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1 Introduction

Recent work in the macroeconometric literature considers the problem of

summarising efficiently a large set of variables and using this summary for

a variety of purposes including forecasting. Work in this field has been car-

ried out in a series of recent papers by Stock and Watson (1998), Forni and

Reichlin (2000), Forni, Hallin, Lippi, and Reichlin (2000) and Forni, Hallin,

Lippi, and Reichlin (2001). Factor analysis has been the main tool used in

summarising the large datasets.

The main factor model used in the past to extract dynamic factors from

economic time series has been a state space model estimated using maximum

likelihood. This model was used in conjunction with the Kalman filter in a

number of papers carrying out factor analysis (see, among others, Stock and

Watson (1989) and Camba-Mendez, Kapetanios, Smith, and Weale (2001)).

However, maximum likelihood estimation of a state space model is not prac-

tical when the dimension of the model becomes too large due to the compu-

tational cost. For the case considered by Stock and Watson (1998) where the

number of time series is greater than the number of observations, maximum

likelihood estimation is not practically feasible. For this reason, Stock and

Watson (1998) have suggested an approximate dynamic factor model based

on principal component analysis. This model can accommodate a very large

number of time series and there is no need for the number of obsevations

to exceed the number of variables. Nevertheless, the principal component

model is not, strictly speaking, a dynamic model. Stock and Watson (1998)

have shown that it can estimate consistently the factor space asymptotically

(but the number of time series has to tend to infinity). In small samples and

for a finite number of series, the dynamic element of the principal component

analysis is not easy to interpret. Forni and Reichlin (2000) suggested an al-

ternative procedure based on dynamic principal components (see Brillinger

(1981, ch. 9)). This method incorporates an explicitly dynamic element in
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the construction of the factors.

This paper provides an alternative method for estimating factors derived

from a factor state space model. This model has a clear dynamic interpre-

tation. Further, the method does not require iterative estimation techniques

and due to a modification introduced, can accommodate cases where the

number of variables exceeds the number of observations. The computational

cost and robustness of the method is comparable to that of principal compo-

nent analysis because matrix algebraic methods are used. The method forms

parts of a large set of algorithms used in the engineering literature for esti-

mating state space models caled subspace algorithms. Another advantage of

the method is that the asymptotic distribution and therefore the standard

errors of the factor estimates are available. Further, as the factor analysis

is carried out within a general model, forecasting is easier to carry out than

in the currently available procedures where a forecasting model needs to be

specified.

The structure of the paper is as follows: Section 2 describes the elements

of the suggested factor extraction method. Section 3 discusses the asymp-

totic properties of the new method. Section 4 discusses possible improved

estimation of the factor estimates. Section 5 presents an application of the

method to the forecasting of UK inflation in the recent past. The results

are compared to the forecasts produced by the principal component factor

extraction analysis of Stock and Watson. Section 6 concludes.

2 Theoretical considerations

2.1 The method

We consider the following state space model.

xt = Cft +Dut, t = 1, . . . , T
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ft = Aft−1 +But−1 (1)

xt is an n-dimensional vector of strictly stationary zero-mean variables ob-

served at time t. ft is an m-dimensional vector of unobserved states (factors)

at time t and ut is a multivariate standard white noise sequence of dimen-

sion n. The aim of the analysis is to obtain estimates of the states ft, for

t = 1, . . . , T .

This model is quite general. Its aim is to use the states as a summary

of the information available from the past on the future evolution of the

system. A large literature exists on the identification issues related with the

state space representation given in (1). An extensive discussion may be found

in Hannan and Deistler (1988). As we have mentioned in the introduction,

maximum likelihood techniques either using the Kalman filter or otherwise

may be used to estimate the parameters of the model under some identifica-

tion scheme. For large datasets this is likely to be computationally intensive.

Subspace algorithms avoid expensive iterative techniques and instead rely on

matrix algebraic methods to provide estimates for the factors as well as the

parameters of the state space representation.

There are many subspace algorithms and vary in many repects but a

unifying characteristic is their view of the state as the interface between the

past and the future in the sense that the best linear prediction of the future

of the observed series is a linear function of the state. A very good review

of existing subspace algorithms is given by Bauer (1998) in an econometric

context. Another review with an engineering perspective may be found in

Van Overschee and De Moor (1996).

The starting point of most subspace algorithms is the following represen-

tation of the system which follows from the state space representation and
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the assumed nonsingularity of D.

Xf
t = OKXp

t + EEf
t (2)

where Xf
t = (x′

t, x
′
t+1, x

′
t+2, . . .)

′, Xp
t = (x′

t−1, x
′
t−2, . . .)

′, Ef
t = (u′

t, u
′
t+1, . . .)

