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Abstract

Over time, economic statistics are refined. This means that newer data is typically
less well measured than old data. Time variation in measurement error like this in-
fluences how forecasts should be made. We show how modelling the behaviour of the
statistics agency generates both an estimate of this time variation and an estimate of
the absolute amount of uncertainty in the data. We apply the method to UK aggre-
gate expenditure data, and illustrate the gains in forecasting from exploiting our model
estimates of measurement error.
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1 Introduction

Over time, official statistics agencies revise and improve estimates of data as they collect

more information. It is likely that they measure some data better than others, and that

they hone their estimates of data more quickly for some data than for others. If we could

quantify the measurement error in different variables and vintages, this information would

be useful for estimation, forecasting and for policy analysis. The more noise in data, the less

weight we should put on them in forming an estimate of the state of the economy, or the

right setting for economic policy. These points are well known. They have been emphasised

recently in papers by Aoki (2003), Swanson (2000), Svensson and Woodford (2003) - who

look at optimal monetary policy and measurement error - and, Harrison, Kapetanios, and

∗This work grew out of previous joint work with Richard Harrison. We are also grateful for comments to
Ian Bond, Alex Brazier, Todd Clark, Spencer Dale, Melissa Davey, Simon Hayes, Graham Elliott, Athanasios
Orphanides and Jo Paisley.
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Yates (2004) - who studied how optimal forecasts are affected by measurement errors that

vary across vintages. However, since we never observe the true value for any data, we can

therefore never observe the measurement error in any data vintage. Some data are based

at least in part on surveys. But information about the sampling error in these surveys is

typically not available. More importantly, many data are constructed from many different

sources other than surveys. There may not exist readily quantifiable concepts of the mea-

surement error contained in these other information sources: judgement is sometimes an

important element in reconciling information from conflicting sources, and there is no simple

way of quantifying the measurement error associated with that kind of information.

What we do observe are successive vintages of data. One option is to approximate the

measurement error in a variable by assuming that the final release of a variable is equal to

the true value. Then, the variance of early releases about the final release is an estimate of

the variance of those releases about the truth. This approach has been taken by Harrison,

Kapetanios, and Yates (2004), Coenen, Levin, and Weiland (2001) and many others. Rather

obviously, the closer the final release is to the true value, the better this is as an approximat-

ing method. Ominously, since we don’t know how good an estimate the final release is of the

true value for some data, we can’t assess how good an approximation this method is to the

ideal. Another option is to use a state space model. That method uses an assumption about

the economic process driving movements in the true variable to get an estimate of the truth.

That estimate can then be used to go back and compute how, on average, early releases of

data vary about a Kalman Filter estimate of the truth, based on final or near final data.

Our paper provides an alternative, exploiting behavioural assumptions about the statis-

tics agency generating the real time data. We show how a few assumptions can generate

an estimate of the measurement error in different vintages of data from observations on the

variance of revisions to data. These assumptions are the following. First, a conjecture about

the scheme that the statistics agency uses to weight new information about an observation

together with old information. We start out assuming that the statistics agency weights the

surveys up optimally as they arrive. We also experiment with another scheme we describe

as ‘naive’. Our second assumption is that the arrival of incremental information about a

data point can be modelled as a sequence of independent random draws on a population.

Crucially, our hypothetical agency does not engage in filtering and forecasting itself in the

way that Sargent (1989) described was possible, and Mankiw, Runkle, and Shapiro (1984)

investigated for releases of US GNP. This assumption is consistent with our assumption

about an agency that does optimal weighting. Rational data collection can reasonably be
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taken to include making use of all future information that is not independent from current

information in the current release. Therefore, that incremental information is independent.

A third assumption relates to the evolution of the quantity of incremental information that

arrives about an observation over time. The basic model assumes that the rate at which

the flow of new information in surveys changes is fixed. However, we relax this and derive a

model that allows the data to reveal how the flow of new information evolves.

These assumptions together build a model of a hypothetical statistics agency. The model

is not a literal description of the real-world data collection process. Many data are con-

structed and subsequently revised using information that has many sources. Some of it is

literally surveys. Other information is based on censuses. Still other information is based

on economic models that are used to corroborate one information source with another, or

judgement, or even filtering and forecasting. Our model will be useful if the flow of infor-

mation from these many sources can, to a good enough approximation, be described as if it

were a sequence of independent random surveys.

This model can be used to compare the predicted variance of revisions to data with the

observed variance of revisions. Imagine a statistics agency that conducted ever smaller inde-

pendent random samples from a population, and weighted them optimally. The revisions to

the data that this agency would make would get smaller over time. The reliability of the new

information would shrink relative to the ever larger weighted combinations of older informa-

tion, and so would get less and less weight each time. By being specific about the weighting

scheme the statistics agency uses, and about how the sample sizes of these surveys evolve,

we can use the variance of the revisions in this way to uncover estimates of measurement

error in the published data. As we will show, it turns out that the variance of revisions can

be written as a function of the variance of the measurement error. In our simplest model

there are only two unknowns: the initial period measurement error, and the rate of decay

or growth of the arrival rate of information. We simply choose the combination of these two

unknowns that best fits the predicted to the observed variance of revisions, for all possible

revisions. With that done we can construct estimates of the measurement error surrounding

any variable, and for any vintage of that variable.

That information can then be used in some optimal forecasting or optimal policy proce-

dure. Armed with our proposed technique, we apply it to some data to illustrate that it can

work. This involves first estimating the time-variation in measurement error, and second

applying this information to an optimal forecasting problem. We use the UK real-time data
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set of Castle and Ellis (2002). We compare results for the real growth of consumption and

imports expenditure, and find that the first release for imports is about six times worse

measured than that for consumption.

