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1 Introduction

Recent work in the macroeconometric literature considers the problem of

summarising efficiently a large set of variables and using this summary for

a variety of purposes including forecasting. Work in this field has been car-

ried out in a series of recent papers by Stock and Watson (1998), Forni and

Reichlin (2000), Forni, Hallin, Lippi, and Reichlin (2000) and Forni, Hallin,

Lippi, and Reichlin (2001). Factor analysis has been the main tool used in

summarising the large datasets.

The main factor model used in the past to extract dynamic factors from

economic time series has been a state space model estimated using maximum

likelihood. This model was used in conjunction with the Kalman filter in a

number of papers carrying out factor analysis (see, among others, Stock and

Watson (1989) and Camba-Mendez, Kapetanios, Smith, and Weale (2001)).

However, maximum likelihood estimation of a state space model is not prac-

tical when the dimension of the model becomes too large due to the compu-

tational cost. For the case considered by Stock and Watson (1998) where the

number of time series is greater than the number of observations, maximum

likelihood estimation is not practically feasible. For this reason, Stock and

Watson (1998) have suggested an approximate dynamic factor model based

on principal component analysis. This model can accommodate a very large

number of time series and there is no need for the number of observations

to exceed the number of variables. Nevertheless, the principal component

model is not, strictly speaking, a dynamic model. Stock and Watson (1998)

have shown that it can estimate consistently the factor space asymptotically

(but the number of time series has to tend to infinity). In small samples and

for a finite number of series, the dynamic element of the principal component

analysis is not easy to interpret. Forni and Reichlin (2000) suggested an al-

ternative procedure based on dynamic principal components (see Brillinger

(1981, ch. 9)). This method incorporates an explicitly dynamic element in
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the construction of the factors.

This paper discusses an alternative method for estimating factors derived

from a factor state space model. This model has a clear dynamic interpre-

tation. Further, the method does not require iterative estimation techniques

and due to a modification introduced, can accommodate cases where the

number of variables exceeds the number of observations. The computational

cost and robustness of the method is comparable to that of principal compo-

nent analysis because matrix algebraic methods are used. The method forms

parts of a large set of algorithms used in the engineering literature for esti-

mating state space models called subspace algorithms. Another advantage

of the method is that the asymptotic distribution and therefore the standard

errors of the factor estimates are available. Further, as the factor analysis

is carried out within a general model, forecasting is easier to carry out than

in the currently available procedures where a forecasting model needs to be

specified.

The structure of the paper is as follows: Section 2 describes the elements

of the suggested factor extraction method. Sections 3-5 discuss aspects of

the new methodology. Section 6 presents an application of the method to

the extraction of core inflation and forecasting of UK inflation in the recent

past. Section 7 concludes.
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2 The method

We consider the following state space model1.

xt = Cft + Dut, t = 1, . . . , T

ft = Aft−1 + But−1 (2)

xt is an n-dimensional vector of strictly stationary zero-mean variables ob-

served at time t. ft is an m-dimensional vector of unobserved states (factors)

at time t and ut is a multivariate standard white noise sequence of dimen-

sion n. The aim of the analysis is to obtain estimates of the states ft, for

t = 1, . . . , T .

This model is quite general. Its aim is to use the states as a summary

of the information available from the past on the future evolution of the

system. A large literature exists on the identification issues related with the

state space representation given in (2). An extensive discussion may be found

in Hannan and Deistler (1988). As we have mentioned in the introduction,

maximum likelihood techniques either using the Kalman filter or otherwise

may be used to estimate the parameters of the model under some identifica-

tion scheme. For large datasets this is likely to be computationally intensive.

Subspace algorithms avoid expensive iterative techniques and instead rely on

matrix algebraic methods to provide estimates for the factors as well as the

parameters of the state space representation.

There are many subspace algorithms and vary in many respects but a

unifying characteristic is their view of the state as the interface between the

past and the future in the sense that the best linear prediction of the future

1Note that the model we present is equivalent to the more common form given by

xt = Cft + ut, t = 1, . . . , T
ft = Aft−1 + vt (1)

as proven in Hannan and Deistler (1988, pp. 17-18).