′,

O = [C ′, A′C ′, (A2)′C ′, . . .]′, K = [B̄, (A − B̄C)B̄, (A − B̄C)2B̄, . . .], B̄ =

BD−1 and

E =




D 0 . . . 0

CB D
. . .

...

CAB
. . . . . . 0

... CB D


 (3)

The derivation of this representation is easy to see once we note that (i)

Xf
t = Oft + EEf

t and (ii) ft = KXp
t . The best linear predictor of the future

of the series at time t is given by OKXp
t . The state is given in this context

by KXp
t at time t. The task is therefore to provide an estimate for K. Ob-

viously, the above representation involves infinite dimensional vectors.

In practice, truncation is used to end up with finite sample approxima-

tions given byXf
s,t = (x′

t, x
′
t+1, x

′
t+2, . . . , x

′
t+s−1)

′ andXp
q,t = (x′

t−1, x
′
t−2, . . . , x

′
t−q)

′.

Then an estimate of F = OK may be obtained by regressing Xf
s,t on Xp

q,t.

Following that, the most popular subspace algorithms use a singular value

decomposition of an appropriately weighted version of the least squares es-

timate of F , denoted by F̂ . In particular the algorithm we will use, due

to Larimore (1983), applies a singular value decomposition to Γ̂f F̂ Γ̂p, where

Γ̂f , and Γ̂p are the sample covariances of Xf
s,t and Xp

q,t respectively. These

weights are used to determine the importance of certain directions in F̂ .

Then, the estimate of K is given by

K̂ = Ŝ1/2
m V̂mΓ̂

p−1

where Û ŜV̂ represents the singular value decomposition of Γ̂f F̂ Γ̂p, Ŝm de-

notes the matrix containing the first m columns of Ŝ and V̂m denotes the

heading m×m submatrix of V̂ . Ŝ contains the singular values of Γ̂f F̂ Γ̂p in
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decreasing order. Then, the factor estimates are given by K̂Xp
t . For what

follows it is important to note that the choice of the weighting matrices are

important but not crucial for the asymptotic properties of the estimation

method. They are only required to be nonsingular. A second thing to note is

that consistent estimation of the factor space requires that q tends to infinity

at a certain rate as T tends to infinity as pointed out by Bauer (1998, pp.

54). Once estimates of the factors have been obtained and if estimates of the

parameters (including the factor loadings) are subsequently required, it is

easy to see that least squares methods may be used to obtain such estimates.

These estimates have been proved to be
√
T -consistent and asymptotically

normal in Bauer (1998, ch.4). We note that the identification scheme used

above is implicit and depends on the normalisation used in the computation

of the singular value decomposition. Finally, we must note that the method

is also applicable in the case of unbalanced panels. In analogy to the work of

Stock and Watson (1998) use of the EM algorithm, described there, can be

made to provide estimates both of the factors and of the missing elements in

the dataset.

2.2 Dealing with large datasets

Up to now we have outlined an existing method for estimating factors which

requires that the number of observations be larger than the number of el-

ements in Xp
t . Given the work of Stock and Watson (1998) this is rather

restrictive. We therefore suggest a modification of the existing methodology

to allow the number of series in Xp
t be larger than the number of observations.

The problem arises in this method because the least squares estimate of F
does not exists due to rank deficiency of Xp′Xp where Xp = (Xp

1 , . . . , X
p
T )

′.

As we mentioned in the previous section we do not neccesarily want an esti-

mate of F but an estimate of the states XpK′. That could be obtained if we

had an estimate of XpF ′ and used a singular value decomposition of that.
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But it is well known (see e.g. Magnus and Neudecker (1988) ) that although

F̂ may not be estimable XpF ′ always is using least squares methods. In

particular, the least squares estimate of XpF ′ is given by

X̂pF ′ = Xp(Xp′Xp)+Xp′Xf

whereXf = (Xf
1 , . . . , X

f
T )

′ and A+ denotes the unique Moore-Penrose inverse

of matrix A. Once this step is modified then the estimate of the factors may

be straightforwardly obtained by applying a singular value decomposition to

X̂pF ′. We choose to set both weighting matrices to the identity matrix in

this case.

2.3 Number of factors

A very important question relates to the determination of the number of

factors, i.e. the dimension of the state vector. This issue has only recently

received attention in the econometric literature. Stock and Watson (1998)

suggest using information criteria for determining this dimension. Bai and

Ng (2002) provide modified information criteria and justification for their

use in the case where the number of variables goes to infinity as well as the

number of observations. We suggest a simple information theoretic method

for determining the number of factors in our model. Its simplicity comes

from the fact that both the number of series and factors are assumed to be

finite.