We illustrate how the outputs from our procedure can be used, showing how a univari-

ate forecasting model for UK consumption growth can be improved by using the estimated

time-variation in the measurement error of UK consumption growth vintages. We estimate a

univariate forecasting model for consumption growth, and improve on it, given estimated in-

formation about time-varation in data uncertainty coming from our statistics agency model.

Of course, there are many series which are never revised. In the United Kingdom, the

Retail Price Index is one example. The mere fact that series don’t get revised is not an

indication that those series are measured perfectly. Our method is powerless to uncover

anything about measurement error in these cases.

The paper is structured as follows: Section 2 provides a literature review. Section 3

presents the simple model of the statistics agency. Section 4 applies the model to a real time

dataset. Section 5 extends the model to provide a more realistic setup. Section 6 carries out

a real time forecasting exercise using the theoretical model. Finally, section 7 concludes.

2 Related literature

There is a growing literature studying the use of real-time data and the effect of data un-

certainty on monetary policy and forecasting. Here we attempt briefly to locate our work

amongst it.

A research effort has sprung up aimed at compiling consistent sets of real-time data:

Castle and Ellis (2002) and Eggington, Pick, and Vahey (2002) present data for the United

Kingdom. Croushore and Stark (2001) compile a real time dataset for the United States.

Bernhardsen, Eitrheim, Jore, and Roisland (2004) and Gayen and VanNorden (2004) do

the same for Norway and Canada respectively. Aoki (2003), Swanson (2000), Svensson and

Woodford (2003), establish the theory of the consequences of data uncertainty for optimal

monetary policy. Orphanides and VanNorden (2002) study the relative contribution of re-

visions to output data and the changability of typical detrending methods’ estimates of the

output gap at the end of the sample. Other papers that study the consequences of data uncer-

tainty in real time for output gap mismeasurement in this vein are: Bernhardsen, Eitrheim,

4



Jore, and Roisland (2004), (Norway), Gayen and VanNorden (2004), (Canada) and Kamada

(2004) (Japan). Still others have used real-time data to assess the conduct of monetary

policy in the past. The most celebrated example here is Orphanides (2001), a study of Fed

policy. More recent examples of this genre studying the United Kingdom and Germany are

Nelson and Nikolov (2003) and Gerberding, Worms, and Seitz (2004) respectively.

Our paper sits within a set of papers that study how real-time data can be used in

forecasting. This literature goes back at least as far as Howrey (1978) and perhaps further.

The papers most closely related to this paper are: Harvey, Mckenzie, Blake, and Desai (1983);

Coenen, Levin, and Weiland (2001); Busetti (2001); Harrison, Kapetanios, and Yates (2004)

and Jaaskela and Yates (2004). All these papers consider, among other things, how optimal

forecasts (or optimal policy) depend on the amount of uncertainty in the data, and how

that uncertainty varies across vintages. The methods suggested in those papers should,

in principle, take as input what the statistical agency model, described below, gives as an

output.

3 A benchmark model of the statistics agency

In this section, we extract estimates of measurement error from real time data using two

models: a model of a rational statistics agency, and a model of a ‘naive’ statistics agency. A

rational agency will be one that weights together samples optimally given information about

the sample size. A naive agency will be one that uses equal weights regardless.

3.1 A model of a rational statistics agency

It is assumed that the statistics agency faces a sequence of problems over time. In the first

period, a survey is conducted and an estimate published. In the second period, new infor-

mation, equivalent to a second survey of the same population, comes in, and the statistics

agency has to weight the first and second surveys together to form a combined estimate.

The statistics agency never observes the true value of anything (and neither do we as econo-

metricians). But it starts out by trying to minimise the expected variance of its estimates

about the true value.

At time t, the agency simply publishes the results of the first survey, on a variable dated

t which we will call y. At time t + 1 the problem is to minimise the expected variance of a
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weighted average of the first two surveys about the true value, yt|T . At time t+1 the problem

is:

MinE
[
λ1|1yt|t+1 + (1− λ1|1)yt|t − yt|T

]2
(1)

where λ1|1 should be read as follows: the second subscript tells you which survey release is

being weighted; the first subscript tells you when it is being weighted. At time t + 2 the

agency has to choose weights to minimise the weighted sum of the first three releases:

MinE
[
λ2|0yt|t + λ2|1yt|t+1 + λ2|2yt|t+2 − yt|T

]2
(2)

such that
∑2

k=0 λ2|k = 1. Generally, at time t + n the problem is:

MinE

[
n∑

k=0

λn|kyt|t+k − yt|T

]2

(3)

such that
∑n

k=0 λn|k = 1.

This is a stylised assumption to make about the process that generates data revisions.

It is illustrative only. We need only to make an assumption about how the statistics agency

weights new information. This could be based on solving optimal signal extraction problems

like the one set out here. Alternatively, it could be based on assuming the agency follows a

rule of thumb. We use the ‘optimising’ agency as a benchmark, but the general method does

not depend on it. Note that although taken literally our model assumes that all the agency

does is conduct surveys, the model’s usefulness will depend on whether the more complicated

data collection and revision process (involving judgements, corroboration, forecasting, filter-

ing) can be taken as if it behaved like a sequence of independent surveys. The assumption

of independence is not overly restrictive as it relates to incremental information which under

any concept of rationality is bound to be uncorrelated (independent under normality) from

past information.

We proceed as follows: first, we solve for the weights that the statistics agency will place

on new information over time. Second, we use this to solve for expressions that link the

variance of data revisions with the variance of the underlying measurement error, and the

rate at which this measurement error decays over time.

