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Abstract

Even if there is a fairly large evidence against the Expectations Hypothesis (EH)

of the term structure of interest rates, there still seems to be an element of truth

in the theory which may be exploited for forecasting and simulation. This paper

formalizes this idea by proposing a way to use the EH without imposing it dogmat-

ically. It does so by using a Bayesian framework such that the extent to which the

EH is imposed on the data is under the control of the researcher. This allows to

study a continuum of models ranging from one in which the EH holds exactly to

one in which it does not hold at all. In between these two extremes, the EH features

transitory deviations which may be explained by time varying (but stationary) term

premia and errors in expectations. Once cast in this framework, the EH holds on

average (i.e. after integrating out the effect of the transitory deviations) and can be

safely and effectively used for forecasting and simulation.
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1 Introduction

The Expectations Hypothesis of the term structure of interest rates (EH) states that

actual long-term interest rates are determined by the market’s expectation of the future

short-term rates. Popularized by Fisher (1930), Keynes (1930), and Hicks (1953), this

theory continues to be a way that many economists think about the determination of

long-term interest rates.

Most central banks use the EH in their economic forecasting and financial models.

Central bank researchers routinely impose the EH to forecast short-term rates, to assess

how monetary policy affects long-term rates, and to measure market expectations about

interest rates and inflation (Clews 2002, Scholtes 2002, Söderlind and Svensson, 1997,

European Central Bank “Monthly Bulletin”). Also the monetary VAR literature (Rude-

busch, 1998, Krueger and Kuttner, 1996) often imposes the EH to disentangle expected

from unexpected movements in interest rates.

However, the empirical evidence casts serious doubts on the appropriatness of using

the EH for these forecasting and simulation excercises. Indeed, the EH has been widely

tested, and almost invariably rejected. A nonexaustive list of studies rejecting the EH

comprises Fama (1984), Fama and Bliss (1987), Stambaugh (1988), Campbell and Shiller

(1991), Campbell (1995), Backus et al. (2001), Bekaert et al. (1997), Cochrane and

Piazzesi (2005). The failure of the EH may be due both to the presence of irrational

agents and to time variation in term premia. This latter explanation seems to be the

most relevant, as many studies have presented evidence that term premia in bond returns

are time varying. In particular, Fama and Bliss (1987) show that term premia do vary

through time and are forecastable via the forward rates. Campbell and Shiller (1991)

find similar results using yield spreads to predict yield changes. Recently, Cochrane and

Piazzesi (2005) have strengthened these results showing that the same linear combination

of forward rates predicts bonds returns at all maturities.

On the other side, Campbell and Shiller (1987) found an anomaly, i.e. the EH is

statistically rejected but the theoretical yield spread between the long-term and the

short-term interest rate based on its validity has a very high correlation with the actual

yield spread. This leads them to conclude that “...deviations from the present value

model for bonds are transitory...”. Building on their framework, Carriero et al. (2006)

show that the difference between the actual yield spread and the theoretical yield spread

is not statistically significant. In a different setup, previous studies report empirical

evidence contradicting the EH, but still potentially valuable for forecasting short-term

interest rates, see, e.g. Fama (1984), Fama and Bliss (1987) and Mishkin (1988).
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Thus, even if there is a fairly large evidence against the EH, there still seems to be

an element of truth in the theory which may be exploited for forecasting and simulation.

This paper formalizes this idea by proposing a way to use the EH without imposing

it dogmatically. It does so by using a Bayesian framework such that the extent to which

the EH is imposed on the data is under the control of the researcher. This allows to

study a continuum of models ranging from one in which the EH hold exactly to one

in which it does not hold at all. In this respect, our approach closely parallels that of

Ingram and Whiteman (1994) and Del Negro and Schorfheide (2004), who used DSGE

models to derive priors for VARs.

In particular, the EH is used to derive a prior on a VAR in the yield spread and the

variation in the short-term rates. A tightness hyperparameter controls the noise around

the restrictions implied by the EH on the VAR. When the tightness is set to zero, the

EH is imposed exactly, while as the tightness goes to infinity the VAR becomes entirely

unrestricted. For intermediate values of the tightness there is a whole range of models

in which the EH restrictions hold with some degree of uncertainty.

From a statistical point of view, modeling the EH with uncertainty may improve on

the traditional way of imposing it exactly. As stressed by Sims (2003), even in simple

situations model comparison methods will misbehave when a discrete collection of models

is serving as a proxy for a more realistic continuous parameter space. If in the true data

generating process a given set of restrictions holds up to some noise, then imposing the

restrictions exactly would be suboptimal.

The rationale of modelling the EH as a noisy relation is not merely statistical. The

uncertainty around the restrictions has a neat economic interpretation. The EH may be

affected by a time varying but stationary term premium and expectations errors. These

deviations may be thought of as stationary disturbances around the EH relation. When

restrictions are derived from the EH, the stochasticity of the disturbances is transferred

to the restrictions which then become inherently fuzzy.

Our analysis leads to two main conclusions.

First, we confirm that the EH does not hold exactly, but we show that it may hold

on average, i.e. after integrating out the effect of the deviations which may affect it

in the short run. When the EH restrictions are imposed exactly they are rejected but

if we allow for some noise around them they are supported by the data. Indeed, the

model fitting the data better is neither the one in which the EH is exactly imposed,

nor the unrestricted VAR, but a model in which the EH restrictions hold with noise.

This finding suggests that the EH prior can be safely imposed to perform forecasting

and simulation excercises. It also explains both the common result of rejection, and
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the anomalous high correlation between actual and EH consistent spread documented

in Campbell and Shiller (1987).

Second, the use of the EH prior provides significant gains in forecast accuracy. The

EH prior clearly dominates the unrestricted VAR in predicting both the yield spread and

the change in short-term rates. Therefore, using the EH restrictions as priors allows to

extract additional information from the term structure of interest rates. The information

about the short-term rate contained in long-term rate is extracted and exploited to

improve the forecasts of the change in the short-term rate. Then, having a better

forecast of the short-term rate allows to improve the forecasts of the yield spread as

well. Depending on the estimation window and the forecast horizon, the gains in terms

of mean square error can be up to 4 percent in predicting the change in short-term

rates and up to 10 percent in predicting the yield spread. These results also explain

why previous results contradicting the EH are still potentially valuable for forecasting

short-term interest rates (see, e.g. Fama, 1984, Fama and Bliss, 1987 and Mishkin,

1988).

To check whether this good performance is merely due to the use of a shrinkage

estimator, the EH prior is also compared to a more competitive forecast model such as

a VAR with a Minnesota prior (Doan et al., 1984). This prior shrinks the VAR coeffi-

cients to univariate root representations and it has proved to be empirically successful

(Litterman, 1986, Todd, 1984) but has the important limitation that it lacks economic

justification. As a result, the EH prior does also significantly better than the Minnesota

prior in predicting changes in the short-term rates, while the Minnesota prior produces

the best forecasts of the yield spread. However, when interpreting this latter result,

one should bear in mind that random walk assumption has only a statistical but not an

economic justification, while the EH prior is based on economic theory.

The paper is organized as follows: Section 2 introduces the basic framework, Section

3 describes our proposed Bayesian framework, Section 4 provides empirical evidence,

Section 5 deals with forecast accuracy, Section 6 concludes. Section 7 contains appendices

detailing on the derivation of some results used in the paper.

2 Basic Framework

To make the paper self-contained, this section briefly states the EH and derives a set

of restrictions implied by its validity on a bivariate VAR. This section draws heavily on

Shiller (1979) and Campbell and Shiller (1987), to which the interested reader may refer

for more detailed derivations.
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2.1 A linearized expectations model

The EH states that actual long-term interest rates are determined by the market’s ex-

pectation of future short-term rates. Most simple linear term structure models relate

long-term interest rates to an unweighted simple average of expected short rates. Those

models are appropriate for pure discount bonds. For coupon-carrying bonds Shiller

(1979) proposes a linearized model relating the T -period interest rate (the yield to

maturity on T -period bonds) Rt to a weighted average of expected future one-period

(short-term) interest rates rt, rt+1, ...:

Rt =
1− γ

1− γT

T−1∑

i=0
γiEt (rt+i) + TPT . (1)

Here t denotes the time period, γ is a constant of linearization 0 < γ < 1, TPT is a

constant (i.e. dependent on maturity only) term premium and Et denotes expectations

given information at time t. The parameter γ is set equal to γ = 1/(1 + R̄), where R̄ is

the average of Rt. Then (1) relates Rt to the present value of future short-term interest

rates discounted by R̄.