The search simply involves (i) fixing a maximum number of factors fmax

to search over, (ii) estimating the factors for each assumed number of factors

m = 1, . . . ,mmax and (iii) minimising the negative penalised loglikelhood of

the regression

xt = Cf̂t + ut,

i.e. minimising ln|Σ̂m
u |+ cT (m) where Σ̂m

u is the estimated covariance matrix
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of ut and cT (m) is a penalty term depending on the choice of the information

criterion used. We prove consistency of the method under some conditions

on cT (m) in the next section.

We briefly discuss an alternative class of testing procedures for determin-

ing the number of factors prevalent in the state space model literature. The

testing procedures are based on the well known fact that the rank of certain

block matrices referred to as Hankel matrices is equal to the dimension of

the state vector. The most familiar Hankel matrix is the covariance Hankel

matrix. The autocovariance Hankel matrix is a block matrix made up of the

autocovariances of the observed process xt. It is given by


Γ1 Γ2 Γ3 . . .
Γ2 Γ3 . . .
Γ3 . . . . . .
...

...
. . .




where Γi denotes the i-th autocvariance of xt. Its finite truncation may be

estimated by 1/TXf ′
Xp. Tests of rank may be used to estimate the rank

of the covariance Hankel matrix from its estimate. A thorough investigation

of the properties of the information criteria and the testing procedures in

determining the rank of the Hankel matrix may be found in Camba-Mendez

and Kapetanios (2001b). Further issues are discussed in Camba-Mendez and

Kapetanios (2001a). A related discussion of the tests of rank used may also

be found in Camba-Mendez, Kapetanios, Smith, and Weale (2000).

3 Asymptotic Properties

In this section we discuss the asymptotic properties of the factor estimates

including estimation of standard errors and consistent estimation of the num-

ber of factors. We make the following assumptions

Assumption 1 ut is an i.i.d. (0,Σu) sequence with finite fourth moment.
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Assumption 2 p1 ≤ p ≤ p2 where p1 = O (ln(T )α)), α > 1 and p2 =

o(T 1/3)

We denote the true number of factors by m0. Then, we investigate OLS

estimation of the multivariate regression model given below

Xf
s,t = FXp

q,t + EEf
t (4)

for fixed s ≥ m0. Estimation of the above is equivalent to estimation of

each equation separately. Then, by Theorem 4 of Berk (1974), who provides

a variety of results for parameter estimates in infinite autoregressions, we

have that
√
T − p(F̂ − F) has an asymptotic normal distribution with the

standard OLS covariance matrix. Define T ∗ = T − p as the effective number

of observations. Below we derive the asymptotic distribution of the factor

estimates. We distinguish between the case where the number of effective

observations is larger than the number of series multiplied by p and the

case where the number of effective observations is smaller than the number

of series multiplied by p. Note, however, that, unlike other work in the

literature, we assume that the number of factors and series is finite. We view

this as an advantage of our method. Other methodologies do not choose to

have the number of series tend to infinity. This assumption is needed for

consistency of the factor estimates. Therefore, the case where the number

of series multiplied by p is larger than T is included for completeness and

to provide estimates of the factor estimate standard errors in small samples.

In the first case, the factor estimates, denoted by f̂t, are given by K̂Xp
t .

Note that the variance calculations will be carried out conditional on Xp
t .

This is implicitly reflecting the standard treatment of obtaining variances of

regression coefficients conditional on the regressors. In particular we wish

to derive the asymptotic distribution of
√
T ∗(vec(f̂) − vec(f)), where f =

(f1, . . . , fT )
′. In what folows we concentrate on the asymptotic variance.

Asymptotic normality of the estimates follows by the asymptotic normality

of
√
T − p(F̂ − F). We have that f = XpK̂′. Simple manipulations indicate
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that

V
(√

T ∗(vec(f̂)− vec(f))
)
= (Im⊗Xp)V

(√
T ∗

(
vec(K̂′)− vec(K′)

))
(Im⊗Xp′)

We need to derive the asymptotic variance of V
(√

T ∗
(
vec(K̂′)− vec(K′)

))
.

In general K̂′ is a function of the singular value decomposition of A1F̂A2,

where A1 and A2 are weighting matrices discussed before. Note the impor-

tance of sn ≥ m for the calculation of the singular value decomposition.

Define a function g(.) such that vec(K̂′) = g
(
vec(A1F̂A2)

)
. By a first order

Taylor expansion1 of g(vec(A1F̂A2)) and g(vec(A1FA2)) around A1F∗A2,

where each element of F∗ lies between the respective elements of F and F̂ ,

we have that

V
(√

T ∗
(
vec(K̂′)− vec(K′)

))
=

∂g

∂(A1FA2)

V
(√

T ∗
(
vec(A1F̂A2)− vec(A1FA2)

)) ∂g′

∂(A1FA2)

Consistency and a
√
T ∗ rate of convergence of the parameter estimates F̂ to

their true values implies that the remainder of the Taylor approximation is

op(1). So we need to derive the variance of
√
T

(
vec(A1F̂A2)− vec(A1FA2)

)
.