Writing a survey on a data observation as a function of the true value and some mea-

surement error, note that:

yt|t+k = yt|T + vt|t+k (4)
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where vt|t+n is the measurement error contained in a survey based estimate of yt carried out

at some time t + n. We can then write:

MinE

[
n∑

k=0

λn|k(yt|T + vt|t+k)− yt|T

]2

(5)

such that
∑n

k=0 λn|k = 1. Since the weights sum to 1, the true y’s cancel out and we get

MinE

[
n∑

k=0

λn|kvt|t+k

]2

(6)

Expressing this in terms of the variance of the measurement error gives:

Min
n∑

k=0

(λn|k)
2σ2

v|k (7)

For the sake of notational simplicity, σ2
v|k = var(vt|t+k). Assuming that each successive sur-

vey can be thought of as an independent draw does not imply that the published data are

independent. However, it implies that incremental surveys, from which published estimates

are formed, are independent.

The next important assumption we make is that the variance of the measurement error

around successive surveys changes at a fixed rate. In terms of the ’survey’ metaphor, this

means assuming that each period, the incremental surveys get smaller and smaller. To be

more concrete, we assume the following:

σ2
v|k = (1 + i)kσ2

v|0 (8)

If i were zero, each incremental survey estimate would have the same variance about the

truth, and the statistics agency would weight them equally. Nothing is assumed about i at

this stage. Data on the variance of revisions will be used to estimate i. Intuitively, i is some

positive, constant number. This leads to revisions getting smaller and smaller over time,

which is a broad feature of the data. If i is positive, each incremental survey will be a more

noisy estimate of the truth than the preceding one. But each published release, which will

include more and more surveys, will be a less noisy estimate than the preceding one.

Conceptually, it would be straightforward to allow for a degree of decay i that varies

over k, or to test whether it does or does not. Doing this would have the advantage that it

must be more realistic. But doing so would involve a trade-off, as we shall see. The more i

varies over k, the fewer observations there are to estimate it. So although the model would

be more realistic, estimates of it would be more imprecise. It is also possible to experiment
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with more complex functional forms that describe the decay of the measurement error than

the one we have here. But for the moment we illustrate the basic approach with a constant i.

In our model, the only discrepancy that arises between surveys, published data and the

truth are those that come from the surveys being conducted using samples smaller than

the population. There are no additional ‘data quality’ issues that we model. The real-life

data generating process includes the task of detecting and correcting errors in completing

or processing surveys, errors of interpretation, and much more. The model abstracts from

that. The minimand for the statistics agency can be written as:

Min
n∑

k=0

(λn|k)
2(1 + i)σ2

v|0 (9)

We write the problem out as:

λ2
n|0σ

2
v|0 + λ2

n|1(1 + i)σ2
v|0 + λ2

n|2(1 + i)2σ2
v|0 + λ2

n|3(1 + i)3σ2
v|0 + ...+ (10)

λ2
n|n−1(1 + i)n−1σ2

v|0 + (1− λn|0 − λn|1 − λn|2 − ...− λn|n−1)(1 + i)nσ2
v|0 (11)

We drop σ2
v|0 and so we minimise the following object:

λ2
n|0 + λ2

n|1(1 + i) + λ2
n|2(1 + i)2 + λ2

n|3(1 + i)3 + ...+ (12)

λ2
n|n−1(1 + i)n−1 + (1− λn|0 − λn|1 − λn|2 − ...− λn|n−1)

2(1 + i)n (13)

The first order conditions for this problem are as follows:

λn|j − (1− λn|0 − λn|1 − λn|2 − ...− λn|n−1)(1 + i)n = 0, j = 0, . . . , n− 1 (14)

It is clearly the case from the FOC’s that:

λn|0 = λn|1(i + 1) = ... = λn|n−1(i + 1)n−1 (15)

So, we go to (14) for j = 0 and substitute to get

λn|0 − (1− λn|0 − λn|0/(1 + i)− λn|0/(1 + i)2 − ...− λn|0/(1 + i)n−1)(1 + i)n = 0 (16)

This implies the following:

λn|0 =
i(1 + i)n

(1 + i)n+1 − 1
(17)

Then, the expression for the optimal weight is as follows:

λn|j =
i(1 + i)n−j

(1 + i)n+1 − 1
, j = 0, ...n (18)
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This expression implies (assuming a positive value of i), that later surveys get smaller weights.

This is intuitive: later surveys, under a positive i, are subject to larger measurement error.

Having solved for the weights the statistics agency places on successive surveys, the next

step is to write down an expression for the revision between any two periods. The data

releases between t and t + n are given by:

yt|P,t+n = λn|0yt|t + λn|1yt|t+1 + λn|2yt|t+2 + ... + λn|nyt|t+n (19)

=
n∑

k=0

λn|kyt|t+k (20)

The revisions between successive periods will be given by:

Ryt|n = yt|P,t+n − yt|P,t+n−1 (21)

= (λn|0 − λn−1|0)yt|t + (λn|1 − λn−1|1)yt|t+1 + (λn|2 − λn−1|2)yt|t+2+ (22)

... + (λn|n−1 − λn−1|n−1)yt|t+n−1 + λn|nyt|t+n (23)

=
n−1∑

k=0

(λn|k − λn−1|k)yt|t+k + λn|nyt|t+n (24)

The revision between any two periods, say an n− l period revision, is given by:

Ryt|n,l = yt|P,t+n − yt|P,t+l (25)

= (λn|0 − λl|0)yt|t + (λn|1 − λl|1)yt|t+1 + (λn|2 − λl|2)yt|t+2+ (26)

... + (λn|l − λl|l)yt|t+l + λn|l+1yt|t+l+1 + ... + λn|nyt|t+n (27)

=
l∑

k=0

(λn|k − λl|k)yt|t+k +
n∑

k=l+1

λn|kyt|t+k (28)

We can get an expression for the variance of revisions by substituting in the relation between

the observation and the true data:

yt|t+n = yt|T + vt|t+n (29)

to give
l∑

k=0

(λn|k − λl|k)(yt|T + vt|t+k) +
n∑

k=l+1

λn|k(yt|T + vt|t+k) (30)

