L (1)

,t t tz (2)

2 2[1 ( )] 1 {1 ( )} ( )(1 )d
t tL L L L (3)

where Pt is the asset price, zt is an i.i.d.(0,1) random variable, the polynomial in the lag operator

associated with the moving average process is 2
1 2( ) 1 ... n

nb L b L b L b L . The FIGARCH

model in equation (3) can be best motivated from noting that the standard GARCH(p, q)  model of

Bollerslev (1986) can be expressed as
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2 2 2( ) ( ) ,t t tL L

where the polynomials are 2
1 2( ) .... q

qL L L L and 2
1 2( ) ... .p

pL L L L The

GARCH(p, q) process can also be expressed as the ARMA[max(p, q), p] process in squared

innovations as

21 ( ) ( ) 1 ( )t tL L L

where 2 2 ,t t t and is a zero mean, serially uncorrelated process which has the interpretation

of being the innovations in the conditional variance. The FIGARCH(p, d, q) process in equation

(3) can also be written as

2( )(1 ) 1 ( )d
t tL L L , (4)

where 1( ) 1 ( ) ( ) (1 )L L L L  is a polynomial in the lag operator of order [max(p, q)-1].

Equation (4) can be easily shown to transform to equation (3), which is the standard representation

for the conditional variance in the FIGARCH(p, d, q) process. Further details concerning the

FIGARCH process can be found in Baillie, Bollerslev and Mikkelsen (1996). The parameter d

characterizes the long memory property of hyperbolic decay in volatility because it allows for

autocorrelations to decay at a slow hyperbolic rate. The attraction of the FIGARCH process is that

for 0 < d < 1, it is sufficiently flexible to allow for intermediate ranges of persistence, between

complete integrated persistence of volatility shocks associated with d = 1 and the geometric decay

associated with d = 0.

The volatility model in equation (3) has to be slightly adjusted to accommodate the

potential jumps in volatility that can occur at contract switching points, when futures return data

are computed from a sequence of nearby futures contracts.  The long spans of daily futures

returns are constructed from contracts with different maturities and the resulting variations (and

jumps) in time to maturity may have an influence on the volatility process. To account for
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possible time to maturity effects we introduce a time to maturity variable in the formulation of

the FIGARCH(1, d, 1)  model in (3), which then becomes,

2 2 2
1 [1 (1 )(1 ) ]d

t t t tTM L L L (5)

where TM represents the time to maturity on the contract used to construct the futures return for

period t, and is the associated parameter.

The above model (1), (2), and (5) is estimated for futures returns on our six commodities

of interest by maximizing the Gaussian log likelihood function,

T
2 2 2
t t t

t 1

ln(L; ) (0.5T) ln(2 ) 0.5 ln( ) , (6)

where /
1 1 , 1( , ,... , , ,.. ,... )n p l is the vector of unknown parameters. However, it has long

been recognized that most asset returns are not well represented by assuming zt in equation (2) is

normally distributed; for example see McFarland, Pettit and Sung (1982), and Booth (1987).

Consequently, inference is usually based on the quasi maximum likelihood estimator (QMLE) of

Bollerslev and Wooldridge (1992), which is valid when zt is non-Gaussian. Denoting the vector of

parameter estimates obtained from maximizing (6) using a sample of T observations on equations

(1), (2) and (5) with zt being non-normal by 
^

T , then the limiting distribution of 
^

T , is then

^
1/ 2 1 1

T 0 0 0 0T ( ) N[0, A( ) B( )A( ) ] ,  (7)

where A(.) and B(.) represent the Hessian and outer product gradient respectively, and 0 denotes

the vector of true parameter values. Equation (7) is used to calculate the robust standard errors that

are reported in the subsequent results in this paper, with the Hessian and outer product gradient
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matrices being evaluated at the point 
^

T for practical implementation.