4



of the observed series is a linear function of the state. A very good review

of existing subspace algorithms is given by Bauer (1998) in an econometric

context. Another review with an engineering perspective may be found in

Van Overschee and De Moor (1996).

The starting point of most subspace algorithms is the following represen-

tation of the system which follows from the state space representation and

the assumed nonsingularity of D.

Xf
t = OKXp

t + EEf
t (3)

where Xf
t = (x′

t, x
′
t+1, x

′
t+2, . . .)

′, Xp
t = (x′

t−1, x
′
t−2, . . .)

′, Ef
t = (u′

t, u
′
t+1, . . .)

′,

O = [C ′, A′C ′, (A2)′C ′, . . .]′, K = [B̄, (A − B̄C)B̄, (A − B̄C)2B̄, . . .], B̄ =

BD−1 and

E =




D 0 . . . 0

CB D
. . .

...

CAB
. . . . . . 0

... CB D




The derivation of this representation is easy to see once we note that (i)

Xf
t = Oft + EEf

t and (ii) ft = KXp
t . The best linear predictor of the future

of the series at time t is given by OKXp
t . The state is given in this context

by KXp
t at time t. The task is therefore to provide an estimate for K. Ob-

viously, the above representation involves infinite dimensional vectors.

In practice, truncation is used to end up with finite sample approxima-

tions given by Xf
s,t = (x′

t, x
′
t+1, x

′
t+2, . . . , x

′
t+s−1)

′ and Xp
q,t = (x′

t−1, x
′
t−2, . . . , x

′
t−q)

′.

Then an estimate of F = OK may be obtained by regressing Xf
s,t on Xp

q,t.

Following that, the most popular subspace algorithms use a singular value

decomposition of an appropriately weighted version of the least squares es-

timate of F , denoted by F̂ . In particular the algorithm we will use, due

to Larimore (1983), applies a singular value decomposition to Γ̂f F̂ Γ̂p, where

Γ̂f , and Γ̂p are the sample covariances of Xf
s,t and Xp

q,t respectively. These
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weights are used to determine the importance of certain directions in F̂ .

Then, the estimate of K is given by

K̂ = Ŝ1/2
m V̂mΓ̂

p−1

where Û ŜV̂ represents the singular value decomposition of Γ̂f F̂ Γ̂p, Ŝm de-

notes the matrix containing the first m columns of Ŝ and V̂m denotes the

heading m × m submatrix of V̂ . Ŝ contains the singular values of Γ̂f F̂ Γ̂p in

decreasing order. Then, the factor estimates are given by K̂Xp
t . For what

follows it is important to note that the choice of the weighting matrices are

important but not crucial for the asymptotic properties of the estimation

method. They are only required to be nonsingular. A second thing to note is

that consistent estimation of the factor space requires that q tends to infinity

at a certain rate as T tends to infinity as pointed out by Bauer (1998, pp.

54). Once estimates of the factors have been obtained and if estimates of the

parameters (including the factor loadings) are subsequently required, it is

easy to see that least squares methods may be used to obtain such estimates.

These estimates have been proved to be
√

T -consistent and asymptotically

normal in Bauer (1998, ch.4). We note that the identification scheme used

above is implicit and depends on the normalisation used in the computation

of the singular value decomposition. Finally, we must note that the method

is also applicable in the case of unbalanced panels. In analogy to the work of

Stock and Watson (1998) use of the EM algorithm, described there, can be

made to provide estimates both of the factors and of the missing elements in

the dataset.

3 Dealing with large datasets

Up to now we have outlined an existing method for estimating factors which

requires that the number of observations be larger than the number of el-

ements in Xp
t . Given the work of Stock and Watson (1998) this is rather
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restrictive. We therefore suggest a modification of the existing methodology

to allow the number of series in Xp
t be larger than the number of observations.

