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Abstract

This paper presents a new model of stochastic volatility which allows for infrequent
shifts in the mean of volatility, known as structural breaks. These are endogenously
driven from large innovations in stock returns arriving in the market. The model has
a number of interesting properties. Among them, it can allow for shifts in volatility
which are of stochastic timing and magnitude. This model can be used to distinguish
permanent shifts in volatility coming from large pieces of news arriving in the market,
from ordinary volatility shocks.
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1 Introduction

There is recently considerable evidence indicating the existence of structural breaks in the

conditional variance process (volatility) of many economic and financial series. These breaks

appear to be associated with extraordinary economic events, such as financial crises, mon-

etary regime changes and exchange rate realignments.1 Such events are viewed as large

shocks in the literature. If these shocks are not accounted for, they overstate the evidence

of persistence in the volatility process. Most of the above evidence is supported by testing

procedures designed to identify the presence of structural breaks in volatility based on the

intervention (dummy) analysis of Box and Tiao. These procedures cannot however diagnose

if these large shocks can cause shifts in volatility of the series. To this end, in this paper

∗g.kapetanios@qmul.ac.uk
†e.tzavalis@qmul.ac.uk
1See Diebold and Pauly (1987), Lamourex and Lastrapes (1990), Tzavalis and Wickens (1995), Hamilton

and Lin (1996), Diebold and Inoue (2001), Ang and Bekaert (2002), Sensier and Van Dijk (2004) and
Morana and Beltratti (2004), inter alia.
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we suggest a parametric model of structural breaks in volatility which allows them to be

endogenously driven by stock return innovations which are larger in size than a threshold

parameter.

The suggested model captures two essential features of breaks: their rarity and varying

magnitude, over time. In other worlds, it allows for breaks in stochastic volatility which

are stochastic in both time and magnitude. The second feature of the model distinguishes

it from other models considering shifts in the volatility of fixed magnitude (see Hamilton

(1989) and Glosten, Jagannathan, and Runkle (1993), inter alia). To model such types of

breaks, we adopt the framework of discrete time stochastic volatility models (SV) (see Taylor

(1986), and Harvey, Ruiz, and Shephard (1994), inter alia). Our choice to model the process

of breaks in volatility within this framework stems from the fact that, unlike ARCH-type

models, SV ones specify the volatility process as a separate random process driven by its own

shocks. Due to this extra randomness, the SV models can offer extra flexibility to disentangle

the economic sources of volatility breaks from the ordinary volatility shocks.

The paper is organised as follows. Section 2 presents our model and discuss some of its

properties. In Section 3, we present alternative estimation procedures of the model, while

in Section 4 we report the results of a Monte Carlo exercise to assess its performance to

adequately trace structural breaks in volatility. Section 5 presents the results of an empirical

application of the model to examine if breaks in the volatility of the S&P 500 index implied

return driven by large shocks in the stock market. Finally, Section 6 concludes the paper.

2 Model specification

We start our analysis with a simple version of the model. As we proceed, we discuss some

possible extensions which may be of use in practice. Consider the following extension of the

stochastic volatility model which allows for structural breaks in conditional variance

yt = µ + σeh
1/2
t εt, (1)

with

ht = βt−1 + γht−1 + η1,t (2)

and

βt = βt−1 + I(|εt−1| > r)η2,t, (3)

where ht is the logarithm of the conditional variance (volatility) of an observed economic

series (e.g. a stock return) yt, at time t, εt ∼ NID(0, 1) and η1,t, η2,t ∼ NID(0, σ2
ηi

),
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i = 1, 2, are innovations (shocks) which can be allowed to be correlated, and I(At) is an

indicator function taking the value 1 if the event A = {|εt−1| > r} occurs, where r is a

threshold parameter, and zero otherwise. The events captured by set At can be thought

of as reflecting outliers in the level of series yt. These can be attributed to large pieces of

news arriving in the stock market at any point in time due, for instance, to monetary regime

changes and financial market crises. In the case that εt and η1,t are correlated, the model can

be extended to capture the well known leverage effects in financial markets (see Section 5).

Another interesting extension of the model would be towards a multivariate direction, where

the innovations driving the changes in βt can be allowed to come from different sources than

yt, such as macroeconomic news.