Again simple manipulations imply that

V
(√

T ∗
(
vec(A1F̂A2)− vec(A1FA2)

))
= (A′

2⊗A1)V
(√

T
(
vec(F̂)− vec(F)

))
(A2⊗A′

1)

From multivariate regression analysis we know that

V
(√

T ∗
(
vec(F̂)− vec(F)

))
= (Γp ⊗ Σ)

where Σ is the variance covariance matrix of the regression error. Thus,

V
(√

T ∗(vec(f̂)− vec(f))
)
= (Im ⊗Xp)

∂g

∂(A1FA2)
(A′

2 ⊗ A1)(Γ
p ⊗ Σ)

(A2 ⊗ A′
1)

∂g′

∂(A1FA2)
(Im ⊗Xp′)

1Possible since g(.) ∈ C∞.
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We now move on to the case of the number of regressors exceeding the number

of observations. From the above we know that f̂ is estimated from a SVD

of X̂pF ′. We define a function h(.) as vec(f̂) = h(X̂pF ′). Then, by a first

order Taylor expansion as above, we have that

V
(√

T
(
vec(f̂)− vec(f)

))
=

∂h

∂(A1FA2)
V

(√
T

(
vec(X̂pF ′)− vec(XpF ′)

)) ∂h′

∂(A1FA2)

Then, by simple manipulations of the variance derivation of Magnus and

Neudecker (1988, pp. 262) we get that

V
(√

T
(
vec(f̂)− vec(f)

))
=

∂h

∂(A1FA2)
(Σ⊗Xp(Xp′Xp)+Xp′)

∂h′

∂(A1FA2)

Note that by virtue of the fact the p tends to infinity the asymptotic variances

for the
√
T ∗ normalised factor estimates tend to infinity at the same rate as

T thereby implying that the factor estimates are effectively OP (pT
∗−1/2)-

consistent. By assumption 2 the rate of convergence of the factor estimates

lies between T ∗1/2 (ln(T ∗))α and T ∗1/6. The standard error derivations given

above are valid only for the case s = 1 as there is serial correlation in the error

terms in (2) for s > 1. This case is discussed in more detail in Section 4 below.

We now discuss the asymptotic properties of the determination of the

number of factors using information criteria. We assume that

Assumption 3 limT ∗→∞ T ∗cT (m) = ∞ and cT (m) = o(1).

We want to show that argminm∈{1,...,mmax}IC(m) = m0, ∀mmax, where IC(m) =

ln|Σ̂m
u | + cT (m). We wish to prove (i) plimT ∗→∞ln|Σ̂m

u |/ln|Σ̂m0

u | > 1 for

m < m0 and (ii) plimT ∗→∞ln|Σ̂m
u |/ln|Σ̂m0

u | = 1 for m > m0 For (ii) we note

that by the fact that the singular values of F̂ tend to their true values at

a rate of
√
T ∗ and the fact that any (m0 + i)-th largest singular value of F

is equal to zero, any observations of the (m0 + i)-th factor series will tend

to zero at rate
√
T ∗. As a result asymptotically any regression that involves

more than m0 factors will have a singular regressor matrix. We assume that
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any such regression will be rejected and therefore the probability of picking

m > m0 tends to zero asymptotically. We now wish to prove (i). We note

that even for m < m0 the first m factors are consistently estimated as they

are obtained from the unrestricted OLS estimates of F . In fact for a given

sample, the factor estimates for the first m factors in a model which assumes

m1 > m factors are identical to those in a model with m2 > m factors. We

examine the probability of the event ln|Σ̂m
u |/ln|Σ̂m0

u | > 1 We have that

Pr(ln|Σ̂m
u |/ln|Σ̂m0

u | < 1 + ε) = Pr

(
ln|1/TX ′M̂mX|
ln|1/TX ′M̂m0X| < 1 + ε

)
(5)

whereX = (x1, . . . , xT )
′, M̂m = I−f̂m(f̂m′

f̂m)
−1

f̂m′
, M̂m0

= I−f̂m0
(f̂m0′

f̂m0
)−1f̂m0′

,

f̂m = (f̂m
1 , . . . , f̂m

T ) and f̂m
t = (f̂1,t, . . . , f̂m,t)

′. If we show that the probability

in (5) is equal to

Pr

(
ln|1/TX ′MmX|
ln|1/TX ′Mm0X| < 1 + ε

)

where Mm and Mm0
are defined in the obvious way then the fact that the

above probability is less than ε for all ε > 0 follows from standard regression

results on uniform convergence and asymptotic normality of regression pa-

rameters and the analysis of, e.g. Sin and White (1996). To show that, we

need to show that

||1/TX ′M̂mX − 1/TX ′MmX|| = op(1)

for all m. But this easily follows from the fact that 1/T ||f − f̂ || = op(1).