[Table 2 about here]

Table 2 presents the results of applying the above model (1), (2), and (5) to daily futures

returns for the six commodities discussed earlier. The exact parametric specification of the

model which best represents the degree of autocorrelation in the conditional mean and

conditional variance of daily commodity returns, varies by commodity.  The exact model

specification for each commodity is indicated by the number of non-zero estimates provided for

the polynomial in the lag operator terms in Table 2. For corn and soybean futures returns, we

apply FIGARCH estimation to the FFF filtered returns (see the Appendix). At the bottom of the

table there are results from Box-Pierce portmanteau statistics on the standardized residuals. The

standard portmanteau test statistic, 2

1

( ) ( 2) /( )
m

j
j

Q m T T r T j , where rj is the j’th order

sample autocorrelation from the residuals, is known to have an asymptotic 2
m k  distribution,

where k is the number of parameters estimated in the conditional mean. Similar degrees of

freedom adjustments are used for the portmanteau test statistic based on the squared

standardized residuals when testing for omitted conditional heteroscedasticity. This adjustment

is in the spirit of the suggestions by Diebold (1988) and others. The sample skewness and

kurtosis of the standardized residuals (m3 and m4), are also provided at the bottom of Table 2.

The Box-Pierce portmanteau statistics show that the models specified for each

commodity do a good job of capturing the autocorrelations in the mean and volatility of the

commodity return series.  In each case there is no evidence of additional autocorrelation in the

standardized residuals or squared standardized residuals, indicating that the chosen model

specification provides an adequate fit.  It is interesting that autocorrelation in the mean tends to

persist more for the livestock commodities of live cattle and hogs than for the other

commodities (i.e. more MA terms in the mean required for an adequate fit).  Furthermore, these

commodities also seem to require more flexible models to capture their autocorrelation in
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volatility as well (i.e. more GARCH terms required for an adequate fit).  The standardized

residuals from all commodities, except perhaps live cattle and hogs, exhibit the usual features of

excess kurtosis of daily asset returns.  However, this is accommodated through use of the

QMLE standard errors for inference.

The estimated MA-FIGARCH models reported in Table 2 seem to fit the data well.  For

each commodity there is weak evidence of small moving average effects in the mean returns. As

stated earlier, this may be attributed to a combination of a small time-varying risk premium,

bid-ask bounce, and/or non-synchronous trading phenomena.  The volatility autocorrelation

parameters in (L) and (L) indicate strong evidence of significant serial correlation in

volatilities, which is consistent with previous findings of autocorrelated volatility in commodity

returns; see Baillie and Myers (1991), Jin and Frechette (2004); and Yang and Brorsen (1992). 

Furthermore, the time to maturity parameter is statistically significant for all commodities

except gold.  Gold may not experience a time to maturity effect in volatility because its special

role as a store of wealth means that cash and futures prices move very closely together,

irrespective of the time to maturity on the futures contract.  It is interesting that the time to

maturity effect is negative for corn, soybeans and gasoline, but positive for cattle and hogs. 

This indicates that the upward jumps in time to maturity that occur at contract switching points

reduce the volatility of returns for corn, soybeans, and gasoline, but increase volatility in live

cattle and hogs.  Apparently, live cattle and hogs are relatively more volatile further away from

the maturity date, while corn, soybeans and gasoline are relatively more stable.

In this paper we are primarily interested in the long memory parameter d. The estimated

long memory parameters reported in Table 2 are strongly statistically significant for all  six

futures return series, and the hypotheses that d = 0 (stationary GARCH) and also d =1

(integrated GARCH) are consistently rejected for all commodities using standard significance

levels. Table 2 also reports robust Wald test statistics, denoted by W, for testing the null

hypothesis of GARCH versus a FIGARCH data generating process. Under the null, W will have

an asymptotic 2
1  distribution and, from Table 2, the GARCH model is rejected for every

commodity at standard significance levels. This formal statistical test supports the conclusion

obtained both here and in Jin and Frechette (2004) that FIGARCH is superior to GARCH for
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modeling the conditional variances of commodity returns. Evidently, long memory is a

characteristic feature of daily commodity futures returns, and FIGARCH represents a

significant improvement over GARCH.

3. Analysis of High Frequency Commodity Returns

Considerable previous work has examined the properties of high frequency returns in equity

and currency markets, but to date very little analysis has been done on high frequency commodity

returns.  The only study we are aware of is Cai, Cheung and Wong (2001) who studied high

frequency gold futures prices.  Their study analyzed 5 minute gold futures returns between 1994

and 1997, and they discovered slow hyperbolic decay associated with the autocorrelation function

of the returns. However, they used an informal method for approximating the long memory

parameter and did not estimate formal FIGARCH models. This section of the paper represents a

first attempt at extensive analysis of the volatility properties of high frequency commodity futures

returns using FIGARCH models.