The model given by equations (1)-(3) allows for the intercept βt of the volatility process

ht (and, hence, ht itself) to be subject to abrupt, discontinuous random changes over time,

given by βt − βt−1 = I(|εt−1| > r)η1,t. These changes accord with the common perception of

structural breaks referred to in the literature. They are endogenously driven by innovations

εt−1 (or the standardised level of series yt itself, if µ = 0) which are larger in size than a

threshold parameter r.2 The specification of the stochastic process governing the shifts in

βt, given by (3), implies that both their timing and magnitude are stochastic in nature. The

timing of a structural break in βt is controlled by innovations εt−1 and, more specifically,

depends on the occurrence of the event At = {|εt−1| > r}, while the magnitude depends on

the innovation η2,t. This last feature of the model clearly distinguishes it from existing models

in the literature that consider shifts in volatility of fixed magnitude driven by exogenous

variables, or innovations in stock returns.3 The presence of the innovation η2,t in process (3)

constitutes a more flexible approach of modeling random shifts in volatility, as it leaves the

data at hand to decide above (or below) which values of the threshold parameter r (including

r = 0) innovations εt−1 can have an impact on ht. As such, it also allows for the possibility

that not all the large innovations εt−1 have an impact on volatility. Note that, when σ2
η2

= 0,

large values of innovations εt−1 do not cause any structural change in βt. In this case, our

2Note that by specifying βt as

βt = βt−1 + I(εt−1 > r1)η+
2,t + I(εt−1 < r2)η−2,t, (4)

where η+
2,t and η−2,t are NIID innovations and r1 and r2 are two different threshold parameters, our model

can also allow for large positive and negative innovations εt−1 to have asymmetric effects on ht.
3See the Markov regime switching model of Hamilton (1989) and its various extensions or the extensions

of GARCH, EGARCH and SV models by Glosten, Jagannathan, and Runkle (1993), Asai and McAleer
(2004) and Yu (2005) , respectively. For instance, the model of Asai and McAleer (2004) assumes that βt is
given as βt = γ {I(εt−1 < 0)− E[I(εt−1 < 0)]}.
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model reduces to the standard SV model, with no breaks.

As it stands, model (1)-(3) generates a non-stationary pattern for the volatility process

ht, as the variance of the process governing the breaks in βt grows with the time-interval

of the data. If stationarity of ht is a desirable property of the data, then stationarity of βt

would be required for this. There are a number of restrictions which can be imposed on βt to

make it stationary (see Cogley and Sargent (2002)). A straightforward one is the following

βt = δtβt−1 + I(|εt−1| > r)η2,t, (5)

where

δt =

{
1 if I(|βt−1| < β)
0 otherwise

. (6)

This condition implies that βt is bounded by β and, hence, it renders ht stationary, too.4 In

the next theorem, we prove that restriction (5) implies strict stationarity of ht provided that

|γ| < 1.

Theorem 1 If |γ| < 1 and condition (5) hold, then ht is strictly stationary.

The proof of the theorem is given in the Appendix.

3 Model Estimation

Estimation of model (1)-(3) requires an algorithm of sequentially updating estimates of the

two state variables ht and βt. One natural choice for this is the Kalman filter. However,

the model as it stands is clearly nonlinear, and thus application of the Kalman filter is not

feasible. We will therefore approach estimation of the model from a number of angles which

have different levels of ease of use and accuracy. Our first approach follows the work of

Harvey, Ruiz, and Shephard (1994) in writing the measurement equation of the model in

logarithmic form as

ln ỹ2
t =

[
ln σ2 + E(ln ε2

t )
]
+ ht + ut

[
ln ε2

t − E(ln ε2
t )

]
(7)

where ỹt = yt − 1/T
∑T

t=1 yt and ut = ln ε2
t − E(ln ε2

t ) Then, the model defined by (7) and

the transition equations (2) and (3) is linear and amenable to the analysis by the standard

4Further restrictions could be placed on the process βt so that, if the bound β is exceeded, the process
returns to some prespecified level. We do not advocate a particular mechanism for making the process βt

stationary. We simply wish to indicate that there exist specifications which give a stationary βt process.
The exact specification of the process may be left to the empirical researcher depending on their priors on
the particular issue at hand.
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Kalman filter. One further adjustment which is needed to this end involves substituting

I(|ût−1|t−1| > r) for I(|ut−1| > r), where ût−1|t−1 denotes the conditional expectation of

ut−1 given ln ỹ2
1, . . . , ln ỹ2

t−1. This ensures that now the model can be estimated through the

standard Kalman filter procedure assuming Gaussianity for the error term ut. Although

Gaussianity of ut does not hold under the assumptions of our model, the estimates retrieved

by the Kalman filter have important properties, as it is a minimum mean square estimator

of the state variables among all other linear estimators (see Harvey, Ruiz, and Shephard

(1994)).