4 Improved Factor Estimation

There exists potential for improving upon the standard method of estimating

the factors. This is related to the structure of the covariance matrix of the

error term of (2) given by (3). If the lead truncation index, s, is greater

than 1, or D is not diagonal, then (2) should be estimated by generalised
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least squares as there is serial correlation in these error terms. Of course,

consistency, the rate of convergence and asymptotic normality of the factor

estimates are not affected by the presence of serial correlation. We will

address only the case of large datasets (i.e. Nq > T ) since the standard

case follows easily from that if we note that the Moore-Penrose inverse of a

matrix is equal to the inverse of a matrix if that exists. Define X p = I ⊗Xp,

X f = vec(Xf ), Ef = (Ef
1 , E

f
2 , . . . , E

f
T )

′ and Ef = vec(Ef ). We first note that

the covariance of Ef follows from the definition of E in (3). It is a complicated

function of A,B,C,D. The parameters involved can be estimated from the

estimation of the state space model following OLS estimation of the factors.

Once we have an estimate of the covariance matrix of E , denoted V̂ we can

use this to obtain the best affine estimate of vec(XpF) as derived by Magnus

and Neudecker (1988, Ch.13,Th.13) and given by

vec(X̂pF) = X p(X p′V̂+X p)+X p′V̂+X f (6)

Then, we apply the singular value decomposition as before. Even if no im-

proved estimation is undertaken V̂ maybe used to obtain the correct standard

errors for the factors under OLS estimation for s > 1.

5 An Application: Forecasting Inflation

In this section we provide an application of the proposed dynamic factor

methodology to the forecasting of UK inflation defined for our purposes

as RPIX inflation (RPI inflation minus mortgage interest payments). We

construct a large dataset of variables. These are grouped into six different

categories (number of variables in parentheses): Exchange rates (plus share

prices) (4), interest rates (4), monetary variables (7), prices (14), real ac-

tivity (34), surveys (17). 80 variables are used in total. The sample period

is 1988Q1-1997Q4. The forecast evaluation period is 1998Q1-2000Q4. For

some minimal robustness analysis we repeat the whole process for a sample

period of 1988Q1-199Q2 and evaluation period 1997Q3-2001Q2. Crucially,
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the data for this exercise have been obtained following large revisions carried

out as part of the major data revision exercise by the UK Office of National

Statistics in September 2001. The data for the first forecasting exercise were

obtained prior to the September 2001 revision exercise.

The variables are differenced as many times as needed to reduce them

to stationarity according to the ADF unit root test. Any variable with an

outlier, defined as being an observation whose distance from the median of

the sample is as large as or larger than six times the interquartile range, is

rejected. No such variable is found in the set. All variables are normalised to

have mean zero and variance one. Using the subspace algorithm and setting

p = f = 1 we extract factors that summarise information in each of these

categories. The number of factors for each category is: exchange rates (2),

interest rates (2), monetary variables (3), prices (4), real activity (4), surveys

(3), all variables (6). There are 24 factor variables.

The factors extracted from each category together with the factors ex-

tracted from all variables viewed as a whole, are then used as the set of

variables on which the following procedure is applied. We construct all pos-

sible combinations up to a maximum size of 4 variables from the set of 24

factor variables. Each combination together with inflation is then viewed as

a VAR model2. Then, for each model we use the component factor variables

to forecast inflation. We produce forecasts one step ahead. We have 12950

different models. We repeat the whole exercise using factors extracted using

principal components as suggested by Stock and Watson (1998).

We compare the forecasting performance of the two sets of models. The

relative performance is used to indicate the relative ability of the two factor

approaches in forecasting UK inflation. We use two measures of forecasting

2Note the equivalence of a forecast produced by this model and a simple dynamic
regression model for one-step ahead forecasts.
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peformance. The first is the root mean square forecast error and the second

is the Diebold and Mariano (1995) test of predictive ability3. The Diebold-

Mariano test compares the forecasting performance of two models by testing

the null hypothesis that they have equal predictive ability. The test is based

on a series of differences between the losses arising out of each model for some

loss function. For the current application we will use squared forecast errors

as the preferred loss function. As we have a very large number of models we

need to have a rule for pairing models so as to carry out the comparisons.

We do this as follows: We rank models from each set according to their root

mean square performance. Since we have the same number of models we then

pair off the ranked models and carry out pairwise Diebold-Mariano tests. We

use two different algorithms for the subspace factor method. In the first, the

weighting matrix is made up from the covariances of the data as discussed

in the previous section. This set is denoted by Γ. In the second case we use

the identity matrix as the weighting matrix. This set is denoted by I.