Rearranging (1) gives an expression involving the spread St = Rt−rt and the change

in short-term rate ∆rt = rt − rt−1:

St =
T−1∑

i=1
γiEt (∆rt+i) + γT (Rt − TPT ) + TPT . (2)

As T →∞ this simplifies to

St =
∞∑

i=1
γiEt (∆rt+i) + TP∞. (3)

where TP∞ is the term premium for a bond with an infinite maturity.

2.2 Expectations Hypothesis restrictions

If rt is stationary in first differences, a necessary condition for the EH to hold is that

the vector xt = [rt Rt]
′ should be cointegrated with cointegrating vector α = [−1 1]′ (up

to a scalar normalization). Indeed according to equation (3) the spread St = α′xt has

to be stationary, as it equals a constant TP∞ plus the discounted sum of the stationary

variablesEt∆rt+i. To impose cointegration Campbell and Shiller (1987) use the following
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VAR representation for ∆rt and St:

[
∆rt

St

]

=

[
k1

k2

]

+

[
a(L) b(L)

c(L) d(L)

][
∆rt−1
St−1

]

+

[
u1t

u2t

]

, (4)

where the polynomials in the lag operator a(L), b(L), c(L), and d(L) are all of order

p, and the disturbances are a vector white noise. From equation (3) it is possible to

derive the following set of p restrictions implied on the VAR in equation (4):

aj + cj = 0, ∀ j = 1...p; b1 + d1 = 1/γ; bj + dj = 0, ∀ j = 2...p. (5)

See Appendix A or Campbell and Shiller (1987) for details. To simplify notation, define

α as a 2(2p+ 1) vector collecting all the VAR coefficients:

α =
[
a1 b1 ... ... ap bp k1 c1 d1 ... ... cp dp k2

]′
, (6)

the 2p restrictions in (5) can be compactly written as:

Hα = µEH , (7)

where

H =
[
I2p 0

2p×1
I2p 0

2p×1

]
, (8)

µEH =

[
0 1

γ 0
1×(2p−2)

]′
. (9)

Notice that the validity of the EH implies that the 2p couples of coefficients attached

to a given variable in the two equations must be perfectly negatively correlated.

Campbell and Shiller (1987) test the restrictions in (7) via a Wald test, and find

strong rejection. As documented below in Section 4, the rejection result is confirmed

also using more recent data. Bekaert and Hodrick (2001) argue that a Wald test has bad

small sample properties and propose some alternative tests (Lagrange multiplier and

distance metric tests) still rejecting the EH for the US. On the other side, Campbell and

Shiller (1987) show that imposing the rejected restrictions on the VAR in equation (4)

does not yield a significant loss of fit, as the implied fitted value for the spread is very

highly correlated with the actual spread. This leads them to the conclusion that there is

"some element of truth" in the theory, which seems to hold up to transitory deviations.

In the following section we formalize this idea by allowing for some noise around the

restrictions.
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3 A Bayesian Framework for the Expectations Hypothesis

In this section we develop an extended version of the EH which allows transitory de-

viations from the theory to occur. This extension leads to a more general framework

which comprises the traditional one as a special case. In particular, the EH is used to

derive a prior on a VAR in the yield spread and the variation in the short-term rates.

A tightness hyperparameter controls the noise around the restrictions implied by the

EH on the VAR. When the tightness is set to zero, the EH is imposed exactly, while as

the tightness goes to infinity the VAR becomes entirely unrestricted. For intermediate

values of the tightness there is a whole range of models in which the EH restrictions hold

with an (increasing) degree of uncertainty.

The Section is organized as follows. In Subsection 3.1 and 3.2 we introduce the noise

around the EH restrictions and discuss about its economic interpretation. Subsection

3.3 derives the prior from the EH, Subsection 3.4 derives posteriors and the marginal

likelihood. Subsection 3.5 extends the framework to priors on second order parameters.

Subsection 3.6 describes Bayesian inference.

3.1 Adding uncertainty

By definition any economic theory is a simplification of reality, and as such it can not hold

exactly even if the theory is “true”. Suppose the EH does hold, but only on average, i.e.

some noise causes temporary departures from the EH restrictions in (7). Formally, let

the uncertainty introduced by this noise be measured by the parameter σ. The resulting

set of stochastic constraints is:

Hα ∼ N (µEH , σIp) . (10)

The hyperparameter σ can be interpreted as the tightness of the restrictions. By

controlling this hyperparameter we can study a continuum of models ranging from one

in which the EH restrictions hold exactly to one in which they do not hold at all.

When σ = 0 the EH restrictions are imposed without noise, which provides a model

equivalent to the VAR in equation (4) restricted according equation (7). When σ →

∞ the uncertainty about the restrictions is so high that they are not binding, and this

provides a model equivalent to the VAR in equation (4) without any restrictions. For

intermediate values of σ the EH is imposed on the model in a non-dogmatic way, i.e.

it features some noise. As we shall discuss below, this noise can be interpreted as the

effect of time varying (but stationary) term premia and errors in expectations.
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3.2 Interpreting noise

In this subsection we discuss why the set of restrictions in equation (7) may hold only

up to some noise, as shown in equation (10). Some noise directly affects the EH relation,

while some additional noise arises when EH restrictions are derived within the VAR

framework.

First, the EH may not hold due to deviations from full market rationality caused by

irrational behaviour of some agents or by market frictions. A number of researchers have

identified possible sources for this, as the presence of "chartist" or "technical" analysts

(Frankel and Froot, 1990, Taylor and Allen, 1992) and/or because of learning of some

traders (Lewis 1989) and/or because of the presence of noisy traders (DeLong et al 1990).

Second, it may well be the case that the term premium is not constant but features some

movement around its mean. Many studies have presented evidence that term premia

in bond returns are time varying. In particular, Fama and Bliss (1987) show that term

premia do vary through time and are forecastable via the forward rates. Campbell and

Shiller (1991) find similar results using yield spreads to predict yield changes. Recently,

Cochrane and Piazzesi (2005) have strengthened these results showing that the same

linear combination of forward rates predicts bond returns at all maturities. Finally, the

EH relation in equation (1) cannot be considered an exact relation, as it comes from a

linearization which ignores the Jensen inequality term.

These sources of noise may be thought of as a stationary error term appended to

equation (1) as in Clarida and Taylor (1997), who develop a framework featuring the

testable implication that deviations from a rational expectations model, whether due to

risk aversion or to nonrational expectations, are realizations of a stationary stochastic

process. In this light our framework shall allow us to assess the relevance of these

deviations and to see how far we are from a world in which in any period term premiums

are constant and all agents are fully rational. Clearly, with a stationary disturbance,

equation (1) would hold only on average (i.e. after integrating out the effect of the

noise) and when restrictions are derived from it the stochasticity of the disturbance is

transferred to the restrictions which then become inherently fuzzy.

Additional noise arises when the restrictions are derived within the VAR framework.

Indeed, a second approximation is used in order to get linear restrictions when the infi-

nite sum in equation (1) is computed. Moreover, agents’ expectations are not observable.

Even in presence of market rationality, the econometrician proxies the unobserved ex-

pectations of the agents by using a linear projection of a model wich is not necessarily

the same used by the agents. Again, these sources of noise make restrictions fuzzy.
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3.3 A prior from the EH

The set of restriction (10) can be thought of in a Bayesian perspective as a prior on

the coefficients of the VAR in equation (4). Define y = vec ([∆r S]), Ξ = I2 ⊗

[∆r−1 S−1 ... ∆r−p S−p 1], and ε = vec ([u1 u2]). The subscript t has been removed

as we are considering the vector of data for each variable. We can now rewrite the VAR

in the data-matrix notation:

y = Ξα+ ε. (11)

Given a sample size T , y and ε are 2T ×1 vectors, and Ξ is the 2T ×2(2p+1) matrix of

regressors. Defining Σu as the variance matrix of the disturbances in equation (4), the

vector ε of disturbances of the vectorized model has variance Ω = Σu ⊗ IT .

We will refer to the system consisting of the VAR in (11) and the restrictions in (10)

as the EH(σ) model: {
y = Ξα+ ε

Hα ∼ N (µEH , σIp)
. (12)

In this model the prior is expressed in terms of linear combinations of the coefficients.