To carry out the estimation of the model through the Kalman filter, first we assume that

the threshold parameter r is known. We discuss estimation of r later in this section. Let

zt = ln ỹ2
t − 1/T

∑T
t=1 ln ỹ2

t . Under the above assumptions, we can write model (1)-(3) in a

state space form as

zt = Xtbt + ut, t = 1, . . . , T (8)

bt = Atbt−1 + Rtηt ηt ∼ i.i.d.N(0, Ση) (9)

where Xt = (1, 0)′, bt = (ht, βt)
′, ηt = (η1,t, η2,t)

′,

At =

(
γ 1
0 0

)
.and Rt =

(
1 0
0 I(|û1,t−1|t−1| > r)

)

Below, we abstract from issues arising from the estimation of the parameters of the

model and concentrate on the estimation of the state vector bt = (ht, βt)
′ conditional on the

parameters being known. Let us denote the estimator of bt conditional on the information

set It−1 as b̂t|t−1 and that conditional on the information set up to and including time t

as by b̂t. Denote the covariance matrices of the estimators b̂t|t−1 and b̂t as Pt|t−1 and Pt,

respectively. Then, estimation of b̂t by the Kalman filter comprises sequential application of

the following two sets of equations:

b̂t|t−1 = Atb̂t−1 (10)

P̂t|t−1 = AtP̂t−1A
′
t + RtΣηRt,

known as the prediction equations, and

b̂t = b̂t|t−1 + P̂t|t−1Xt

(
yt −X ′

tb̂t|t−1

ft

)
(11)

Pt = Pt|t−1 − Pt|t−1Xt

(
1

ft

)
X ′

tPt|t−1,
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known as the updating equations, where

ft = X ′
tPt|t−1Xt + ζt (12)

(see, Hamilton (1994), inter alia) and ζt = E(u2
t ). By the normality assumption for εt and

the assumption that E(ε2
t ) = 1, it can be shown that E(u2

t ) = 4.93. For a given value of r,

the log-likelihood function for the observation equation (8), denoted as L(r), can be written

in terms of the prediction errors vt = yt −X ′
tb̂t|t−1 as

L(r) = −T

2
log 2π − 1

2

T∑
t=1

log ft − 1

2

T∑
t=1

v2
t /ft. (13)

L(r) can be used to estimate recursively the unknown parameters of the model (apart from

r which is assumed to be known at the moment). In summary, the Kalman filter can be used

to obtain the following sets of estimates of the state variables bt: (i) estimates conditional on

It known as filter estimates, and (ii) estimates conditional on the information of the whole

sample, denoted as IT , known as smoothed estimates. The second set of estimates and their

respective covariance matrices are denoted by b̂t|T and Pt|T and are given by

b̂t|T = b̂t + P ∗
t (b̂t+1|T − At+1b̂t) (14)

and

Pt|T = Pt + P ∗
t (Pt+1|T − Pt+1|t)P

∗′
t

(15)

where P ∗
t = PtA

′
t+1P

−1
t+1|t. The filtered estimates of bt can reveal agents’ perceptions about

the current state of βt in the economy, at time t. The set of smoothed estimates of bt can

be used to statistically appraise the impact of large innovations εt on βt using information

over the whole sample. Finally, using the general state space model (8)-(9), forecasts of the

state at time t + h can be produced conditional on information available at time t. For our

model specification, where η1,t, η2,t ∼ NID(0, σ2
ηi

), multi-step forecasts need to be produced

using stochastic simulations due to the nonlinear nature of the model.

The above estimation procedure assumes that r is known which may not be true in

practice. In addition, from an economic point of view it will be useful to estimate the

threshold parameter r endogenously from the data employing our model. This will enable us

to evaluate the magnitude of a structural innovation εt−1 which can cause permanent shifts

in the volatility function ht. As in other threshold models (see, e.g. Kapetanios (2000)),

to estimate r we will adopt a grid search procedure over a range of possible values of r.
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According to this, the loglikelihood function L(r) will be maximized for every point of the

grid and the point which gives the maximum likelihood, over the grid, will be considered as

an optimum estimate r. The estimates of the unknown parameters of the model and the

state vector bt corresponding to this estimate of r will constitute the maximum likelihood

estimates of the state space model (8)-(9). These estimates will be consistent provided that

the threshold parameter will be consistently estimated. The last result is stated in Theorem

1 and proven in the Appendix.

Theorem 2 Assume that the structural break model may be written as in (8)-(9) where η1,t

and η2,t are NID(0, σ2
η1

) and NID(0, σ2
η2

) respectively, and At is specified so that bt is a

geometrically ergodic process. Then, the estimator of r, denoted r̂, obtained via grid search,

is consistent.

The proof of the theorem is given in the Appendix. Below, we make some remarks

concerning the estimation of the threshold parameter in practice.

Remark 1 The normality assumption is not necessary for the consistency proof. It can be

replaced with the assumption that the fourth moment of innovations η1,t and η2,t exist and

an assumption about continuity of the density functions of these innovations.

Remark 2 Since estimation of the threshold parameter is problematic in small samples in

general (see Kapetanios (2000)) and since this problem is exacerbated by the rarity of breaks

in the present context, the grid search can be considerably simplified if we consider values of

r which correspond to extreme quantiles of the normalised error of (1), εt, such as its 95-th

or 99-th centile.

As the estimation procedure through the Kalman filter described above is suboptimal

given the fact that ut is not Gaussian, in what follows we suggest an alternative procedure

based on importance sampling along the lines of Durbin and Koopman (2001). As we will see

in Section 5, apart from non-Gaussianity this estimation procedure can account for possible

leverage effects when estimating the volatility of many financial series. These can not be

handled by the application of the Kalman filter to the linearised form of the model given by

(8)-(9).