5.1 Results

We concentrate our analysis on the top 5% of the models as selected by their

root mean square forecasting performance. These are the top 625 models.

Out of these, 42.8 % of the Γ and 100% of the I models outperform their

pair model from the principal component factor model set. The respective

percentage for the Γ set goes up to 99% for the top 100 models. In fact, all

of the top 25% I models outperform their pair principal component models.

Going to the Diebold-Mariano tests we see that for top 5% of the models

we have no rejection of the null hypothesis of equal predictive ability for the

Γ models. On the other hand, for the I models, 1.2% of the top 650, 2.7%

3This test is known to have bad small sample size properties. We have addressed this
issue by considering the corrected Diebold-Marino test suggested by Harvey, Leybourne,
and Newbold (1997). There was no qualitative difference in the results.
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of the top 300, 5% of top 100 and 8% of the top 50 models reject the null

hypothesis of equal predictive ability at the 10% significance level in favour

of the subspace models. Note that the power of the Diebold-Mariano test is

likely to be low given the very small sample of 12 observations in the fore-

cast evaluation period. It is clear that although both weighting matrices for

the subspace method provide clear advantages over the principal component

methodology, the better choice is the identity weighting matrix. We therefore

need to point out that both matrices are asymptotically acceptable choices

and that the optimality of the covariance weighting matrix relates simply

to the asymptotic relative efficiency of the parameter estimates of the state

space model. Such a property is of little guidance for finite sample forecasting

exercises.

We repeat the exercise and use data that have undergone significant re-

visions, as part of the regular revision efforts caried out by the Office of

National Statistics, in September 2001. The results suggest a superior fore-

casting ability for the dynamic factor method. The respective percentages

for better Γ and I models in the top 625 are 44.7 % and 98.6 % and in the

top 100 models they are 99% and 91%.

6 Conclusion

In this paper we have suggested and briefly evaluated a new factor based

method for forecasting time series. Our work follows closely in spirit the

work of Stock and Watson (1998), Stock and Watson (1999) and subsequent,

as yet unpublished papers by these authors and their co-authors on the one

hand and the work by Forni and Reichlin (2000), Forni, Hallin, Lippi, and

Reichlin (2000) and Forni, Hallin, Lippi, and Reichlin (2001) on the other

hand. The innovation lies in providing an alternative method for obtaining

factor estimates.

One strand of the literature on factor extraction relies on explicitly dy-
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namic state space models to estimate factors via computationally expensive

and, in small samples, non-robust maximum likelihood estimation. The other

strand of the literature based on the work of Stock and Watson (1998) uses

principal components to extract the factors. This methodology is robust,

computationally feasible with very large datasets and asymptotically valid

for dynamic settings. Unfortunately, these methods are approximately dy-

namic in that the dynamic structure of the factors is not explicitly modelled

in finite samples but captured only asymptotically where both the number

of observations and the number of series used, grows to infinity. We propose

a new methodology which while sharing all the advantages of the principal

component extraction method is explicitly dynamic. This method is based

on linear algebraic techniques for estimating the state and, if need be, the

parameters of a general linear state space model.

We evaluate the new methodology on a very large number of forecasting

models for UK inflation. We find that the methodology compares favorably

to the principal component methodology of Stock and Watson (1998) for a

great majority of the forecasting models considered.
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Data Appendix

Exchange rates and share prices

”266305K ” ”United Kingdom” ”SHARE PRICES FT-SE-A NON-FINANC Index
publication base /Share prices Industrials Total Total United Kingdom /1995Y”

”267001K ” ”United Kingdom” ”REAL EFFECTIVE EXCHANGE RATES
Index publication base /Currency Conversions Real Effective Exchange..United
Kingdom /1995Y”
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”267003D ” ”United Kingdom” ”US DOLLAR EXCHANGE RATEMTHAVG
Quantum (non-additive or stock figures) /Currency Conversions US$ e.United
Kingdom /pd/$”

”267009D ” ”United Kingdom” ”US DOLLAR EXCHANGE RATE:FORWARD
Quantum (non-additive or stock figures) /Currency Conversions US$ e.United
Kingdom /$/pd”

subsection*Interest rates
”266213D ” ”United Kingdom” ”OVERNIGHT INTERBANK RATE Quan-

tum (non-additive or stock figures) /Interest Rates Immediate rates (¡.United
Kingdom /

”266215D ” ”United Kingdom” ”LONDONCLEARING BANKS’ RATE Quan-
tum (non-additive or stock figures) /Interest Rates Immediate rates.United King-
dom /

”266225D ” ”United Kingdom” ”3-MONTH INTERBANK LOANS Quantum
(non-additive or stock figures) /Interest Rates 3-mth or 90-day rat.United King-
dom /