Since the weights on individual surveys in any vintage sum to one, or, formally noting that:

l∑

k=0

λl|k =
l∑

k=0

λn|k +
n∑

k=l+1

λn|k = 1 (31)
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we can see that the terms in the true value of y cancel, implying that the revision between

any two dates can be written as:

Ryt|n,l =
l∑

k=0

(λn|k − λl|k)vt|t+k +
n∑

k=l+1

λn|kvt|t+k (32)

Setting all covariance terms to zero, we write the variance of a revision between any two

dates as:

var(Ryt|n,l) =
l∑

k=0

(λn|k − λl|k)
2σ2

v|k +
n∑

k=l+1

(λn|k)
2σ2

v|k (33)

Recalling (8), we get that this revision variance can be written as:

var(Ryt|n,l) =
l∑

k=0

(λn|k − λl|k)
2(1 + i)kσ2

v|0 +
n∑

k=l+1

(λn|k)
2(1 + i)kσ2

v|0 (34)

Noting (15), we can write:

var(Ryt|n,l) = σ2
v

[
l∑

k=0

(λn|k − λl|k)
2(1 + i)k +

n∑

k=l+1

(λn|0)
2(1 + i)−k

]
(35)

We can expand these summations through some long-winded but basic algebra to get the

following expression:

var(Ryt|n,l) (36)

= σ2
v|0

[(
(1 + i)n−l − 1

) (
i(1 + i)l

)

((1 + i)n+1 − 1)2

][
(1 + i)n−l − 1

(1 + i)l+1 − 1
+ (1 + i)n−l

]
(37)

We can now form systems of equations in the variance of revisions (which we observe), the

decay parameter i and the variance of the measurement error σ2
v|0. For example, given values

for revisions over two different periods say (e.g the variance of six and ten period revisions)

we could form two equations in our two unknowns, and solve. In fact, the data may allow us

to collect many observations on the variance of revisions at different periods, and this will

allow us to construct an estimator for σ2
v|0 and i. This is simply a standard GMM estimator.

Formally, we solve:

Min
∑

n

∑

l

(var(Ryt|n,l))− ˜var(Ryt|n,l))
2 (38)

where the tilda denotes the variance estimated from the data. Note that the estimator we

propose is unweighted GMM and is therefore not optimal. However, as Altonji and Segal

(1996) and especially Clark (1996) discuss, the use of the optimal GMM estimator is likely

to be problematic for estimating covariance structures. In particular, Clark (1996) shows via

Monte Carlo experiments that the optimal estimator for a variety of nonlinear estimators of
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covariance structures, is biased whereas the unweighted one is not.

Once we estimate σ2
v|0, i, we can get an expression for the variance of the measurement

error in any published release. This variance is given by the following expression:

var(yt|P,t+n − yt|T ) = σ2
v|0

n∑

k=0

(λn|0)
2(1 + i)−k (39)

We can expand the summation term on the right hand side, to yield

var(yt|P,t+n − yt|T ) = σ2
v|0

i(1 + i)n

(1 + i)n+1 − 1
(40)

3.2 A model of a naive or rule of thumb statistics agency

So far it is assumed that the statistics agency solves an optimisation problem when it chooses

how to weight the incremental surveys together. We turn next to a model where we instead

assume that incremental surveys are weighted equally. We do this for three reasons. First,

we want to demonstrate that our method does not depend on the ‘rational’ agency assump-

tion: it just relies on making some behavioural assumption. Second, it’s plausible that the

‘rational’ agency model is not the best one to capture the real world. And this might not be

because actual agencies are not rational, but that they may solve more complicated problems

than the one described here. Third, we want to take our method to the data, and we want

some way of exploring how robust the estimates coming from this method are to choosing

alternatives to our basic behavioural model.

Assuming that the statistics agency weights surveys incrementally implies that a revision

to a data release between any two periods l and n will be given by:

Rtyt|t+n,t+l = yt|P,t+n − yt|P,t+l (41)

= (λt+n − λt+l)(
n−1∑

k=0

yt|t+k) + λt+n(
n∑

k=l+1

yt|t+k) (42)

=

(
1

n + 1
− 1

l + 1

) (
n−1∑

k=0

yt|t+k

)
+

1

n + 1
(

n∑

k=l+1

yt|t+k) (43)

We can then show that the variance of revisions is given by:

var(Rtyt|t+n,t+l) = (
1

n + 1
− 1

l + 1
)2(

n−1∑

k=0

σ2
v|k) + (

1

n + 1
)2(

n∑

k=l+1

σ2
v|k) (44)

Substituting in our familiar expression for the relationship between the variance of measure-

ment error around successive surveys, and expanding these summation terms, we can show
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that the variance of revisions is given by:

var(Rtyt|t+n,t+l) = σ2
v|0[(

1

n + 1
− 1

l + 1
)2(

(1 + i)l+1 − 1

i
) (45)

+ (
1

n + 1
)2(

(1 + i)n+1 − (1 + i)l+1

i
)] (46)

Note that this expression differs from its counterpart in the model of the optimising statistics

agency in the previous section, contained in equation (36). The new expression for the

variance of the measurement error in different releases will be different. It is given by:

var(yt|P,t+n − yt|T ) = σ2
v|0

(1 + i)n+1 − 1

i(n + 1)2
(47)

This, by inspection, is different from our earlier expression under an optimising statistics

agency, given in equation (40).

4 Estimating the term structure of measurement error

in a real time data set

By way of an illustration, we next take the model to some data. We use the real time

data set compiled by Castle and Ellis (2002) based on data published by the UK’s Office

for National Statistics. The data set is described in more detail in that article. We will

estimate the measurement error contained in the initial release,σ2
v|0and the rate of decay of

that measurement error i for real (ie constant price) growth in private consumption and

imports expenditure. The real time data we use cover releases between 1985 and 2001. For

each observation on a series, we have typically around 24 releases. (There are roughly two

releases per quarter over this period, although the exact frequency of releases has changed

from time to time.) So we can compile a set of variances that records the average variance

of revisions between the first and the second release, and between the first and the third,

and between the first and fourth, and so on. We compute these averages over observations.