The problem arises in this method because the least squares estimate of F
does not exists due to rank deficiency of Xp′Xp where Xp = (Xp

1 , . . . , Xp
T )

′.

As we mentioned in the previous section we do not necessarily want an esti-

mate of F but an estimate of the states XpK′. That could be obtained if we

had an estimate of XpF ′ and used a singular value decomposition of that.

But it is well known (see e.g. Magnus and Neudecker (1988) ) that although

F̂ may not be estimable XpF ′ always is using least squares methods. In

particular, the least squares estimate of XpF ′ is given by

X̂pF ′ = Xp(Xp′Xp)+Xp′Xf

where Xf = (Xf
1 , . . . , Xf

T )
′ and A+ denotes the unique Moore-Penrose inverse

of matrix A. Once this step is modified then the estimate of the factors may

be straightforwardly obtained by applying a singular value decomposition to

X̂pF ′. We choose to set both weighting matrices to the identity matrix in

this case.

4 Number of factors

A very important question relates to the determination of the number of

factors, i.e. the dimension of the state vector. This issue has only recently

received attention in the econometric literature. Stock and Watson (1998)

suggest using information criteria for determining this dimension. Bai and

Ng (2002) provide modified information criteria and justification for their

use in the case where the number of variables goes to infinity as well as the

number of observations. We suggest a simple information theoretic method

for determining the number of factors in our model. Its simplicity comes

from the fact that both the number of series and factors are assumed to be
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finite.

The search simply involves (i) fixing a maximum number of factors fmax

to search over, (ii) estimating the factors for each assumed number of factors

m = 1, . . . ,mmax and (iii) minimising the negative penalised loglikelhood of

the regression

xt = Cf̂t + ut,

i.e. minimising ln|Σ̂m
u |+ cT (m) where Σ̂m

u is the estimated covariance matrix

of ut and cT (m) is a penalty term depending on the choice of the informa-

tion criterion used. The theoretical properties of the new methodology are

discussed in detail in Kapetanios (2002).

We briefly discuss an alternative class of testing procedures for determin-

ing the number of factors prevalent in the state space model literature. The

testing procedures are based on the well known fact that the rank of certain

block matrices referred to as Hankel matrices is equal to the dimension of

the state vector. The most familiar Hankel matrix is the covariance Hankel

matrix. The autocovariance Hankel matrix is a block matrix made up of the

autocovariances of the observed process xt. It is given by




Γ1 Γ2 Γ3 . . .
Γ2 Γ3 . . .
Γ3 . . . . . .
...

...
. . .




where Γi denotes the i-th autocovariance of xt. Its finite truncation may be

estimated by 1/TXf ′
Xp. Tests of rank may be used to estimate the rank

of the covariance Hankel matrix from its estimate. A thorough investigation

of the properties of the information criteria and the testing procedures in

determining the rank of the Hankel matrix may be found in Camba-Mendez

and Kapetanios (2001b). Further issues are discussed in Camba-Mendez and

Kapetanios (2001a). A related discussion of the tests of rank used may also

be found in Camba-Mendez, Kapetanios, Smith, and Weale (2000).
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5 Extensions

The analysis of large datasets based on a state space model and estimated

using subspace methods can be extended in a number of ways. Up to now we

have not entertained the possibility of idiosyncratic serially correlated errors

for particular variables. This extension is straightforward in the state space

model context, as these errors may simply be modelled as extra factors, that

enter one or a few variables. In that sense the analysis does not change.

However, one may wish to draw a more clear distinction between common

factors and idiosyncratic errors. Such a distinction can be accommodated by

assuming that the number of variables tends to infinity following the ideas

of Stock and Watson (1998). Crucially, the computational aspects of the

analysis do not change.

Another important extension can be envisaged in terms of developing

structural models for large datasets in the spirit of structural VAR (SVAR)

models popularised in the 90’s. Considering the state space model of the

form

xt = Cft + ut, t = 1, . . . , T

ft = Aft−1 + vt (4)

we may distinguish between the shocks ut and vt and attribute structural

meaning to linear combinations of vt following the SVAR literature. Many

possible identification schemes are possible and research in them is carried

out in Kapetanios and Marcellino (2002).