The raw futures tick data for the analysis were obtained from the Futures Industry

Institute data center along with the daily data (see footnote 2), and correspond to the same six

commodities studied in the previous section.  The prices are for real-time transaction records,

which we initially convert to 5-minute price intervals by using the last price quoted before the

end of every 5-minute interval over the trading day.  For 5-minute intervals that have no price

recorded we linearly interpolate between surrounding intervals to fill in the missing data. As

with all high frequency asset price analyses, there are potential problems with data unreliability

due to the sheer amount of data being used and the fact that there is considerable noise in the

series because of little trade occurring at some of the recorded prices.  However, we minimize

these problems by running the data through a filter to identify and adjust anomalous

observations. This was done by locating return observations greater than 3 standard deviations

and evaluating these as possible data errors. A careful check and evaluation of these

observations revealed a small number of what appeared to be data errors in the high frequency

gold returns.  These were then eliminated and replaced with a linearly interpolated value using

the two contiguous observations.  No errors were detected in high frequency commodity returns
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other than gold.  Furthermore, instead of analyzing the 5-minute interval data (which will be the

most susceptible to data errors and noise) we convert the data to lower frequencies (10-minute

for corn and soybeans, and 15-minute for live cattle and hogs, gasoline, and gold) to undertake

the analysis.  Different intervals were chosen for different commodities because they are traded

on markets that have different trading day lengths.  Hence, in order to make sure interval returns

could be computed that exhausted the recorded daily price change, but did not use consecutive

intervals that stretched over two different trading days, it was convenient to use 10-minute

intervals for corn and soybeans but 15-minute intervals for live cattle, live hogs, gasoline, and

gold.

An interval return during day t is defined as yt,n = 100 [ln(Pt,n)-ln(Pt,n-1)] where Pt,n  is

futures price for the n-th intraday interval during trading day t.  As with many analyses of high

frequency asset price returns, it was found that the high frequency commodity returns display

considerable intra-day periodicity, which is usually attributed to institutional trading features.  This

periodicity was removed using the FFF filtering method, which is explained in detail in the

Appendix.

Figure 4 plots the sample autocorrelations for lags of up to 5 trading days in 15-minute

intervals displayed in the horizontal axis for the absolute returns of the unadjusted (raw) and the

filtered 15-minute gasoline futures returns series. The dotted line represents sample autocorrelations

for the filtered absolute 15-minute returns while the solid line indicates the autocorrelations for the

unfiltered absolute15-minute returns. The FFF filter seems to remove much of intraday periodicity

present in the raw absolute returns.  As usual, there is a small negative but significant first-order

autocorrelation in returns, which may be due to the non-synchronous trading phenomenon while

higher order autocorrelations are not significant at conventional levels. The autocorrelation

functions of the absolute returns also exhibit a pronounced U shape, suggesting substantial intra-

day periodicity. Similar U-shaped patterns are found in the equity markets (Harris,1986; Wood et

al.,1985; Chang et al., 1995; and Andersen and Bollerslev, 1997a). Unless otherwise indicated, all

remaining analyses were done on the filtered series.

The MA-FIGARCH model (1) through (3) was estimated on the filtered high frequency

filtered returns. As with the daily data, the orders of the MA and GARCH polynomials in the lag
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operator were chosen to be as parsimonious as possible but still provide an adequate representation

of the autocorrelation structure of the high frequency data. For the high frequency data MA(1)-

FIGARCH(1,d,1) models proved adequate for all commodities. Long high frequency series were

constructed by splicing several nearby futures contracts together, in the same way as described for

the daily data. A time to maturity effect in volatility was tested, similar to that found in the daily

return series. For the high frequency return data, however, the time to maturity effect was not

statistically significant and so the time to maturity effect was restricted to zero.  One possible

reason is that there are many fewer contract switches in the high frequency series, which combines

a smaller number of futures contracts than the daily futures return series. The number of trading

days and the number of intra day periods are different across the different commodities and this

information is provided in Table 3.

Details of the estimated MA(1)-FIGARCH(1,d,1) high frequency models for the six

commodities are reported in Table 4. All the models have small but significant MA(1) parameter

estimates, which is usually attributed to the non-synchronous trading phenomenon. Similar features

for high frequency exchange rate returns have been noted by Andersen and Bollerslev (1997a),

Goodhart and Figliuoli (1992), Goodhart and O'Hara (1997), and Zhou (1996). The estimated long

memory volatility parameter, d, is in the range between 0.2 and 0.3 for most of the commodities

considered and are generally statistically significant. 