In Appendix B we derive from it the following representation which specifies a prior

directly on the vector of coefficients:

{
y = Ξα+ ε

α ∼ N (αEH ,ΣEH)
, (13)

where

αEH =

[
0

1×(2p+1)
0 1/γ 0

1×(2p−1)

]′
, (14)

and

ΣEH =






δI2p 0
2p×1

−δI2p 0
2p×1

0
1×2p

δ 0
1×2p

0

−δI2p 0
2p×1

(σ + δ)I2p 0
2p×1

0
1×2p

0 0
1×2p

δ






. (15)

The parameter δ is the prior variance of the unrestricted coefficients: as there are

2 (2p+ 1) coefficients and 2p restrictions, 2p + 2 coefficients are unrestricted. To these

coefficients is assigned a variance of δ which is set to an arbitrary high number to get

uninformativeness.1

1 In the application δ is set to 106 following Doan et al. (1984).
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To clarify the role played by the tightness parameter σ it is worth to look at the

correlation matrix of the coefficients under the EH-prior, which is easily derived from

(15):

Corr(α) =






I2p 0
2p×1

−
√
δ√

σ+δ
I2p 0

2p×1
0
1×p

1 0
1×2p

0

−
√
δ√

σ+δ
I2p 0

2p×1
I2p 0

2p×1
0

1×2p
0 0

1×2p
1






. (16)

Notice that depending on the value of the tightness parameter σ we move from the exact

restrictions case (σ = 0) to the unrestricted VAR (σ → ∞). If σ = 0, the EH is in the

traditional form and involves perfect negative correlation between the relevant 2p couples

of coefficients of the VAR. Letting σ > 0 we allow this correlation to be imperfect. As

σ → ∞, the correlation across the relevant couples of coefficients goes to zero and the

correlation matrix approaches that of a VAR without cross equation restrictions.

3.4 Posteriors and marginal likelihood

The EH(σ) model described in equation (13) features exact closed form solutions for

the coefficients posterior densities and the marginal likelihood. The posterior density is

normal with variance:

Σᾱ =
(
Σ−1EH +Ξ

′Ω−1Ξ
)−1

, (17)

and mean

ᾱ = Σᾱ
(
Σ−1EHαEH +Ξ

′Ω−1y
)
. (18)

The marginal likelihood is:

p(y) = (2π)−T |Ω|−1/2 |Σᾱ|
1/2 |ΣEH |

−1/2 exp (−Q/2) , (19)

where

Q = y′Ω−1y − ᾱ′Σ−1ᾱ ᾱ+ αEH
′Σ−1EHαEH . (20)

Derivations of the posterior and marginal likelihood are contained in Appendix C.

3.5 Second order parameters

The priors used so far feature a fixed covariance matrix of the errors (Ω = Σu ⊗ IN) as

in Theil and Goldberger (1961) and Litterman (1986), and imply the existence of the

closed form solutions for posteriors and marginal likelihoods described above in equations
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(17)-(20). More generally, we could specify a prior also on the variance matrix of the

disturbances. A natural choice would be a Wishart prior:

Σ−1u ∼Wi(υ0,Σ
−1
u0 ). (21)

Uninformativeness is achieved by setting υ0 = 0 and Σu0 = 02×2. If we assume indepen-

dency between α and Σu equations (21) and (13) constitute the so called independent

Normal-Wishart prior. Posteriors and marginal likelihoods for this prior are computed

by simulation, see appendix C for details.

3.6 Bayesian inference

Bayesian inference is drawn by means of the Bayes factor. The Bayes factor is a summary

of the evidence provided by the data in favour of one theory, represented by a statistical

model, as opposed to another.

Following Kass and Raftery (1995), consider some data D assumed to have arisen

under one of the two theories H1 and H2 according to a probability density pr(D|H1) or

pr(D|H2). Given a priori probabilities pr(H1) and pr(H2) = 1 − pr(H1), the data

produce a posteriori probabilities pr(H1|D) and pr(H2|D) = 1 − pr(H1|D). Since any

prior opinion gets transformed to a posterior opinion through consideration of the data,

the transformation itself represents the evidence provided by the data. Once we convert

to the odds scale (odds = probability/(1 − probability)) the transformation takes a

simple form. Using Bayes theorem, we obtain pr(H2|D)
pr(H1|D) =

pr(D|H2)
pr(D|H1)

pr(H2)
pr(H1)

, so that the

transformation is simply multiplication by

B21 =
pr(D|H2)

pr(D|H1)
. (22)

The factor B21 is the Bayes factor of theoryH2 as opposed to theoryH1. In our example,

the data are in y and each model Hi corresponds to a different value of the tightness σ.

Kass and Raftery (1995) extensively discuss the use of Bayes factors and propose

a scale to interpret it. Their suggested interpretation appears in Table 1. Notice that

Bayes factors can equally well provide evidence in favour of a null hypothesis. For

example, a 2 lnB21 between 6 and 10 provides both evidence against H1 and in favour

of H2, while a 2 lnB21 between −10 and −6 provides both evidence against H2 and in

favour of H1.
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4 Empirical Evidence

What is usually done in a classical framework is a comparison of a restricted model

against an unrestricted model. This strategy may result to be ineffective whenever in

the true data generating process a given set of restrictions holds on average, i.e. it

holds up to some noise. As stressed by Sims (2003), even in simple situations model

comparison methods will misbehave when the discrete collection of models is serving as

a proxy for a more realistic continuous parameter space.

In this section we estimate the VAR in equation (4) under the stochastic constraints

given by equation (10) for several different of values of the tightness of such constraints.

This amounts in exploring a continuum of models ranging from one in which the EH

holds exactly to one in which it does not hold at all.

The rationale for allowing for noise around the EH is not merely statistical. As

discussed in Section 3.2, the uncertainty around the restrictions has a neat economic in-

terpretation. The EH may be affected from a time varying but stationary term premium

and expectations errors.

We apply our framework to US data. First, we gauge the appropriateness of the VAR

in equation (4) in describing the data. Then we proceed to the Bayesian estimation of

the model for different values of the tightness parameter and we draw inference by mean

of Bayes factors. Finally, we discuss our results.

4.1 Data and preliminary results

Our data set is at monthly frequency and consists of the 1-month certificate of deposit

rate in the U.S. secondary market and the 10-year U.S. Treasury bond yield, at a constant

maturity rate. Both series are provided by the Federal Reserve of St.Louis.

First, we check whether the VAR in equation (4) provides a good representation of the

data. In order to avoid problems with parameter instability, we leave out of the sample

the so called Volcker reserve-targeting period and use the sample 1983:1 to 2006:12. In

this subsample the VAR is stationary and recursiveOLS estimates and Chow tests do not

detect any structural break. The lag length of the VAR is set to 3 by using the Schwartz

criterion (with a maximum lag length of 13). The residuals feature some outliers which

are easily removed by means of five dummy variables. Diagnostic tests provide evidence

in favor of nonautocorrelation and homoscedasticity of the disturbances. In particular,

the LM test statistic reported in Johansen (1995) for the null of no autocorrelation up

to order 4 is well below the critical value, and the White (1980) test does not reject the

null of homoscedasticity at the 5% confidence level.
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Then we turn to the classical estimation of VAR in equation (4), both unrestricted

and restricted according to equation (7). Estimation results for these cases are reported

in the first and third columns of Table 2. The remaining columns on Table 2 refer to

the Bayesian estimation and we shall discuss them in next subsection. The Wald test

strongly rejects the restrictions in (7), consistently with Campbell and Shiller (1987).

4.2 Bayesian estimation

Now we turn to the Bayesian estimation of the EH(σ) model described by equation (13).

We start from the two extreme cases. The first case is the entirely restricted model,

i.e. the EH(σ) model with σ = 0. The second extreme is the entirely unrestricted VAR,

which is the EH(σ) model with σ = ∞. For future reference, we name these models

respectively EH(0) and EH(∞).2 As shown in Table 2, the EH(0) is equivalent to the

VAR in equation (4) restricted according to equation (3). Indeed the Bayesian posterior

estimates of EH(0) are virtually the same as those obtained by FIML estimation of

the restricted VAR. Similarly, the EH(∞) model is equivalent to the VAR in equation

(4) without any restrictions, as Bayesian posterior estimates of EH(∞) are virtually the

same as OLS estimates of the unrestricted VAR.

Then, we estimate the EH(σ) model for a grid of values of σ ranging from 0 to ∞.