Let b = (b1, ..., bT ), ỹ = (ỹ1, ..., ỹT ) and the conditional density of b given ỹ be denoted

by p(b|ỹ). Then, importance sampling constitutes an estimation method of the conditional
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mean of b given ỹ, defined as

E(b|ỹ) =

∫
bp(b|ỹ)db =

∫
b

[
p(b|ỹ)

g(b|ỹ)

]
g(b|ỹ)db, (16)

where g(b|ỹ) is a density that approximates p(b|ỹ), based on simulation. Following Durbin

and Koopman (2001), g(b|ỹ) can be set to the Gaussian density that has the same conditional

mode as p(b|ỹ). If g(b|ỹ) is known, then E(b|ỹ) can be estimated by simulation. In particular,

let a set of B random draws from g(b|ỹ) be denoted as b(1), ..., b(B). Then, an estimator for

E(b|ỹ) based on importance sampling is given as

b̂ =

∑B
i=1 b(i)w(b(i), ỹ)∑B

i=1 w(b(i), ỹ)
(17)

where w(b(i), ỹ) = p(b(i),ỹ)

g(b(i),ỹ)
, p(b(i), ỹ) is the true joint density of b(i) and ỹ, g(b(i), ỹ) is its

Gaussian approximation consistent with g(b|ỹ), and p(b(i), ỹ) is given by
T∏

t=1

p(η̃t)p(ỹt|bt),

where η̃t = Rtηt. Due to the discontinuity of p(η̃t) at zero, p(b(i),ỹ)

g(b(i),ỹ)
can be approximated by

p(b(i)|ỹ)

g(b(i)|ỹ)
. This essentially means that the marginal density of b, p(b), is approximated by a

Gaussian density, g(b). This approximation is such that the first and second moments of p(b)

and g(b) coincide. To complete the importance sampling estimation procedure, it remains

to discuss how to obtain g(b, ỹ). To this end, we follow the iterative method suggested by

Durbin and Koopman (2001). Let θt = Xtbt and st(ỹt|θt) = − log p(ỹt|θt). Define the first

and second derivatives of st(ỹt|θt) at θ̄t = 0 as

ṡt =
∂st

∂θ

∣∣∣∣
θt=θ̄t

and s̈t =
∂2st

∂θ∂θ′

∣∣∣∣
θt=θ̄t

.

Then, define

ȳt = θ̄t − s̈−1
t ṡt, with ζ̄t = s̈−1

t (18)

Apply the Kalman filter and smoother as defined by (10),(11), (12), (14) and (15), setting

zt = ȳt and ζt = ζ̄t.
5 This returns a value for b̂t|T which is used as a new value for θ̄t in (18) and

the Kalman filter and smoother until convergence. The output of the Kalman filter when the

iterations converge defines a normal distribution which is used as an estimate of g(b, ỹ). The

5It is straightforward to show that for the simple stochastic volatility model

ỹt = θ̄t + 1− exp(θ̄t)
(ỹ/σ)2

and ζ̃t =
2 exp(θ̄t)
(ỹ/σ)2

.
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final value of b̂t|T from this set of iterations can also be considered as a possible estimator of

the state. We will refer to this estimator as the approximate importance sampling estimator.

Our Monte Carlo study will show that this estimation procedure has desirable properties

in small samples. Parameter estimation through importance sampling can be carried out

straightforwardly by maximising the likelihood given by

` =
1

B

B∑
i=1

w(b(i), ỹ).

4 Monte Carlo Study

In this section, we carry out a small scale Monte Carlo study to investigate the performance

of our model to track structural breaks in volatility process ht adequately. This is done for

samples where the number of breaks is relatively small. The presence of the threshold and

the fact that breaks occur infrequently raises the question of how well these breaks can be

captured by the Kalman filter or the importance sampling estimation procedures. As the

main aim of our Monte Carlo exercise is to assess the performance of these procedures, we

concentrate on the estimation of the state variable βt assuming that the parameters of the

model are known. It is reasonable to expect that the state variable driving the breaks is

hard to carry inference on given that there are only a few observations which will contain

information about the breaks.

To evaluate the accuracy of the estimates of βt, in our experiments we generate data

according to model (1)-(3) where γ = 0.3, σ2
η1

= 1, σ2
η2

= 0.25 and b0 = 0. For the threshold

parameter, we consider two cases: r = 1.96 and r = 2.24 implying on average a break on

every 20 and 40 periods, respectively. We set the sample size to either T = 500 or T = 2000.

In each experiment, we run 500 replications and we report the average correlation coefficient

between the true βt and the smoothed estimates of βt obtained by the Kalman filter and the

importance sampling estimation procedure. For the latter, we report two sets of correlation

coefficients. One for the final smoothed estimate, given by (17), where B = 500 and the

second for the smoothed estimate of the approximate Gaussian model as given by b̂t|T at the

end of the iterations using (18).