”266261D ” ”United Kingdom” ”10-YEAR GOVT BONDS Quantum (non-
additive or stock figures) /Interest Rates Long-term (1 yr or more).United King-
dom /

Monetary variables

(All variables are seasonally adjusted and in levels)
Notes and Coins
M0
M3
M4
Bank Lending
M4 Lending
Bank Retail Deposits

Prices

”265011K ” ”United Kingdom” ”PPI MFG OUTPUT FOOD Index publication
base /Producer Prices Food products, beverages & tobacco, te.United Kingdom
/1995Y”

”265018K ” ”United Kingdom” ”PPI MFG INPUT FUEL Index publication
base Producer Prices Input to production Fuel Total United Kingdom /1995Y”

”265023K ” ”United Kingdom” ”PPI MFG INPUT RAW MATERIALS In-
dex publication base /Producer Prices Input to production Raw materi.United
Kingdom /1995Y”
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”265025K ” ”United Kingdom” ”PPI MFG INPUT TOTAL EXCL FOOD In-
dex publication base /Producer Prices Input to production Input to.United King-
dom /1995Y”

”265045K ” ”United Kingdom” ”PPI MFG OUTPUT ALL PRODUCTS Index
publication base /Producer Prices Industry aggregates Manufactur.United King-
dom /1995Y”

”265046K ” ”United Kingdom” ”PPI MFG OUTPUT TOTAL EXCL FOOD
Index publication base /Producer Prices Industry aggregates Manufac.United King-
dom /1995Y”

”265061K ” ”United Kingdom” ”PPI MFG OUTPUT CHEMICALS Index
publication base /Producer Prices Other transportable gds, excl. me.United King-
dom /1995Y”

”265201K ” ”United Kingdom” ”CPI BEVERAGE & TOBACCO Index pub-
lication base /Consumer Price Index Goods Alcoholic beverages & Tob.United
Kingdom /1995Y”

”265209K ” ”United Kingdom” ”CPI FUEL & ELECTRICITY Index publica-
tion base /Consumer Price Index Goods Utilities (Electricity, G.United Kingdom
/1995Y”

”265213K ” ”United Kingdom” ”CPI FOOD (OECD) Index publication base
/Consumer Price Index Goods Food Food (incl. restaurants) United Kingdom
/1995Y”

”265221K ” ”United Kingdom” ”CPI HOUSING Index publication base /Con-
sumer Price Index Services Housing - rental services Total i.United Kingdom
/1995Y”

”265239K ” ”United Kingdom” ”CPI ALL ITEMS LESS SEAS FOOD Index
publication base /Consumer Price Index All items All items exclu.United Kingdom
/1995Y”

”265241K ” ”United Kingdom” ”CPI ALL ITEMS Index publication base Con-
sumer Price Index All items Total Total United Kingdom /1995Y”

”265247K ” ”United Kingdom” ”CPI EXCLUDING MORTAGE INTEREST
Index publication base /Consumer Price Index All items All items exc.United
Kingdom /1995Y”

Real activity

”261023NSA” ”United Kingdom” ”GDP CONSUMERS’ EXPENDITURE SA Na-
tional currency annual Level SA /National Accounts GDP by Expendit.United
Kingdom /MN 1990 pd”

”261025NSA” ”United Kingdom” ”GDP GOVERNMENT EXPENDITURE
SA National currency annual Level SA /National Accounts GDP by Expendit.United
Kingdom /MN 1990 pd”

”261027NSA” ”United Kingdom” ”GDP CONSTRUCTION SA National cur-
rency annual Level SA /National Accounts GDP by Expenditure (const.United
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Kingdom /MN 1990 pd”
”261029NSA” ”United Kingdom” ”GDP EXPORTS GOODS & SERVICES

SA National currency annual Level SA /National Accounts GDP by Expendi.United
Kingdom /MN 1990 pd”

”261031NSA” ”United Kingdom” ”GDP IMPORTS GOODS & SERVICES SA
National currency annual Level SA /National Accounts GDP by Expendi.United
Kingdom /MN 1990 pd”

”261035NSA” ”United Kingdom” ”GDP GROSS FIXED INVESTMENT SA
National currency annual Level SA /National Accounts GDP by Expendit.United
Kingdom /MN 1990 pd”

”261037NSA” ”United Kingdom” ”GDP 1995 PRICES sa National currency
annual Level SA /National Accounts GDP by Expenditure (constan.United King-
dom /MN 1990 pd”

”262007K ” ”United Kingdom” ”IIP MANUFACTURING Index publication
base /Production Production by economic activities (IIP or Real.United Kingdom
/1995Y”

”262017KSA” ”United Kingdom” ”REAL GDP TRANSPORT + COMM In-
dex publication base SA /Production Production by economic activities (.United
Kingdom /1995Y”