Table 1 shows our estimates for the measurement error and the rates of decay in the two

series. The estimates tell us that the variance of the measurement error in the first release of

the growth of imports is a little under six times that of consumption growth. And the infor-

mation flow falls off faster (i is higher) for consumption than for imports. To interpret the

magnitude of these measurement errors, suppose that the steady-state consumption growth

rate is about 2.5 per cent a year, or about 0.6 per cent a quarter (0.006 in the units in the

table). That means that the variance of the estimate of the growth rate is is a little over

1/100th the average growth rate itself; and the standard deviation of the growth rate (about

0.008, or 0.8 per cent) is therefore roughly of the same order of magnitude as the growth

12



rate itself.

growth in: σ2
v|0 i

imports 4.0E-04 1.1E-06
consumption 7.1E-05 1.1E-02

Table 1: Initial release measurement errors, and rates of decay

In the Figures that follow, we use the estimated σ2
v|0 and i to compute what the model

says about the measurement error in different releases of the two series. Figure 1 is for

consumption and Figure 2 is for imports.

The measurement error (on the y-axis) shrinks, of course, as we move to later releases

(along the x-axis). The Figures compare estimates that come from assuming a rational

agency with those when we assume a ‘naive’ one in the sense set out earlier in the paper.

The shape of the curves for consumption and imports are the same - that is because we

are using the functional forms coming from the same model in each case. The differences

in the two series are apparent from the different y-axis scales. The naive estimates differ

in ways that have some intuition. Note that for the first few releases, the estimates of the

measurement error in the two series are pretty close. For that period at least our method is

in some measure robust to polar assumptions about the behaviour of the statistics agency.

But the naive estimates are lower. This seems counter-intuitive but is not. The model looks

at the variance of revisions between two early releases. For the naive agency, it assumes

that some of the variance of revisions is due to poor weighting, implying that the underlying

sampling error in the early surveys is lower than in the case when it tries to fit an optimal

agency through that same observed variance of revisions. Further out, the measurement

error for the naive estimates increases exponentially. This is because later surveys, whose

measurement error is growing exponentially, are weighted equally. At infinity, the variance

of the published estimate for a naive agency will tend to infinity.

We can get some indication of how well the model fits the data by displaying Figures of

some model predicted variance of revisions against actual data. Figures 3 and 4 do this.

These are not the only revisions to which the model is fitted. The model is fitted solving

the minimisation problem set out above. That involves looking at revisions between all

possible pairs of releases. The Figures plot the variance of revisions between some release

13



and the final release on the x-axis. But these fits tell us something. Crudely, the optimal

agency model seems to do better, just, at capturing the slope of revisions for consumption

growth; but the naive agency does better for imports.

5 A model with a variable rate of decay

5.1 Theory

Up to this point, we have assumed a fixed rate of decay i, the quantity that determines

the size of the sample of next period’s incremental survey relative to this period’s sample.

We now want to relax this assumption and allow the data to determine how i evolves over

time. The flow of information may not decline at a fixed rate over time in reality. This is

a straightforward extension of the model, though the algebra becomes a little involved. An

appendix presents the derivation in full, but here we state the key points of departure only.

The relationship between the measurement error of one survey relative to another, the

counterpart to equation (8) in the fixed-decay model, is now given by:

σ2
v|k =

k∏
j=0

(1 + ij)σ
2
v|0, k = 0 (48)

To simplify notation we introduce
∏k

j=l(1 + ij) ≡ ηk,l. We can now write out the statistics

agency’s minimisation problem, given by (7) for the fixed decay model, in terms of the first

period’s survey measurement error:

Min
n∑

k=0

(λn|k)
2ηk,1σ

2
v|0 (49)

After some straightforward algebra, we get the following expression for the relationship

between our observables (the variance of revisions) and our unknowns (the ijs and σ2
v|0):

var(Ryt|n,l) = σ2
v|0

η2
n,i

(∑n
k=l+1 η−1

k,1

) (
1 +

∑l−1
i=0 ηl,l−i

)2

+
(
1 +

∑n−l−2
i=0 ηn,n−i

)2

ηl,1

∑l
k=0 ηl,k+1

(
1 +

∑n−1
i=0 ηn,n−i

)2
(
1 +

∑l−1
i=0 ηl,l−i

)2 (50)

In the same way as before, we note that this gives us a system of equations in our observables

and unknowns, and find the optimal choice of the ijs and σ2
v|0 that minimises an objective

function involving the observed and predicted variance of revisions. We turn next to apply

this model to the data.
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5.2 Time-varying decay: an application

Allowing for time-varying ijs makes the model more realistic, but there is a cost: we will have

more parameters to estimate, and will inevitably uncover estimates that are correspondingly

less precise. The modelling framework allows us to fix some of the ijs to be equal if we want

to. To speed up the numerical maximisation, we decided to fix the ijs beyond the 15th

release.

Figures 5 and 6 show, for consumption growth, the implied model based estimates of the

variance of measurement error about different releases, and a plot of the fit of the model

based revisions to data on actual revisions.

The time-varying model based estimate of the variance of measurement error in the first

release of consumption growth (σ2
v) is 7.5 ∗ 10−5, not much different from the time-invariant

case (7.1 ∗ 10−5). But the i’s, the implied rates of decay of the incremental sample sizes are

very different, both from the time-invariant case, and from release to release. Starting from

the decay between release 1 and 2, and moving on, the first few of these i’s are given by

{3.3, 4.8 ∗ 10−4, 4.8 ∗ 10−3, 7.5 ∗ 10−5, 1.4 ∗ 10−3....}, which compares with the fixed i estimate

of 1.1 ∗ 10−2. These figures generate substantially different estimates of the variance of mea-

surement error for consumption growth, differences that get larger as we move through to

later releases.