To better see how closely our model can capture structural breaks in βt over the sample,

we also report pictorial results for particular replications. These replications correspond to

the 50% quantile of the empirical distribution of the correlations between the smoothed esti-

mates of the Kalman filter and true values of βt. These results are presented in Figures 1 to 4.
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Table 1: Monte Carlo results
(r, T ) (1.96, 500) (1.96, 2000) (2.24, 500) (2.24, 2000)
nb 30 120 12 50

Corr. Coeff. (Kalman Filter) 0.740 0.906 0.566 0.826
Corr. Coeff. (Apprx. Imp. Sampling) 0.777 0.928 0.479 0.770

Corr. Coeff. (Imp. Sampling) 0.692 0.905 0.403 0.749
Notes: nb denotes the number of breaks per sample

The results of the table clearly indicate that both estimation procedures discussed in

the paper can satisfactorily capture structural breaks in βt generated by our model. As

expected, this is more evident for the cases of (r, T ) where there is an adequate number

of breaks per sample and the size of sample is large enough. For instance, for the case

of (r, T ) = (1.96, 2000) the correlation coefficients between the smoothed estimates of the

changes in βt and their true values reaches its highest value which is close to 90%, us-

ing either the Kalman filter or and the importance sampling estimates. Apart from this

case, the performance of our estimation procedures is also satisfactory when the size of

sample is smaller but the number of breaks is substantial, e.g. (r, T ) = (1.96, 500) imply-

ing nb = 30 structural break on average per sample. The second interesting conclusion

that can be drawn from the results of the table is about the performance of the standard

Kalman filter estimation procedure relative to that based on importance sampling. Our

results suggest that, for the case of frequent breaks and/or large enough size of T (i.e.

(r, T ) = {(1.96, 500), (1.96, 2000), (2.24, 2000)}), all methods have similar performance. For

the case of a smaller number of breaks (i.e. for (r, T ) = (2.24, 500), where nb = 12), it seems

that the Kalman filter performs better. Interestingly for this case, the final estimate from

the importance sampling algorithm although comparable to the approximate importance

sampling estimator is slightly worse. However, it improves greatly with the sample size.

The above conclusions can be confirmed by inspecting the pictorial output reported in

Figures 1 to 4. Inspection of these figures show that the smoothed estimates of βt track quite

well the true break process, when T is large and/or the number of breaks per T is adequate

enough [see Figures 1, 2, and 4]. Note that the different estimators of βt considered can

capture quite well the trend of the true break process even for the case that T is smaller and

the number of breaks per T is less. This happens despite the fact that correlation coefficients

10



Figure 1: T = 500, r = 1.96

between the estimates and the true values of βt reported in Table 1 are much smaller for this

case.

5 Empirical Application

As an empirical application of our model, we employ it to trace out possible structural breaks

occurred in stochastic volatility of the implied return by the S&P 500 index driven by large

return innovations (news) in the US stock market. The data we use are daily and cover the

period between the 2nd of January 1992 and the 14th of June 2005. During this period,

extreme events occurred in the US stock market. Examples include the burst of the market

bubble which began in the spring of year 2000 and the fall of the share prices due to the

11



Figure 2: T = 2000, r = 1.96

collapse of Enron and WorldCom corporations.

We carry out a number of different estimations. Firstly, we estimate the simple sto-

chastic volatility model with the break mechanism using the linear Kalman filter algorithm,

described by equations (10)-(15). A grid search for the value of r implying a probability

of 5%, 2.5, 2% and 1.5% for the event {|ut−1| > r} occuring, suggests that the threshold

value corresponding to 5% best describes the data since it corresponds to the largest log-

likelihood. We simplify our estimation procedures by estimating σ2 as 1
T

∑T
t=1 ln ỹ2

t + 1.27,

where E(ln ε2
t ) = −1.27. This is important simplification of our estimation procedure, as

numerical maximisation of the likelihood is not a trivial numerical exercise, especially for

the importance sampling procedure for which the number of parameters that needs to be

estimated by likelihood maximisation should be kept at a minimum.
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Figure 3: T = 500, r = 2.24

In Table 2, we report parameter estimates for the remaining parameters of the model,

namely γ, ση1 and ση2 , with their standard errors in parentheses, based on the importance

sampling procedure. The table presents two sets of results. The first does not allow for

structural breaks in ht, but allows for leverage effects, i.e. possible correlation between

innovations εt and η1,t, denoted by ρ. This specification constitutes the standard SV model

and can be estimated within our framework by setting ση2 = 0. The second set presents the

results for the full specification of our model, given by (1)-(3), which also allows for leverage

effects. To this end, we slightly modified the initial specification of our model following