The marginal likelihood of each of these models is graphed in Figure 1. As is clear from

the graph, the marginal likelihood is hump-shaped and features a sharp peak in the point

σ = σ∗ = 0.085. This means that the best model (i.e. the one with the higher marginal

likelihood) is neither the one which imposes the EH exactly, nor the unrestricted VAR,

but a model in which the EH restrictions hold on average, i.e. up to some noise. We call

this model EH(σ∗). Posterior estimates of this model are reported in the 5th column of

Table 2, while the last two columns of the table report respectively the deviation from

the estimates of the EH(0) and EH(∞) models.

Notice that if we would have used the classical framework to test restrictions, we

would have focused only on the two extreme cases σ = 0 and σ =∞. This means that

we would end up ignoring the model featuring the highest marginal likelihood, which is

in between the two extremes.

All the above results are based on a fixed covariance matrix of the errors as in Theil

and Goldberger (1961) and Litterman (1986). As discussed in Section 3.5 we could

specify a prior also on the matrix of second order parameters. In that case we do not

have closed form solutions for posteriors and marginal likelihoods and we need to estimate

2 In the application, nor the case σ = 0 neither the case σ =∞ are computationally feasible, therefore
we use respectively σ = eps and σ = 106, where eps is the precision of the used software.
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them by simulation.3 For details see appendix C. The marginal likelihood for this case

is also reported in Figure 1. As is clear, it virtually coincides with that computed under

the simpler Normal prior with fixed variance. Recomputing the estimates contained

in Table 2 yields the same results as in the previous case. As this case is much more

demanding from a computational perspective, in the remainder of the paper we use the

prior with fixed covariance matrix of the errors.

4.3 Bayes factors

The sharp peak featured by the marginal likelihood in the point σ∗ provides neat evidence

that the model with restrictions imposed with uncertainty is the best one. To check how

strong is the evidence in favour of that model one may use the Bayes factor. The (2ln)

Bayes factor of the EH(σ∗) model versus the EH(0) is 19.95, while the (2ln) Bayes

factor of the EH(σ∗) model versus the EH(∞) is 90.59. These figures signal very

strong evidence in favor of the EH(σ∗) model with respect to the entirely restricted and

the entirely unrestricted VAR.

There are still two issues to be investigated. First, an important concern about the

above results is related to the so called Lindley paradox. It is well known that a prior

with a very high variance is likely to be significantly disadvantaged respect to a tighter

one. In our example the EH(∞) model features a much higher variance with respect to

both the EH(0) and the EH(σ∗) models. Therefore, the rejection of the EH(∞) model

may be the spurious result of the fact that it features a too high variance.4 Second, it

would be interesting to see the shape of the Bayes factor for the EH prior against the

unrestricted VAR for all the possible values of the tightness.

To address these issues we specify an alternative competing model, call it UV AR,

which also does not impose the EH restrictions, but which features a prior with much less

variance than the EH(∞) model. In particular we use pre-sample data (from 1966:1 to

1982:12) to estimate the VAR by OLS, and then we use these OLS estimates to elicitate

a prior for the competing model.5 On the other side, the EH(σ) model is left completely

unaltered. Then we compute the Bayes factors for all the possible values of the tightness

parameter σ.

3To compute posteriors and marginal likelihoods we use an algorithm implementing Gibbs sampling
. We use the BACC algorithm for MATLAB available at www2.cirano.qc.ca/~bacc/index.html

4 Importantly, the Lindlay paradox effect does not affect the other result, namely that the
EH(σ∗) model is better than EH(0). Indeed, in that case the model featuring more variance is the
EH(σ∗) model, so if there is any Lindlay paradox effect this would work against and not in favour of it.

5The prior mean is fixed to the OLS estimates, while the variance of the coefficients is a diagonal
homoskedastic matrix featuring the same determinant as OLS estimates.
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The results form this analysis are reported in Figure 2, which plots the Bayes factor

(B21) as a function of the EH prior tightness σ, together with the inconclusive region.
6 If

we allow for very little noise, letting σ → 0, the Bayes factor supports the UV AR. This

is the common result of rejection, as letting the tightness go to zero amounts to imposing

the EH without noise. On the other hand, allowing for large departures from the EH

leads the Bayes factor to the inconclusive region. Intuitively, the noise on the constraints

becomes so large that the EH(σ) becomes virtually equivalent to the UV AR, the two

models end up having the same marginal likelihood, and the Bayes factor converges to

1. For intermediate values of σ the Bayes factor strongly supports the EH(σ) model. In

the point σ = σ∗ = 0.085 the (2ln) Bayes factor reaches the value of 11.99, which is lower

than the value of 90.59 previously found. This signals that there was a relevant Lindley

paradox effect, but it still provides strong evidence in favour of the EH(σ) model and

against the unrestricted VAR.

4.4 Discussion

In this section we estimated a continuum of models ranging from from one in which the

EH restrictions hold exactly to one in which they do not hold at all. As a result, the

best model is neither the one in which the EH is exactly imposed, nor the unrestricted

one, but the model in which the EH restrictions hold with uncertainty.

We have drawn inference by means of the Bayes factors. When the EH restrictions are

imposed exactly, they are rejected. If we allow for some noise around the EH restrictions,

they are supported by the data. Therefore, the EH holds on average, i.e. after integrating

out the effect of the deviations which may affect it in the short run. As stressed in section

3.2 these deviations have a neat economic interpretation, as the EH may be affected from

a time varying but stationary term premium and expectations errors.

The fact that the EH holds on average suggests that the EH prior can be safely

imposed on the data to perform simulation excercises. Moreover, it explains both the

common result of rejection, and the anomalous high correlation between actual and EH

consistent spread documented in Campbell and Shiller (1987).

As the data indicate that the best model is that in which the EH is imposed in a

non-dogmatic way it is natural to ask whether using the EH prior may improve the

accuracy of forecasts. This issue is addressed in the next section.

6Notice that the shape of the Bayes factor is the same of that of the Marginal likelihood, as the
UV AR does not depend on σ. This can not be immediately seen from figures 1 and 2 as the Bayes factor
is graphed in logs.
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5 How to Extract Additional Information From the Term

Structure

In this subsection we show that the VAR with the EH prior, i.e. the EH(σ) model,

produces significant improvements in forecast accuracy with respect to the VAR esti-

mated without imposing any prior information. Moreover, the EH prior has a signifi-

cantly better performance with respect to the Minnesota prior in forecasting variations

in the short-term rate. This means that using the EH as a prior allows to extract addi-

tional information from the term structure of interest rates. Paralleling Del Negro and

Schorfheide (2004) we assess forecast accuracy for several values of the prior tightness σ,

and we distinguish between the case in which σ is chosen ex post or ex ante.

5.1 Preliminaries

We start with evaluating the overall forecasting performance of the VAR with the EH

prior for different values of the tightness parameter σ and for different forecast horizons.

The results are based on a forecasting experiment performed on the whole sample with a

rolling estimation window of 12 years, which is roughly 1/2 of the available sample (i.e.

144 observations). Figure 3 plots the percentage gain in forecasting (z axis) for different

values of the EH prior tightness σ (x axis) and for different forecast horizons (y axis).

The percentage gain is defined as the difference between the in− det statistic proposed

by Doan et al. (1984) obtained using the EH prior and that obtained using the simple

unrestricted VAR described in equation (4).7 Positive values of the difference between

the in − det statistic imply a positive gain from using the EH as prior information.

Several things can be seen from the picture.

First, overall the forecasting performance of the EH(σ) model is a hump-shaped

function of σ, and is maximized by small but positive values of the tightness parameter

σ. For the one-step ahead case the value of σ providing the best forecasts is 0.03. The

optimal value for the tightness decreases as the forecast horizon increases.

Second, when σ = ∞ the gain is 0 by definition, as the prior is so loose that it is

practically ineffective. Recall from Table 2 that the Bayesian estimates of the model

EH(σ) with σ = ∞ are virtually identical to the OLS estimates of the unrestricted

VAR in equation (4).

7Specifically, the statistic is given by the log determinant of the forecast error covariance matrix
divided by the number of forecasted variables. Aside from covariance terms, this number is the average
mean square error made in forecasting each variable in the VAR. As the statistic is in logs, the percentage
gain/loss is obtained simply by taking the differences and multipying by 100.
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Third, for longer horizons, imposing the restrictions exactly is suboptimal respect to

using them as a prior, but it still provides pretty good forecasts. Indeed, for horizons

longer than two-step ahead, the gain in using σ = 0 is smaller than using the optimal

σ, but it is still high. This is consistent with those results contradicting the EH but

still potentially valuable for forecasting short-term interest rates, see, e.g. Fama (1984),

Fama and Bliss (1987) and Mishkin (1988).