The Figures plotting how the models look against (some of) the data on the variance of

revisions indicates that the time-varying i model does better at describing the data.

6 Data uncertainty and optimal forecasting

We move on now to provide an illustration of how the estimates based on models like ours

could be used for practical purposes. We choose a forecasting example that derives from

some earlier work. In Harrison, Kapetanios, and Yates (2004) (section 4 of that paper), we

presented an example of how to compute optimal forecasts in a dynamic model subject to

the constraint that the forecast only uses data as old as the longest lag in the forecasting

equation. We will describe that procedure very briefly here. Readers interested in a fuller

description should go back to the original paper. Note that the outputs of the procedure

we described above would have many more general uses: as an input into state space model

based forecasts (see Kapetanios and Yates (2004)), or models of optimal monetary policy

under uncertainty. We present a particular application merely to illustrate that our esti-
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mates of the variation in data uncertainty across vintages can make a material difference in

a real setting.

The basic set up is in the context of a univariate model for some true data, where we

denote true data y∗t using asterisks. The univariate model is given by:

y∗t =

p∑
i=1

aiy
∗
t−i + et (51)

where et is a white noise shock, and the ai’s are coefficients. We write the measurement

model as:

yt = y∗t + vt, (yt = {yt, yt−1, ...yt−p+1}) (52)

As before, vt is the white noise measurement error. The problem is to minimise the one step

ahead forecast error:

y∗t+1 − ŷt+1 (53)

where the hat superscript denotes the forecast.

= A1y
∗
t + εt − Ã1y

∗
t + Ã1vt = (A1 − Ã1)y

∗
t + Ã1vt + εt+1

Here, the A1 is a vector of the ai’s used to compute the 1 (hence the subscript) step ahead

forecast. The choice variable in this minimisation problem is the matrix of coefficients Ã1.

As we showed in Harrison, Kapetanios, and Yates (2004), and state briefly here, the optimal

choice for A1 involves weighting a variable according to its signal, and according to the

measurement error variance.

The mean squared error is written as:

(A1 − Ã1)Γ(A1 − Ã1)
′ + Ã1Σ

T
v Ã′

1 + σ2
ε

where Γ = E(y∗t y
∗′
t ), and the elements of this we can draw from the matrix σ2

ε [Ip2 − A ⊗
A]−1.ΣT

v denotes the variance of the measurement error vT .

Importantly, we assume that the covariances of the signal ε and the noise v are assumed

to be zero. Differentiating the expression for the mean squared forecast error with respect

to Ã1, and setting equal to zero, we get:

Ãopt ′
1 = (Γ + ΣT

v )−1ΓA′
1

Note that the greater the measurement error surrounding a particular vintage, the lower the

implied corresponding element in Ãopt ′
1 . Or, in short, the more noise in a variable, the less
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weight it has in an optimal forecast.

We apply this procedure to a univariate model for the quarterly growth rate of UK private

consumption. The two tables below set out the results.

Table 2: Whole Period Coefficients in AR forecasting models for UK consumption growth:
standard and uncertainty corrected

AR(1) AR(2) AR(3) AR(4)
standard −0.063(0.123)

−0.057(0.122) 0.156(0.122)
−0.118(0.118) 0.169(0.117) 0.291(0.120)

−0.073(0.124) 0.196(0.119) 0.272(0.120) −0.158(0.125)

optimal −0.059(0.114)

−0.053(0.110) 0.146(0.113)

−0.100(0.101) 0.153(0.106) 0.267(0.111)

−0.054(0.089) 0.166(0.101) 0.241(0.108) −0.150(0.113)

This first table shows the effect on the forecasting equations of carrying out the procedure

we have just described. These are estimates on data from 1980-1998. Most coefficients fall.

The model is a model of demeaned consumption growth, so this implies putting more weight

on the mean. There is some slight tendency to put more weight on older data relative to

newer data. For example, take the AR(3). The ratio of the AR(1) to the AR(3) coefficients

in the standard model is about 1:2.5. In the uncertainty adjusted case that ratio is 1:2.7.

Table 3: MSE ratios and Diebold-Mariano tests
Whole period First subperiod Second subperiod

Model MSE Ratio D-M Test MSE Ratio D-M Test MSE Ratio D-M Test
AR(1) 0.987 2.46∗ 0.987 1.73∗ 0.987 2.93∗

AR(2) 0.974 2.48∗ 0.968 2.33∗ 0.989 1.57∗

AR(3) 0.977 1.55 0.975 1.26 0.983 1.38∗

AR(4) 0.965 1.73∗ 0.959 1.52 0.980 1.08∗

∗ de-

notes significance at the 5% level

This second table shows recursive out-of-sample Diebold-Mariano1 forecast evaluation

tests on our two forecasting models. The whole period refers to out-of-sample tests for 1988-

1998: the two sub-periods divide that sample into two. The Diebold-Mariano test compares

the adjusted and the unadjusted root mean squared errors, and looks to see whether the

forecasts can be said to be statistically significantly different from one another. The test

results show that many of them are. The ratio of the mean squared forecast errors are all

less than 1, for all the models we considered, implying that the measurement error corrected

1See, for details, Diebold and Mariano (1995)
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forecasts are better. The Diebold-Mariano test statistics have a critical value of 1.96 at the

5 per cent level. A majority of these in table 3 are greater than that value.