Similar to the daily return results, we found significant long memory volatility in the high

frequency returns data as well. In general, the long memory estimates for intra day return

volatilities are slightly lower than those for daily returns.  Furthermore, as in the daily return

models, the robust Wald statistics in Table 3 show strong evidences in favor of the FIGARCH

specification against the GARCH specifications in the high frequency model.

4. Local Whittle Estimation and Self Similarity

An alternative to the parametric long memory models used so far in this paper, is the

application of the semi-parametric, local Whittle estimator for estimation of long memory

parameters. The advantage of this estimator is that it allows for quite general forms of short run
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dynamics; see Kunch (1987) and Robinson (1995); while ARFIMA and FIGARCH models are

potentially sensitive to the specification used to represent the short-run dynamics.  Of course,

semi-parametric estimation has its own problems as it is very data intensive and often exhibits

poor performance in terms of bias and mean square error. The local Whittle estimator is used as

a robustness check on the estimation of long memory models derived from the estimation of the

FIGARCH models. The long memory parameter inherent in absolute returns is related to, but

generally not expected to be identical to the long memory component of the FIGARCH model.

A characteristic of long memory that is independent of parametric model specification is

that the spectrum of the series will be given by 2( ) ,df G  as 0  and G  is a

constant. This suggests a useful objective function for estimating d would be (see Robinson,

1995)

2

1 1

ln (1/ ) ( ) (2 / ) ln( )
m m

d
j j j

j j

Q m I d m

where ( )jI is the periodogram of the series at frequency .j   Solving this objective function

numerically gives the Local Whittle estimator of d. Note that it is not necessary to specify the

short run dynamics of the process in order to estimate d in this framework. As shown by

Robinson (1995) and others, the main decision variable is m, the choice of the number of

ordinates of the periodogram. For consistency it is necessary that (1/ ) ( / ) 0m m T  as

.T  While for asymptotic normality, it is required that 
21 2 2(1/ ) ln( ) 0m m m T , as

.T  In the empirical results reported in this paper, m is chosen as 0.80T .  Note that the

asymptotic variance of the local Whittle estimator is given by (1/ 4 ).m

Local Whittle estimation of the long memory volatility parameter d was applied to both the

daily and high frequency returns for all six commodities studied earlier. Furthermore, both MA-

FIGARCH and local Whittle estimation of d were undertaken for a range of alternative frequencies

(1 day, 2 day, 3 day, 4 day and 5 day using the daily data and various return frequencies between

10 minutes and 2 hours using the high frequency data).  Estimation was undertaken over multiple
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frequencies to check for the self similarity feature.  Self similarity occurs when the magnitude of

the long memory parameter does not change across sampling frequencies; e.g. see Beran (1994).

If the long memory parameter is invariant across frequencies then it suggests that the long memory

property is an intrinsic feature of the data and does not result from regime shifts or exogenous

external shocks. The self similarity property is technically extremely difficult to test empirically.

 However, one can subjectively evaluate changes in long memory parameter estimates across

frequencies to see whether the self similarity feature seems to hold in general.

Results of both FIGARCH and local Whittle estimation of the long memory parameter d

are shown for a range of daily return frequencies in Table 5 and a range of intraday return

frequencies in Table 6.  Numbers in parentheses below the estimates are the estimated standard

errors.  The first thing to notice is that FIGARCH and local Whittle estimates of d appear quite

consistent with one another, with d estimated in the range supporting long memory in commodity

return volatilities.  Hence, previous conclusions about the existence of the long memory property

in commodity return volatilities using FIGARCH appear robust to specification of alternative

representations of short-run dynamics.  The second point of particular interest in Tables 5 and 6 is

that the long memory parameter estimates are generally quite consistent across different return

frequencies, irrespective of whether we look at daily returns or intra day returns.  This result is

consistent with the notion of self similarity and suggests that long memory and hyperbolic decay

are intrinsic features of commodity return data.