Koopman (2005). In particular, we use the following version of our model

yt = µ + σeh
1/2
t {εt + sign(ρ)η3,t} (19)
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Figure 4: T = 2000, r = 2.24

with

ht ≡ βt−1 + γht−1 + ση1{η1,t + η3,t} (20)

βt = βt−1 + I(|εt−1| > r)η2,t (21)

where εt ∼ NID(0, 1−|ρ|), η1,t ∼ NID(0, 1−|ρ|), η2,t ∼ NID(0, ση2) and η3,t ∼ NID(0, |ρ|),
where all errors are all mutually and serially independent. The above specification of our

model when is written in state space form consists of three state variables, where η3,t consti-

tutes the new one. This model can be estimated through the importance sampling procedure

where now θt = (ht, η3,t). Then, st(ỹt|θt) becomes

st(ỹt|θt) =
1

2
ht +

1

2
σ−2 exp (−h) β

(
ỹt − σ exp(

1

2
h)κη3,t

)2

,
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and it has first and second order derivatives given by

ṡt =

(
∂st

∂ht
∂st

∂η3,t

)
=




1
2σ2eht

(
−βỹ2

t + βκη3,tỹtσe
1
2
ht + σ2eht

)

− 1

σe
1
2 ht

(
ỹtβκ− σβκ2η3,te

1
2
ht

)



and

s̈t =

(
∂2st

∂h2
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2ỹ2
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2
ht βκ2

)
,

respectively, where β = (1− |ρ|)−1 and κ = sign(ρ).

The results of the table lead to a number of interesting conclusions. First, as was ex-

pected, accounting for structural breaks in stochastic volatility ht substantially reduces the

degree of linear persistence as measured by the estimate of the autoregressive coefficient γ.

This drops significantly from 0.63 to 0.11. These results clearly indicate that the high de-

gree of persistence observed in many empirical studies mentioned in the introduction can be

attributed to the lack of accounting for structural changes in the volatility process, ht. Note

that together with the drop in the estimate of γ there is also a significant decrease of the

value of the correlation coefficient ρ, capturing the leverage effects. This happens because

the impact of news on volatility, implied by the leverage effects, is captured through the

break process (3) in our model.

The second conclusion that can be drawn from the results of the table is that the estimate

of ση2 = 0.63 is different than zero, meaning that our model can identify significant structural

breaks in ht driven by larger than r = 2.5% innovations in the stock return yt. Note that the

standard error reported cannot be used for testing the hypothesis that ση2 = 0 since, under

the null hypothesis, the parameter takes a value on the boundary of the parameter space.

However, the magnitude of ση2 and its estimated standard error strongly suggest that this

is the case. Further support for our model compared with the standard SV, which does not

allow for structural breaks, can be also gained by the values of the log-likelihood function

for these two models. These are found to be 28.97 and -639.42, respectively, suggesting that

our model provides a better fit of the data than the standard SV model, with no breaks.
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Table 2: Parameter Estimates
Model ση1 ση2 γ ρ

Nonl. Kalman Filter w/out Leverage 0.949 0.188 0.374 -
(0.158) (0.059) (0.162) -

Nonl. Imp. Sampling with Leverage 0.630 0.126 0.116 -0.028
(0.008) (0.0028) (0.052) (0.009)

Imp. Sampling with Leverage 0.723 - 0.633 -0.206
(0.006) - (0.012) (0.015)

Notes: Standard errors are reported in parentheses.

To investigate the patterns of the break process βt and the stochastic volatility ht, as

well as to identify large stock return news which generated the breaks we also report some

pictorial results. In Figures 5-7 we present the estimates of the Kalman filter and importance

sampling procedures for βt and ht together with the actual series of the SP&500 stock return.

In the importance sampling figures, we also report smoothed estimates of βt taken from

the Gaussian approximation of our model, as described in Section 3. Inspection of the

figures indicates that stochastic volatility follows a nonlinear pattern due to the presence of

a substantial number of breaks in its intercept βt of different size. Our results show that,

during our sample, βt has reached its lowest level between years 1993 and 1996, while its

highest level was reached from the middle of 1998 to the beginning of 2002.

6 Conclusions

This paper has introduced a new model of stochastic volatility allowing for structural breaks

in its intercept (mean). On the basis of evidence that shifts in volatility are associated with

extraordinary events in economic series (e.g. stock returns), the model considers a break

process that is endogenously driven by innovations (news) which are larger than a threshold

parameter. These breaks are stochastic in time and size, and thus can allow for random

shifts in volatility.

To estimate the model, the paper suggests a procedure based on importance sampling.

This can handle the nonlinear nature of the model and the non Gaussianity of the error terms.