”262019KSA” ”United Kingdom” ”REAL GDP TOTAL SERVICES Index
publication base SA /Production Production by economic activities (II.United
Kingdom /1995Y”

”262021KSA” ”United Kingdom” ”REAL GDP DISTRIBUTION Index publi-
cation base SA /Production Production by economic activities (IIP..United King-
dom /1995Y”

”262023KSA” ”United Kingdom” ”REAL GDP FINANCIAL + BUSINESS
Index publication base SA /Production Production by economic activiti.United
Kingdom /1995Y”

”262027KSA” ”United Kingdom” ”IIP TOTAL sa Index publication base SA
/Production Production by economic activities (IIP or Real G.United Kingdom
/1995Y”

”262111KSA” ”United Kingdom” ”IIP DURABLE CONSUMER GOODS SA
Index publication base SA /Production Production by type of good (II.United
Kingdom /1995Y”

”262117KSA” ”United Kingdom” ”IIP NON DURABLE CONS GOODS SA
Index publication base SA /Production Production by type of good (II.United
Kingdom /1995Y”

”262119KSA” ”United Kingdom” ”IIP INTERMEDIATE GOODS SA Index
publication base SA /Production Production by type of good (IIP or.United King-
dom /1995Y”

”262121KSA” ”United Kingdom” ”IIP INVESTMENT GOODS SA Index
publication base SA /Production Production by type of good (IIP or R.United
Kingdom /1995Y”

22



”262201B ” ”United Kingdom” ”PRODUCTION PASSENGER CARSMonthly
Level Production Commodity Output Passenger cars Total United Kingdom /num-
ber”

”262205B ” ”United Kingdom” ”PRODUCTION COMMERCIAL VEHICLES
Monthly Level /Production Commodity Output Vehicles Commercial vehic.United
Kingdom /number”

”263209KSA” ”United Kingdom” ”SALES ENGINEERING DOMEST VOL
SA Index publication base SA /Manufacturing Sales Volume Domestic United
Kingdom /1995Y”

”263211KSA” ”United Kingdom” ”SALES ENGINEERING EXPORT VOL
SA Index publication base SA /Manufacturing Sales Volume Export United King-
dom /1995Y”

”263213KSA” ”United Kingdom” ”SALES ENGINEERING TOTAL VOL SA
Index publication base SA /Manufacturing Sales Volume Total United Kingdom
/1995Y”

”263341OSA” ”United Kingdom” ”STK CHANGE MFG FINISHED GDS SA
National currency sum over component sub-periods SA /Manufacturing .United
Kingdom /MN 1995 pd mln”

”263343OSA” ”United Kingdom” ”STK CHANGE MFG WORK IN PROG
SA National currency sum over component sub-periods SA /Manufacturing .United
Kingdom /MN 1995 pd mln”

”263427KSA” ”United Kingdom” ”NEW ORD ENGINEERING DOM VOL
SA Index publication base SA /Manufacturing New orders Volume Domestic United
Kingdom /1995Y”

”263429KSA” ”United Kingdom” ”NEW ORD ENGINEERING EXP VOL
SA Index publication base SA /Manufacturing New orders Volume Export United
Kingdom /1995Y”

”263431KSA” ”United Kingdom” ”NEW ORD ENGINEERING TOT VOL
SA Index publication base SA /Manufacturing New orders Volume Total United
Kingdom /1995Y”

”263547KSA” ”United Kingdom” ”CON NEW ORDERS TOTAL VOL(GB)
SA Index publication base SA /Construction New orders Total constructi.United
Kingdom /1995Y”

”263601KSA” ”United Kingdom” ”RETAIL SALES TOTAL (GB) SA Index
publication base SA /Domestic Demand Retail trade Value Total United Kingdom
/1995Y”

”263641B ” ”United Kingdom” ”NEWPASSENGER CAR REG (GB) Monthly
Level /Domestic Demand Registrations Passenger cars Total United Kingdom
/number”

”264011D ” ”United Kingdom” ”EMPLOYMT SERVICE INDUSTRIES GB
Quantum (non-additive or stock figures) /Employment Employees (depe.United
Kingdom /‘000 persons”

”264103DSA” ”United Kingdom” ”REGISTERED UNEMPLOYMENT SA
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Quantum (non-additive or stock figures) SA /Unemployment Level of Unempl.United
Kingdom /‘000 persons”

”264111DSA” ”United Kingdom” ”UNEMP
”264235DSA” ”United Kingdom” ”VACANCIES AT JOB CENTRES”

Surveys

Survey data are taken from the CBI (Confederation of British Industry) Quarterly
Industrial Trends. The balances from the following questions have been included
in the dataset: Q1, Q2, Q3, Q5, Q7, Q7a, Q7b, Q8, Q9a, Q9b. Additionally, the
balance of the GfK consumer confidence survey is included.
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