5. Conclusions

This paper has examined the long memory volatility properties of both daily and high

frequency intra day futures returns for six important commodities. The absolute and squared returns

all possess very significant long memory features and their volatility processes are found to be well

described as FIGARCH fractionally integrated volatility processes. We also find small departures

from the martingale in mean property.  The long memory property in absolute returns was also

undertaken by semi-parametric Local Whittle estimation of the long memory parameter. The

estimation of MA-FIGARCH models and the application of the Local Whittle estimators to

absolute returns were also computed for a range of different sample frequencies using both the daily
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and intra day high frequency returns.  The long memory parameter estimates are found to be quite

robust both across estimators and across sample frequencies.  This is consistent with a finding of

self-similarity, which implies that long memory in volatility is a pervasive and consistent feature

of commodity returns, and is not just being caused by shocks or regime shifts to the underlying

price processes.

Our findings suggest that any future empirical application using daily or intra day

commodity futures returns, for example optimal hedge ratio estimation, tests for futures market

efficiency, tests for the announcement effect of market news, option valuation, farm risk portfolio

management, etc., will need to account for the long memory property in commodity return

volatilities.
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Appendix

The regular opening and closing of commodity markets and the institutionalized features

of lunch hours, etc gives rise to strong intra day periodicity that is readily observable from the

recurrent U shape patterns in the correlograms of the squared and absolute returns data. This is

similar but different to the currency markets where world-wide trading occurs. Following Andersen

and Bollerslev (1998), we first remove these deterministic intra-day periodicities by applying

Gallant’s Flexible Fourier Form (FFF) filter-see Gallant (1981) and (1982). The estimated model

becomes  

-1/2
, , , ,   t n t n t t n t ny E y s z N (A1)

where ,( )t nE y is the unconditional mean of returns, t is the conditional variance of daily returns,

nts , is a deterministic function to represent intra day seasonality, ,t nz is an i.i.d(0,1) process, which

is independent of the daily volatility process t , and N is the number of return intervals per day.

From equation (A1),

2 2 2
, , , , ,2 ln | ( ) | ln( ) ln( ) ln( ) ln( )t n t n t n t t n t nx y E y N s z .

The observable variable ntx ,  is then a nonlinear regression on the time interval n , and daily

volatility t , or

ntx , = ntuntf ,),;( ,

where )][ln()ln( ,
2

,
2

, ntntnt zEzu  is an i.i.d.(0,1) process and the functional form for f is,
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),;( ntf =
2

0 1 2
0 1 2

{
J

j
t j j j

j

n n

N N kp pspc NnpNnp
,1 ,, )/2sin(.)/2cos(.   (A2)

where 1
1

(1/ ) ( 1) / 2,
N

i

N N i N 2
2

1

(1/ ) ( 1)(2 1) / 6.
N

i

N N i N N  On taking the variable

ntx ,  as the dependent variable, the parameters in the equation (A2) were estimated by OLS. The

intra day periodicity for interval n, on day t is then estimated as

)/(,1 ,1 ,,, )2/exp(/)2/exp(.ˆ
NTt Nn ntntnt ffTs . (A3)

The 10 or 15 minute high frequency returns are then filtered by the estimated intra day periodicity

series, ,t̂ ns  to generate the filtered returns, which are defined as

~

, , ,ˆ/t n t n t ny y s . (A4)
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                         Table 1:  Summary Statistics of Returns

           Corn Soybean Cattle Hogs  Gasoline Gold
__________________________________________________________________________
First Day 1/02/80 1/02/80 1/02/80 1/02/80 1/02/91 1/02/80
Last Day 3/30/01 12/29/00 12/29/00 12/29/00 12/29/00 12/29/00

Sample Size 5362 5300 5306 5306 2509 5283

Mean                  -0.016 -0.005 0.037   0.042 0.0406      -0.0298
High 8.606 7.806    2.867   6.307 12.107    9.745
Low                 -10.472     -11.665       -2.812       -7.632         -30.987      -9.909
Std. Dev. 1.279 1.341     0.898     1.403 1.9594      1.227

Key:  The above statistics refer to 100 ln( ),tP  where tP  is the price of the asset in time

period t.
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             Table 2:  Estimated MA-FIGARCH Models for Daily Futures Returns

                        Corn          Soybeans   Cattle         Hog            Gasoline    Gold          

  -0.0171 -0.0229 0.0456 0.0524 0.0097    -0.0367
(0.0152)  (0.0152) (0.0117) (0.0217) (0.0337) (0.0102)

       0.0618 -0.0220              0.0695 -0.0247
(0.0151) (0.0144) (0.0211) (0.0163)

d 0.3154 0.3451 0.3718 0.3687 0.3179 0.2969
(0.0362) (0.0493) (0.0422) (0.0609) (0.0577) (0.0261)