Finally, the forecasting performance of the EH(σ) is higher at intermediate horizons.

While the gain at the 1-month horizon is about 2%, and at the 12-month horizon about

4%, for intermediate horizons it goes up to 7%.

5.2 Forecasts comparisons

The analysis performed so far is intended mostly as an initial inspection of the forecasting

performance of our EH(σ) model. There are still several issues to investigate. First,

the analysis was based on ex post values for σ, so it is unclear whether the forecast

gains can still be obtained when the optimal tightness has to be chosen ex-ante, i.e.

before the actual forecasts errors become available. Second, one may want to look at the

forecasting performance for each variable under analysis. Third, we may want to assess

formally the statistical significance (if any) of the gain in using the EH prior. Finally,

we may want to compare the EH prior to a more competitive opponent than a simple

unrestricted VAR, e.g. the Minnesota prior.

To see whether the forecast gains can still be obtained when the optimal tightness for

the EH prior is chosen ex-ante, at each point in time, before estimating theEH(σ)model,

we estimate the optimal tightness σ as the value which maximizes the Marginal likeli-

hood. This is simply done by using a grid search over some values of σ ranging from

0 to ∞.

We look at the forecasting performance for each variable under analysis, i.e. the

variation in short-term rates, and the spread between long-term and short-term rates.

As loss function we choose the mean squared forecast error. To assess whether the

difference in the forecasts is significant we use the test for predictive accuracy recently

developed by Giacomini and White (2006). This is a test for the null of equal forecasting

method accuracy and as such can handle forecasts based on both nested and non-nested

models, regardless from the estimation procedures used in the derivation of the forecasts,

including Bayesian and semi- and non-parametric estimation methods.

To check whether the good forecasting performance is merely due to the use of

a shrinkage estimator, we compare the EH prior also to a more competitive forecast
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model such as a VAR with a Minnesota prior. This prior shrinks the VAR coefficients to

univariate root representations and it has proved to be empirically successful (Litterman,

1986 Todd, 1984) but has the important limitation that it lacks economic justification.

In particular, the Minnesota prior we use is that described in Doan et al. (1984), the only

difference being that the prior mean on the first lag of the variables is set to 0 rather than

to 1. This is due to the fact that the variables assumed (a-priori) to follow the random

walk are Rt and rt. If the coefficient on their first lag is shrunk to 1, the coefficient on

the first lag of their transformations St and ∆rt, those entering equation (4), has to be

shrunk to 0 to be consistent with the random walk hypothesis. We optimize the choice

for the hyperparameters of the Minnesota prior as well, by doing at each point in time

a grid search over the two hyperparameters controlling the tightness of the prior.8

Results of this analysis are displayed in Tables 3 and 4. Table 3 compares the

forecasting performance of the EH prior against the unrestricted VAR, while Table 4

compares the EH prior to the Minnesota prior. The tables contain results for different

lenghts of the estimation window used for the forecasting excercise. In particular, we

use our baseline estimation window of 12 years (1/2 of the sample, 144 obs.) as well as

a shorter window of 10 (2/5 of the sample, 120 obs.) and 8 years (1/3 of the sample,

96 obs.). We do so to check for robustness, as there is a trade off between the precision

of model estimates and the precision of mean squared forecast error estimates. Indeed,

using a wider estimation window improves the precision in estimating the forecasting

model but yields fewer observations for the estimation of the mean squared forecast

error. Several conclusions can be drawn.

First, the EH prior does significantly better than the unrestricted VAR in predicting

both the change in short-term rates and the yield spread. For horizons longer than 2-

step ahead, the (significant) gain in using the EH prior ranges from 1.39 to 3.95 percent

when forecasting changes in the short-term rates and from 3.49 to 10.26 percent when

forecasting the spread. For shorter horizons the forecasts of the two models are not

statistically different.

Second, the EH prior outperforms the Minnesota prior in predicting the change in

the short-term rates. Again, for shorter horizons there is no significant difference be-

tween the two models, but for horizons longer than 2-step ahead the EH prior produces

significant gains in forecasting, ranging from 1.15 to 5.25 percent depending on the fore-

cast horizon and the estimation window. The only exception to this is the significantly

8Reagarding the remaining two hyperparameters of the Minnesota prior, the decay parameter is held
fix at a linear rate, while the variance of the constants is set equal to that used for the unrestricted
coefficients in the EH prior.
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worse performance at the very long horizons when a 8-year estimation window is used.

Third, the Minnesota prior is on average the best model for predicting the spread.

When using an 8-year estimation window, the difference between the EH prior and the

Minnesota prior forecasts is insignificant, but the results obtained with longer estimation

windows show that using the Minnesota prior produces significant and high gains, which

may be up to 13.38 percent. Also in this case, there are not significant differences at the

very short horizons.

5.3 Discussion

In this section we investigated whether using the EH as prior information yields signifi-

cant improvements in forecasting.

We found that the EH prior improves significantly over the unrestricted VAR in

predicting both the variation in short-term rates and the yield spread. The EH prior

extracts the information about the short-term rate contained in the long-term rate, and

exploit this information to improve the forecasts of the short-term rate. Then, having

a better forecast of the short-term rate allows to improve the forecasts of the long-term

rate as well. Depending on the estimation window and the forecast horizon, the gains

in terms of mean squared error can be up to 4 percent when predicting the change in

short-term rates and up to 10 percent when predicting the yield spread.

When the EH prior is compared to a more competitive benchmark, the Minnesota

prior, it still produces the best forecasts for the variation in short-term rates. How-

ever, the Minnesota prior produces the best forecasts of the spread. The fact that the

EH improves forecasts of the short-term rates but is beaten by the Minnesota prior in

predicting the spread is a bit puzzling. A similar paradoxical result has been found

by Cambpell and Shiller (1991) who show that the slope of the term structure almost

always gives a forecast in the wrong direction for the short-term change in the yield on

the longer bond, but gives a forecast in the right direction for long-term changes in short

rates.

The point is that even if using the EH as a prior improves the accuracy in forecast-

ing the short-term rates, the size of such improvement decays as the forecast horizon

increases. Forecasting the 10-year rate requires forecasting the short-term rate up to

the 10-year horizon, and for very long horizons using the EH prior does not yield any

advantage. This explains why a model imposing the random walk assumption may do

better. However, one should bear in mind that the random walk assumption has only a

statistical justification, while the EH prior has been derived from economic theory.
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6 Conclusions

Central bank researchers routinely impose the EH to forecast short-term rates, to as-

sess how monetary policy affects long-term rates, and to measure market expectations.

Also the monetary VAR literature often imposes the EH to disentangle expected from

unexpected movements in interest rates.

However, the fairly large evidence against the EH casts serious doubts on the appro-

priateness of using the EH for these forecasting and simulation exercises.

This paper has proposed a way to use the EH without imposing it dogmatically on

the data. In particular, rather than being used to derive a set of exact restrictions,

the EH has been used to derive a prior on a VAR in the yield spread and the varia-

tion in the short-term rates. A hyperparameter controls the tightness of the EH prior.

When the tightness is set to zero, the EH is imposed exactly on the VAR, while as the

tightness goes to infinity the VAR becomes entirely unrestricted. For intermediate val-

ues of the tightness there is a whole range of models in which the EH restrictions hold

with an (increasing) degree of uncertainty. In this respect our approach is very close to

that of Ingram and Whiteman (1994) and Del Negro and Schorfheide (2004), who used

respectively RBC and DSGE models to derive priors for VARs.

As a result, the best model is neither the one in which the EH is exactly imposed, nor

the unrestricted VAR, but the model in which the EH restrictions hold with noise. This

result explains both the common result of rejection, and the surprisingly high correlation

between actual and EH consistent spread documented in Campbell and Shiller (1987).

The Bayes factor provides evidence that the EH holds on average, i.e. after integrating

out the effect of the deviations (time varying stationary risk premia and errors in expec-

tations) which may affect it in the short run. This suggests that the EH prior can be

safely imposed on the data to perform simulation exercises.