In a Monte Carlo exercise, the paper assess the performance of this estimation procedure to

sufficiently track a true break process. It also compare this with an estimation procedure

based on the Kalman filter which linearises and assumes Gaussianity. The results of this

exercise indicate that both the importance sampling and Kalman filter estimation procedures

can adequately capture the true break process, when the number of breaks is substantial for
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Figure 5: Results from Kalman Filter Estimation. The first panel reports the smoothed
estimate of ht. The second panel reports the smoothed estimate of βt. The final panel
reports the actual return data.

a given sample size. Finally, in an empirical illustration of our model it is shown that the

evidence of structural breaks in the mean of volatility found by many recent studies can be

attributed to large news arriving in the stock market. This can cause permanent shifts in

the level of volatility.
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Appendix

Proof of Theorem 1

We now prove strict stationarity for ht, given by

yt = e1/2htε1t

ht = βt−1 + γht−1 + ε2t

βt = δtβt−1 + I(|ε1t−1| > r)ε3t
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where

δt =

{
1 if I(|βt−1| < β)

0 otherwise
(22)

The first step is to derive a recursive representation for ht. This is given by

ht =
∞∑

j=0

γj(βt−j−1 + ε2,t−j)

Following Theorem 2.1 of Ling and McAleer (1996) the result will follow if we show that for

some α ∈ (0, 1)

E(hα
t ) < ∞

By The Marcinkiewicz-Zygmund inequality we have that

E(hα
t ) = E

(( ∞∑
j=0

γj(βt−j−1 + ε2,t−j)

)α)
≤ c

( ∞∑
j=0

γ2j

)α/2

E (βt−j−1 + ε2,t−j)
α

which is finite as long as βt is strictly stationary and E (βt−j−1)
α < ∞ and E (ε2,t−j)

α < ∞.

Thus it suffices to prove that βt is strictly stationary and E (βt−j−1)
α < ∞. E (βt−j−1)

α < ∞
follows easily from strict stationarity and E (ε3,t)

α < ∞. Thus we only need to prove strict

stationarity for βt. To do that we prove geometric ergodicity of βt which implies strict

stationarity. asymptotically. To prove geometric ergodicity we use the drift criterion of

Tweedie (1975). This condition states that a process is ergodic under the regularity condition

that disturbances have positive densities everywhere if the process tends towards the center

of its state space at each point in time. More specifically, βt is geometrically ergodic if there

exists constants δ < 1, B,L < ∞, and a small set C such that

E [‖βt‖ | βt−1 = d] ≤ ϑ ‖d‖+ L, ∀d /∈ C, (23)

E [‖ut‖ | ut−1 = u] ≤ B, ∀d ∈ C, (24)

where ‖·‖ is the Euclidean norm. The concept of the small set is the equivalent of a discrete

Markov chain state in a continuous context. It is clear that (24) follows easily. We need to

show (23). (23) follows if

E(δt) < 1 (25)

To show (25) it suffices to show that

Pr(|βt−1| > β) > 0

But this follows easily by the independence of ε1t−1 and ε3t, the fact that Pr(|ε1t−1| > r) > 0

and the fact that Pr(|ε3t−1| > 2β) > 0 for all finite β.
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Proof of Theorem 2

In this appendix, we give a proof of the consistency of the threshold parameter r, which can

be estimated via a grid search procedure. To simplify matters we suggest estimation of the

threshold parameter via minimisation of the sum of squares function S(ψ) =
∑T

i=1 z2
t where

zt are given by

zt = yt − xtβ̂t|t−1 − ε̂t|t−1

and are the prediction errors of the model. Harvey (1989) (pp. 129) states that for univariate

models such a minimisation is equivalent to maximum likelihood estimation. For simplicity

we also assume k = 1 without loss of generality.

Following the proof of consistency of the threshold parameter estimates by Chan (1993)

we see that three conditions need to be satisfied for consistency. Firstly, we need to show

that the data yt are geometrically ergodic and hence covariance stationary (Condition C1).

Secondly we need to show that (Condition C2)

Eθ0(zt|t− 1)2 < Eθ(zt|t− 1)2 ∀θ 6= θ0 (26)

where θ0 denotes the true parameter vector, and thirdly we need to show that (Condition

C3)

lim
δ→0

E
(
supθ∈B(θ0,δ)|zt(θ

0)− zt(θ)|
)

= 0 (27)

where B(a, b) is an open ball of radius b centered around a. C1 is needed for obtaining a

law of large numbers needed for Claim 1 of Chan (1993). C1 can be obtained in a number

of ways for a strictly exogenous geometrically ergodic processes xt. For that we simply need

geometric ergodicity of βt. This can be easily obtained using the drift condition of Tweedie

(1975)as in Theorem 1. A model for βt that is easily seen to satisfy the drift condition is

βt = I(|β∗t−1| > β)β1 + I(|β∗t−1| < β)βt−1 + I(|β∗t−1| < β)I(|ε1,t−1| > r)ε2,t−1 (28)

where β∗t−1 = βt−1 + I(|ε1,t−1| > r)ε2,t−1 and β > β1 are finite constants. This model simply

restricts the process βt to return to a prespecified level β1 if its expected value at time t− 1

exceeds β. A wide variety of other models, such as the closely related but simpler model

given in (22), are possible.