7 Conclusions

Knowing how well one series is measured relative to another, or how much more reliable older,

revised data is than more recent data is useful in many situations: estimation, forecasting

and policy-making. We have presented a method for extracting estimates of measurement

error from observations on the variance of revisions in a data series. This method involves

a conjecture about how the reliability of the incremental information a statistics agency

obtains declines over time, and about how the agency weights the information together to

form a new estimate of a data point. We chose to illustrate our method using an assumption

that the measurement error in incremental surveys grows exponentially, to capture the idea

that each period less and less new information arrives; and that this information is weighted

optimally to form new estimates of the data.

But our method doesn’t depend on this precise assumption. We showed that by deriving

our results for a variable rate of decay and also by assuming a ‘naive’ statistics agency that

gives as much weight to later, less well-measured surveys as to earlier, better ones. Applying

our method to real time data on quarterly growth rates of UK private consumption and

imports, we get estimates that suggest that the measurement error in the growth of imports

is almost six times larger than that for consumption. Finally, we used our estimates of

measurement error in a simple forecasting exercise described in Harrison, Kapetanios, and

Yates (2004). Using AR models for the quarterly growth in private consumption, we showed

how the out-of-sample forecasting performance of model-based, measurement-error-corrected

forecasts significantly outperform forecasts coming from unadjusted OLS equations.
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8 Appendix: a naive or rule of thumb statistics agency,

measurement error, and data revisions

In this appendix, we derive the relationship between observed revisions and the unobserved

parameters of the measurement error function, under the assumption that data observations

are weighted equally, rather than optimally. Suppose that measured and true variables are

related by (4). The variance of the measurement error around successive surveys is given

by (8). If the statistics agency weights observations equally, then successive releases will be

given by:

t : yt|P,t = yt|t (54)
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t + 1 : yt|P,t+1 = λt+1yt|t + λt+1yt|t+1, λt+1 = 1/2 (55)

t + 2 : yt|P,t+2 = λt+2yt|t + λt+2yt|t+1λt+2yt|t+2, λt+2 = 1/3 (56)

t + n : yt|P,t+n =
n∑

k=0

λt+nyt|t+k, λt+n =
1

n + 1
(57)

One period revisions to published data will then be given by:

Rtyt|t+1 = yt|P,t+1 − yt|P,t = (λt+1 − 1)yt|t + λt+1yt|t+1 = (58)

1/2yt|t + 1/2yt|t+1 (59)

More generally, an l period revision will be given by:

Rtyt|t+n,t+l = yt|P,t+n − yt|P,t+l (60)

= (λt+n − λt+l)(
n−1∑

k=0

yt|t+k) + λt+n(
n∑

k=l+1

yt|t+k) = (61)

(
1

n + 1
− 1

l + 1
)(

n−1∑

k=0

yt|t+k) +
1

n + 1
(

n∑

k=l+1

yt|t+k) (62)

Substituting in the fact that the published data equals the true data plus the measured data,

it turns out that the terms in the true value of y cancel out to give an expression solely in

terms of the measurement error. This is shown below:

Rtyt|t+n,t+l = (
1

n + 1
− 1

l + 1
)(l + 1)yt|T +

n−1∑

k=0

vt|t+k) (63)

+
1

n + 1
(n− l)yt|T + (

n∑

k=l+1

vt|t+k) (64)

=(
1

n + 1
− 1

l + 1
)(

n−1∑

k=0

vt|t+k) +
1

n + 1
(

n∑

k=l+1

vt|t+k) (65)

The variance of an l period revision can be written as:

var(Rtyt|t+n,t+l) = (
1

n + 1
− 1

l + 1
)2(

n−1∑

k=0

σ2
vk) + (

1

n + 1
)2(

n∑

k=l+1

σ2
vk) (66)

Substituting in (8), we get that:

var(Rtyt|t+n,t+l) = (
1

n + 1
− 1

l + 1
)2(

n−1∑

k=0

(1 + i)kσ2
v|0) (67)

+ (
1

n + 1
)2(

n∑

k=l+1

(1 + i)kσ2
v|0) (68)
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This implies

var(Rtyt|t+n,t+l) = σ2
v|0[(

1

n + 1
− 1

l + 1
)2(

n−1∑

k=0

(1 + i)k) + (
1

n + 1
)2(

n∑

k=l+1

(1 + i)k)] (69)

We can expand the summation terms as follows:

n−1∑

k=0

(1 + i)k =
(1 + i)l+1 − 1

i
,

n∑

k=l+1

(1 + i)k =
(1 + i)n+1 − (1 + i)l+1

i
(70)

to give

var(Rtyt|t+n,t+l) = σ2
v|0[(

1

n + 1
− 1

l + 1
)2(

(1 + i)l+1 − 1

i
) (71)

+ (
1

n + 1
)2(

(1 + i)n+1 − (1 + i)l+1

i
)] (72)

We can also get the variance of the published data as

var(yt|P,t+n − yt|T ) = σ2
v|0

(1 + i)n+1 − 1

i(n + 1)2
(73)

9 Appendix: a variable rate of decay model

Here we derive our results for the main paper under the assumption that the rate of decay

of the size of the sample of incremental surveys changes over time. Recall that in the main

paper this quantity, i was assumed to be fixed. In particular, we will assume that the

measurement error surrounding incremental surveys is given by the following expression:

σ2
v|k =

k∏
j=0

(1 + ij)σ
2
v|0, k = 0 (74)

To simplify notation we introduce
∏k

j=l(1 + ij) ≡ ηk,l. We can now write out the statistics

agency’s minimisation problem in terms of the first period’s survey measurement error:

Min
n∑

k=0

(λn|k)
2ηk,1σ

2
v|0 (75)

We write the problem out as

λ2
n|0σ

2
v|0 + λ2

n|1η1,1σ
2
v|0 + λ2

n|2η2,1σ
2
v|0 + λ2

n|3η3,1σ
2
v|0 + ...+ (76)