0.2036 0.2727 0.0185 0.0621 0.7625 0.0399
(0.0473) (0.0607) (0.0141) (0.0386) (0.2151) (0.0288)

1 0.2542 0.3313 0.3603 0.3420 0.2852 0.1923

(0.0442) (0.0597) (0.0466) (0.0639) (0.0650) (0.0438)

2 _____ _____ 0.0819 0.1206 ______ ______

(0.0212) (0.0202)

-0.1820 -0.4218 0.0701 0.1933 -1.0264 0.0595
(0.0890) (0.1226) (0.0383) (0.0994) (0.2978) (0.0587)

3m -0.003 0.016 -0.170 -0.142 -0.166 -0.097

4m 4.218 4.917 3.100 3.079 3.916 8.750

Q(20) 20.232 21.446 29.906 17.147 25.765 22.476
Q2(20) 30.887 34.976 16.875 21.426 13.407 19.697
W 76.092 48.950 77.698 36.699 30.406 55.693
________________________________________________________________________
Key: Robust standard errors based on QMLE are in parentheses below the corresponding
parameter estimates. The diagnostic statistics Q(20) and Q2(20) are the Ljung-Box statistics
based on the first 20 autocorrelations of the standardized residuals and the autocorrelations of
the squared standardized residuals respectively. The statistics m3 and m4 are the sample
skewness and kurtosis respectively of the standardized residuals.
The symbol * indicates that MA(5) and MA(10) models respectively were estimated for live
cattle and live hogs respectively. The parameter estimates are not reported to conserve space.
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Table 3: Summary Statistics for Five Minute Futures Returns

Number of Number of First Last time
trading days intraday intervals time period period

__________________________________________________________________________
Corn    471 44 9:40 13:15
Soybeans    409 44 9:40 13:15
Gasoline    401 63 10:00 15:00
Live Cattle    405 45 9:20 13:00
Live Hogs    400 45 9:20 13:00
Gold    401 72 8:30 14:25

Corn Soybean Cattle Hogs  Gasoline Gold

First Day 50399 50399 50399 50399 50399 50399
Last Day 33001 122800 122800 122800 122800 122800
Sample Size 20724 17996 18225 18000 25263 25842

Mean     -0.003       -0.001  0.013 0.027 0.033 -0.009
High 14.706 14.721 7.231 22.422 33.416 25.168
Low               -15.783     -14.846       -7.160        -23.530     -32.308      -28.664
Standard Dev. 1.658 1.571 0.819 1.982 2.463 1.052
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Table 4: Estimated MA-FIGARCH model for Filtered High Frequency Futures Returns

                        Corn          Soybean     Cattle         Hog            Gasoline    Gold

Sample 10 min. 10 min. 15 min. 15 min. 15 min. 15 min.
frequency

-0.0030 -0.0023 0.0031 0.0091 0.0145 -0.0037
(0.0017) (0.0021) (0.0015) (0.0032) (0.0039) (0.0011)

-0.1560 -0.0659 -0.0525 -0.0490 -0.0274 -0.0750
(0.0112) (0.0120) (0.0144) (0.0158) (0.0127) (0.0134)

d 0.2429  0.2213 0.2097   0.3503       0.1843 0.2047
(0.0368) (0.0329) (0.0367) (0.0620) (0.0218) (0.0421)

0.0014  0.0018      0.0024     0.0030 0.0449 0.0026
(0.0004) (0.0005) (0.0019) (0.0012) (0.0062) (0.0006)

0.8866 0.8736 0.4234  0.7242 0.0572     0.2534   
(0.0339) (0.0309) (0.3885) (0.0816) (0.0291) (0.1666)

0.8314   0.8279  0.3450 0.5485  --------- 0.3573
(0.0462) (0.0417) (0.3810) (0.0964) (0.1726)

m3         0.366       0.106       -0.111 -0.199 -0.134 0.048
m4         6.882   7.335 4.728 6.138          5.151 8.508
Q(20)   28.673 19.973  17.685 23.944 34.336 25.893
Q2(20)  16.592 15.556      7.917   24.340  17.650 11.566
W  43.548 45.173 32.716 31.944 71.753 23.619
_____________________________________________________________________________
Key: As for Table 2
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Table 5: Long Memory Parameter Estimation at Different Daily Sample Frequencies.