6 An Application: Extracting Core Inflation

In this section we provide an application of the dynamic factor methodology

to the modelling of UK core inflation. We take as our measure of inflation the

RPIX (RPI minus mortgage interest payments) inflation used by the Bank
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of England at the target measure for monetary policy.

Core inflation is a fuzzy concept which has been defined in various ways

in the literature. We will not attempt to provide even a partial review of

a huge literature. In general, when people use the term core inflation they

seem to refer to the long-run or persistent component of the measured price

index. A clear definition of core inflation requires a model of how prices and

money are determined in the economy. We choose to follow an atheoretical

approach to the definition of core inflation by specifying it to be the major

dynamic factor underlying the components used to construct the retail price

index.

More specifically let the set of individual price component growth rates

be denoted by xt. These growth rates are obtained by differencing the loga-

rithm of the respective component price index. Then, xt is specified to follow

a model of the form (4). Core inflation at time t is defined to be the first

factor in the vector ft as defined by the ordered singular values of the sin-

gular value decomposition of F = OK in (3). This definition although in no

way related to a theoretical economic model is consistent with the prior idea

that core inflation is the main persistent component of inflation.

We fit a state space model to the components of the RPIX price index

for the period of January 1987 to August 2002. Monthly data are used. In-

formation on the components used are given in the data appendix. We set

the truncation indices to s = 1 and q = 3 respectively. We note that q has to

tend to infinity as the sample size grows in order to get a consistent estimate

of the factors. We have chosen to set this to 3 because the resulting estimate

of core inflation does not change perceptibly as q is increased from this value.

Component series were normalised to have mean equal to zero and variance

equal to one prior to estimation of the factor. We present RPIX inflation and
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our measure of the core inflation in Figure 1. Note that the core inflation has

been normalised to have the same mean and variance as observed inflation

over the sample period.

Clearly, the factor model estimate of the core inflation is smoother than

actual observed inflation. However, at business cycle frequencies it exhibits

pronounced cyclicality. The departure from observed inflation in the spike of

the late eighties and early nineties can be traced back to tax changes (includ-

ing the repeal of the poll tax) in that period. Our measure of core inflation

can explain on average 44% of a given component series whereas addition of

an extra factor raises this to 53%.

Having obtained a means of estimating core inflation we now examine the

forecasting abilities of this measure. In particular we consider three models.

One is a simple benchmark AR model where the lag order is chosen automat-

ically using the Akaike information criterion. The second is the benchmark

model augmented by the growth rate of money and in particular M0. Lag

selection is again carried out by the Akaike informatin criterion for both in-

flation and the money growth rate. Finally, the third model is the benchmark

model augmented with the currently available estimate of the core inflation.

We evaluate the three models over the period June 1998-August 2002. We

have allowed for a year following the introduction of independence for the

Bank of England to carry out monetary policy though an inflation targeting

regime. We examine both relative RMSEs compared to the model which

includes the factor and the Diebold and Mariano (1995) test statistic for

equality in predictive ability between two different forecasts. All models

are estimated recursively (including lag order selection). The forecasts are

examined for horizons of 1 to 4 months ahead. All results are presented in

Table 1.
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Table 1: Results on forecasting performance

Horizon DMa DMb RMSEc RMSEd

1 1.42 0.66 0.95 0.68
2 0.13 0.26 0.99 0.98
3 0.48 0.67 0.97 0.92
4 0.61 1.04 0.97 0.89

aDiebold-Mariano test statistic against benchmark AR model
bDiebold-Mariano test statistic against money growth rate model
cRelative RMSE compared to benchmark AR model. Values less than 1 indicate superiority of factor

model
dRelative RMSE compared to money growth rate model. Values less than 1 indicate superiority of factor

model

The results show that the factor model can indeed help in forecasting.