Using the EH as a prior also allows to extract additional information from the term

structure of interest rates. Our forecasting exercise provides evidence that the EH prior

clearly dominates the unrestricted VAR in predicting both the yield spread and the

change in short-term rates. The gains in terms of mean square error can be up to 4

percent in predicting the change in short-term rates and up to 10 percent in predicting

the yield spread. These results may also explain why previous results contradicting the

EH are still potentially valuable for forecasting short-term interest rates (see, e.g. Fama,

1984, Fama and Bliss, 1987 and Mishkin, 1988). The EH prior also does significantly

better than the Minnesota prior in predicting changes in the short-term rates, while the

Minnesota prior produces the best forecasts of the yield spread.
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7 Appendices

A. Derivation of the EH restrictions

Here we sketch the derivation of the EH restrictions. For a complete derivation see

Campbell and Shiller (1987). Demean the variables and stack the VAR in equation (4)

as:






∆r̃t

∆r̃t−1

...

∆r̃t−p+2

∆r̃t−p+1

S̃t

S̃t−1

...

S̃t−p+2

S̃t−p+1






=






a1 a2 ... ap−1 ap b1 b2 ... bp−1 bp

1 0 ... 0 0 0 0 ... 0 0

... ... ... ... ... ... ... ... ... ...

0 0 ... 0 0 0 0 ... 0 0

0 0 ... 1 0 0 0 ... 0 0

c1 c2 ... cp−1 cp d1 d2 ... dp−1 dp

0 0 ... 0 0 1 0 ... 0 0

... ... ... ... ... ... ... ... ... ...

0 0 ... 0 0 0 0 ... 0 0

0 0 ... 0 0 0 0 ... 1 0











∆r̃t−1

∆r̃t−2

...

∆r̃t−p+1

∆r̃t−p.

S̃t−1

S̃t−2

...

S̃t−p+1

S̃t−p






+






u1t

0

...

0

0

u2t

0

...

0

0






,

where the ˜ indicates that the variables are taken in deviations form their mean. Define

A the coefficient matrix, vt the vector of disturbances, and zt as the vector containing

∆rt, St and their lags. The VAR can be compactly written as:

zt = Azt−1 + vt.

The EH (in deviation from the means) states that:

S̃t =
∞∑

i=1
γiEt (∆r̃t+i) ,

Define now two selector vectors g′ and h′ , both composed by 2p elements, all of which

are zero except for the (p+1)th element of g′ and the 1st element of h′ which are unity.

In this notation, the above equation is:

g′zt =
∞∑

i=1

γiEt
(
h′zt+i

)
.
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Using the VAR projection to proxy for expectations yields:

g′zt =
∞∑

i=1

γiAizt.

Since the above expression has to hold in general, it holds for any zt:

g′ =
∞∑

i=1

γih′Ai.

Then, exploiting the properties of geometric series we have:

g′ = h′γA(I − γA)−1,

and postmultiplying by (I − γA) provides the following set of 2p linear restrictions:

g′(I − γA) = h′γA,

i.e.: 




aj + cj = 0, ∀ j = 1...p

b1 + d1 = 1/γ

bj + dj = 0, ∀ j = 2...p

.
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B. Derivation of the EH prior

Define y = vec ([∆r S]), Ξ = I2⊗[∆r−1 S−1 ... ∆r−p S−p 1], and ε = vec ([u1 u2]). The

subscript t has been removed as we are considering the vector of data for each variable.

We can now rewrite the VAR in the data-matrix notation:

y = Ξα+ ε,

i.e.:
y

︷ ︸︸ ︷[
∆r

S

]

2T×1

=

Ξ︷ ︸︸ ︷[
I2 ⊗ X

T×(2p+1)

]

2T×2(2p+1)

∗ α
2(2p+1)×1

+

ε︷ ︸︸ ︷[
u1

u2

]

2T×1

,

X =
[
∆r−1 S−1 ∆r−2 S−2 ∆r−3 S−3 1

]
,

α =
[
a1 b1 a2 b2 a3 b3 k1 c1 d1 c2 d2 c3 d3 k2

]′
,

ε ∼ N

(
0, Ω = Σu ⊗ IT

2T×2T

)
,

Given a sample size T , y and ε are 2T × 1 vectors, and Ξ is the 2T × 2(2p+ 1) matrix

of regressors, and the vector α is the 2(2p+1) vector collecting all the VAR coefficients.

Defining Σu as the variance matrix of the disturbances, the vector ε of disturbances of

the vectorized model has variance Ω = Σu ⊗ IT . The EH restrictions are:






aj + cj = 0, ∀ j = 1...p

b1 + d1 = 1/γ

bj + dj = 0, ∀ j = 2...p

.

These 2p restrictions can be compactly written as:

Hα = µEH ,

where

H =
[
I2p 0

2p×1
I2p 0

2p×1

]
,

and

µEH =

[
0 1

γ 0
1×(2p−2)

]′
.
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Adding the noise to each of the restrictions yields:

Hα ∼ N (µEH , σIp) .

The generic form of a normal prior satisfying the EH restrictions would be:

α ∼ N(αEH ,ΣEH),

multiplying by H:

Hα ∼ N(HαEH ,HΣEHH ′),

so there is the following relation between the prior moments of the vector of restrictions

and those of the vector of coefficients:

µEH = HαEH

σIp = HΣEHH ′ .

The above system has no unique solution for αEH and ΣEH : as there are 2(2p +

1) coefficients and only 2p restrictions, 2(p + 1) coefficients are not restricted and H

is not square. To solve this problem we simply set a prior with arbitrarly high variance

δ on the unrestricted coefficients.

H2αEH ∼ N (µ2EH ,Σ2) ,

with:

H2=






I2p 0
2p×1

0
2p×2p

0
2p×1

0
1×2p

1 0
1×2p

0

I2p 0
2p×1

I2p 0
2p×1

0
1×2p

0 0
1×2p

1





, µ2EH =






0
2p×1

0

µEH
2p×1

0





, Σ2 =






δI2p 0
2p×1

0
2p×2p

0
2p×1

0
1×2p

δ 0
1×2p

0

0
2p×2p

0
2p×1

σI2p 0
2p×1

0
1×2p

0 0
1×2p

δ





.

The third block of this matrices produces the EH set of restrictions, while the remaining

bloks specify a an uninformative prior on the unrestricted coefficients. Now we can invert

the matrix H2 and get a prior explicitely specified in terms of the vector of coefficients,

rather than in terms of the restrictions.

α ∼ N(αEH ,ΣEH),
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where

αEH = H−1
2 µ2EH =

[
0

1×(2p+1)
0 1/γ 0

1×(2p−1)

]′
,

and

ΣEH = H−1
2 Σ2H

′−1
2 =






δI2p 0
2p×1

−δI2p 0
2p×1

0
1×2p

δ 0
1×2p

0

−δI2p 0
2p×1

(σ + δ)I2p 0
2p×1

0
1×2p

0 0
1×2p

δ






.

The EH(σ) model consists of the VAR plus the EH-restrictions:

{
y = Ξα+ ε

α ∼ N (αEH ,ΣEH)

The correlation marix is:

Corr(α) =






I2p 0
2p×1

−
√
δ√

σ+δ
I2p 0

2p×1
0
1×p

1 0
1×2p

0

−
√
δ√

σ+δ
I2p 0

2p×1
I2p 0

2p×1
0

1×2p
0 0

1×2p
1
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C. Derivation of Posterior Densities and Marginal Likelihood.

Consider the VAR in equation (13):

y
2T×1

= Ξ
2T×Mk

α
2k×1

+ ε
2T×1

,

α ∼ N(αEH ,ΣEH),

e ∼ N(0,Ω = Σu ⊗ IT
2T×2T

.),

Here 2 is the number of equations, p is the number of lags included, k = 2p + 1 is the

number of regressors and T is the sample size, while αEH and ΣEH are the coefficients

prior moments. The prior density is:

p(α) = (2π)−2k/2 |ΣEH |
−1/2 exp

{
−
1

2
(α− αEH)

′Σ−1EH(α− αEH)

}
,

the likelihood is9:

p(y|α) = (2π)−2T/2 |Ω|−1/2 exp

{
−
1

2
(y − Ξα)′Ω−1(y − Ξα)

}
,

a posterior density kernel is:

p(y|α)p(α) = (2π)−2(T+k)/2 |Ω|−1/2 |ΣEH |
−1/2 (23)

exp

{
−
1

2

[
(y − Ξα)′Ω−1(y − Ξα) + (α− αEH)

′Σ−1EH(α− αEH)
]}

.