                           1 day          2 day          3 day          4 day          5 day
Corn    
FIGARCH 0.3154 0.2734 0.3096 0.3312 0.2510

(0.0362) (0.0460) (0.0670) (0.0833) (0.0671)

Local Whittle 0.4072 0.3446 0.3052 0.3122 0.2359
(0.0376) (0.0471) (0.0539) (0.0592) (0.0635)

Soybeans
FIGARCH 0.3451 0.3403 0.4052 0.3096 0.3294

(0.0493) (0.0780) (0.1385) (0.0783) (0.0921)

Local Whittle 0.3902 0.3688 0.3918 0.3356 0.3260
(0.0378) (0.0474) (0.0541) (0.0592) (0.0638)

Live Cattle
FIGARCH 0.3718 0.4399 0.4208 0.4335 0.4747

(0.0422) (0.0863) (0.0821) (0.0984) (0.1395)

Local Whittle 0.3866 0.3383 0.3361 0.3234 0.3226
(0.0378) (0.0472) (0.0539) (0.0592) (0.0603)

Live Hogs
FIGARCH 0.3687 0.3041 0.3085 0.2900 0.2411

(0.0609) (0.0578) (0.0659) (0.0935) (0.0805)

Local Whittle 0.4061 0.3416 0.3609 0.2987 0.2455
(0.0378) (0.0472) (0.0539) (0.0592) (0.0603)

Gasoline
FIGARCH 0.3179 0.3140 0.2851 0.2999 0.2052

(0.0577) (0.0707) (0.1041) (0.1430) (0.0874)

Local Whittle 0.2935 0.2548 0.2967 0.2722 0.2400
(0.0481) (0.0603) (0.0689) (0.0760) (0.0818)

Gold
FIGARCH 0.2969 0.3435 0.2754 0.3357 0.3108

(0.0261) (0.0520) (0.0400) (0.0470) (0.0857)
Local Whittle 0.4323 0.3766 0.3565 0.3659 0.3432

(0.0378) (0.0474) (0.0541) (0.0595) (0.0638)
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Table 6: Long Memory Parameter Estimation at Different Intraday Sample Frequencies.

Corn 10 min.                  20 min.                  55 min.                  1 hr. 50 min.
FIGARCH 0.2429 0.1919 0.2196 0.0814

(0.0368) (0.0430) (0.0951) (0.1556)
Local Whittle 0.1941 0.2037 0.1622 0.1652

(0.0255) (0.0324) (0.0462) (0.0595)

Soybeans 10 min.                  20 min.                  55 min.                  1 hr. 50 min.
FIGARCH 0.2213 0.2689 0.2431 0.3111

(0.0329) (0.0560) (0.0758) (0.1378)
Local Whittle 0.2533 0.2365 0.1706 0.1448

(0.0268) (0.0340) (0.0486) (0.0625)

Live Cattle 15 min.                  25 min.                  45 min.                  1 hr. 15 min.
FIGARCH 0.2097 0.2580 0.2519 0.2483

(0.0367) (0.0492) (0.0806) (0.0986)
Local Whittle 0.2128 0.1833 0.1796 0.1421

(0.0307) (0.0366) (0.0451) (0.0540)

Live Hogs 15 min.                  25 min.                  45 min.                  1 hr. 15 min.
FIGARCH 0.3503 0.3987 0.3936 0.4045

(0.0620) (0.0835) (0.1127) (0.1405)
Local Whittle 0.2993 0.3414 0.2988 0.2802

(0.0308) (0.0368) (0.0453) (0.0543)

Gasoline 15 min.                  35 min.                  45 min.                  1 hr. 45 min.
FIGARCH 0.1843 0.2672 0.2215 0.2191

(0.0218) (0.0556) (0.0590) (0.0828)
Local Whittle 0.2243 0.1876 0.1870 0.2436

(0.0274) (0.0376) (0.0401) (0.0543)

Gold 15 min.                  45 min.                  1 hr. 30 min.          2 hr. min.
FIGARCH 0.2047 0.2870 0.3167 0.4403

(0.0421) (0.3087) (0.1180) (0.2742)
Local Whittle 0.3832 0.3818 0.2704 0.2486

(0.0261) (0.0381) (0.0486) (0.0540)
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Figure 1. Autocorrelation of Daily Live Cattle Futures
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Figure 2. Autocorrelation of Daily Corn Futures
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Figure 3. Autocorrelation of Filtered Daily Corn Futures
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