The factor model performs 32% better than the money growth model for

forecasts one month ahead. The factor model always has a lower RMSE

compared to the other models. Although the factor model may appear to

have a similar performance compared to the AR model the Diebold-Mariano

statistic, although not rejecting in favour of the factor model, indicates that

with a probability value of 0.078 is close to rejection.

7 Conclusion

In this paper we have discussed a new factor based method for forecasting

time series introduced by Kapetanios (2002). This work follows closely in

spirit the work of Stock and Watson (1998), Stock and Watson (1999) and

subsequent, as yet unpublished papers by these authors and their co-authors

on the one hand and the work by Forni and Reichlin (2000), Forni, Hallin,

Lippi, and Reichlin (2000) and Forni, Hallin, Lippi, and Reichlin (2001) on

the other hand. The innovation lies in providing an alternative method for

obtaining factor estimates.

One strand of the literature on factor extraction relies on explicitly dy-
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namic state space models to estimate factors via computationally expensive

and, in small samples, non-robust maximum likelihood estimation. The other

strand of the literature based on the work of Stock and Watson (1998) uses

principal components to extract the factors. This methodology is robust,

computationally feasible with very large datasets and asymptotically valid

for dynamic settings. Unfortunately, these methods are approximately dy-

namic in that the dynamic structure of the factors is not explicitly modelled

in finite samples but captured only asymptotically where both the number

of observations and the number of series used, grows to infinity. We propose

a new methodology which while sharing all the advantages of the principal

component extraction method is explicitly dynamic. This method is based

on linear algebraic techniques for estimating the state and, if need be, the

parameters of a general linear state space model.

We evaluate the new methodology by investigating a model of core in-

flation for the UK. The measure of core inflation obtained is shown have

predictive ability for inflation in the UK over a relatively long evaluation

period.
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Data Appendix

RPIX components and their ONS (Office of National Statistics) codes.

bread DOAA.M

cereals DOAB.M

biscuits DOAC.M

beef DOAD.M

lamb DOAE.M

pork DOAG.M

bacon DOAH.M

poultry DOAI.M
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other meat DOAJ.M

fish DOAK.M

butter DOAM.M

oil and fat DOAN.M

cheese DOAO.M

eggs DOAP.M

milk DOAQ.M

milk products DOAR.M

tea DOAS.M

coffee DOAT.M

soft drink DOAU.M

sugar DOAV.M

sweets chocolates DOAW.M

potatoes DOAX.M

vegetables DOAZ.M

other foods DOBD.M

restaurant meals DOBE.M

canteen meals DOBF.M

take aways DOBG.M

beer DOBH.M

wine DOBK.M

cigarettes DOBN.M

other tobacco DOBO.M

rent DOBP.M

council tax DOBR.M

water DOBS.M

repairs and maintenance DOBT.M

DIY DOBU.M

insurance and ground rent DOBV.M

coal DOBW.M
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electricity DOBX.M

gas DOBY.M

oil and other fuel DOBZ.M

furniture DOCA.M

furnishings DOCB.M

appliances DOCC.M

other eqpt DOCD.M

consumables DOCE.M

pet care DOCF.M

postage DOCG.M

telephones DOCH.M

dom services DOCI.M

fees and subs DOCJ.M

clothing men DOCK.M

clothing women DOCL.M

clothing children DOCM.M

clothing other DOCN.M

footwear DOCO.M

personal articles DOCP.M

chemist goods DOCQ.M

personal services DOCR.M

purchase cars DOCS.M

maintenance cars DOCT.M

petrol and oil DOCU.M

tax and insurance DOCV.M

rail fares DOCW.M

bus and coach fares DOCX.M

other travel DOCY.M

audio visual DOCZ.M

CDs tapes DODA.M
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toys and sports goods DODB.M

books and newspapers DODC.M

garden products DODD.M

tv licences DODE.M

entertainment and other recreation DODF.M
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Figure 1: Observed and Core Inflation
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