Now define10:

Σᾱ =
(
Σ−1EH +Ξ

′Ω−1Ξ
)−1

, (24)

ᾱ = Σᾱ
(
Σ−1EHαEH +Ξ

′Ω−1y
)
. (25)

9Notice that: |Ω|−1/2 = |Σu ⊗ IT |
−1/2 = (|Σu|

T |IT |
2)−1/2 = |Σu|

−T/2
.

10Notice that:

Σᾱ =
[
Σ−1EH +Ξ

′Ω−1Ξ]−1 = [Σ−1EH + (I2 ⊗X)
′(Σu ⊗ IT )(I2 ⊗X)

]−1

= [Σ−1EH + I
′

2ΣuI2 ⊗X
′
ITX]

−1 =
[
Σ−1EH +Σu ⊗X

′
X
]−1

,

ᾱ = Σᾱ
[
Σ−1EHαEH +Ξ

′Ω−1y
]
= Σᾱ

[
Σ−1EHαEH + (I2 ⊗X)

′(Σu ⊗ IT )y
]

= Σᾱ
[
Σ−1EHαEH + (I

′

2Σu ⊗X
′
IT )y

]
= Σᾱ

[
Σ−1EHαEH + (Σu ⊗X

′)y
]
.
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Using the above definitions and completing the square yields the following expression

for the term in square brackets on the right-hand side of equation (23):

(y − Ξα)′Ω−1(y − Ξα) + (α− αEH)
′Σ−1EH(α− αEH)

= y′Ω−1y − y′Ω−1Ξα− α′Ξ′Ω−1y + α′Ξ′Ω−1Ξα

+α′Σ−1EHa− α′Σ−1EHaEH − αEH
′Σ−1EHα+ αEH

′Σ−1EHαEH

= y′Ω−1y −
(
y′Ω−1Ξ+ αEH

′Σ−1EH
)
α− α′

(
Ξ′Ω−1y +Σ−1EHaEH

)

+α′
(
Ξ′Ω−1Ξ+Σ−1EH

)
α+ αEH

′Σ−1EHαEH

= y′Ω−1y −
(
Σ−1ᾱ ᾱ

)′
α− α′

(
Σ−1ᾱ ᾱ

)
+ α′

(
Σ−1ᾱ

)
α+ αEH

′Σ−1EHαEH

= y′Ω−1y − ᾱ′Σ−1ᾱ α− α′Σ−1ᾱ ᾱ+ α′Σ−1ᾱ α+ αEH
′Σ−1EHαEH

= y′Ω−1y − ᾱ′Σ−1ᾱ ᾱ+ (ᾱ− α)′Σ−1ᾱ (ᾱ− α) + αEH
′Σ−1EHαEH ,

where the last line follows using some algebra.11 Substituting this result in equation

(23), the posterior density kernel can be written as follows:

p(y|α)p(α) = (2π)−2(T+k)/2 |Ω|−1/2 |ΣEH |
−1/2

exp

{
−
1

2

[
y′Ω−1y − ᾱ′Σ−1ᾱ ᾱ+ (ᾱ− α)′Σ−1ᾱ (ᾱ− α) + αEH

′Σ−1EHαEH
]}

.

Defining

Q = y′Ω−1y − ᾱ′Σ−1ᾱ ᾱ+ αEH
′Σ−1EHαEH ,

11Since:

α
′Σ−1ᾱ α = (−α+ ᾱ− ᾱ)′Σ−1ᾱ (−α+ ᾱ− ᾱ) = (ᾱ− α)′Σ−1ᾱ (ᾱ− α)

+(−ᾱ)′Σ−1ᾱ (−ᾱ) + (ᾱ− α)′Σ−1ᾱ (−ᾱ) + (−ᾱ)′Σ−1ᾱ (ᾱ− α),

we have that:

y
′Ω−1y − ᾱ′Σ−1ᾱ α− α′Σ−1ᾱ ᾱ+ [α′Σ−1ᾱ α] + αEH

′Σ−1EHαEH

= y
′Ω−1y − ᾱ′Σ−1ᾱ α− α′Σ−1ᾱ ᾱ+

[
(ᾱ− α)′Σ−1ᾱ (ᾱ− α) + ᾱ′Σ−1ᾱ ᾱ+
−(ᾱ− α)′Σ−1ᾱ ᾱ− ᾱ′Σ−1ᾱ (ᾱ− α)

]
+ αEH

′Σ−1EHαEH

= y
′Ω−1y − ᾱ′Σ−1ᾱ α− α′Σ−1ᾱ ᾱ+ (ᾱ− α)′Σ−1ᾱ (ᾱ− α)

+ᾱ′Σ−1ᾱ ᾱ− (ᾱ− α)′Σ−1ᾱ ᾱ− ᾱ′Σ−1ᾱ (ᾱ− α) + αEH
′Σ−1EHαEH

= y
′Ω−1y − ᾱ′Σ−1ᾱ [α+ (ᾱ− α)]− [(ᾱ− α)′ + α′]Σ−1ᾱ ᾱ

+(ᾱ− α)′Σ−1ᾱ (ᾱ− α) + ᾱ′Σ−1ᾱ ᾱ+ αEH
′Σ−1EHαEH

= y
′Ω−1y − ᾱ′Σ−1ᾱ ᾱ− ᾱΣ−1ᾱ ᾱ+ (ᾱ− α)′Σ−1ᾱ (ᾱ− α) + ᾱ′Σ−1ᾱ ᾱ+ αEH

′Σ−1EHαEH

= y
′Ω−1y − ᾱ′Σ−1ᾱ ᾱ+ (ᾱ− α)′Σ−1ᾱ (ᾱ− α) + αEH

′Σ−1EHαEH .
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we have:

p(y|α)p(α) = (2π)−2(T+k)/2 |Ω|−1/2 |ΣEH |
−1/2 exp

{
−
1

2
[(ᾱ− α)′Σ−1ᾱ (ᾱ− α) +Q]

}
.

(26)

Forgetting constants:

p(y|α)p(α) ∝ exp
{
−1/2[(ᾱ− α)′Σ−1ᾱ (ᾱ− α)]

}
=⇒ p(α|y) ∼ N(ᾱ,Σᾱ),

which shows that ᾱ,Σᾱ in equations (24) and (25) are the moments of the posterior.

The posterior properly normalized density is:

p(α|y) = (2π)−2k/2 |Σᾱ|
−1/2 exp

{
−
1

2
(ᾱ− α)′Σ−1ᾱ (ᾱ− α)

}
. (27)

The marginal likelihood is given by the integral over the 2× k dimensional space of the

product of the properly normalized prior and data densities:

p(y) =

∫ +∞

−∞
...

∫ +∞

−∞
p(y|α)p(α) dα1...dα2k =

∫

ℜ2k
p(y|α)p(α)dα.

Using equation (26):

p(y) =

∫

ℜ2k
(2π)−2(T+k)/2 |Ω|−1/2 |ΣEH |

−1/2 exp

{
−
1

2
[(ᾱ− α)′Σ−1ᾱ (ᾱ− α) +Q]

}
dα,

= (2π)−2(T+k)/2 |Ω|−1/2 |ΣEH |
−1/2 exp (−Q/2)

∫

ℜ2k
exp

{
−
1

2
[(ᾱ− α)′Σ−1ᾱ (ᾱ− α)]

}
dα.

(28)

Notice it is important that the properly normalized prior and properly normalized like-

lihood, and not arbitrary kernels of these densities, be used in forming the marginal

likelihood. Now exploit the fact that the posterior properly normalized density in equa-

tion (27) integrates to one:

∫ +∞

−∞
...

∫ +∞

−∞
p(α|y) dα1...dα2k =

∫

ℜ2k
p(α|y)dα = 1 =⇒

∫

ℜ2k
(2π)−2k/2 |Σᾱ|

−1/2 exp

{
−
1

2
(ᾱ− α)′Σ−1ᾱ (ᾱ− α)

}
dα = 1 =⇒

∫

ℜ2k
exp

{
−
1

2
(ᾱ− α)′Σ−1ᾱ (ᾱ− α)

}
dα =

1

(2π)−2k/2 |Σᾱ|
−1/2 . (29)
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Substituting (29) in the expression on the right-hand side of equation (28) gives the

following expression for the marginal likelihood:

p(y) = (2π)−2(T+k)/2 |Ω|−1/2 |ΣEH |
−1/2 exp (−Q/2)

1

(2π)−2k/2 |Σᾱ|
−1/2 ,

which simplifies to:

p(y) = (2π)−T |Ω|−1/2 |Σᾱ|
1/2 |ΣEH |

−1/2 exp (−Q/2) .