We need condition C2 to get a similar expression to (3.7) of Chan (1993) and condition

C3 to prove Lemma 1 of Chan (1993). Condition C3 is a stochastic equicontinuity type
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condition and is particularly important in view of the discontinuity involved with respect to

the threshold parameter.

To prove condition C2 we focus on the general state space in the main body of the paper

repeated here for convenience.

yt = Xtbt (29)

bt = At(θ)bt−1 + ηt (30)

We assume that the parameters of interest appear only in the matrix At. This is only for

notational convenience. The proof can easily go though if the parameters also appear in the

variance of ηt. We have that

zt(θ) = yt − ŷt|t−1(θ) = Xtbt −Xtbt|t−1(θ) = (31)

XtAt(θ
0)bt−1 + Xtηt −Xtb̂t|t−1(θ) = XtAt(θ

0)bt−1 −XtAt(θ)b̂t−1|t−1(θ) + Xtηt (32)

It is clear that the value of θ enters recursively through b̂t−i|t−i(θ). But for showing C2 it

suffices to show that Eθ0(zt|t− 1)2 < Eθ(zt|t− 1)2 for the case where θ0 enters in b̂t−1|t−1(θ)

both for zt(θ) and zt(θ
0).

So let us define

z̃t(θ) = XtAt(θ
0)bt−1 −XtAt(θ)b̂t−1|t−1(θ

0) + Xtηt (33)

and

z̃t(θ
0) = XtAt(θ

0)bt−1 −XtAt(θ
0)b̂t−1|t−1(θ

0) + Xtηt = XtAt(θ
0)(bt−1 − b̂t−1|t−1(θ

0)) + Xtηt

(34)

If we show that E(z̃t(θ)|t − 1)2 > E(z̃t(θ
0)|t − 1)2 then C2 is proven. But, noting that At

depends only on data available up to t− 1 and that

E((bt−1 − b̂t−1|t−1(θ
0))(bt−1 − b̂t−1|t−1(θ

0))′) = Pt−1|t−1

we get

E(z̃t(θ
0)|t− 1)2 = At(θ

0)′Pt−1|t−1At(θ
0) + Ση

Also

z̃t(θ) = XtAt(θ
0)bt−1−XtAt(θ

0)b̂t−1|t−1(θ
0)+XtAt(θ

0)b̂t−1|t−1(θ
0)−XtAt(θ)b̂t−1|t−1(θ

0)+Xtηt =
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XtAt(θ
0)(bt−1 − b̂t−1|t−1) + b̂t−1|t−1(XtAt(θ

0)−XtAt(θ)) + Xtηt

Noting that b̂t−1|t−1 is fixed given data at t− 1 gives

E(z̃t(θ)|t− 1)2 = At(θ
0)′Pt−1|t−1At(θ

0) + Ση+

(XtAt(θ
0)−XtAt(θ))bt−1|t−1b

′
t−1|t−1(XtAt(θ

0)−XtAt(θ))
′

Hence, C2 is proven.

We move on to condition C3. We show this result for z2 assuming without loss of

generality that the initial conditions are given by b0 = 0 and P0 = 0. Then it is easy to show

the same result for any t working recursively. So we have to show that

lim
δ→0

E
(
supθ∈B(θ0,δ)|z2(θ

0)− z2(θ)|
)

= 0

or equivalently that

lim
δ→0

E
(
supθ∈B(θ0,δ)|z̃2(θ

0)− z̃2(θ)|
)

= 0

Given (33) and (34) we need to show that

lim
δ→0

E
(
supθ∈B(θ0,δ)|b1|1(A1(θ

0)− A1(θ))|
)

= 0

or

lim
δ→0

E
(
supθ∈B(θ0,δ)|(A1(θ

0)− A1(θ)|
)

= 0

We use a simple model for At to illustrate the proof although more complicated models can

be similarly treated. We use At(θ) = At(r) = I(|εt| > r). Then we need to show that

lim
δ→0

E
(
supr∈B(r0,δ)(I(|ε1| > r)− I(|ε1| > r0))

)
= 0

This is simply equal to Pr(|εt| ∈ (r, r0)) where we have assumed with loss of generality that

r > r0. But

lim
r→r0

Pr(|εt| ∈ (r, r0)) = 0

proving C3.
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Figure 6: Results from the importance sampling algorithm without leverage effects. The first
panel reports the smoothed estimate of ht. The second panel reports the smoothed estimate
of βt from the Gaussian approximating model. The third panel reports the final smoothed
estimate of βt. The final panel reports the actual return data.
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Figure 7: Results from the importance sampling algorithm with leverage effects. The first
panel reports the smoothed estimate of ht. The second panel reports the smoothed estimate
of βt from the Gaussian approximating model. The third panel reports the final smoothed
estimate of βt. The final panel reports the actual return data.
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