λ2
n|n−1ηn−1,1σ

2
v|0 + (1− λn|0 − λn|1 − λn|2 − ...− λn|n−1)ηn,1σ

2
v|0 (77)

We drop σ2
v|0 and so minimise

λ2
n|0 + λ2

n|1η1,1 + λ2
n|2η2,1 + λ2

n|3η3,1 + ... (78)

+ λ2
n|n−1ηn−1,1 + (1− λn|0 − λn|1 − λn|2 − ...− λn|n−1)

2ηn,1 (79)
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The FOCs for this problem are

λn|j − (1− λn|0 − λn|1 − λn|2 − ...− λn|n−1)ηn,1 = 0, j = 0, . . . , n− 1 (80)

Clearly

λn|0 = λn|1η1,1 = ... = λn|n−1ηn−1,1 (81)

So using (80) for j = 0 we get

λn|0 −
(
1− λn|0 − λn|0/η1,1 − λn|0/η2,1 − ...− λn|0/ηn−1,1

)
ηn,1 = 0 (82)

or

λn|0 −
(
ηn,1 − λn|0ηn,1 − λn|0ηn,2 − λn|0ηn,3 − ...− λn|0ηn,n

)
= 0 (83)

Grouping the λn|0 gives

λn|0 =
ηn,1

1 + ηn,n + ηn,n−1 + ... + ηn,1

(84)

Then

λn|j =
ηn,j

1 + ηn,n + ηn,n−1 + ... + ηn,1

, j = 1, . . . n (85)

Recalling from the main body of the paper that the variance of revisions is given by:

var(Ryt|n,l) =
l∑

k=0

(λn|k − λl|k)
2σ2

v|k +
n∑

k=l+1

(λn|k)
2σ2

v|k (86)

which, given the relationship between the σ2
v|k’s, is given by:

var(Ryt|n,l) =
l∑

k=0

(λn|k − λl|k)
2
(
ηk,1σ

2
v|0

)
+

n∑

k=l+1

(λn|k)
2
(
ηk,1σ

2
v|0

)
(87)

Noting (81), we can write:

V ar(Ryt|n,l) = σ2
v|0

[
l∑

k=0

(λn|k − λl|k)
2ηk,1 +

n∑

k=l+1

(λn|0)
2η−1

k,1

]
(88)

We next set about expanding the summations in these expressions. First we get

n∑

k=l+1

(λn|0)
2η−1

k,1 =

(
ηn,1

1 + ηn,n + ηn,n−1 + ... + ηn,1

)2 n∑

k=l+1

η−1
k,1 (89)

Next the term
∑l

k=0(λn|k − λl|k)2ηk,1. First examine

(λn|k − λl|k)
2 =

(
ηn,k+1

1 +
∑n−1

i=0 ηn,n−i

− ηl,k+1

1 +
∑l−1

i=0 ηl,l−i

)2

= (90)
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ηn,k+1

(
1 +

∑l−1
i=0 ηl,l−i

)
− ηk+1,l

(
1 +

∑n−1
i=0 ηn,n−i

)
(
1 +

∑n−1
i=0 ηn,n−i

) (
1 +

∑l−1
i=0 ηl,l−i

)



2

= (91)


ηl,k+1

(
ηn,l+1

(
1 +

∑l−1
i=0 ηl,l−i

)
− (

1 +
∑n−1

i=0 ηn,n−i

))

(
1 +

∑n−1
i=0 ηn,n−i

) (
1 +

∑l−1
i=0 ηl,l−i

)



2

= (92)


ηl,k+1

((∑l−1
i=−1 ηn,l−i

)
− (

1 +
∑n−1

i=0 ηn,n−i

))

(
1 +

∑n−1
i=0 ηn,n−i

) (
1 +

∑l−1
i=0 ηl,l−i

)



2

(93)

=


 −ηl,k+1

(
1 +

∑n−l−2
i=0 ηn,n−i

)

(
1 +

∑n−1
i=0 ηn,n−i

) (
1 +

∑l−1
i=0 ηl,l−i

)



2

(94)

So
l∑

k=0

(λn|k − λl|k)
2ηk,1 =

l∑

k=0


 −ηl,k+1

(
1 +

∑n−l−2
i=0 ηn,n−i

)

(
1 +

∑n−1
i=0 ηn,n−i

) (
1 +

∑l−1
i=0 ηl,l−i

)



2

ηk,1 (95)

Finally

var(Ryt|n,l) = σ2
v




∑l
k=0

(
−ηl,k+1(1+

∑n−l−2
i=0 ηn,n−i)

(1+
∑n−1

i=0 ηn,n−i)(1+
∑l−1

i=0 ηl,l−i)

)2

ηk,1

+
(

ηn,1

1+
∑n−1

i=0 ηn,n−i

)2 ∑n
k=l+1 η−1

k,1


 (96)

or

var(Ryt|n,l) = σ2
v|0

η2
n,i

(∑n
k=l+1 η−1

k,1

) (
1 +

∑l−1
i=0 ηl,l−i

)2

+
(
1 +

∑n−l−2
i=0 ηn,n−i

)2

ηl,1

∑l
k=0 ηl,k+1

(
1 +

∑n−1
i=0 ηn,n−i

)2
(
1 +

∑l−1
i=0 ηl,l−i

)2 (97)

This gives the system of equations linking the observed variance of revisions to the unknown

variable rates of decay ij and the initial period’s measurement error σ2
v|0.
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Figure 1: Measurement error variance for consumption growth
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Figure 2: Measurement error variance for import growth
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Figure 3: Variance of Ryt|24,l, l = 1, . . . , 23 for consumption growth
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Figure 4: Variance of Ryt|24,l, l = 1, . . . , 23 for import growth
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Figure 5: Measurement error variance for consumption growth
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Figure 6: Variance of Ryt|24,l, l = 1, . . . , 23 for consumption growth
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