The above results apply to the case with fixed variance matrix of the errors (Ω =

Σu ⊗ IT ) as in Theil (1961) and Litterman (1986). Alternatively, we could specify a

prior also on this matrix, as a Wishart:

Σ−1u ∼Wi(υ0,Σ
−1
u0 ).

Uninformativeness for this prior is achieved by setting υ0 = 0 and Σu0 = 02×2. If we

assume independency between α and Σu, the above prior, coupled with the normal prior

on coefficients constitutes the so called independent Normal-Wishart prior:

p(α,Σu) = p(α)p(Σu),

α ∼ N(αEH ,ΣEH),

Σ−1u ∼ Wi(υ0,Σ
−1
u0 ).

This prior implies the following conditional posterior distributions (for a derivation see

Geweke 2005):

α|y,Σ−1u ∼ N(ᾱ,Σᾱ),

Σ−1u |y, α ∼ Wi(υ0 + T, (Σu0 + S)−1),

where the generic element of the matrix S is sij = (yi − Ξiα)(yj − Ξjα), and i, j =

1, 2 signal the subvector or submatrix composed by the T rows associated with the i-th

and j-th equation (so for example in our case y1 = ∆rt and y2 = St). These conditional

posterior distributions are the foundation of a Gibbs sampling algorithm which succes-

sively draws from p(α|y,Σ−1u ) and p(Σ−1u |y, α) to simulate draws from the unconditional

posteriors. Marginal likelihoods are then computed numerically. For details see Geweke

(2005) p. 165 or Koop (2003) p.137.
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Tables and Figures

Table 1: Interpreting Bayes factors

2 lnB21 B21 Evidence Against H1

0 to 2 1 to 3 Bare Mention

2 to 6 3 to 20 Positive

6 to 10 20 to 150 Strong

> 10 > 150 Very Strong

Source: Kass and Raftery (1995).
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Table 2: Estimation results

Unrestricted VAR Restricted VAR VAR with EH prior

OLS EH(∞) FIML EH(0) EH(σ∗) %dEH(0) %dEH(∞)
a1 0.4528 0.4528 0.2901 0.2901 0.4293 48.0% -5.18%

b1 0.2591 0.2591 0.1058 0.1057 0.2378 124% -8.23%

a2 -0.0036 -0.0036 0.0914 0.0914 0.0146 -84.0% -509%

b2 -0.2781 -0.2781 -0.0610 -0.0610 -0.2372 288% -14.6%

a3 0.2016 0.2016 0.2054 0.2054 0.1987 -3.28% -1.46%

b3 0.0409 0.0409 -0.0232 -0.0232 0.0212 -191% -48.2%

k1 -0.0219 -0.0219 -0.0234 -0.0234 -0.0218 -6.73% -0.45%

c1 -0.0298 -0.0298 -0.2901 -0.2901 -0.0674 -76.7% 125%

d1 1.1338 1.1338 0.8884 0.8885 1.0997 23.7% -3.00%

c2 -0.2433 -0.2433 -0.0914 -0.0914 -0.2142 134% -11.9%

d2 -0.2861 -0.2861 0.0610 0.0610 -0.2208 -461% -22.8%

c3 -0.2115 -0.2115 -0.2054 -0.2054 -0.2162 5.25% 2.22%

d3 0.1256 0.1256 0.0232 0.0232 0.0940 305% -25.1%

k2 0.0117 0.0117 0.0093 0.0094 0.0118 27.0% 1.37%

The first group of columns provides estimates of the VAR without restrictions. The first

column reports the OLS estimates, the second column the Bayesian estimates. The second

group of columns provides estimates of the VAR with the EH restrictions exactly imposed. The

first column reports the FIML estimates, the second the Bayesian estimates. The third group

of columns provides the estimates of the VAR with the EH prior. The first column reports

the estimates, the second and the third the percentage deviations from the estimates of the

unrestricted and the restricted VAR.
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Table 3: Forecasting performance of EH prior against the unrestricted VAR

96-obs 120-obs 144-obs

h ∆r S ∆r S ∆r S

1 -1.065 -0.105 0.755 -1.31 1.469 -2.769

2 1.335 5.727 0.853 2.387 1.501 -0.483

3 2.639** 10.26*** 1.537 5.568** 1.563 3.390

4 3.957*** 9.824*** 2.867*** 5.441** 3.397*** 4.474**

5 3.379*** 8.589*** 2.282*** 4.654** 3.438*** 5.142***

6 3.028*** 7.288*** 2.302*** 3.498* 3.227*** 5.089***

7 3.066*** 6.124*** 2.518*** 2.557 3.149*** 4.790***

8 2.674*** 5.381*** 2.186*** 1.906 2.684*** 4.650***

9 2.463*** 4.862*** 2.208*** 1.333 2.365*** 4.379***

10 2.176** 4.511*** 2.039*** 0.980 2.057*** 4.106***

11 1.747** 4.297*** 1.654*** 0.773 1.670*** 3.887***

12 1.454** 4.167*** 1.452*** 0.679 1.386*** 3.655***

The table reports the percentage gain in forecasting using the VAR with the EH prior rather

than the untrestricted VAR. The column h reports the forecast horizon. The percentage gain

is defined as the percentage decrease in Mean Squared Error. The symbols *,**,***, mean

significancy at the 10, 5, 1 percent confidence level according to the Giacomini and White (2006)

test. Results are computed for three different rolling estimation windows. The first group of

columns provides results based on a rolling estimation window of 1/3 of the sample (96-obs),

the second group provides results based on a rolling estimation window of 2/5 of the sample

(120-obs), the third group provides results based on a rolling estimation window of 1/2 of the

sample (144-obs).
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Table 4: Forecasting performance of EH prior against the Minnesota prior

96-obs 120-obs 144-obs

h ∆r S ∆r S ∆r S

1 2.149 2.329 -0.148 -0.767 -2.063 -2.5610

2 3.405 1.658 0.773 -4.369 0.642 -5.4880

3 3.967* 0.260 1.649 -7.266** 1.958 -7.222**

4 5.255*** -2.242 4.503*** -10.85*** 4.446*** -10.18***

5 3.867*** -3.191 3.252** -12.86*** 4.063*** -11.23***

6 2.834** -2.801 2.974** -13.38*** 3.994*** -11.39***

7 1.82** -2.148 3.173*** -13.08*** 3.294*** -11.12***

8 0.522 -1.23 2.174*** -12.25*** 2.466*** -10.20***

9 -0.177 -0.564 1.631*** -11.16*** 2.026*** -9.131***

10 -0.953 -0.262 1.231*** -10.06*** 1.152*** -8.082***

11 -1.767*** -0.136 0.423 -9.042*** 0.562 -7.051***

12 -2.075*** -0.291 -0.065 -8.148*** 0.167 -6.174***

The table reports the percentage gain in forecasting using the VAR with the EH prior rather

than the a VAR with the Minnesota prior. The column h reports the forecast horizon. The

percentage gain is defined as the percentage decrease in Mean Squared Error. The symbols

*,**,***, mean significancy at the 10, 5, 1 percent confidence level according to the Giacomini

and White (2006) test. Results are computed for three different rolling estimation windows. The

first group of columns provides results based on a rolling estimation window of 1/3 of the sample

(96-obs), the second group provides results based on a rolling estimation window of 2/5 of the

sample (120-obs), the third group provides results based on a rolling estimation window of 1/2

of the sample (144-obs).
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Figure 1: Marginal likelihood of the EH(σ) model, as a function of σ. The blue line is
based on the Normal prior with fixed variance matrix for the disturbances, while the red
line is based on the independent Normal-Wishart prior.
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Figure 2: Twice the log of the Bayes factor of the EH(σ) model agains the UV AR, as
a function of σ. The two dotted lines represent the so-called inconclusive region. Below
the dotted lines the data provide evidence in favour of the UV AR. Above the dotted
lines the data provide evidence in favour of the EH(σ) model. Within the dotted lines
the data do not provide evidence in favor of any of the two models.
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Figure 3: Percentage gain in forecasting using the VAR with the EH prior rather than
the unrestricted VAR. The x axis reports the EH prior tightness, the y axis the forecast
horizon. The percentage gain is the difference in the multivariate in-det statistic. The
in-det statistic is given by the log determinant of the forecast error covariance matrix
divided by the number of forecasted variables..
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